code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCAmelCase ( unittest.TestCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=7 , lowerCAmelCase_=3 , lowerCAmelCase_=18 , lowerCAmelCase_=30 , lowerCAmelCase_=4_00 , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=True , ): """simple docstring""" _snake_case = size if size is not None else {'height': 18, 'width': 18} _snake_case = parent _snake_case = batch_size _snake_case = num_channels _snake_case = image_size _snake_case = min_resolution _snake_case = max_resolution _snake_case = do_resize _snake_case = size _snake_case = apply_ocr def lowerCamelCase ( self ): """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ): __lowercase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCamelCase ( self ): """simple docstring""" _snake_case = LayoutLMvaImageProcessingTester(self ) @property def lowerCamelCase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'apply_ocr' ) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) _snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , lowerCAmelCase_ ) self.assertIsInstance(encoding.boxes , lowerCAmelCase_ ) # Test batched _snake_case = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _snake_case = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _snake_case = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = LayoutLMvaImageProcessor() from datasets import load_dataset _snake_case = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) _snake_case = Image.open(ds[0]['file'] ).convert('RGB' ) _snake_case = image_processing(lowerCAmelCase_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _snake_case = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 _snake_case = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , lowerCAmelCase_ ) self.assertListEqual(encoding.boxes , lowerCAmelCase_ ) # with apply_OCR = False _snake_case = LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase_ ) _snake_case = image_processing(lowerCAmelCase_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
42
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class __UpperCAmelCase ( tf.keras.layers.Layer ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1 , lowerCAmelCase_=False , **lowerCAmelCase_ ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _snake_case = vocab_size _snake_case = d_embed _snake_case = d_proj _snake_case = cutoffs + [vocab_size] _snake_case = [0] + self.cutoffs _snake_case = div_val _snake_case = self.cutoffs[0] _snake_case = len(self.cutoffs ) - 1 _snake_case = self.shortlist_size + self.n_clusters _snake_case = keep_order _snake_case = [] _snake_case = [] def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" if self.n_clusters > 0: _snake_case = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='zeros' , trainable=lowerCAmelCase_ , name='cluster_weight' ) _snake_case = self.add_weight( shape=(self.n_clusters,) , initializer='zeros' , trainable=lowerCAmelCase_ , name='cluster_bias' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: _snake_case = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_projs_._{i}' , ) self.out_projs.append(lowerCAmelCase_ ) else: self.out_projs.append(lowerCAmelCase_ ) _snake_case = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_layers_._{i}_._weight' , ) _snake_case = self.add_weight( shape=(self.vocab_size,) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): _snake_case , _snake_case = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case = self.d_embed // (self.div_val**i) _snake_case = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_projs_._{i}' ) self.out_projs.append(lowerCAmelCase_ ) _snake_case = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_layers_._{i}_._weight' , ) _snake_case = self.add_weight( shape=(r_idx - l_idx,) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) super().build(lowerCAmelCase_ ) @staticmethod def lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ): """simple docstring""" _snake_case = x if proj is not None: _snake_case = tf.einsum('ibd,ed->ibe' , lowerCAmelCase_ , lowerCAmelCase_ ) return tf.einsum('ibd,nd->ibn' , lowerCAmelCase_ , lowerCAmelCase_ ) + b @staticmethod def lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = shape_list(lowerCAmelCase_ ) _snake_case = tf.range(lp_size[0] , dtype=target.dtype ) _snake_case = tf.stack([r, target] , 1 ) return tf.gather_nd(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=False ): """simple docstring""" _snake_case = 0 if self.n_clusters == 0: _snake_case = self._logit(lowerCAmelCase_ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: _snake_case = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=lowerCAmelCase_ , logits=lowerCAmelCase_ ) _snake_case = tf.nn.log_softmax(lowerCAmelCase_ , axis=-1 ) else: _snake_case = shape_list(lowerCAmelCase_ ) _snake_case = [] _snake_case = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): _snake_case , _snake_case = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: _snake_case = (target >= l_idx) & (target < r_idx) _snake_case = tf.where(lowerCAmelCase_ ) _snake_case = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) - l_idx if self.div_val == 1: _snake_case = self.out_layers[0][0][l_idx:r_idx] _snake_case = self.out_layers[0][1][l_idx:r_idx] else: _snake_case = self.out_layers[i][0] _snake_case = self.out_layers[i][1] if i == 0: _snake_case = tf.concat([cur_W, self.cluster_weight] , 0 ) _snake_case = tf.concat([cur_b, self.cluster_bias] , 0 ) _snake_case = self._logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.out_projs[0] ) _snake_case = tf.nn.log_softmax(lowerCAmelCase_ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: _snake_case = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self._gather_logprob(lowerCAmelCase_ , lowerCAmelCase_ ) else: _snake_case = self._logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.out_projs[i] ) _snake_case = tf.nn.log_softmax(lowerCAmelCase_ ) _snake_case = self.cutoffs[0] + i - 1 # No probability for the head cluster _snake_case = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(lowerCAmelCase_ ) if target is not None: _snake_case = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self._gather_logprob(lowerCAmelCase_ , lowerCAmelCase_ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(lowerCAmelCase_ , -cur_logprob , shape_list(lowerCAmelCase_ ) ) _snake_case = tf.concat(lowerCAmelCase_ , axis=-1 ) if target is not None: if return_mean: _snake_case = tf.reduce_mean(lowerCAmelCase_ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(lowerCAmelCase_ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(lowerCAmelCase_ , name=self.name , aggregation='mean' if return_mean else '' ) return out
42
1
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=7 ): lowerCamelCase__ : List[str] = None if token is not None: lowerCamelCase__ : Dict = {'Accept': 'application/vnd.github+json', 'Authorization': f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) lowerCamelCase__ : List[Any] = '636036' lowerCamelCase__ : int = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' lowerCamelCase__ : Optional[int] = requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json() return result["workflow_runs"] def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = get_daily_ci_runs(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowerCamelCase__ : int = workflow_run['id'] break return workflow_run_id def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = get_last_daily_ci_runs(_lowerCamelCase ) if workflow_run_id is not None: lowerCamelCase__ : Optional[Any] = get_artifacts_links(worflow_run_id=_lowerCamelCase , token=_lowerCamelCase ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowerCamelCase__ : int = artifacts_links[artifact_name] download_artifact( artifact_name=_lowerCamelCase , artifact_url=_lowerCamelCase , output_dir=_lowerCamelCase , token=_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): get_last_daily_ci_artifacts(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Optional[Any] = {} for artifact_name in artifact_names: lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''{artifact_name}.zip''' ) if os.path.isfile(_lowerCamelCase ): lowerCamelCase__ : Dict = {} with zipfile.ZipFile(_lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCamelCase ): # read the file with z.open(_lowerCamelCase ) as f: lowerCamelCase__ : str = f.read().decode('UTF-8' ) return results
316
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
1
from __future__ import annotations def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not nums: raise ValueError('''List is empty''' ) return sum(SCREAMING_SNAKE_CASE ) / len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = torch.device('''cpu''') def lowerCAmelCase__( ) -> Any: __snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCAmelCase__( lowercase : Dict ) -> List[Any]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]: __snake_case : List[Any] = dct.pop(lowercase ) __snake_case : List[Any] = val def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple: __snake_case : Optional[Any] = [] for k in state_dict.keys(): __snake_case : Union[str, Any] = k if ".pwconv" in k: __snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: __snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: __snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: __snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: __snake_case : int = k_new.split("." ) if ls[2].isdigit(): __snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: __snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]: __snake_case : List[str] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __snake_case : Tuple = 1000 __snake_case : Any = "huggingface/label-files" __snake_case : int = "imagenet-1k-id2label.json" __snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) __snake_case : str = {int(lowercase ): v for k, v in idalabel.items()} __snake_case : int = idalabel __snake_case : Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __snake_case : Optional[Any] = [3, 3, 6, 4] __snake_case : Optional[int] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __snake_case : List[str] = [3, 3, 9, 6] __snake_case : Optional[Any] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __snake_case : Optional[int] = [4, 3, 10, 5] __snake_case : Dict = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __snake_case : str = [4, 4, 12, 6] __snake_case : Optional[Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): __snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase ) else: __snake_case : Tuple = torch.load(lowercase , map_location="cpu" ) __snake_case : Optional[int] = checkpoint __snake_case : Any = create_rename_keys(lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # load HuggingFace model __snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval() hf_model.load_state_dict(lowercase ) # prepare test inputs __snake_case : Optional[Any] = prepare_img() __snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" ) __snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" ) # compare outputs from both models __snake_case : str = get_expected_output(lowercase ) __snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') _UpperCamelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
326
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { 'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json', 'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json', 'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json', 'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class lowercase_ ( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = "mobilenet_v2" def __init__( self : int , _UpperCAmelCase : Dict=3 , _UpperCAmelCase : Optional[int]=224 , _UpperCAmelCase : str=1.0 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Union[str, Any]=8 , _UpperCAmelCase : Optional[int]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]="relu6" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0.8 , _UpperCAmelCase : Any=0.02 , _UpperCAmelCase : str=0.001 , _UpperCAmelCase : Dict=255 , **_UpperCAmelCase : int , ): super().__init__(**_lowercase ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _A = num_channels _A = image_size _A = depth_multiplier _A = depth_divisible_by _A = min_depth _A = expand_ratio _A = output_stride _A = first_layer_is_expansion _A = finegrained_output _A = hidden_act _A = tf_padding _A = classifier_dropout_prob _A = initializer_range _A = layer_norm_eps _A = semantic_loss_ignore_index class lowercase_ ( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = version.parse('''1.11''' ) @property def lowerCAmelCase_ ( self : str ): return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def lowerCAmelCase_ ( self : str ): if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def lowerCAmelCase_ ( self : Optional[int] ): return 1E-4
370
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _snake_case ( _snake_case : Dict ) -> Any: '''simple docstring''' if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False def _snake_case ( _snake_case : str ) -> Tuple: '''simple docstring''' for char in word: _A = ord(_snake_case ) if not _is_chinese_char(_snake_case ): return 0 return 1 def _snake_case ( _snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' _A = set() for token in tokens: _A = len(_snake_case ) > 1 and is_chinese(_snake_case ) if chinese_word: word_set.add(_snake_case ) _A = list(_snake_case ) return word_list def _snake_case ( _snake_case : List[str] , _snake_case : set() ) -> Optional[Any]: '''simple docstring''' if not chinese_word_set: return bert_tokens _A = max([len(_snake_case ) for w in chinese_word_set] ) _A = bert_tokens _A , _A = 0, len(_snake_case ) while start < end: _A = True if is_chinese(bert_word[start] ): _A = min(end - start , _snake_case ) for i in range(_snake_case , 1 , -1 ): _A = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _A = '##' + bert_word[j] _A = start + i _A = False break if single_word: start += 1 return bert_word def _snake_case ( _snake_case : List[str] , _snake_case : LTP , _snake_case : BertTokenizer ) -> str: '''simple docstring''' _A = [] for i in range(0 , len(_snake_case ) , 1_00 ): _A = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] _A = [get_chinese_word(_snake_case ) for r in res] ltp_res.extend(_snake_case ) assert len(_snake_case ) == len(_snake_case ) _A = [] for i in range(0 , len(_snake_case ) , 1_00 ): _A = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=_snake_case , truncation=_snake_case , max_length=5_12 ) bert_res.extend(res['input_ids'] ) assert len(_snake_case ) == len(_snake_case ) _A = [] for input_ids, chinese_word in zip(_snake_case , _snake_case ): _A = [] for id in input_ids: _A = bert_tokenizer._convert_id_to_token(_snake_case ) input_tokens.append(_snake_case ) _A = add_sub_symbol(_snake_case , _snake_case ) _A = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_snake_case ): if token[:2] == "##": _A = token[2:] # save chinese tokens' pos if len(_snake_case ) == 1 and _is_chinese_char(ord(_snake_case ) ): ref_id.append(_snake_case ) ref_ids.append(_snake_case ) assert len(_snake_case ) == len(_snake_case ) return ref_ids def _snake_case ( _snake_case : List[str] ) -> Dict: '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: _A = f.readlines() _A = [line.strip() for line in data if len(_snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _A = LTP(args.ltp ) # faster in GPU device _A = BertTokenizer.from_pretrained(args.bert ) _A = prepare_ref(_snake_case , _snake_case , _snake_case ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _A = [json.dumps(_snake_case ) + '\n' for ref in ref_ids] f.writelines(_snake_case ) if __name__ == "__main__": a = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') a = parser.parse_args() main(args)
271
0
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def __lowerCamelCase ( UpperCAmelCase_ : List[str] ): """simple docstring""" a :str = tmp_path / '''file.csv''' a :List[str] = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(UpperCAmelCase_ , '''w''' ) as f: f.write(UpperCAmelCase_ ) return str(UpperCAmelCase_ ) @pytest.fixture def __lowerCamelCase ( UpperCAmelCase_ : List[str] ): """simple docstring""" a :Optional[Any] = tmp_path / '''malformed_file.csv''' a :Optional[Any] = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(UpperCAmelCase_ , '''w''' ) as f: f.write(UpperCAmelCase_ ) return str(UpperCAmelCase_ ) @pytest.fixture def __lowerCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): """simple docstring""" a :List[Any] = tmp_path / '''csv_with_image.csv''' a :Tuple = textwrap.dedent( F'''\ image {image_file} ''' ) with open(UpperCAmelCase_ , '''w''' ) as f: f.write(UpperCAmelCase_ ) return str(UpperCAmelCase_ ) @pytest.fixture def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] ): """simple docstring""" a :List[Any] = tmp_path / '''csv_with_label.csv''' a :Dict = textwrap.dedent( '''\ label good bad good ''' ) with open(UpperCAmelCase_ , '''w''' ) as f: f.write(UpperCAmelCase_ ) return str(UpperCAmelCase_ ) @pytest.fixture def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" a :int = tmp_path / '''csv_with_int_list.csv''' a :Tuple = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(UpperCAmelCase_ , '''w''' ) as f: f.write(UpperCAmelCase_ ) return str(UpperCAmelCase_ ) def __lowerCamelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ): """simple docstring""" a :str = Csv() a :Optional[int] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(UpperCAmelCase_ , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(UpperCAmelCase_ ) in record.message for record in caplog.records ) @require_pil def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" with open(UpperCAmelCase_ , encoding='''utf-8''' ) as f: a :Any = f.read().splitlines()[1] a :Union[str, Any] = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) a :Dict = csv._generate_tables([[csv_file_with_image]] ) a :Union[str, Any] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() a :Dict = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def __lowerCamelCase ( UpperCAmelCase_ : Optional[Any] ): """simple docstring""" with open(UpperCAmelCase_ , encoding='''utf-8''' ) as f: a :List[str] = f.read().splitlines()[1:] a :int = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) a :int = csv._generate_tables([[csv_file_with_label]] ) a :str = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() a :Union[str, Any] = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(UpperCAmelCase_ ) for label in labels] def __lowerCamelCase ( UpperCAmelCase_ : Tuple ): """simple docstring""" a :str = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda UpperCAmelCase_ : [int(UpperCAmelCase_ ) for i in x.split()]} ) a :Optional[Any] = csv._generate_tables([[csv_file_with_int_list]] ) a :Optional[Any] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) a :int = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
94
from __future__ import annotations def __lowerCamelCase ( UpperCAmelCase_ : dict , UpperCAmelCase_ : str ): """simple docstring""" a , a :Optional[Any] = set(UpperCAmelCase_ ), [start] while stack: a :Optional[int] = stack.pop() explored.add(UpperCAmelCase_ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(UpperCAmelCase_ ) return explored snake_case : Optional[int] = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
94
1
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : str = XCLIPTextConfig() # derive patch size from model name lowerCAmelCase__ : Optional[Any] = model_name.find("""patch""" ) lowerCAmelCase__ : int = int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] ) lowerCAmelCase__ : int = XCLIPVisionConfig(patch_size=__UpperCAmelCase , num_frames=__UpperCAmelCase ) if "large" in model_name: lowerCAmelCase__ : Dict = 768 lowerCAmelCase__ : Tuple = 3072 lowerCAmelCase__ : List[Any] = 12 lowerCAmelCase__ : Dict = 1024 lowerCAmelCase__ : Any = 4096 lowerCAmelCase__ : List[str] = 16 lowerCAmelCase__ : List[Any] = 24 lowerCAmelCase__ : List[Any] = 768 lowerCAmelCase__ : Any = 3072 if model_name == "xclip-large-patch14-16-frames": lowerCAmelCase__ : str = 336 lowerCAmelCase__ : List[str] = XCLIPConfig.from_text_vision_configs(__UpperCAmelCase , __UpperCAmelCase ) if "large" in model_name: lowerCAmelCase__ : Optional[Any] = 768 return config def lowercase_ ( __UpperCAmelCase ) -> int: # text encoder if name == "token_embedding.weight": lowerCAmelCase__ : int = name.replace("""token_embedding.weight""" , """text_model.embeddings.token_embedding.weight""" ) if name == "positional_embedding": lowerCAmelCase__ : Optional[Any] = name.replace("""positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "ln_1" in name: lowerCAmelCase__ : Any = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: lowerCAmelCase__ : str = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: lowerCAmelCase__ : Tuple = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: lowerCAmelCase__ : Any = name.replace("""c_proj""" , """fc2""" ) if name.startswith("""transformer.resblocks""" ): lowerCAmelCase__ : str = name.replace("""transformer.resblocks""" , """text_model.encoder.layers""" ) if "attn.out_proj" in name and "message" not in name: lowerCAmelCase__ : Optional[int] = name.replace("""attn.out_proj""" , """self_attn.out_proj""" ) if "ln_final" in name: lowerCAmelCase__ : Optional[int] = name.replace("""ln_final""" , """text_model.final_layer_norm""" ) # visual encoder if name == "visual.class_embedding": lowerCAmelCase__ : int = name.replace("""visual.class_embedding""" , """vision_model.embeddings.class_embedding""" ) if name == "visual.positional_embedding": lowerCAmelCase__ : str = name.replace("""visual.positional_embedding""" , """vision_model.embeddings.position_embedding.weight""" ) if name.startswith("""visual.transformer.resblocks""" ): lowerCAmelCase__ : Optional[int] = name.replace("""visual.transformer.resblocks""" , """vision_model.encoder.layers""" ) if "visual.conv1" in name: lowerCAmelCase__ : Any = name.replace("""visual.conv1""" , """vision_model.embeddings.patch_embedding""" ) if "visual.ln_pre" in name: lowerCAmelCase__ : int = name.replace("""visual.ln_pre""" , """vision_model.pre_layernorm""" ) if "visual.ln_post" in name: lowerCAmelCase__ : List[str] = name.replace("""visual.ln_post""" , """vision_model.post_layernorm""" ) if "visual.proj" in name: lowerCAmelCase__ : Dict = name.replace("""visual.proj""" , """visual_projection.weight""" ) if "text_projection" in name: lowerCAmelCase__ : Union[str, Any] = name.replace("""text_projection""" , """text_projection.weight""" ) # things on top if "prompts_visual_proj" in name: lowerCAmelCase__ : Any = name.replace("""prompts_visual_proj""" , """prompts_visual_projection""" ) if "prompts_visual_ln" in name: lowerCAmelCase__ : Dict = name.replace("""prompts_visual_ln""" , """prompts_visual_layernorm""" ) # mit if name == "mit.positional_embedding": lowerCAmelCase__ : str = name.replace("""positional""" , """position""" ) if name.startswith("""mit.resblocks""" ): lowerCAmelCase__ : Dict = name.replace("""mit.resblocks""" , """mit.encoder.layers""" ) # prompts generator if name.startswith("""prompts_generator.norm""" ): lowerCAmelCase__ : Optional[Any] = name.replace("""prompts_generator.norm""" , """prompts_generator.layernorm""" ) return name def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: for key in orig_state_dict.copy().keys(): lowerCAmelCase__ : List[str] = orig_state_dict.pop(__UpperCAmelCase ) if "attn.in_proj" in key: lowerCAmelCase__ : Dict = key.split(""".""" ) if key.startswith("""visual""" ): lowerCAmelCase__ : Optional[Any] = key_split[3] lowerCAmelCase__ : Union[str, Any] = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: lowerCAmelCase__ : Optional[Any] = val[ :dim, : ] lowerCAmelCase__ : Union[str, Any] = val[ dim : dim * 2, : ] lowerCAmelCase__ : List[str] = val[ -dim:, : ] else: lowerCAmelCase__ : List[str] = val[ :dim ] lowerCAmelCase__ : Any = val[ dim : dim * 2 ] lowerCAmelCase__ : List[str] = val[ -dim: ] else: if "weight" in key: lowerCAmelCase__ : int = val[ :dim, : ] lowerCAmelCase__ : List[str] = val[ dim : dim * 2, : ] lowerCAmelCase__ : int = val[ -dim:, : ] else: lowerCAmelCase__ : int = val[:dim] lowerCAmelCase__ : int = val[ dim : dim * 2 ] lowerCAmelCase__ : List[str] = val[-dim:] elif key.startswith("""mit""" ): lowerCAmelCase__ : List[Any] = key_split[2] lowerCAmelCase__ : Any = config.vision_config.mit_hidden_size if "weight" in key: lowerCAmelCase__ : Optional[Any] = val[:dim, :] lowerCAmelCase__ : Optional[int] = val[dim : dim * 2, :] lowerCAmelCase__ : Optional[int] = val[-dim:, :] else: lowerCAmelCase__ : List[str] = val[:dim] lowerCAmelCase__ : int = val[dim : dim * 2] lowerCAmelCase__ : List[str] = val[-dim:] else: lowerCAmelCase__ : int = key_split[2] lowerCAmelCase__ : List[str] = config.text_config.hidden_size if "weight" in key: lowerCAmelCase__ : int = val[:dim, :] lowerCAmelCase__ : List[str] = val[ dim : dim * 2, : ] lowerCAmelCase__ : List[str] = val[-dim:, :] else: lowerCAmelCase__ : Optional[int] = val[:dim] lowerCAmelCase__ : List[Any] = val[ dim : dim * 2 ] lowerCAmelCase__ : Any = val[-dim:] else: lowerCAmelCase__ : Optional[Any] = rename_key(__UpperCAmelCase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: lowerCAmelCase__ : Union[str, Any] = val.T lowerCAmelCase__ : str = val return orig_state_dict def lowercase_ ( __UpperCAmelCase ) -> Optional[Any]: if num_frames == 8: lowerCAmelCase__ : Union[str, Any] = """eating_spaghetti_8_frames.npy""" elif num_frames == 16: lowerCAmelCase__ : Dict = """eating_spaghetti.npy""" elif num_frames == 32: lowerCAmelCase__ : Optional[Any] = """eating_spaghetti_32_frames.npy""" lowerCAmelCase__ : str = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename=__UpperCAmelCase , repo_type="""dataset""" , ) lowerCAmelCase__ : Any = np.load(__UpperCAmelCase ) return list(__UpperCAmelCase ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> Dict: lowerCAmelCase__ : Union[str, Any] = { # fully supervised kinetics-400 checkpoints """xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""", """xclip-base-patch32-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth""" ), """xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""", """xclip-base-patch16-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth""" ), """xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb""", """xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f""", # fully supervised kinetics-600 checkpoints """xclip-base-patch16-kinetics-600""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth""" ), """xclip-base-patch16-kinetics-600-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth""" ), """xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be""", # few shot """xclip-base-patch16-hmdb-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth""" ), """xclip-base-patch16-hmdb-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth""" ), """xclip-base-patch16-hmdb-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth""" ), """xclip-base-patch16-hmdb-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth""" ), """xclip-base-patch16-ucf-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth""" ), """xclip-base-patch16-ucf-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth""" ), """xclip-base-patch16-ucf-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth""" ), """xclip-base-patch16-ucf-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth""" ), # zero shot """xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""", } lowerCAmelCase__ : Union[str, Any] = model_to_url[model_name] lowerCAmelCase__ : str = 8 if "16-frames" in model_name: lowerCAmelCase__ : Optional[Any] = 16 elif "shot" in model_name: lowerCAmelCase__ : List[str] = 32 lowerCAmelCase__ : int = get_xclip_config(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = XCLIPModel(__UpperCAmelCase ) model.eval() if "drive" in checkpoint_url: lowerCAmelCase__ : Union[str, Any] = """pytorch_model.bin""" gdown.cached_download(__UpperCAmelCase , __UpperCAmelCase , quiet=__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = torch.load(__UpperCAmelCase , map_location="""cpu""" )["""model"""] else: lowerCAmelCase__ : Any = torch.hub.load_state_dict_from_url(__UpperCAmelCase )["""model"""] lowerCAmelCase__ : Tuple = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : Any = XCLIPModel(__UpperCAmelCase ) lowerCAmelCase__ : int = model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() lowerCAmelCase__ : Optional[Any] = 336 if model_name == """xclip-large-patch14-16-frames""" else 224 lowerCAmelCase__ : List[Any] = VideoMAEImageProcessor(size=__UpperCAmelCase ) lowerCAmelCase__ : int = CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" ) lowerCAmelCase__ : str = CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" ) lowerCAmelCase__ : Union[str, Any] = XCLIPProcessor(image_processor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) lowerCAmelCase__ : int = prepare_video(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = processor( text=["""playing sports""", """eating spaghetti""", """go shopping"""] , videos=__UpperCAmelCase , return_tensors="""pt""" , padding=__UpperCAmelCase ) print("""Shape of pixel values:""" , inputs.pixel_values.shape ) with torch.no_grad(): lowerCAmelCase__ : str = model(**__UpperCAmelCase ) # Verify outputs lowerCAmelCase__ : Dict = outputs.logits_per_video lowerCAmelCase__ : int = logits_per_video.softmax(dim=1 ) print("""Probs:""" , __UpperCAmelCase ) # kinetics-400 if model_name == "xclip-base-patch32": lowerCAmelCase__ : Dict = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": lowerCAmelCase__ : List[str] = torch.tensor([[7.09_99E-04, 9.98_83E-01, 4.55_80E-04]] ) elif model_name == "xclip-base-patch16": lowerCAmelCase__ : Optional[Any] = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": lowerCAmelCase__ : int = torch.tensor([[7.69_37E-04, 9.97_28E-01, 1.94_73E-03]] ) elif model_name == "xclip-large-patch14": lowerCAmelCase__ : Dict = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": lowerCAmelCase__ : Dict = torch.tensor([[3.38_77E-04, 9.99_37E-01, 2.88_88E-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": lowerCAmelCase__ : int = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": lowerCAmelCase__ : Tuple = torch.tensor([[3.85_54E-04, 9.99_29E-01, 3.27_54E-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": lowerCAmelCase__ : Union[str, Any] = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": lowerCAmelCase__ : Any = torch.tensor([[7.18_90E-06, 9.99_94E-01, 5.65_59E-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": lowerCAmelCase__ : Union[str, Any] = torch.tensor([[1.03_20E-05, 9.99_93E-01, 6.24_35E-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": lowerCAmelCase__ : Optional[int] = torch.tensor([[4.13_77E-06, 9.99_90E-01, 9.83_86E-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": lowerCAmelCase__ : Dict = torch.tensor([[4.13_47E-05, 9.99_62E-01, 3.34_11E-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": lowerCAmelCase__ : Optional[Any] = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": lowerCAmelCase__ : List[str] = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": lowerCAmelCase__ : Optional[int] = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": lowerCAmelCase__ : Tuple = torch.tensor([[9.82_19E-04, 9.95_93E-01, 3.08_63E-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": lowerCAmelCase__ : Any = torch.tensor([[3.50_82E-04, 9.97_85E-01, 1.79_66E-03]] ) else: raise ValueError(f"""Model name {model_name} not supported""" ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCAmelCase ) if push_to_hub: print("""Pushing model, processor and slow tokenizer files to the hub...""" ) model.push_to_hub(__UpperCAmelCase , organization="""nielsr""" ) processor.push_to_hub(__UpperCAmelCase , organization="""nielsr""" ) slow_tokenizer.push_to_hub(__UpperCAmelCase , organization="""nielsr""" ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _A = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
350
"""simple docstring""" import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class _lowerCamelCase ( a_ ): # to overwrite at feature extractactor specific tests _lowerCamelCase :Optional[int] = None _lowerCamelCase :List[Any] = None @property def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def _lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(UpperCamelCase , """feature_size""" ) ) self.assertTrue(hasattr(UpperCamelCase , """sampling_rate""" ) ) self.assertTrue(hasattr(UpperCamelCase , """padding_value""" ) ) def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" lowerCAmelCase__ : Dict = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ : Union[str, Any] = feat_extract.model_input_names[0] lowerCAmelCase__ : Any = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(UpperCamelCase ) == len(UpperCamelCase ) for x, y in zip(UpperCamelCase , processed_features[input_name] ) ) ) lowerCAmelCase__ : List[str] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=UpperCamelCase ) lowerCAmelCase__ : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) lowerCAmelCase__ : Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase__ : int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def _lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : int = self.feat_extract_tester.prepare_inputs_for_common(equal_length=UpperCamelCase ) lowerCAmelCase__ : str = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ : Optional[int] = feat_extract.model_input_names[0] lowerCAmelCase__ : Union[str, Any] = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) lowerCAmelCase__ : str = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase__ : int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def _lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" lowerCAmelCase__ : List[str] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=UpperCamelCase ) lowerCAmelCase__ : str = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ : Dict = feat_extract.model_input_names[0] lowerCAmelCase__ : Tuple = BatchFeature({input_name: speech_inputs} , tensor_type="""tf""" ) lowerCAmelCase__ : Union[str, Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase__ : Optional[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def _lowerCAmelCase ( self : List[Any] , UpperCamelCase : Union[str, Any]=False ) -> int: """simple docstring""" def _inputs_have_equal_length(UpperCamelCase : int ): lowerCAmelCase__ : Optional[Any] = len(input[0] ) for input_slice in input[1:]: if len(UpperCamelCase ) != length: return False return True def _inputs_are_equal(UpperCamelCase : int , UpperCamelCase : Dict ): if len(UpperCamelCase ) != len(UpperCamelCase ): return False for input_slice_a, input_slice_a in zip(UpperCamelCase , UpperCamelCase ): if not np.allclose(np.asarray(UpperCamelCase ) , np.asarray(UpperCamelCase ) , atol=1E-3 ): return False return True lowerCAmelCase__ : str = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ : Dict = self.feat_extract_tester.prepare_inputs_for_common(numpify=UpperCamelCase ) lowerCAmelCase__ : str = feat_extract.model_input_names[0] lowerCAmelCase__ : str = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase__ : Any = self.feat_extract_tester.seq_length_diff lowerCAmelCase__ : List[str] = self.feat_extract_tester.max_seq_length + pad_diff lowerCAmelCase__ : Optional[int] = self.feat_extract_tester.min_seq_length lowerCAmelCase__ : Optional[int] = self.feat_extract_tester.batch_size lowerCAmelCase__ : str = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowerCAmelCase__ : List[Any] = feat_extract.pad(UpperCamelCase , padding=UpperCamelCase ) lowerCAmelCase__ : int = input_a[input_name] lowerCAmelCase__ : Tuple = feat_extract.pad(UpperCamelCase , padding="""longest""" ) lowerCAmelCase__ : Any = input_a[input_name] lowerCAmelCase__ : List[str] = feat_extract.pad(UpperCamelCase , padding="""max_length""" , max_length=len(speech_inputs[-1] ) ) lowerCAmelCase__ : Dict = input_a[input_name] lowerCAmelCase__ : str = feat_extract.pad(UpperCamelCase , padding="""longest""" , return_tensors="""np""" ) lowerCAmelCase__ : Optional[Any] = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(UpperCamelCase ): feat_extract.pad(UpperCamelCase , padding="""max_length""" )[input_name] lowerCAmelCase__ : Optional[int] = feat_extract.pad( UpperCamelCase , padding="""max_length""" , max_length=UpperCamelCase , return_tensors="""np""" ) lowerCAmelCase__ : int = input_a[input_name] self.assertFalse(_inputs_have_equal_length(UpperCamelCase ) ) self.assertTrue(_inputs_have_equal_length(UpperCamelCase ) ) self.assertTrue(_inputs_have_equal_length(UpperCamelCase ) ) self.assertTrue(_inputs_are_equal(UpperCamelCase , UpperCamelCase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy lowerCAmelCase__ : Any = feat_extract.pad(UpperCamelCase , pad_to_multiple_of=10 ) lowerCAmelCase__ : int = input_a[input_name] lowerCAmelCase__ : Dict = feat_extract.pad(UpperCamelCase , padding="""longest""" , pad_to_multiple_of=10 ) lowerCAmelCase__ : Union[str, Any] = input_a[input_name] lowerCAmelCase__ : Optional[int] = feat_extract.pad( UpperCamelCase , padding="""max_length""" , pad_to_multiple_of=10 , max_length=UpperCamelCase ) lowerCAmelCase__ : str = input_a[input_name] lowerCAmelCase__ : Union[str, Any] = feat_extract.pad( UpperCamelCase , padding="""max_length""" , pad_to_multiple_of=10 , max_length=UpperCamelCase , return_tensors="""np""" , ) lowerCAmelCase__ : List[Any] = input_a[input_name] self.assertTrue(all(len(UpperCamelCase ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(UpperCamelCase , UpperCamelCase ) ) lowerCAmelCase__ : Optional[int] = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(UpperCamelCase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct lowerCAmelCase__ : str = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : int=False ) -> List[str]: """simple docstring""" def _inputs_have_equal_length(UpperCamelCase : List[Any] ): lowerCAmelCase__ : List[str] = len(input[0] ) for input_slice in input[1:]: if len(UpperCamelCase ) != length: return False return True def _inputs_are_equal(UpperCamelCase : Union[str, Any] , UpperCamelCase : str ): if len(UpperCamelCase ) != len(UpperCamelCase ): return False for input_slice_a, input_slice_a in zip(UpperCamelCase , UpperCamelCase ): if not np.allclose(np.asarray(UpperCamelCase ) , np.asarray(UpperCamelCase ) , atol=1E-3 ): return False return True lowerCAmelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ : Any = self.feat_extract_tester.prepare_inputs_for_common(numpify=UpperCamelCase ) lowerCAmelCase__ : str = feat_extract.model_input_names[0] lowerCAmelCase__ : Optional[Any] = BatchFeature({input_name: speech_inputs} ) # truncate to smallest lowerCAmelCase__ : str = feat_extract.pad( UpperCamelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , truncation=UpperCamelCase ) lowerCAmelCase__ : Dict = input_a[input_name] lowerCAmelCase__ : str = feat_extract.pad(UpperCamelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) ) lowerCAmelCase__ : Optional[int] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(UpperCamelCase ) ) self.assertFalse(_inputs_have_equal_length(UpperCamelCase ) ) # truncate to smallest with np lowerCAmelCase__ : Tuple = feat_extract.pad( UpperCamelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" , truncation=UpperCamelCase , ) lowerCAmelCase__ : List[Any] = input_a[input_name] lowerCAmelCase__ : List[Any] = feat_extract.pad( UpperCamelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" ) lowerCAmelCase__ : Union[str, Any] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(UpperCamelCase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(UpperCamelCase ) ) # truncate to middle lowerCAmelCase__ : List[Any] = feat_extract.pad( UpperCamelCase , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=UpperCamelCase , return_tensors="""np""" , ) lowerCAmelCase__ : List[Any] = input_a[input_name] lowerCAmelCase__ : List[Any] = feat_extract.pad( UpperCamelCase , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=UpperCamelCase ) lowerCAmelCase__ : List[str] = input_a[input_name] lowerCAmelCase__ : Any = feat_extract.pad( UpperCamelCase , padding="""max_length""" , max_length=len(speech_inputs[1] ) , return_tensors="""np""" ) lowerCAmelCase__ : Dict = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(UpperCamelCase ) ) self.assertTrue(_inputs_have_equal_length(UpperCamelCase ) ) self.assertTrue(_inputs_are_equal(UpperCamelCase , UpperCamelCase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(UpperCamelCase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(UpperCamelCase ): feat_extract.pad(UpperCamelCase , truncation=UpperCamelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(UpperCamelCase ): feat_extract.pad(UpperCamelCase , padding="""longest""" , truncation=UpperCamelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(UpperCamelCase ): feat_extract.pad(UpperCamelCase , padding="""longest""" , truncation=UpperCamelCase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(UpperCamelCase ): feat_extract.pad(UpperCamelCase , padding="""max_length""" , truncation=UpperCamelCase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowerCAmelCase__ : Any = 12 lowerCAmelCase__ : Optional[int] = feat_extract.pad( UpperCamelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=UpperCamelCase , truncation=UpperCamelCase , ) lowerCAmelCase__ : List[Any] = input_a[input_name] lowerCAmelCase__ : Any = feat_extract.pad( UpperCamelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=UpperCamelCase , ) lowerCAmelCase__ : Optional[Any] = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowerCAmelCase__ : Union[str, Any] = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: lowerCAmelCase__ : Any = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(UpperCamelCase ) ) self.assertFalse(_inputs_have_equal_length(UpperCamelCase ) ) def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" self._check_padding(numpify=UpperCamelCase ) def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" self._check_padding(numpify=UpperCamelCase ) def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" self._check_truncation(numpify=UpperCamelCase ) def _lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" self._check_truncation(numpify=UpperCamelCase ) @require_torch def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" lowerCAmelCase__ : int = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ : str = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase__ : str = feat_extract.model_input_names[0] lowerCAmelCase__ : Optional[int] = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase__ : Dict = feat_extract.pad(UpperCamelCase , padding="""longest""" , return_tensors="""np""" )[input_name] lowerCAmelCase__ : str = feat_extract.pad(UpperCamelCase , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def _lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" lowerCAmelCase__ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ : Tuple = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase__ : List[Any] = feat_extract.model_input_names[0] lowerCAmelCase__ : int = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase__ : int = feat_extract.pad(UpperCamelCase , padding="""longest""" , return_tensors="""np""" )[input_name] lowerCAmelCase__ : Any = feat_extract.pad(UpperCamelCase , padding="""longest""" , return_tensors="""tf""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def _lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" lowerCAmelCase__ : Any = self.feat_extract_dict lowerCAmelCase__ : int = True lowerCAmelCase__ : str = self.feature_extraction_class(**UpperCamelCase ) lowerCAmelCase__ : int = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase__ : List[Any] = [len(UpperCamelCase ) for x in speech_inputs] lowerCAmelCase__ : Optional[Any] = feat_extract.model_input_names[0] lowerCAmelCase__ : List[str] = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase__ : Tuple = feat_extract.pad(UpperCamelCase , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , UpperCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , UpperCamelCase ) def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.feat_extract_dict lowerCAmelCase__ : List[Any] = True lowerCAmelCase__ : str = self.feature_extraction_class(**UpperCamelCase ) lowerCAmelCase__ : int = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase__ : Any = [len(UpperCamelCase ) for x in speech_inputs] lowerCAmelCase__ : int = feat_extract.model_input_names[0] lowerCAmelCase__ : Optional[Any] = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase__ : Any = min(UpperCamelCase ) lowerCAmelCase__ : Tuple = feat_extract.pad( UpperCamelCase , padding="""max_length""" , max_length=UpperCamelCase , truncation=UpperCamelCase , return_tensors="""np""" ) self.assertIn("""attention_mask""" , UpperCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
212
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process a = logging.getLogger(__name__) @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCAmelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCAmelCase : Optional[str] = field( default='''NER''' , metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} ) UpperCAmelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCAmelCase : bool = field(default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCAmelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} ) UpperCAmelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''} , ) UpperCAmelCase : int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCAmelCase : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def _snake_case ( ) -> int: '''simple docstring''' _A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) _A = import_module('tasks' ) try: _A = getattr(_snake_case , model_args.task_type ) _A = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _snake_case ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task _A = token_classification_task.get_labels(data_args.labels ) _A = dict(enumerate(_snake_case ) ) _A = len(_snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , idalabel=_snake_case , labelaid={label: i for i, label in enumerate(_snake_case )} , cache_dir=model_args.cache_dir , ) _A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) _A = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _A = ( TokenClassificationDataset( token_classification_task=_snake_case , data_dir=data_args.data_dir , tokenizer=_snake_case , labels=_snake_case , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _A = ( TokenClassificationDataset( token_classification_task=_snake_case , data_dir=data_args.data_dir , tokenizer=_snake_case , labels=_snake_case , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(_snake_case : Union[str, Any] , _snake_case : Any ) -> Tuple[List[int], List[int]]: _A = np.argmax(_snake_case , axis=2 ) _A , _A = preds.shape _A = [[] for _ in range(_snake_case )] _A = [[] for _ in range(_snake_case )] for i in range(_snake_case ): for j in range(_snake_case ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(_snake_case : List[Any] ) -> Dict: _A , _A = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(_snake_case , _snake_case ), "precision": precision_score(_snake_case , _snake_case ), "recall": recall_score(_snake_case , _snake_case ), "f1": fa_score(_snake_case , _snake_case ), } # Data collator _A = DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _A = Trainer( model=_snake_case , args=_snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , compute_metrics=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _A = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _A = trainer.evaluate() _A = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(_snake_case , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _snake_case , _snake_case ) writer.write('%s = %s\n' % (key, value) ) results.update(_snake_case ) # Predict if training_args.do_predict: _A = TokenClassificationDataset( token_classification_task=_snake_case , data_dir=data_args.data_dir , tokenizer=_snake_case , labels=_snake_case , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) _A , _A , _A = trainer.predict(_snake_case ) _A , _A = align_predictions(_snake_case , _snake_case ) _A = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(_snake_case , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , _snake_case , _snake_case ) writer.write('%s = %s\n' % (key, value) ) # Save predictions _A = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(_snake_case , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(_snake_case , _snake_case , _snake_case ) return results def _snake_case ( _snake_case : int ) -> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
315
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def UpperCamelCase ( UpperCAmelCase ) ->List[Any]: """simple docstring""" def is_in_circle(UpperCAmelCase , UpperCAmelCase ) -> bool: a_ = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle a_ = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(UpperCAmelCase ) ) # The ratio of the area for circle to square is pi/4. a_ = proportion * 4 print(F'''The estimated value of pi is {pi_estimate}''' ) print(F'''The numpy value of pi is {pi}''' ) print(F'''The total error is {abs(pi - pi_estimate )}''' ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0.0 , UpperCAmelCase = 1.0 , ) ->float: """simple docstring""" return mean( function_to_integrate(uniform(UpperCAmelCase , UpperCAmelCase ) ) for _ in range(UpperCAmelCase ) ) * (max_value - min_value) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase = 0.0 , UpperCAmelCase = 1.0 ) ->None: """simple docstring""" def identity_function(UpperCAmelCase ) -> float: return x a_ = area_under_curve_estimator( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) a_ = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(F'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {expected_value}''' ) print(F'''Total error is {abs(estimated_value - expected_value )}''' ) print("******************" ) def UpperCamelCase ( UpperCAmelCase ) ->None: """simple docstring""" def function_to_integrate(UpperCAmelCase ) -> float: return sqrt(4.0 - x * x ) a_ = area_under_curve_estimator( UpperCAmelCase , UpperCAmelCase , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {pi}''' ) print(F'''Total error is {abs(estimated_value - pi )}''' ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
243
0
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset snake_case_ = '''bert-base-cased''' snake_case_ = '''google/pegasus-xsum''' snake_case_ = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] snake_case_ = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] snake_case_ = '''patrickvonplaten/t5-tiny-random''' snake_case_ = '''sshleifer/bart-tiny-random''' snake_case_ = '''sshleifer/tiny-mbart''' snake_case_ = '''sshleifer/tiny-marian-en-de''' def snake_case__ ( SCREAMING_SNAKE_CASE_ : Path , SCREAMING_SNAKE_CASE_ : list ): '''simple docstring''' lowercase__ : Union[str, Any] = '\n'.join(SCREAMING_SNAKE_CASE_ ) Path(SCREAMING_SNAKE_CASE_ ).open('w' ).writelines(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(SCREAMING_SNAKE_CASE_ , f"""{split}.source""" ) , SCREAMING_SNAKE_CASE_ ) _dump_articles(os.path.join(SCREAMING_SNAKE_CASE_ , f"""{split}.target""" ) , SCREAMING_SNAKE_CASE_ ) return tmp_dir class SCREAMING_SNAKE_CASE__ (__snake_case ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def snake_case_ ( self , a): lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained(a) lowercase__ : Any = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) lowercase__ : int = max(len(tokenizer.encode(a)) for a in ARTICLES) lowercase__ : Any = max(len(tokenizer.encode(a)) for a in SUMMARIES) lowercase__ : int = 4 lowercase__ : Optional[int] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowercase__ , lowercase__ : List[str] = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. lowercase__ : List[str] = SeqaSeqDataset( a , data_dir=a , type_path='train' , max_source_length=a , max_target_length=a , src_lang=a , tgt_lang=a , ) lowercase__ : int = DataLoader(a , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert isinstance(a , a) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowercase__ : Tuple = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED]) def snake_case_ ( self , a): lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained(a) lowercase__ : Optional[int] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) lowercase__ : List[Any] = max(len(tokenizer.encode(a)) for a in ARTICLES) lowercase__ : str = max(len(tokenizer.encode(a)) for a in SUMMARIES) lowercase__ : Optional[Any] = 4 lowercase__ : Tuple = LegacySeqaSeqDataset( a , data_dir=a , type_path='train' , max_source_length=20 , max_target_length=a , ) lowercase__ : Optional[int] = DataLoader(a , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def snake_case_ ( self): lowercase__ : Any = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25') lowercase__ : Any = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) lowercase__ : List[Any] = tmp_dir.joinpath('train.source').open().readlines() lowercase__ : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) pack_data_dir(a , a , 128 , a) lowercase__ : Optional[int] = {x.name for x in tmp_dir.iterdir()} lowercase__ : Optional[int] = {x.name for x in save_dir.iterdir()} lowercase__ : Tuple = save_dir.joinpath('train.source').open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(a) < len(a) assert len(a) == 1 assert len(packed_examples[0]) == sum(len(a) for x in orig_examples) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq') def snake_case_ ( self): if not FAIRSEQ_AVAILABLE: return lowercase__ , lowercase__ , lowercase__ : Dict = self._get_dataset(max_len=64) lowercase__ : List[str] = 64 lowercase__ : Tuple = ds.make_dynamic_sampler(a , required_batch_size_multiple=a) lowercase__ : Optional[int] = [len(a) for x in batch_sampler] assert len(set(a)) > 1 # it's not dynamic batch size if every batch is the same length assert sum(a) == len(a) # no dropped or added examples lowercase__ : Dict = DataLoader(a , batch_sampler=a , collate_fn=ds.collate_fn , num_workers=2) lowercase__ : Optional[int] = [] lowercase__ : Tuple = [] for batch in data_loader: lowercase__ : int = batch['input_ids'].shape lowercase__ : int = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowercase__ : List[str] = np.product(batch['input_ids'].shape) num_src_per_batch.append(a) if num_src_tokens > (max_tokens * 1.1): failures.append(a) assert num_src_per_batch[0] == max(a) if failures: raise AssertionError(f"""too many tokens in {len(a)} batches""") def snake_case_ ( self): lowercase__ , lowercase__ , lowercase__ : Optional[Any] = self._get_dataset(max_len=512) lowercase__ : List[str] = 2 lowercase__ : Union[str, Any] = ds.make_sortish_sampler(a , shuffle=a) lowercase__ : Tuple = DataLoader(a , batch_size=a , collate_fn=ds.collate_fn , num_workers=2) lowercase__ : str = DataLoader(a , batch_size=a , collate_fn=ds.collate_fn , num_workers=2 , sampler=a) lowercase__ : Union[str, Any] = tokenizer.pad_token_id def count_pad_tokens(a , a="input_ids"): return [batch[k].eq(a).sum().item() for batch in data_loader] assert sum(count_pad_tokens(a , k='labels')) < sum(count_pad_tokens(a , k='labels')) assert sum(count_pad_tokens(a)) < sum(count_pad_tokens(a)) assert len(a) == len(a) def snake_case_ ( self , a=1000 , a=128): if os.getenv('USE_REAL_DATA' , a): lowercase__ : Optional[Any] = 'examples/seq2seq/wmt_en_ro' lowercase__ : Tuple = max_len * 2 * 64 if not Path(a).joinpath('train.len').exists(): save_len_file(a , a) else: lowercase__ : Any = 'examples/seq2seq/test_data/wmt_en_ro' lowercase__ : str = max_len * 4 save_len_file(a , a) lowercase__ : str = AutoTokenizer.from_pretrained(a) lowercase__ : Any = SeqaSeqDataset( a , data_dir=a , type_path='train' , max_source_length=a , max_target_length=a , n_obs=a , ) return ds, max_tokens, tokenizer def snake_case_ ( self): lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = self._get_dataset() lowercase__ : Dict = set(DistributedSortishSampler(a , 256 , num_replicas=2 , rank=0 , add_extra_examples=a)) lowercase__ : Any = set(DistributedSortishSampler(a , 256 , num_replicas=2 , rank=1 , add_extra_examples=a)) assert idsa.intersection(a) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def snake_case_ ( self , a): lowercase__ : Optional[int] = AutoTokenizer.from_pretrained(a , use_fast=a) if tok_name == MBART_TINY: lowercase__ : Tuple = SeqaSeqDataset( a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) lowercase__ : Optional[int] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowercase__ : Optional[int] = SeqaSeqDataset( a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='train' , max_source_length=4 , max_target_length=8 , ) lowercase__ : Any = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(a) == 1 if tok_name == BART_TINY else len(a) == 0
216
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def snake_case__ ( SCREAMING_SNAKE_CASE_ : BertModel , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' lowercase__ : Tuple = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') lowercase__ : Dict = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) lowercase__ : str = model.state_dict() def to_tf_var_name(SCREAMING_SNAKE_CASE_ : str ): for patt, repl in iter(SCREAMING_SNAKE_CASE_ ): lowercase__ : Optional[int] = name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return f"""bert/{name}""" def create_tf_var(SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : tf.Session ): lowercase__ : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) lowercase__ : List[str] = tf.get_variable(dtype=SCREAMING_SNAKE_CASE_ , shape=tensor.shape , name=SCREAMING_SNAKE_CASE_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(SCREAMING_SNAKE_CASE_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowercase__ : Tuple = to_tf_var_name(SCREAMING_SNAKE_CASE_ ) lowercase__ : str = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowercase__ : str = torch_tensor.T lowercase__ : Any = create_tf_var(tensor=SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ , session=SCREAMING_SNAKE_CASE_ ) tf.keras.backend.set_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ : Optional[int] = session.run(SCREAMING_SNAKE_CASE_ ) print(f"""Successfully created {tf_name}: {np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}""" ) lowercase__ : Tuple = tf.train.Saver(tf.trainable_variables() ) saver.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , model_name.replace('-' , '_' ) + '.ckpt' ) ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[Any]=None ): '''simple docstring''' lowercase__ : List[str] = argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='Directory in which to save tensorflow model' ) lowercase__ : List[str] = parser.parse_args(SCREAMING_SNAKE_CASE_ ) lowercase__ : int = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=SCREAMING_SNAKE_CASE_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
216
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> int: if not isinstance(_lowerCamelCase ,_lowerCamelCase ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[Any] = str(_lowerCamelCase ) while len(_lowerCamelCase ) != 1: _lowerCAmelCase : int = [int(_lowerCamelCase ) for i in num_string] _lowerCAmelCase : Dict = 1 for i in range(0 ,len(_lowerCamelCase ) ): total *= numbers[i] _lowerCAmelCase : Tuple = str(_lowerCamelCase ) steps += 1 return steps def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> int: if not isinstance(_lowerCamelCase ,_lowerCamelCase ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : Any = str(_lowerCamelCase ) while len(_lowerCamelCase ) != 1: _lowerCAmelCase : Optional[int] = [int(_lowerCamelCase ) for i in num_string] _lowerCAmelCase : str = 0 for i in range(0 ,len(_lowerCamelCase ) ): total += numbers[i] _lowerCAmelCase : Tuple = str(_lowerCamelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
44
"""simple docstring""" _a : List[str] = { 'Pillow': 'Pillow', 'accelerate': 'accelerate>=0.11.0', 'compel': 'compel==0.1.8', 'black': 'black~=23.1', 'datasets': 'datasets', 'filelock': 'filelock', 'flax': 'flax>=0.4.1', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.13.2', 'requests-mock': 'requests-mock==1.10.0', 'importlib_metadata': 'importlib_metadata', 'invisible-watermark': 'invisible-watermark', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2', 'jaxlib': 'jaxlib>=0.1.65', 'Jinja2': 'Jinja2', 'k-diffusion': 'k-diffusion>=0.0.12', 'torchsde': 'torchsde', 'note_seq': 'note_seq', 'librosa': 'librosa', 'numpy': 'numpy', 'omegaconf': 'omegaconf', 'parameterized': 'parameterized', 'protobuf': 'protobuf>=3.20.3,<4', 'pytest': 'pytest', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'ruff': 'ruff>=0.0.241', 'safetensors': 'safetensors', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'scipy': 'scipy', 'onnx': 'onnx', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'tensorboard': 'tensorboard', 'torch': 'torch>=1.4', 'torchvision': 'torchvision', 'transformers': 'transformers>=4.25.1', 'urllib3': 'urllib3<=2.0.0', }
44
1
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def snake_case () -> str: UpperCamelCase_: Tuple = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , required=UpperCAmelCase__ , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=UpperCAmelCase__ , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=UpperCAmelCase__ , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=UpperCAmelCase__ , default=4_2 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=UpperCAmelCase__ , default=0 , help='cuda_id.' , ) UpperCamelCase_: Tuple = parser.parse_args() return args def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: if not len(UpperCAmelCase__ ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) UpperCamelCase_: str = imgs[0].size UpperCamelCase_: str = Image.new('RGB' , size=(cols * w, rows * h) ) UpperCamelCase_: Any = grid.size for i, img in enumerate(UpperCAmelCase__ ): grid.paste(UpperCAmelCase__ , box=(i % cols * w, i // cols * h) ) return grid def snake_case (UpperCAmelCase__ , UpperCAmelCase__="robotic cat with wings" , UpperCAmelCase__=7.5 , UpperCAmelCase__=5_0 , UpperCAmelCase__=1 , UpperCAmelCase__=4_2 , ) -> Dict: UpperCamelCase_: Any = torch.Generator(pipeline.device ).manual_seed(UpperCAmelCase__ ) UpperCamelCase_: Tuple = pipeline( UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , num_inference_steps=UpperCAmelCase__ , generator=UpperCAmelCase__ , num_images_per_prompt=UpperCAmelCase__ , ).images UpperCamelCase_: Dict = int(math.sqrt(UpperCAmelCase__ ) ) UpperCamelCase_: Tuple = image_grid(UpperCAmelCase__ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images A_ : str = parse_args() # Load models and create wrapper for stable diffusion A_ : Optional[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') A_ : Dict = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') A_ : List[str] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') A_ : Union[str, Any] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') A_ : int = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) A_ : int = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): A_ : List[Any] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: A_ : List[str] = unet.to(torch.device('cuda', args.cuda_id)) A_ : Any = pipeline.to(unet.device) A_ , A_ : Optional[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) A_ : Tuple = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
370
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py A_ : List[str] = '.' if __name__ == "__main__": A_ : Dict = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') A_ : Dict = [] A_ : Optional[Any] = [] with open(doctest_file_path) as fp: for line in fp: A_ : Tuple = line.strip() A_ : Any = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: A_ : str = '\n'.join(non_existent_paths) raise ValueError(F'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
292
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) lowerCAmelCase__ : Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase__ : str = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase__ : Dict = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(__UpperCAmelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape ,__UpperCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,__UpperCAmelCase ,atol=1E-3 ) ) @slow def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Union[str, Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) lowerCAmelCase__ : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase__ : Dict = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase__ : Union[str, Any] = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase__ : Union[str, Any] = model(__UpperCAmelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape ,__UpperCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,__UpperCAmelCase ,atol=1E-3 ) )
37
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {'''vocab_file''': '''spiece.model'''} _lowerCAmelCase = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } _lowerCAmelCase = { '''AI-Sweden/gpt-sw3-126m''': 2048, '''AI-Sweden/gpt-sw3-350m''': 2048, '''AI-Sweden/gpt-sw3-1.6b''': 2048, '''AI-Sweden/gpt-sw3-6.7b''': 2048, '''AI-Sweden/gpt-sw3-20b''': 2048, } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Dict = VOCAB_FILES_NAMES __lowercase : str = PRETRAINED_VOCAB_FILES_MAP __lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> None: lowerCAmelCase__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase__ : Dict = kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) lowerCAmelCase__ : Tuple = """None""" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowerCAmelCase__ : Union[str, Any] = """<|endoftext|>""" if eos_token is None else eos_token lowerCAmelCase__ : Dict = """<unk>""" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowerCAmelCase__ : Any = unk_token if pad_token is None else pad_token lowerCAmelCase__ : Dict = eos_token if bos_token is None else bos_token else: lowerCAmelCase__ : List[str] = """<pad>""" if pad_token is None else pad_token lowerCAmelCase__ : Optional[int] = """<s>""" if bos_token is None else bos_token super().__init__( do_lower_case=__UpperCAmelCase ,remove_space=__UpperCAmelCase ,keep_accents=__UpperCAmelCase ,bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,unk_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__UpperCAmelCase ,) lowerCAmelCase__ : Optional[int] = do_lower_case lowerCAmelCase__ : Dict = remove_space lowerCAmelCase__ : Optional[Any] = keep_accents lowerCAmelCase__ : int = vocab_file lowerCAmelCase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) # Used for whitespace normalization in input texts # fmt : off lowerCAmelCase__ : int = {""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """„"""} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowerCAmelCase__ : List[str] = re.compile( F"""[{''.join(map(__UpperCAmelCase ,list(range(0 ,9 ) ) + list(range(11 ,32 ) ) + list(range(127 ,160 ) ) + [160, 173, 8203] ) )}]""" ) def __getstate__( self ) -> Any: lowerCAmelCase__ : int = self.__dict__.copy() lowerCAmelCase__ : Optional[int] = None return state def __setstate__( self ,__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : List[str] = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowerCAmelCase__ : Tuple = {} lowerCAmelCase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCAmelCase_ ( self ) -> int: return len(self.sp_model ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : Tuple = self.non_printing_characters_re.sub("""""" ,__UpperCAmelCase ) # Normalize whitespaces lowerCAmelCase__ : List[Any] = """""".join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization lowerCAmelCase__ : List[Any] = unicodedata.normalize("""NFC""" ,__UpperCAmelCase ) return text def UpperCAmelCase_ ( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : List[Any] = self.preprocess_text(__UpperCAmelCase ) return self.sp_model.encode(__UpperCAmelCase ,out_type=__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: return self.sp_model.PieceToId(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: return self.sp_model.IdToPiece(__UpperCAmelCase ) @staticmethod def UpperCAmelCase_ ( __UpperCAmelCase ) -> str: return out_string def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : int = [] lowerCAmelCase__ : Optional[int] = """""" lowerCAmelCase__ : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Optional[Any] = [] else: current_sub_tokens.append(__UpperCAmelCase ) lowerCAmelCase__ : Any = False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string def UpperCAmelCase_ ( self ) -> Dict[str, int]: lowerCAmelCase__ : Optional[int] = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : Optional[int] = os.path.join( __UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase ,"""wb""" ) as fi: lowerCAmelCase__ : str = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Tuple = self.preprocess_text(__UpperCAmelCase ) lowerCAmelCase__ : int = self.sp_model.encode(__UpperCAmelCase ) else: lowerCAmelCase__ : int = [self.preprocess_text(__UpperCAmelCase ) for t in text] lowerCAmelCase__ : Any = self.sp_model.encode(__UpperCAmelCase ) if return_tensors is True or return_tensors == "pt": lowerCAmelCase__ : Tuple = torch.tensor(__UpperCAmelCase ) return token_ids def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: return self.sp_model.decode(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[int]: lowerCAmelCase__ : List[Any] = [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()] lowerCAmelCase__ : Any = ( F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(__UpperCAmelCase ) + F"""{self.bos_token}Bot:""" ) return self.encode(text=__UpperCAmelCase )
37
1
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=lowerCAmelCase): _a = ['''torch''', '''transformers''', '''onnx'''] def __init__( self: List[str] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: Union[str, Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls: Dict , *_lowerCAmelCase: Optional[int] , **_lowerCAmelCase: Tuple ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls: Any , *_lowerCAmelCase: str , **_lowerCAmelCase: int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class __lowerCAmelCase ( metaclass=lowerCAmelCase): _a = ['''torch''', '''transformers''', '''onnx'''] def __init__( self: Union[str, Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: Dict ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls: Tuple , *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: Dict ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls: Optional[Any] , *_lowerCAmelCase: Any , **_lowerCAmelCase: List[Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class __lowerCAmelCase ( metaclass=lowerCAmelCase): _a = ['''torch''', '''transformers''', '''onnx'''] def __init__( self: Optional[Any] , *_lowerCAmelCase: int , **_lowerCAmelCase: Optional[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls: Optional[int] , *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: Any ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls: str , *_lowerCAmelCase: Any , **_lowerCAmelCase: Dict ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class __lowerCAmelCase ( metaclass=lowerCAmelCase): _a = ['''torch''', '''transformers''', '''onnx'''] def __init__( self: Union[str, Any] , *_lowerCAmelCase: str , **_lowerCAmelCase: Any ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls: Any , *_lowerCAmelCase: int , **_lowerCAmelCase: Optional[Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls: Optional[int] , *_lowerCAmelCase: Union[str, Any] , **_lowerCAmelCase: Tuple ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class __lowerCAmelCase ( metaclass=lowerCAmelCase): _a = ['''torch''', '''transformers''', '''onnx'''] def __init__( self: List[Any] , *_lowerCAmelCase: List[str] , **_lowerCAmelCase: Union[str, Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls: List[str] , *_lowerCAmelCase: int , **_lowerCAmelCase: List[str] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls: List[str] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: Tuple ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class __lowerCAmelCase ( metaclass=lowerCAmelCase): _a = ['''torch''', '''transformers''', '''onnx'''] def __init__( self: Optional[int] , *_lowerCAmelCase: Union[str, Any] , **_lowerCAmelCase: Dict ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls: int , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: Optional[Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls: Dict , *_lowerCAmelCase: Dict , **_lowerCAmelCase: List[str] ): requires_backends(cls , ["torch", "transformers", "onnx"] )
158
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __lowerCAmelCase ( lowerCAmelCase): _a = 42 _a = None def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase=0.999, lowerCamelCase="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowercase :Optional[int] = [] for i in range(lowerCamelCase ): lowercase :Any = i / num_diffusion_timesteps lowercase :str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase ) / alpha_bar_fn(lowerCamelCase ), lowerCamelCase ) ) return torch.tensor(lowerCamelCase, dtype=torch.floataa ) class __lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase): _a = 1 @register_to_config def __init__( self: Any , _lowerCAmelCase: int = 10_00 , _lowerCAmelCase: float = 0.00_01 , _lowerCAmelCase: float = 0.02 , _lowerCAmelCase: str = "linear" , _lowerCAmelCase: Optional[Union[np.ndarray, List[float]]] = None , _lowerCAmelCase: bool = True , _lowerCAmelCase: bool = True , _lowerCAmelCase: int = 0 , _lowerCAmelCase: str = "epsilon" , _lowerCAmelCase: float = 1.0 , **_lowerCAmelCase: Union[str, Any] , ): if kwargs.get("set_alpha_to_one" , _lowerCAmelCase ) is not None: lowercase :Optional[int] = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) lowercase :str = kwargs["set_alpha_to_one"] if trained_betas is not None: lowercase :int = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": lowercase :List[Any] = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase :Tuple = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase :Any = betas_for_alpha_bar(_lowerCAmelCase ) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" ) lowercase :Dict = 1.0 - self.betas lowercase :Dict = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. lowercase :Any = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution lowercase :Union[str, Any] = 1.0 # setable values lowercase :str = None lowercase :List[Any] = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) ) def SCREAMING_SNAKE_CASE ( self: Optional[Any] , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: Optional[int] = None ): return sample def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: int , _lowerCAmelCase: Union[str, torch.device] = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" F" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" F" maximal {self.config.num_train_timesteps} timesteps." ) lowercase :List[Any] = num_inference_steps lowercase :Optional[Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase :str = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) lowercase :str = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) self.timesteps += self.config.steps_offset def SCREAMING_SNAKE_CASE ( self: List[str] , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: int , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: bool = False , _lowerCAmelCase: Optional[torch.FloatTensor] = None , _lowerCAmelCase: bool = True , ): # 1. get previous step value (=t+1) lowercase :int = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process lowercase :List[Any] = self.alphas_cumprod[timestep] lowercase :Dict = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) lowercase :Optional[Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": lowercase :int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 lowercase :Optional[Any] = model_output elif self.config.prediction_type == "sample": lowercase :Union[str, Any] = model_output lowercase :List[str] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": lowercase :Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output lowercase :str = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: lowercase :Optional[Any] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase :List[Any] = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase :Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __len__( self: List[str] ): return self.config.num_train_timesteps
158
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: __a = len(lowerCAmelCase__ ) __a = sum(lowerCAmelCase__ ) __a = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __a = True for i in range(1 , s + 1 ): __a = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __a = dp[i][j - 1] if arr[i - 1] <= j: __a = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __a = s - 2 * j break return diff
45
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowercase ( lowerCAmelCase__ : Namespace ) -> Tuple: return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) lowercase_ = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def __UpperCAmelCase ( _a ): __a = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=_a , required=_a , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=_a , required=_a , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=_a , required=_a , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=_a , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=_a , default=_a , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=_a ) def __init__( self , _a , _a , _a , _a , _a , *_a , ): __a = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(f'''Loading model {model_type}''' ) __a = model_type __a = tf_checkpoint __a = pytorch_dump_output __a = config __a = finetuning_task_name def __UpperCAmelCase ( self ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) if "ckpt" in self._tf_checkpoint.lower(): __a = self._tf_checkpoint __a = '''''' else: __a = self._tf_checkpoint __a = '''''' convert_transfo_xl_checkpoint_to_pytorch( _a , self._config , self._pytorch_dump_output , _a ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
45
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : Any = { '''configuration_albert''': ['''ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AlbertConfig''', '''AlbertOnnxConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = ['''AlbertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = ['''AlbertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = [ '''ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AlbertForMaskedLM''', '''AlbertForMultipleChoice''', '''AlbertForPreTraining''', '''AlbertForQuestionAnswering''', '''AlbertForSequenceClassification''', '''AlbertForTokenClassification''', '''AlbertModel''', '''AlbertPreTrainedModel''', '''load_tf_weights_in_albert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ '''TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAlbertForMaskedLM''', '''TFAlbertForMultipleChoice''', '''TFAlbertForPreTraining''', '''TFAlbertForQuestionAnswering''', '''TFAlbertForSequenceClassification''', '''TFAlbertForTokenClassification''', '''TFAlbertMainLayer''', '''TFAlbertModel''', '''TFAlbertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ '''FlaxAlbertForMaskedLM''', '''FlaxAlbertForMultipleChoice''', '''FlaxAlbertForPreTraining''', '''FlaxAlbertForQuestionAnswering''', '''FlaxAlbertForSequenceClassification''', '''FlaxAlbertForTokenClassification''', '''FlaxAlbertModel''', '''FlaxAlbertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys _lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
365
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , lowercase : Union[str, Any] , lowercase : str=7 , lowercase : Union[str, Any]=3 , lowercase : Tuple=30 , lowercase : Optional[Any]=400 , lowercase : List[Any]=True , lowercase : Any=None , lowercase : str=True , lowercase : Tuple=[0.5, 0.5, 0.5] , lowercase : List[Any]=[0.5, 0.5, 0.5] , lowercase : Union[str, Any]=True , lowercase : List[Any]=1 / 255 , lowercase : int=True , ): '''simple docstring''' _snake_case = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333} _snake_case = parent _snake_case = batch_size _snake_case = num_channels _snake_case = min_resolution _snake_case = max_resolution _snake_case = do_resize _snake_case = size _snake_case = do_normalize _snake_case = image_mean _snake_case = image_std _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_pad def A ( self : str ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A ( self : Optional[int] , lowercase : List[Any] , lowercase : Tuple=False ): '''simple docstring''' if not batched: _snake_case = image_inputs[0] if isinstance(lowercase , Image.Image ): _snake_case , _snake_case = image.size else: _snake_case , _snake_case = image.shape[1], image.shape[2] if w < h: _snake_case = int(self.size['shortest_edge'] * h / w ) _snake_case = self.size['shortest_edge'] elif w > h: _snake_case = self.size['shortest_edge'] _snake_case = int(self.size['shortest_edge'] * w / h ) else: _snake_case = self.size['shortest_edge'] _snake_case = self.size['shortest_edge'] else: _snake_case = [] for image in image_inputs: _snake_case , _snake_case = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case = max(lowercase , key=lambda lowercase : item[0] )[0] _snake_case = max(lowercase , key=lambda lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Dict = DeformableDetrImageProcessor if is_vision_available() else None def A ( self : List[Any] ): '''simple docstring''' _snake_case = DeformableDetrImageProcessingTester(self ) @property def A ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A ( self : Dict ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , 'image_mean' ) ) self.assertTrue(hasattr(lowercase , 'image_std' ) ) self.assertTrue(hasattr(lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase , 'do_resize' ) ) self.assertTrue(hasattr(lowercase , 'do_rescale' ) ) self.assertTrue(hasattr(lowercase , 'do_pad' ) ) self.assertTrue(hasattr(lowercase , 'size' ) ) def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1_333} ) self.assertEqual(image_processor.do_pad , lowercase ) _snake_case = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , lowercase ) def A ( self : Dict ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) _snake_case = image_processing(lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : List[str] ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case = image_processing(lowercase , return_tensors='pt' ).pixel_values _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case = image_processing(lowercase , return_tensors='pt' ).pixel_values _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def A ( self : List[str] ): '''simple docstring''' _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: _snake_case = json.loads(f.read() ) _snake_case = {'image_id': 39_769, 'annotations': target} # encode them _snake_case = DeformableDetrImageProcessor() _snake_case = image_processing(images=lowercase , annotations=lowercase , return_tensors='pt' ) # verify pixel values _snake_case = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , lowercase ) _snake_case = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase , atol=1E-4 ) ) # verify area _snake_case = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase ) ) # verify boxes _snake_case = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase ) _snake_case = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase , atol=1E-3 ) ) # verify image_id _snake_case = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase ) ) # verify is_crowd _snake_case = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase ) ) # verify class_labels _snake_case = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase ) ) # verify orig_size _snake_case = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase ) ) # verify size _snake_case = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase ) ) @slow def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: _snake_case = json.loads(f.read() ) _snake_case = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target} _snake_case = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them _snake_case = DeformableDetrImageProcessor(format='coco_panoptic' ) _snake_case = image_processing(images=lowercase , annotations=lowercase , masks_path=lowercase , return_tensors='pt' ) # verify pixel values _snake_case = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , lowercase ) _snake_case = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase , atol=1E-4 ) ) # verify area _snake_case = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase ) ) # verify boxes _snake_case = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase ) _snake_case = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase , atol=1E-3 ) ) # verify image_id _snake_case = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase ) ) # verify is_crowd _snake_case = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase ) ) # verify class_labels _snake_case = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase ) ) # verify masks _snake_case = 822_873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , lowercase ) # verify orig_size _snake_case = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase ) ) # verify size _snake_case = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase ) )
130
0
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings( lowerCamelCase__ , R'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ' , ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : GenericTensor ): if self.framework == "tf": __lowercase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __lowercase = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=lowercase__ ) else: raise ValueError('''Unsupported framework''' ) return masked_index def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : GenericTensor ): __lowercase = self.get_masked_index(lowercase__ ) __lowercase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' ,self.model.base_model_prefix ,F"No mask_token ({self.tokenizer.mask_token}) found on the input" ,) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : GenericTensor ): if isinstance(lowercase__ ,lowercase__ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : str ,lowercase__ : Union[str, Any]=None ,**lowercase__ : Any ): if return_tensors is None: __lowercase = self.framework __lowercase = self.tokenizer(lowercase__ ,return_tensors=lowercase__ ) self.ensure_exactly_one_mask_token(lowercase__ ) return model_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ): __lowercase = self.model(**lowercase__ ) __lowercase = model_inputs['''input_ids'''] return model_outputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any]=5 ,lowercase__ : str=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __lowercase = target_ids.shape[0] __lowercase = model_outputs['''input_ids'''][0] __lowercase = model_outputs['''logits'''] if self.framework == "tf": __lowercase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __lowercase = outputs.numpy() __lowercase = outputs[0, masked_index, :] __lowercase = stable_softmax(lowercase__ ,axis=-1 ) if target_ids is not None: __lowercase = tf.gather_nd(tf.squeeze(lowercase__ ,0 ) ,target_ids.reshape(-1 ,1 ) ) __lowercase = tf.expand_dims(lowercase__ ,0 ) __lowercase = tf.math.top_k(lowercase__ ,k=lowercase__ ) __lowercase , __lowercase = topk.values.numpy(), topk.indices.numpy() else: __lowercase = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=lowercase__ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __lowercase = outputs[0, masked_index, :] __lowercase = logits.softmax(dim=-1 ) if target_ids is not None: __lowercase = probs[..., target_ids] __lowercase , __lowercase = probs.topk(lowercase__ ) __lowercase = [] __lowercase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ): __lowercase = [] for v, p in zip(_values ,_predictions ): # Copy is important since we're going to modify this array in place __lowercase = input_ids.numpy().copy() if target_ids is not None: __lowercase = target_ids[p].tolist() __lowercase = p # Filter padding out: __lowercase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __lowercase = self.tokenizer.decode(lowercase__ ,skip_special_tokens=lowercase__ ) __lowercase = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(lowercase__ ) result.append(lowercase__ ) if single_mask: return result[0] return result def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : int=None ): if isinstance(lowercase__ ,lowercase__ ): __lowercase = [targets] try: __lowercase = self.tokenizer.get_vocab() except Exception: __lowercase = {} __lowercase = [] for target in targets: __lowercase = vocab.get(lowercase__ ,lowercase__ ) if id_ is None: __lowercase = self.tokenizer( lowercase__ ,add_special_tokens=lowercase__ ,return_attention_mask=lowercase__ ,return_token_type_ids=lowercase__ ,max_length=1 ,truncation=lowercase__ ,)['''input_ids'''] if len(lowercase__ ) == 0: logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " '''We cannot replace it with anything meaningful, ignoring it''' ) continue __lowercase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " F"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) __lowercase = list(set(lowercase__ ) ) if len(lowercase__ ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) __lowercase = np.array(lowercase__ ) return target_ids def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int=None ,lowercase__ : List[str]=None ): __lowercase = {} if targets is not None: __lowercase = self.get_target_ids(lowercase__ ,lowercase__ ) __lowercase = target_ids if top_k is not None: __lowercase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' ,self.model.base_model_prefix ,'''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self : str ,lowercase__ : Optional[int] ,*lowercase__ : Union[str, Any] ,**lowercase__ : List[Any] ): __lowercase = super().__call__(lowercase__ ,**lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) and len(lowercase__ ) == 1: return outputs[0] return outputs
104
'''simple docstring''' import os import sys import unittest _lowerCamelCase : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowerCamelCase : str = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') _lowerCamelCase : Tuple = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Any ): A = get_test_to_tester_mapping(_lowerCAmelCase ) A = get_test_to_tester_mapping(_lowerCAmelCase ) A = {"""BertModelTest""": """BertModelTester"""} A = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase ) def A (self : str ): A = get_model_to_test_mapping(_lowerCAmelCase ) A = get_model_to_test_mapping(_lowerCAmelCase ) A = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } A = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase ) def A (self : Union[str, Any] ): A = get_model_to_tester_mapping(_lowerCAmelCase ) A = get_model_to_tester_mapping(_lowerCAmelCase ) A = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } A = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase )
258
0
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , __A ) -> str: super().__init__() a =nn.ModuleList(__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , __A , __A = None , __A = None , __A = None , __A = None , __A = False , __A = True , ) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(__A , __A , self.nets ) ): a , a =controlnet( __A , __A , __A , __A , __A , __A , __A , __A , __A , __A , __A , ) # merge samples if i == 0: a , a =down_samples, mid_sample else: a =[ samples_prev + samples_curr for samples_prev, samples_curr in zip(__A , __A ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def SCREAMING_SNAKE_CASE ( self , __A , __A = True , __A = None , __A = False , __A = None , ) -> Any: a =0 a =save_directory for controlnet in self.nets: controlnet.save_pretrained( __A , is_main_process=__A , save_function=__A , safe_serialization=__A , variant=__A , ) idx += 1 a =model_path_to_save + f'''_{idx}''' @classmethod def SCREAMING_SNAKE_CASE ( cls , __A , **__A ) -> Tuple: a =0 a =[] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... a =pretrained_model_path while os.path.isdir(__A ): a =ControlNetModel.from_pretrained(__A , **__A ) controlnets.append(__A ) idx += 1 a =pretrained_model_path + f'''_{idx}''' logger.info(f'''{len(__A )} controlnets loaded from {pretrained_model_path}.''' ) if len(__A ) == 0: raise ValueError( f'''No ControlNets found under {os.path.dirname(__A )}. Expected at least {pretrained_model_path + "_0"}.''' ) return cls(__A )
215
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : int = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCamelCase_ : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def _A ( lowercase , lowercase , lowercase ): """simple docstring""" a =state_dict.pop(lowercase ) a =val def _A ( lowercase ): """simple docstring""" a =OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: a =key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) a =value else: a =value return new_state_dict def _A ( lowercase ): """simple docstring""" a ='''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a =state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) a =state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a =in_proj_weight[:2_56, :] a =in_proj_bias[:2_56] a =in_proj_weight[2_56:5_12, :] a =in_proj_bias[2_56:5_12] a =in_proj_weight[-2_56:, :] a =in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention a =state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) a =state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a =in_proj_weight[:2_56, :] a =in_proj_bias[:2_56] a =in_proj_weight[2_56:5_12, :] a =in_proj_bias[2_56:5_12] a =in_proj_weight[-2_56:, :] a =in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention a =state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) a =state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict a =in_proj_weight_cross_attn[:2_56, :] a =in_proj_bias_cross_attn[:2_56] a =in_proj_weight_cross_attn[2_56:5_12, :] a =in_proj_bias_cross_attn[2_56:5_12] a =in_proj_weight_cross_attn[-2_56:, :] a =in_proj_bias_cross_attn[-2_56:] def _A ( lowercase , lowercase ): """simple docstring""" a , a =image.size a =max(lowercase , lowercase ) a =8_00 if '''detection''' in checkpoint_url else 10_00 a =target_max_size / current_max_size a =image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def _A ( lowercase ): """simple docstring""" a =F.to_tensor(lowercase ) a =F.normalize(lowercase , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def _A ( lowercase , lowercase , lowercase ): """simple docstring""" logger.info('''Converting model...''' ) # load original state dict a =torch.hub.load_state_dict_from_url(lowercase , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) a =rename_backbone_keys(lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a ='''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): a =state_dict.pop(lowercase ) a =val # create HuggingFace model and load state dict a =TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: a =15 a =2 a ={0: '''table''', 1: '''table rotated'''} a =idalabel a ={v: k for k, v in idalabel.items()} else: a =1_25 a =6 a ={ 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } a =idalabel a ={v: k for k, v in idalabel.items()} a =DetrImageProcessor( format='''coco_detection''' , max_size=8_00 if '''detection''' in checkpoint_url else 10_00 ) a =TableTransformerForObjectDetection(lowercase ) model.load_state_dict(lowercase ) model.eval() # verify our conversion a ='''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' a =hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=lowercase ) a =Image.open(lowercase ).convert('''RGB''' ) a =normalize(resize(lowercase , lowercase ) ).unsqueeze(0 ) a =model(lowercase ) if "detection" in checkpoint_url: a =(1, 15, 3) a =torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) a =torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: a =(1, 1_25, 7) a =torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) a =torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowercase , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowercase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) image_processor.save_pretrained(lowercase ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) a =( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(lowercase ) image_processor.push_to_hub(lowercase ) if __name__ == "__main__": lowerCamelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
215
1
from __future__ import annotations def __lowercase ( _UpperCamelCase, _UpperCamelCase = None ) ->list[list[str]]: """simple docstring""" lowercase : Dict = word_bank or [] # create a table lowercase : int = len(_UpperCamelCase ) + 1 lowercase : list[list[list[str]]] = [] for _ in range(_UpperCamelCase ): table.append([] ) # seed value lowercase : List[Any] = [[]] # because empty string has empty combination # iterate through the indices for i in range(_UpperCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_UpperCamelCase )] == word: lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_UpperCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_UpperCamelCase )]: combination.reverse() return table[len(_UpperCamelCase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
337
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging __a = logging.get_logger(__name__) def __lowercase ( _UpperCamelCase ) ->List[int]: """simple docstring""" if isinstance(_UpperCamelCase, np.ndarray ): return list(tensor.shape ) lowercase : Optional[Any] = tf.shape(_UpperCamelCase ) if tensor.shape == tf.TensorShape(_UpperCamelCase ): return dynamic lowercase : Tuple = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(_UpperCamelCase )] def __lowercase ( _UpperCamelCase, _UpperCamelCase = None, _UpperCamelCase = None ) ->tf.Tensor: """simple docstring""" return tf.nn.softmax(logits=logits + 1e-9, axis=_UpperCamelCase, name=_UpperCamelCase ) def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase=1e-5, _UpperCamelCase=-1 ) ->int: """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(_UpperCamelCase, _UpperCamelCase ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized lowercase , lowercase : Union[str, Any] = tf.nn.moments(_UpperCamelCase, axes=[axis], keepdims=_UpperCamelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowercase : int = [1] * inputs.shape.rank lowercase : Union[str, Any] = shape_list(_UpperCamelCase )[axis] lowercase : List[str] = tf.reshape(_UpperCamelCase, _UpperCamelCase ) lowercase : Dict = tf.reshape(_UpperCamelCase, _UpperCamelCase ) # Compute layer normalization using the batch_normalization # function. lowercase : List[str] = tf.nn.batch_normalization( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, offset=_UpperCamelCase, scale=_UpperCamelCase, variance_epsilon=_UpperCamelCase, ) return outputs def __lowercase ( _UpperCamelCase, _UpperCamelCase=0, _UpperCamelCase=-1 ) ->List[Any]: """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowercase : Dict = tf.shape(_UpperCamelCase ) lowercase : Optional[Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowercase : List[str] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]], axis=0 ) return tf.reshape(_UpperCamelCase, _UpperCamelCase ) def __lowercase ( _UpperCamelCase ) ->tf.Tensor: """simple docstring""" if not isinstance(_UpperCamelCase, tf.Tensor ): lowercase : Optional[Any] = tf.convert_to_tensor(_UpperCamelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowercase : Tuple = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowercase : List[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowercase : str = ( tf.cast(1, encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase = "input_ids" ) ->None: """simple docstring""" tf.debugging.assert_less( _UpperCamelCase, tf.cast(_UpperCamelCase, dtype=tensor.dtype ), message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(_UpperCamelCase )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ), ) def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Union[str, Any]: """simple docstring""" lowercase : List[Any] = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowercase : Optional[int] = [x for x in data if len(_UpperCamelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) lowercase : Any = np.asarray(_UpperCamelCase ) lowercase : List[Any] = 1 lowercase : Tuple = np.array_split(_UpperCamelCase, _UpperCamelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowercase : Dict = np.array_split(_UpperCamelCase, _UpperCamelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(_UpperCamelCase ): lowercase : Optional[int] = chunk_data else: lowercase : int = data def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->List[str]: """simple docstring""" if name in group.attrs: lowercase : str = [n.decode('''utf8''' ) if hasattr(_UpperCamelCase, '''decode''' ) else n for n in group.attrs[name]] else: lowercase : Optional[Any] = [] lowercase : List[str] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(_UpperCamelCase, '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def __lowercase ( _UpperCamelCase ) ->List[str]: """simple docstring""" def _expand_single_ad_tensor(_UpperCamelCase ): if isinstance(_UpperCamelCase, tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(_UpperCamelCase, axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor, _UpperCamelCase )
337
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @dataclass class a ( lowerCamelCase__ ): _lowercase = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **A_ ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _UpperCAmelCase : Union[str, Any] = deprecated_arg[3:] setattr(self , __A , not kwargs.pop(__A ) ) logger.warning( f'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or' f' {positive_arg}={kwargs[positive_arg]}' ) _UpperCAmelCase : int = kwargs.pop("torchscript" , self.torchscript ) _UpperCAmelCase : Union[str, Any] = kwargs.pop("torch_xla_tpu_print_metrics" , self.torch_xla_tpu_print_metrics ) _UpperCAmelCase : str = kwargs.pop("fp16_opt_level" , self.fpaa_opt_level ) super().__init__(**__A ) _lowercase = field(default=lowerCamelCase__ , metadata={"help": "Trace the models using torchscript"} ) _lowercase = field(default=lowerCamelCase__ , metadata={"help": "Print Xla/PyTorch tpu metrics"} ) _lowercase = field( default="O1" , metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ) } , ) @cached_property def _UpperCAmelCase ( self ): '''simple docstring''' requires_backends(self , ["torch"] ) logger.info("PyTorch: setting up devices" ) if not self.cuda: _UpperCAmelCase : Tuple = torch.device("cpu" ) _UpperCAmelCase : int = 0 elif is_torch_tpu_available(): _UpperCAmelCase : int = xm.xla_device() _UpperCAmelCase : List[str] = 0 else: _UpperCAmelCase : Tuple = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) _UpperCAmelCase : List[str] = torch.cuda.device_count() return device, n_gpu @property def _UpperCAmelCase ( self ): '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def _UpperCAmelCase ( self ): '''simple docstring''' requires_backends(self , ["torch"] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def _UpperCAmelCase ( self ): '''simple docstring''' requires_backends(self , ["torch"] ) return self._setup_devices[0] @property def _UpperCAmelCase ( self ): '''simple docstring''' requires_backends(self , ["torch"] ) return self._setup_devices[1] @property def _UpperCAmelCase ( self ): '''simple docstring''' return self.n_gpu > 0
361
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise TypeError("Input value must be an 'int' type" ) _UpperCAmelCase : List[Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
189
0
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :Optional[Any] )-> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCAmelCase_ ( self :Optional[Any] )-> Tuple: A__, A__ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=lowercase_ , dtype=jnp.bfloataa ) A__, A__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=lowercase_ , from_pt=lowercase_ , dtype=jnp.bfloataa ) A__ = controlnet_params A__ = "bird" A__ = jax.device_count() A__ = pipe.prepare_text_inputs([prompts] * num_samples ) A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) A__ = pipe.prepare_image_inputs([canny_image] * num_samples ) A__ = jax.random.PRNGKey(0 ) A__ = jax.random.split(lowercase_ , jax.device_count() ) A__ = replicate(lowercase_ ) A__ = shard(lowercase_ ) A__ = shard(lowercase_ ) A__ = pipe( prompt_ids=lowercase_ , image=lowercase_ , params=lowercase_ , prng_seed=lowercase_ , num_inference_steps=50 , jit=lowercase_ , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) A__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) A__ = images[0, 2_53:2_56, 2_53:2_56, -1] A__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ = jnp.array( [0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self :Tuple )-> Tuple: A__, A__ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=lowercase_ , dtype=jnp.bfloataa ) A__, A__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=lowercase_ , from_pt=lowercase_ , dtype=jnp.bfloataa ) A__ = controlnet_params A__ = "Chef in the kitchen" A__ = jax.device_count() A__ = pipe.prepare_text_inputs([prompts] * num_samples ) A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) A__ = pipe.prepare_image_inputs([pose_image] * num_samples ) A__ = jax.random.PRNGKey(0 ) A__ = jax.random.split(lowercase_ , jax.device_count() ) A__ = replicate(lowercase_ ) A__ = shard(lowercase_ ) A__ = shard(lowercase_ ) A__ = pipe( prompt_ids=lowercase_ , image=lowercase_ , params=lowercase_ , prng_seed=lowercase_ , num_inference_steps=50 , jit=lowercase_ , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) A__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) A__ = images[0, 2_53:2_56, 2_53:2_56, -1] A__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ = jnp.array( [[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
237
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
237
1
"""simple docstring""" def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" if num < 0: return False __A = num __A = 0 while num > 0: __A = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
365
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = [R"h\.\d+\.attn\.bias", R"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : Tuple ,A : int ,A : int ,A : Optional[int] = None ,A : int = 5_02_57 ,A : int = 10_24 ,A : int = 7_68 ,A : int = 12 ,A : int = 12 ,A : Optional[int] = None ,A : str = "gelu_new" ,A : float = 0.1 ,A : float = 0.1 ,A : float = 0.1 ,A : float = 1E-5 ,A : float = 0.02 ,A : bool = True ,A : bool = True ,A : bool = False ,A : bool = False ,): super().__init__() __A = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) __A = prefix_inner_dim __A = prefix_hidden_dim __A = ( nn.Linear(self.prefix_inner_dim ,self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) __A = ( nn.Linear(self.prefix_hidden_dim ,A ) if self.prefix_hidden_dim is not None else nn.Identity() ) __A = GPTaConfig( vocab_size=A ,n_positions=A ,n_embd=A ,n_layer=A ,n_head=A ,n_inner=A ,activation_function=A ,resid_pdrop=A ,embd_pdrop=A ,attn_pdrop=A ,layer_norm_epsilon=A ,initializer_range=A ,scale_attn_weights=A ,use_cache=A ,scale_attn_by_inverse_layer_idx=A ,reorder_and_upcast_attn=A ,) __A = GPTaLMHeadModel(A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : torch.Tensor ,A : torch.Tensor ,A : Optional[torch.Tensor] = None ,A : Optional[torch.Tensor] = None ,): __A = self.transformer.transformer.wte(A ) __A = self.encode_prefix(A ) __A = self.decode_prefix(A ) __A = torch.cat((prefix_embeds, embedding_text) ,dim=1 ) if labels is not None: __A = self.get_dummy_token(input_ids.shape[0] ,input_ids.device ) __A = torch.cat((dummy_token, input_ids) ,dim=1 ) __A = self.transformer(inputs_embeds=A ,labels=A ,attention_mask=A ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def UpperCamelCase_ ( self : int ,A : int ,A : torch.device ): return torch.zeros(A ,self.prefix_length ,dtype=torch.intaa ,device=A ) def UpperCamelCase_ ( self : Optional[Any] ,A : List[Any] ): return self.encode_prefix(A ) @torch.no_grad() def UpperCamelCase_ ( self : str ,A : List[str] ,A : List[Any] ,A : List[Any] ): __A = torch.split(A ,1 ,dim=0 ) __A = [] __A = [] for feature in features: __A = self.decode_prefix(feature.to(A ) ) # back to the clip feature # Only support beam search for now __A , __A = self.generate_beam( input_embeds=A ,device=A ,eos_token_id=A ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) __A = torch.stack(A ) __A = torch.stack(A ) return generated_tokens, generated_seq_lengths @torch.no_grad() def UpperCamelCase_ ( self : Tuple ,A : List[str]=None ,A : Dict=None ,A : Optional[int]=None ,A : int = 5 ,A : int = 67 ,A : float = 1.0 ,A : Optional[int] = None ,): __A = eos_token_id __A = None __A = None __A = torch.ones(A ,device=A ,dtype=torch.int ) __A = torch.zeros(A ,device=A ,dtype=torch.bool ) if input_embeds is not None: __A = input_embeds else: __A = self.transformer.transformer.wte(A ) for i in range(A ): __A = self.transformer(inputs_embeds=A ) __A = outputs.logits __A = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) __A = logits.softmax(-1 ).log() if scores is None: __A , __A = logits.topk(A ,-1 ) __A = generated.expand(A ,*generated.shape[1:] ) __A , __A = next_tokens.permute(1 ,0 ), scores.squeeze(0 ) if tokens is None: __A = next_tokens else: __A = tokens.expand(A ,*tokens.shape[1:] ) __A = torch.cat((tokens, next_tokens) ,dim=1 ) else: __A = -float(np.inf ) __A = 0 __A = scores[:, None] + logits seq_lengths[~is_stopped] += 1 __A = scores_sum / seq_lengths[:, None] __A , __A = scores_sum_average.view(-1 ).topk(A ,-1 ) __A = next_tokens // scores_sum.shape[1] __A = seq_lengths[next_tokens_source] __A = next_tokens % scores_sum.shape[1] __A = next_tokens.unsqueeze(1 ) __A = tokens[next_tokens_source] __A = torch.cat((tokens, next_tokens) ,dim=1 ) __A = generated[next_tokens_source] __A = scores_sum_average * seq_lengths __A = is_stopped[next_tokens_source] __A = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] ,1 ,-1 ) __A = torch.cat((generated, next_token_embed) ,dim=1 ) __A = is_stopped + next_tokens.eq(A ).squeeze() if is_stopped.all(): break __A = scores / seq_lengths __A = scores.argsort(descending=A ) # tokens tensors are already padded to max_seq_length __A = [tokens[i] for i in order] __A = torch.stack(A ,dim=0 ) __A = torch.tensor([seq_lengths[i] for i in order] ,dtype=seq_lengths.dtype ) return output_texts, seq_lengths
124
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
293
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def __A (_SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" return 1.0 / (1.0 + np.exp(-_outputs )) def __A (_SCREAMING_SNAKE_CASE ) ->Tuple: """simple docstring""" lowerCAmelCase__ :List[str] = np.max(_outputs , axis=-1 , keepdims=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_SCREAMING_SNAKE_CASE ) class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Any = """sigmoid""" __magic_name__ :Optional[Any] = """softmax""" __magic_name__ :Optional[Any] = """none""" @add_end_docstrings( a , r""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Union[str, Any] = False __magic_name__ :Dict = ClassificationFunction.NONE def __init__( self , **__UpperCAmelCase ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def snake_case ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="" , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = tokenizer_kwargs lowerCAmelCase__ :List[Any] = {} if hasattr(self.model.config , 'return_all_scores' ) and return_all_scores is None: lowerCAmelCase__ :List[Any] = self.model.config.return_all_scores if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or top_k is None: lowerCAmelCase__ :int = top_k lowerCAmelCase__ :Dict = False elif return_all_scores is not None: warnings.warn( '`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of' ' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , __UpperCAmelCase , ) if return_all_scores: lowerCAmelCase__ :List[Any] = None else: lowerCAmelCase__ :Union[str, Any] = 1 if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :Union[str, Any] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: lowerCAmelCase__ :List[Any] = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = super().__call__(*__UpperCAmelCase , **__UpperCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. lowerCAmelCase__ :Optional[Any] = 'top_k' not in kwargs if isinstance(args[0] , __UpperCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def snake_case ( self , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = self.framework if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return self.tokenizer(**__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) == 1 and isinstance(inputs[0] , __UpperCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( 'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a' ' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' ) return self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' return self.model(**__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=1 , __UpperCAmelCase=True ): '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: lowerCAmelCase__ :str = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: lowerCAmelCase__ :int = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , 'function_to_apply' ) and function_to_apply is None: lowerCAmelCase__ :Optional[Any] = self.model.config.function_to_apply else: lowerCAmelCase__ :Dict = ClassificationFunction.NONE lowerCAmelCase__ :int = model_outputs['logits'][0] lowerCAmelCase__ :Union[str, Any] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: lowerCAmelCase__ :Dict = sigmoid(__UpperCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: lowerCAmelCase__ :int = softmax(__UpperCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: lowerCAmelCase__ :Tuple = outputs else: raise ValueError(F"Unrecognized `function_to_apply` argument: {function_to_apply}" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} lowerCAmelCase__ :Any = [ {'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(__UpperCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase ) if top_k is not None: lowerCAmelCase__ :List[str] = dict_scores[:top_k] return dict_scores
293
1
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCamelCase : str = logging.getLogger(__name__) UpperCamelCase : List[str] = 5_0 # max width of layer names UpperCamelCase : Union[str, Any] = 7_0 # max width of quantizer names def A ( snake_case :Dict ) -> Optional[Any]: __UpperCamelCase = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=snake_case , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=snake_case , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=snake_case , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=snake_case , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=snake_case , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=snake_case , type=snake_case , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=snake_case , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def A ( snake_case :Any ) -> Optional[int]: if args.calibrator == "max": __UpperCamelCase = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) __UpperCamelCase = 'histogram' elif args.calibrator == "mse": __UpperCamelCase = 'histogram' else: raise ValueError(f'Invalid calibrator {args.calibrator}' ) __UpperCamelCase = QuantDescriptor(num_bits=args.aprec , calib_method=snake_case ) __UpperCamelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(snake_case ) quant_nn.QuantLinear.set_default_quant_desc_weight(snake_case ) def A ( snake_case :str , snake_case :Tuple , snake_case :Optional[Any]=False , snake_case :List[str]=False ) -> Optional[Any]: logger.info('Configuring Model for Quantization' ) logger.info(f'using quantization package {pytorch_quantization.__file__}' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(snake_case , ['embeddings'] , which='weight' , _disabled=snake_case ) if args.quant_disable: set_quantizer_by_name(snake_case , [''] , _disabled=snake_case ) if args.quant_disable_keyword: set_quantizer_by_name(snake_case , args.quant_disable_keyword , _disabled=snake_case ) if args.quant_disable_layer_module: set_quantizer_by_name(snake_case , [r'layer.\d+.' + args.quant_disable_layer_module] , _disabled=snake_case ) if args.quant_enable_layer_module: set_quantizer_by_name(snake_case , [r'layer.\d+.' + args.quant_enable_layer_module] , _disabled=snake_case ) if args.recalibrate_weights: recalibrate_weights(snake_case ) if args.fuse_qkv: fuse_qkv(snake_case , snake_case ) if args.clip_gelu: clip_gelu(snake_case , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(snake_case ) def A ( snake_case :List[str] ) -> List[str]: logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'{name:80}: {module}' ) def A ( snake_case :int , snake_case :Union[str, Any] ) -> Optional[int]: logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(snake_case ) def A ( snake_case :Union[str, Any] , snake_case :Any ) -> Any: def fusea(snake_case :Optional[int] , snake_case :Optional[Any] , snake_case :Dict ): for mod in [qq, qk, qv]: if not hasattr(snake_case , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return __UpperCamelCase = qq._amax.detach().item() __UpperCamelCase = qk._amax.detach().item() __UpperCamelCase = qv._amax.detach().item() __UpperCamelCase = max(snake_case , snake_case , snake_case ) qq._amax.fill_(snake_case ) qk._amax.fill_(snake_case ) qv._amax.fill_(snake_case ) logger.info(f' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(f'FUSE_QKV: {name:{name_width}}' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def A ( snake_case :Optional[int] , snake_case :Optional[Any] ) -> Optional[Any]: for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): __UpperCamelCase = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=snake_case ) __UpperCamelCase = mod._input_quantizer._amax.data.detach().item() logger.info(f'CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}' ) def A ( snake_case :Union[str, Any] ) -> List[str]: for name, mod in model.named_modules(): if hasattr(snake_case , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: __UpperCamelCase = mod.weight.shape[0] __UpperCamelCase = mod._weight_quantizer._amax.detach() __UpperCamelCase = torch.ones(snake_case , dtype=amax.dtype , device=amax.device ) * amax print(f'expanding {name} {amax} -> {mod._weight_quantizer._amax}' ) def A ( snake_case :List[str] ) -> int: for name, mod in model.named_modules(): if hasattr(snake_case , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) __UpperCamelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) __UpperCamelCase = set(range(len(mod.weight.size() ) ) ) - axis_set __UpperCamelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=snake_case , keepdims=snake_case ).detach() logger.info(f'RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}' ) __UpperCamelCase = amax def A ( snake_case :Any , snake_case :Dict=2_5 , snake_case :str=1_8_0 , snake_case :int=None ) -> str: if ignore is None: __UpperCamelCase = [] elif not isinstance(snake_case , snake_case ): __UpperCamelCase = [ignore] __UpperCamelCase = 0 for name, mod in model.named_modules(): if not hasattr(snake_case , 'weight' ): continue __UpperCamelCase = max(snake_case , len(snake_case ) ) for name, mod in model.named_modules(): __UpperCamelCase = getattr(snake_case , '_input_quantizer' , snake_case ) __UpperCamelCase = getattr(snake_case , '_weight_quantizer' , snake_case ) if not hasattr(snake_case , 'weight' ): continue if type(snake_case ) in ignore: continue if [True for s in ignore if type(snake_case ) is str and s in name]: continue __UpperCamelCase = f'Act:{input_q.extra_repr()}' __UpperCamelCase = f'Wgt:{weight_q.extra_repr()}' __UpperCamelCase = f'{name:{name_width}} {act_str} {wgt_str}' if len(snake_case ) <= line_width: logger.info(snake_case ) else: logger.info(f'{name:{name_width}} {act_str}' ) logger.info(f'{" ":{name_width}} {wgt_str}' ) def A ( snake_case :Dict ) -> Union[str, Any]: __UpperCamelCase = 0 for name, mod in model.named_modules(): if isinstance(snake_case , pytorch_quantization.nn.TensorQuantizer ): print(f'{name:80} {mod}' ) count += 1 print(f'{count} TensorQuantizers found in model' ) def A ( snake_case :int , snake_case :str , snake_case :str , snake_case :Union[str, Any] , snake_case :int ) -> Union[str, Any]: __UpperCamelCase = getattr(snake_case , snake_case , snake_case ) if quantizer_mod is not None: assert hasattr(snake_case , snake_case ) setattr(snake_case , snake_case , snake_case ) else: logger.warning(f'{name} has no {quantizer}' ) def A ( snake_case :int , snake_case :str , snake_case :Tuple="both" , **snake_case :Optional[Any] ) -> str: __UpperCamelCase = f'Warning: changing {which} quantizers of {name:{qname_width}}' for k, v in kwargs.items(): s += f' {k}={v}' if which in ["input", "both"]: set_quantizer(snake_case , snake_case , '_input_quantizer' , snake_case , snake_case ) if which in ["weight", "both"]: set_quantizer(snake_case , snake_case , '_weight_quantizer' , snake_case , snake_case ) logger.info(snake_case ) def A ( snake_case :Union[str, Any] , snake_case :int , **snake_case :Any ) -> Optional[Any]: for name, mod in model.named_modules(): if hasattr(snake_case , '_input_quantizer' ) or hasattr(snake_case , '_weight_quantizer' ): for n in names: if re.search(snake_case , snake_case ): set_quantizers(snake_case , snake_case , **snake_case ) elif name.endswith('_quantizer' ): for n in names: if re.search(snake_case , snake_case ): __UpperCamelCase = f'Warning: changing {name:{name_width}}' for k, v in kwargs.items(): s += f' {k}={v}' setattr(snake_case , snake_case , snake_case ) logger.info(snake_case )
263
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase : int = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["input_values", "attention_mask"] def __init__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 1_6000 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = False , __UpperCAmelCase = 80 , __UpperCAmelCase = 16 , __UpperCAmelCase = 64 , __UpperCAmelCase = "hann_window" , __UpperCAmelCase = 1.0 , __UpperCAmelCase = 80 , __UpperCAmelCase = 7600 , __UpperCAmelCase = 1E-10 , __UpperCAmelCase = 2 , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(feature_size=__UpperCAmelCase , sampling_rate=__UpperCAmelCase , padding_value=__UpperCAmelCase , **__UpperCAmelCase ) __UpperCamelCase = do_normalize __UpperCamelCase = return_attention_mask __UpperCamelCase = num_mel_bins __UpperCamelCase = hop_length __UpperCamelCase = win_length __UpperCamelCase = win_function __UpperCamelCase = frame_signal_scale __UpperCamelCase = fmin __UpperCamelCase = fmax __UpperCamelCase = mel_floor __UpperCamelCase = reduction_factor __UpperCamelCase = win_length * sampling_rate // 1000 __UpperCamelCase = hop_length * sampling_rate // 1000 __UpperCamelCase = optimal_fft_length(self.sample_size ) __UpperCamelCase = (self.n_fft // 2) + 1 __UpperCamelCase = window_function(window_length=self.sample_size , name=self.win_function , periodic=__UpperCAmelCase ) __UpperCamelCase = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , __UpperCAmelCase , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , __UpperCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.0 ): '''simple docstring''' if attention_mask is not None: __UpperCamelCase = np.array(__UpperCAmelCase , np.intaa ) __UpperCamelCase = [] for vector, length in zip(__UpperCAmelCase , attention_mask.sum(-1 ) ): __UpperCamelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: __UpperCamelCase = padding_value normed_input_values.append(__UpperCAmelCase ) else: __UpperCamelCase = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def UpperCAmelCase ( self , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = spectrogram( __UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: __UpperCamelCase = self._process_audio( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) else: __UpperCamelCase = None if audio_target is not None: __UpperCamelCase = self._process_audio( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) if inputs is None: return inputs_target else: __UpperCamelCase = inputs_target['input_values'] __UpperCamelCase = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: __UpperCamelCase = decoder_attention_mask return inputs def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = isinstance(__UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) __UpperCamelCase = is_batched_numpy or ( isinstance(__UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCamelCase = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(__UpperCAmelCase , np.ndarray ): __UpperCamelCase = np.asarray(__UpperCAmelCase , dtype=np.floataa ) elif isinstance(__UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): __UpperCamelCase = speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCamelCase = [speech] # needed to make pad() work on spectrogram inputs __UpperCamelCase = self.feature_size # convert into correct format for padding if is_target: __UpperCamelCase = [self._extract_mel_features(__UpperCAmelCase ) for waveform in speech] __UpperCamelCase = BatchFeature({'input_values': features} ) __UpperCamelCase = self.num_mel_bins else: __UpperCamelCase = BatchFeature({'input_values': speech} ) __UpperCamelCase = self.pad( __UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = feature_size_hack # convert input values to correct format __UpperCamelCase = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): __UpperCamelCase = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(__UpperCAmelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): __UpperCamelCase = [array.astype(np.floataa ) for array in input_values] elif isinstance(__UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): __UpperCamelCase = input_values.astype(np.floataa ) # convert attention_mask to correct format __UpperCamelCase = padded_inputs.get('attention_mask' ) if attention_mask is not None: __UpperCamelCase = [np.asarray(__UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: __UpperCamelCase = ( attention_mask if self._get_padding_strategies(__UpperCAmelCase , max_length=__UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) __UpperCamelCase = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=__UpperCAmelCase , padding_value=self.padding_value ) if return_tensors is not None: __UpperCamelCase = padded_inputs.convert_to_tensors(__UpperCAmelCase ) return padded_inputs def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() # Don't serialize these as they are derived from the other properties. __UpperCamelCase = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
263
1
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class lowercase ( unittest.TestCase ): def _snake_case ( self ) -> None: lowerCAmelCase = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCAmelCase = Vector() def _snake_case ( self ) -> None: lowerCAmelCase = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(lowercase_ ) , """(0,0,0,0,0,1)""" ) def _snake_case ( self ) -> None: lowerCAmelCase = Vector([1, 2, 3, 4] ) self.assertEqual(len(lowercase_ ) , 4 ) def _snake_case ( self ) -> None: lowerCAmelCase = Vector([1, 2] ) lowerCAmelCase = Vector([1, 2, 3, 4, 5] ) lowerCAmelCase = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCAmelCase = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def _snake_case ( self ) -> None: lowerCAmelCase = Vector([1, 2, 3] ) lowerCAmelCase = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def _snake_case ( self ) -> None: lowerCAmelCase = Vector([1, 2, 3] ) lowerCAmelCase = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def _snake_case ( self ) -> None: lowerCAmelCase = Vector([1, 2, 3] ) lowerCAmelCase = Vector([2, -1, 4] ) # for test of dot product lowerCAmelCase = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def _snake_case ( self ) -> None: self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def _snake_case ( self ) -> None: self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def _snake_case ( self ) -> None: lowerCAmelCase = Vector([1, 2, 3] ) lowerCAmelCase = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , lowercase_ , lowercase_ ) ) , """(3,4,7)""" ) def _snake_case ( self ) -> None: lowerCAmelCase = Vector([1, 0, 0, 0, 0, 0] ) lowerCAmelCase = x.copy() self.assertEqual(str(lowercase_ ) , str(lowercase_ ) ) def _snake_case ( self ) -> None: lowerCAmelCase = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(lowercase_ ) , """(0,1,0)""" ) def _snake_case ( self ) -> None: lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(lowercase_ ) ) def _snake_case ( self ) -> None: lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(lowercase_ , lowercase_ ) ) def _snake_case ( self ) -> None: lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(lowercase_ , lowercase_ ) ) def _snake_case ( self ) -> None: lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def _snake_case ( self ) -> None: lowerCAmelCase = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCAmelCase = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def _snake_case ( self ) -> None: lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(lowercase_ ) ) def _snake_case ( self ) -> None: lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def _snake_case ( self ) -> None: lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def _snake_case ( self ) -> None: lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def _snake_case ( self ) -> None: self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
46
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available snake_case_ = { """configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongT5EncoderModel""", """LongT5ForConditionalGeneration""", """LongT5Model""", """LongT5PreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """FlaxLongT5ForConditionalGeneration""", """FlaxLongT5Model""", """FlaxLongT5PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
78
0
"""simple docstring""" def lowerCAmelCase_ ( __a ) -> list[list[int]]: """simple docstring""" lowerCamelCase__: List[str] =[] if len(_lowerCamelCase ) == 1: return [nums.copy()] for _ in range(len(_lowerCamelCase ) ): lowerCamelCase__: Tuple =nums.pop(0 ) lowerCamelCase__: Optional[int] =permute(_lowerCamelCase ) for perm in permutations: perm.append(_lowerCamelCase ) result.extend(_lowerCamelCase ) nums.append(_lowerCamelCase ) return result def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" def backtrack(__a ): if start == len(_lowerCamelCase ) - 1: output.append(nums[:] ) else: for i in range(_lowerCamelCase , len(_lowerCamelCase ) ): lowerCamelCase__: Union[str, Any] =nums[i], nums[start] backtrack(start + 1 ) lowerCamelCase__: List[str] =nums[i], nums[start] # backtrack lowerCamelCase__: Optional[int] =[] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __A = permutea([1, 2, 3]) print(res) doctest.testmod()
370
from __future__ import annotations from typing import Any class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Any , UpperCAmelCase_ : int) ->None: '''simple docstring''' lowerCamelCase__: int =num_of_nodes lowerCamelCase__: list[list[int]] =[] lowerCamelCase__: dict[int, int] ={} def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int) ->None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight]) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : int) ->int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node]) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : int) ->None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: lowerCamelCase__: Dict =self.find_component(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int) ->None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: lowerCamelCase__: Optional[int] =v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase_) elif component_size[u_node] >= component_size[v_node]: lowerCamelCase__: Tuple =self.find_component(UpperCAmelCase_) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->None: '''simple docstring''' lowerCamelCase__: List[Any] =[] lowerCamelCase__: List[str] =0 lowerCamelCase__: list[Any] =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes): self.m_component.update({node: node}) component_size.append(1) lowerCamelCase__: List[str] =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =edge lowerCamelCase__: List[Any] =self.m_component[u] lowerCamelCase__: str =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCamelCase__: Union[str, Any] =[u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =edge lowerCamelCase__: str =self.m_component[u] lowerCamelCase__: Any =self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""") num_of_components -= 1 lowerCamelCase__: Tuple =[-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""") def lowerCAmelCase_ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
273
0
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase_ : """simple docstring""" def __init__( self : Tuple ,lowercase__ : Dict ,lowercase__ : Optional[int]=1_3 ,lowercase__ : Any=3_0 ,lowercase__ : List[str]=2 ,lowercase__ : Optional[Any]=3 ,lowercase__ : Union[str, Any]=True ,lowercase__ : Optional[Any]=True ,lowercase__ : Optional[int]=3_2 ,lowercase__ : Dict=2 ,lowercase__ : Union[str, Any]=4 ,lowercase__ : Tuple=3_7 ,lowercase__ : List[Any]="gelu" ,lowercase__ : Union[str, Any]=0.1 ,lowercase__ : Union[str, Any]=0.1 ,lowercase__ : int=1_0 ,lowercase__ : Optional[Any]=0.0_2 ,lowercase__ : Dict=3 ,lowercase__ : List[str]=0.6 ,lowercase__ : Any=None ,): __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = mask_ratio __lowercase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : str ): return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Dict ): __lowercase = TFViTMAEModel(config=lowercase__ ) __lowercase = model(lowercase__ ,training=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Any ): __lowercase = TFViTMAEForPreTraining(lowercase__ ) __lowercase = model(lowercase__ ,training=lowercase__ ) # expected sequence length = num_patches __lowercase = (self.image_size // self.patch_size) ** 2 __lowercase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __lowercase = 1 __lowercase = TFViTMAEForPreTraining(lowercase__ ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(lowercase__ ,training=lowercase__ ) __lowercase = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.prepare_config_and_inputs() ((__lowercase) , (__lowercase) , (__lowercase)) = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () SCREAMING_SNAKE_CASE : Union[str, Any] = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {} SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Tuple = False def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = TFViTMAEModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,has_text_modality=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : int ): pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ ,tf.keras.layers.Layer ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) __lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): # make the mask reproducible np.random.seed(2 ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = int((config.image_size // config.patch_size) ** 2 ) __lowercase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = model(lowercase__ ,noise=lowercase__ ) __lowercase = copy.deepcopy(self._prepare_for_class(lowercase__ ,lowercase__ ) ) __lowercase = model(**lowercase__ ,noise=lowercase__ ) __lowercase = outputs_dict[0].numpy() __lowercase = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1e-6 ) def SCREAMING_SNAKE_CASE ( self : int ): # make the mask reproducible np.random.seed(2 ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = int((config.image_size // config.patch_size) ** 2 ) __lowercase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(lowercase__ : Dict ): __lowercase = {} for k, v in inputs_dict.items(): if tf.is_tensor(lowercase__ ): __lowercase = v.numpy() else: __lowercase = np.array(lowercase__ ) return inputs_np_dict for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = prepare_numpy_arrays(lowercase__ ) __lowercase = model(lowercase__ ,noise=lowercase__ ) __lowercase = model(**lowercase__ ,noise=lowercase__ ) self.assert_outputs_same(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : int ,lowercase__ : Tuple ,lowercase__ : Any ): # make masks reproducible np.random.seed(2 ) __lowercase = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) __lowercase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __lowercase = tf.constant(lowercase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __lowercase = tf_noise super().check_pt_tf_models(lowercase__ ,lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): # make mask reproducible np.random.seed(2 ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(lowercase__ ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(lowercase__ ,lowercase__ ),) if isinstance(lowercase__ ,lowercase__ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(lowercase__ ,'''_keras_serializable''' ,lowercase__ ) } __lowercase = int((config.image_size // config.patch_size) ** 2 ) __lowercase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __lowercase = tf.convert_to_tensor(lowercase__ ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: __lowercase = main_layer_class(lowercase__ ) __lowercase = { name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } __lowercase = tf.keras.Model(lowercase__ ,outputs=main_layer(lowercase__ ) ) __lowercase = model(lowercase__ ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = os.path.join(lowercase__ ,'''keras_model.h5''' ) model.save(lowercase__ ) __lowercase = tf.keras.models.load_model( lowercase__ ,custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(lowercase__ ,tf.keras.Model ) __lowercase = model(lowercase__ ) self.assert_outputs_same(lowercase__ ,lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): # make mask reproducible np.random.seed(2 ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = int((config.image_size // config.patch_size) ** 2 ) __lowercase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = model(lowercase__ ,noise=lowercase__ ) if model_class.__name__ == "TFViTMAEModel": __lowercase = outputs.last_hidden_state.numpy() __lowercase = 0 else: __lowercase = outputs.logits.numpy() __lowercase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase__ ,saved_model=lowercase__ ) __lowercase = model_class.from_pretrained(lowercase__ ) __lowercase = model(lowercase__ ,noise=lowercase__ ) if model_class.__name__ == "TFViTMAEModel": __lowercase = after_outputs['''last_hidden_state'''].numpy() __lowercase = 0 else: __lowercase = after_outputs['''logits'''].numpy() __lowercase = 0 __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase__ ,1e-5 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): # make mask reproducible np.random.seed(2 ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = int((config.image_size // config.patch_size) ** 2 ) __lowercase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = model(lowercase__ ,noise=lowercase__ ) __lowercase = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(lowercase__ ) __lowercase = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config __lowercase = model_class.from_config(model.config ) __lowercase = new_model(lowercase__ ) # Build model new_model.set_weights(model.get_weights() ) __lowercase = new_model(lowercase__ ,noise=lowercase__ ) self.assert_outputs_same(lowercase__ ,lowercase__ ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def SCREAMING_SNAKE_CASE ( self : Any ): pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(lowercase__ ) def _A ( ): """simple docstring""" __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowercase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self : List[str] ): return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self : Any ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) __lowercase = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=lowercase__ ,return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __lowercase = ViTMAEConfig() __lowercase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __lowercase = np.random.uniform(size=(1, num_patches) ) # forward pass __lowercase = model(**lowercase__ ,noise=lowercase__ ) # verify the logits __lowercase = tf.convert_to_tensor([1, 1_9_6, 7_6_8] ) self.assertEqual(outputs.logits.shape ,lowercase__ ) __lowercase = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] ,lowercase__ ,atol=1e-4 )
104
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : Optional[int]=1_3 ,lowercase__ : Any=7 ,lowercase__ : Union[str, Any]=True ,lowercase__ : Optional[int]=True ,lowercase__ : List[str]=True ,lowercase__ : str=True ,lowercase__ : Dict=9_9 ,lowercase__ : Union[str, Any]=3_2 ,lowercase__ : List[str]=5 ,lowercase__ : int=4 ,lowercase__ : Dict=3_7 ,lowercase__ : Union[str, Any]="gelu" ,lowercase__ : str=0.1 ,lowercase__ : List[str]=0.1 ,lowercase__ : Any=5_1_2 ,lowercase__ : Optional[int]=1_6 ,lowercase__ : Optional[int]=2 ,lowercase__ : Optional[int]=0.0_2 ,lowercase__ : Dict=False ,lowercase__ : Optional[int]=True ,lowercase__ : str="None" ,lowercase__ : Optional[int]=3 ,lowercase__ : List[Any]=4 ,lowercase__ : Union[str, Any]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = relative_attention __lowercase = position_biased_input __lowercase = pos_att_type __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return DebertaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,relative_attention=self.relative_attention ,position_biased_input=self.position_biased_input ,pos_att_type=self.pos_att_type ,) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.get_config() __lowercase = 3_0_0 return config def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Optional[Any] ): self.parent.assertListEqual(list(result.loss.size() ) ,[] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : List[Any] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Union[str, Any] ): __lowercase = DebertaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ )[0] __lowercase = model(lowercase__ ,token_type_ids=lowercase__ )[0] __lowercase = model(lowercase__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) ,[self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : str ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : Dict ,lowercase__ : int ,lowercase__ : Tuple ,lowercase__ : int ): __lowercase = DebertaForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Optional[int] ,lowercase__ : Optional[int] ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): __lowercase = self.num_labels __lowercase = DebertaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertListEqual(list(result.logits.size() ) ,[self.batch_size, self.num_labels] ) self.check_loss_output(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Optional[int] ,lowercase__ : Optional[int] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Optional[int] ): __lowercase = self.num_labels __lowercase = DebertaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Any ,lowercase__ : Any ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : List[str] ): __lowercase = DebertaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Union[str, Any] = ( { 'feature-extraction': DebertaModel, 'fill-mask': DebertaForMaskedLM, 'question-answering': DebertaForQuestionAnswering, 'text-classification': DebertaForSequenceClassification, 'token-classification': DebertaForTokenClassification, 'zero-shot': DebertaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = False def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = DebertaModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple ): for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = DebertaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @require_torch @require_sentencepiece @require_tokenizers class lowercase_ (unittest.TestCase ): """simple docstring""" @unittest.skip(reason='''Model not available yet''' ) def SCREAMING_SNAKE_CASE ( self : str ): pass @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) __lowercase = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] # compare the actual values for a slice. __lowercase = torch.tensor( [[[-0.5_9_8_6, -0.8_0_5_5, -0.8_4_6_2], [1.4_4_8_4, -0.9_3_4_8, -0.8_0_5_9], [0.3_1_2_3, 0.0_0_3_2, -1.4_1_3_1]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) ,F"{output[:, 1:4, 1:4]}" )
104
1
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A_ ( _lowerCAmelCase : BertModel, _lowerCAmelCase : str, _lowerCAmelCase : str ): """simple docstring""" _a = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') _a = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(_lowerCAmelCase ): os.makedirs(_lowerCAmelCase ) _a = model.state_dict() def to_tf_var_name(_lowerCAmelCase : str ): for patt, repl in iter(_lowerCAmelCase ): _a = name.replace(_lowerCAmelCase, _lowerCAmelCase ) return f'bert/{name}' def create_tf_var(_lowerCAmelCase : np.ndarray, _lowerCAmelCase : str, _lowerCAmelCase : tf.Session ): _a = tf.dtypes.as_dtype(tensor.dtype ) _a = tf.get_variable(dtype=_lowerCAmelCase, shape=tensor.shape, name=_lowerCAmelCase, initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCAmelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _a = to_tf_var_name(_lowerCAmelCase ) _a = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _a = torch_tensor.T _a = create_tf_var(tensor=_lowerCAmelCase, name=_lowerCAmelCase, session=_lowerCAmelCase ) tf.keras.backend.set_value(_lowerCAmelCase, _lowerCAmelCase ) _a = session.run(_lowerCAmelCase ) print(f'Successfully created {tf_name}: {np.allclose(_lowerCAmelCase, _lowerCAmelCase )}' ) _a = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCAmelCase, os.path.join(_lowerCAmelCase, model_name.replace('''-''', '''_''' ) + '''.ckpt''' ) ) def A_ ( _lowerCAmelCase : List[Any]=None ): """simple docstring""" _a = argparse.ArgumentParser() parser.add_argument('''--model_name''', type=_lowerCAmelCase, required=_lowerCAmelCase, help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''', type=_lowerCAmelCase, default=_lowerCAmelCase, required=_lowerCAmelCase, help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''', type=_lowerCAmelCase, required=_lowerCAmelCase, help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''', type=_lowerCAmelCase, required=_lowerCAmelCase, help='''Directory in which to save tensorflow model''' ) _a = parser.parse_args(_lowerCAmelCase ) _a = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name, state_dict=torch.load(args.pytorch_model_path ), cache_dir=args.cache_dir, ) convert_pytorch_checkpoint_to_tf(model=_lowerCAmelCase, ckpt_dir=args.tf_cache_dir, model_name=args.model_name ) if __name__ == "__main__": main()
360
"""simple docstring""" def A_ ( _lowerCAmelCase : int ): """simple docstring""" if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True _a = 4 _a = (1 << p) - 1 for _ in range(p - 2 ): _a = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
153
0
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline a : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(_lowerCamelCase ) class a ( _lowerCamelCase ): def __init__( self : Any , **lowercase_ : Any ): super().__init__(**lowercase_ ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__( self : Dict , lowercase_ : Union[np.ndarray, bytes, str] , **lowercase_ : Dict ): return super().__call__(lowercase_ , **lowercase_ ) def A_ ( self : Union[str, Any] , **lowercase_ : List[str] ): snake_case_ = {} if "candidate_labels" in kwargs: snake_case_ = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: snake_case_ = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def A_ ( self : str , lowercase_ : List[str] , lowercase_ : Optional[int]=None , lowercase_ : Tuple="This is a sound of {}." ): if isinstance(lowercase_ , lowercase_ ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png snake_case_ = requests.get(lowercase_ ).content else: with open(lowercase_ , '''rb''' ) as f: snake_case_ = f.read() if isinstance(lowercase_ , lowercase_ ): snake_case_ = ffmpeg_read(lowercase_ , self.feature_extractor.sampling_rate ) if not isinstance(lowercase_ , np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) snake_case_ = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' ) snake_case_ = candidate_labels snake_case_ = [hypothesis_template.format(lowercase_ ) for x in candidate_labels] snake_case_ = self.tokenizer(lowercase_ , return_tensors=self.framework , padding=lowercase_ ) snake_case_ = [text_inputs] return inputs def A_ ( self : int , lowercase_ : str ): snake_case_ = model_inputs.pop('''candidate_labels''' ) snake_case_ = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , lowercase_ ): snake_case_ = text_inputs[0] else: # Batching case. snake_case_ = text_inputs[0][0] snake_case_ = self.model(**lowercase_ , **lowercase_ ) snake_case_ = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def A_ ( self : Any , lowercase_ : int ): snake_case_ = model_outputs.pop('''candidate_labels''' ) snake_case_ = model_outputs['''logits'''][0] if self.framework == "pt": snake_case_ = logits.softmax(dim=0 ) snake_case_ = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) snake_case_ = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowercase_ , lowercase_ ) , key=lambda lowercase_ : -x[0] ) ] return result
56
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _snake_case : Union[str, Any] = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _snake_case : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
292
0
'''simple docstring''' import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline lowerCamelCase : int = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def _lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : tuple , _UpperCamelCase : Path , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any]=False , ) -> Optional[int]: """simple docstring""" output_path.parent.mkdir(parents=_UpperCamelCase , exist_ok=_UpperCamelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _UpperCamelCase , _UpperCamelCase , f=output_path.as_posix() , input_names=_UpperCamelCase , output_names=_UpperCamelCase , dynamic_axes=_UpperCamelCase , do_constant_folding=_UpperCamelCase , use_external_data_format=_UpperCamelCase , enable_onnx_checker=_UpperCamelCase , opset_version=_UpperCamelCase , ) else: export( _UpperCamelCase , _UpperCamelCase , f=output_path.as_posix() , input_names=_UpperCamelCase , output_names=_UpperCamelCase , dynamic_axes=_UpperCamelCase , do_constant_folding=_UpperCamelCase , opset_version=_UpperCamelCase , ) @torch.no_grad() def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : bool = False ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _SCREAMING_SNAKE_CASE ='cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: _SCREAMING_SNAKE_CASE ='cpu' _SCREAMING_SNAKE_CASE =StableDiffusionPipeline.from_pretrained(_UpperCamelCase , torch_dtype=_UpperCamelCase ).to(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =Path(_UpperCamelCase ) # TEXT ENCODER _SCREAMING_SNAKE_CASE =pipeline.text_encoder.config.max_position_embeddings _SCREAMING_SNAKE_CASE =pipeline.text_encoder.config.hidden_size _SCREAMING_SNAKE_CASE =pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=_UpperCamelCase , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=_UpperCamelCase , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=_UpperCamelCase , ) del pipeline.text_encoder # UNET _SCREAMING_SNAKE_CASE =pipeline.unet.config.in_channels _SCREAMING_SNAKE_CASE =pipeline.unet.config.sample_size _SCREAMING_SNAKE_CASE =output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).to(device=_UpperCamelCase , dtype=_UpperCamelCase ), torch.randn(2 ).to(device=_UpperCamelCase , dtype=_UpperCamelCase ), torch.randn(2 , _UpperCamelCase , _UpperCamelCase ).to(device=_UpperCamelCase , dtype=_UpperCamelCase ), False, ) , output_path=_UpperCamelCase , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=_UpperCamelCase , use_external_data_format=_UpperCamelCase , ) _SCREAMING_SNAKE_CASE =str(unet_path.absolute().as_posix() ) _SCREAMING_SNAKE_CASE =os.path.dirname(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =onnx.load(_UpperCamelCase ) # clean up existing tensor files shutil.rmtree(_UpperCamelCase ) os.mkdir(_UpperCamelCase ) # collate external tensor files into one onnx.save_model( _UpperCamelCase , _UpperCamelCase , save_as_external_data=_UpperCamelCase , all_tensors_to_one_file=_UpperCamelCase , location='weights.pb' , convert_attribute=_UpperCamelCase , ) del pipeline.unet # VAE ENCODER _SCREAMING_SNAKE_CASE =pipeline.vae _SCREAMING_SNAKE_CASE =vae_encoder.config.in_channels _SCREAMING_SNAKE_CASE =vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder _SCREAMING_SNAKE_CASE =lambda _UpperCamelCase , _UpperCamelCase : vae_encoder.encode(_UpperCamelCase , _UpperCamelCase )[0].sample() onnx_export( _UpperCamelCase , model_args=( torch.randn(1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).to(device=_UpperCamelCase , dtype=_UpperCamelCase ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=_UpperCamelCase , ) # VAE DECODER _SCREAMING_SNAKE_CASE =pipeline.vae _SCREAMING_SNAKE_CASE =vae_decoder.config.latent_channels _SCREAMING_SNAKE_CASE =vae_decoder.config.out_channels # forward only through the decoder part _SCREAMING_SNAKE_CASE =vae_encoder.decode onnx_export( _UpperCamelCase , model_args=( torch.randn(1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).to(device=_UpperCamelCase , dtype=_UpperCamelCase ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=_UpperCamelCase , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: _SCREAMING_SNAKE_CASE =pipeline.safety_checker _SCREAMING_SNAKE_CASE =safety_checker.config.vision_config.num_channels _SCREAMING_SNAKE_CASE =safety_checker.config.vision_config.image_size _SCREAMING_SNAKE_CASE =safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ).to(device=_UpperCamelCase , dtype=_UpperCamelCase ), torch.randn(1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).to(device=_UpperCamelCase , dtype=_UpperCamelCase ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=_UpperCamelCase , ) del pipeline.safety_checker _SCREAMING_SNAKE_CASE =OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) _SCREAMING_SNAKE_CASE =pipeline.feature_extractor else: _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=_UpperCamelCase , feature_extractor=_UpperCamelCase , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(_UpperCamelCase ) print('ONNX pipeline saved to' , _UpperCamelCase ) del pipeline del onnx_pipeline _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained(_UpperCamelCase , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowerCamelCase : Union[str, Any] = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
114
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : str ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE =0 for ch in input_str: _SCREAMING_SNAKE_CASE =ord(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =pow(2 , _UpperCamelCase ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
114
1
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel _snake_case : Tuple = logging.getLogger(__name__) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): # save results if os.path.exists(__lowerCamelCase ): if os.path.exists(os.path.join(__lowerCamelCase , "config.json" ) ) and os.path.isfile( os.path.join(__lowerCamelCase , "config.json" ) ): os.remove(os.path.join(__lowerCamelCase , "config.json" ) ) if os.path.exists(os.path.join(__lowerCamelCase , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(__lowerCamelCase , "pytorch_model.bin" ) ): os.remove(os.path.join(__lowerCamelCase , "pytorch_model.bin" ) ) else: os.makedirs(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase=False ): __snake_case : Dict = 2 if unlogit: __snake_case : int = torch.pow(__lowerCamelCase , __lowerCamelCase ) __snake_case : int = p * torch.log(__lowerCamelCase ) __snake_case : Any = 0 return -plogp.sum(dim=-1 ) def lowerCAmelCase_ ( __lowerCamelCase ): logger.info("lv, h >\t" + "\t".join(F'{x + 1}' for x in range(len(__lowerCamelCase ) ) ) ) for row in range(len(__lowerCamelCase ) ): if tensor.dtype != torch.long: logger.info(F'layer {row + 1}:\t' + "\t".join(F'{x:.5f}' for x in tensor[row].cpu().data ) ) else: logger.info(F'layer {row + 1}:\t' + "\t".join(F'{x:d}' for x in tensor[row].cpu().data ) ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=False ): __snake_case , __snake_case : Optional[Any] = model.config.num_hidden_layers, model.config.num_attention_heads __snake_case : Optional[Any] = torch.zeros(__lowerCamelCase , __lowerCamelCase ).to(args.device ) __snake_case : Tuple = torch.zeros(__lowerCamelCase , __lowerCamelCase ).to(args.device ) if head_mask is None: __snake_case : Optional[int] = torch.ones(__lowerCamelCase , __lowerCamelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowerCamelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: __snake_case : Dict = None __snake_case : int = 0.0 __snake_case : Optional[Any] = 0.0 for step, inputs in enumerate(tqdm(__lowerCamelCase , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): __snake_case : str = tuple(t.to(args.device ) for t in inputs ) ((__snake_case) , ) : Any = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) __snake_case : Optional[Any] = model(__lowerCamelCase , labels=__lowerCamelCase , head_mask=__lowerCamelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) __snake_case , __snake_case , __snake_case : List[Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowerCamelCase ): __snake_case : Optional[int] = entropy(attn.detach() , __lowerCamelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowerCamelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: __snake_case : Optional[int] = 2 __snake_case : List[Any] = torch.pow(torch.pow(__lowerCamelCase , __lowerCamelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: __snake_case : List[Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(__lowerCamelCase ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(__lowerCamelCase ) logger.info("Head ranked by importance scores" ) __snake_case : Optional[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) __snake_case : List[Any] = torch.arange( head_importance.numel() , device=args.device ) __snake_case : List[Any] = head_ranks.view_as(__lowerCamelCase ) print_ad_tensor(__lowerCamelCase ) return attn_entropy, head_importance, total_loss def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case , __snake_case , __snake_case : Optional[Any] = compute_heads_importance(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , compute_entropy=__lowerCamelCase ) __snake_case : str = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , __lowerCamelCase , original_score * args.masking_threshold ) __snake_case : Dict = torch.ones_like(__lowerCamelCase ) __snake_case : List[str] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) __snake_case : Optional[Any] = original_score while current_score >= original_score * args.masking_threshold: __snake_case : List[Any] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads __snake_case : str = float("Inf" ) __snake_case : Union[str, Any] = head_importance.view(-1 ).sort()[1] if len(__lowerCamelCase ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads __snake_case : Dict = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) __snake_case : List[str] = new_head_mask.view(-1 ) __snake_case : Any = 0.0 __snake_case : List[str] = new_head_mask.view_as(__lowerCamelCase ) __snake_case : List[str] = new_head_mask.clone().detach() print_ad_tensor(__lowerCamelCase ) # Compute metric and head importance again __snake_case , __snake_case , __snake_case : Any = compute_heads_importance( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , compute_entropy=__lowerCamelCase , head_mask=__lowerCamelCase ) __snake_case : Any = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , __lowerCamelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , ) logger.info("Final head mask" ) print_ad_tensor(__lowerCamelCase ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : int = datetime.now() __snake_case , __snake_case , __snake_case : Optional[int] = compute_heads_importance( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , compute_entropy=__lowerCamelCase , compute_importance=__lowerCamelCase , head_mask=__lowerCamelCase ) __snake_case : int = 1 / loss __snake_case : str = datetime.now() - before_time __snake_case : List[Any] = sum(p.numel() for p in model.parameters() ) __snake_case : str = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowerCamelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): __snake_case : List[str] = [ v, ] assert sum(len(__lowerCamelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowerCamelCase ) __snake_case : Tuple = sum(p.numel() for p in model.parameters() ) __snake_case : Tuple = datetime.now() __snake_case , __snake_case , __snake_case : Optional[int] = compute_heads_importance( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , compute_entropy=__lowerCamelCase , compute_importance=__lowerCamelCase , head_mask=__lowerCamelCase , actually_pruned=__lowerCamelCase , ) __snake_case : int = 1 / loss __snake_case : Tuple = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , __lowerCamelCase , __lowerCamelCase , pruned_num_params / original_num_params * 1_0_0 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , __lowerCamelCase , __lowerCamelCase ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 1_0_0 ) save_model(__lowerCamelCase , args.output_dir ) def lowerCAmelCase_ ( ): __snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=__lowerCamelCase , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=__lowerCamelCase , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=__lowerCamelCase , type=__lowerCamelCase , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=__lowerCamelCase , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don't normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=__lowerCamelCase , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=__lowerCamelCase , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=__lowerCamelCase , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=1_2_8 , type=__lowerCamelCase , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=__lowerCamelCase , help="Batch size." ) parser.add_argument("--seed" , type=__lowerCamelCase , default=4_2 ) parser.add_argument("--local_rank" , type=__lowerCamelCase , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=__lowerCamelCase , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=__lowerCamelCase , default="" , help="Can be used for distant debugging." ) __snake_case : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCamelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: __snake_case : Any = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) __snake_case : Optional[int] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) __snake_case : Optional[int] = torch.device("cuda" , args.local_rank ) __snake_case : Optional[int] = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) __snake_case : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: __snake_case : Union[str, Any] = nn.parallel.DistributedDataParallel( __lowerCamelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowerCamelCase ) elif args.n_gpu > 1: __snake_case : Union[str, Any] = nn.DataParallel(__lowerCamelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowerCamelCase ) torch.save(__lowerCamelCase , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , __lowerCamelCase ) # Prepare dataset __snake_case : Optional[Any] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) __snake_case : Dict = (torch.from_numpy(__lowerCamelCase ),) __snake_case : Union[str, Any] = TensorDataset(*__lowerCamelCase ) __snake_case : Dict = RandomSampler(__lowerCamelCase ) __snake_case : List[Any] = DataLoader(__lowerCamelCase , sampler=__lowerCamelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: __snake_case : Any = mask_heads(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) prune_heads(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
123
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _snake_case : Dict = Path(__file__).resolve().parents[3] / "src" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _snake_case : List[str] = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"} _snake_case : List[str] = "zero2" _snake_case : Any = "zero3" _snake_case : Dict = [ZEROa, ZEROa] def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __snake_case : Optional[Any] = parameterized.to_safe_name("_".join(str(__lowerCamelCase ) for x in param.args ) ) return F'{func.__name__}_{param_based_name}' # Cartesian-product of zero stages with models to test _snake_case : Union[str, Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class a (_lowerCAmelCase ): """simple docstring""" @parameterized.expand(lowerCamelCase , name_func=lowerCamelCase ) def __snake_case ( self : Any , lowerCamelCase : List[Any] , lowerCamelCase : Dict ) -> Union[str, Any]: self.run_and_check( stage=lowerCamelCase , model=lowerCamelCase , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase , name_func=lowerCamelCase ) def __snake_case ( self : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any] ) -> int: self.run_and_check( stage=lowerCamelCase , model=lowerCamelCase , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) @parameterized.expand(lowerCamelCase , name_func=lowerCamelCase ) def __snake_case ( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : int ) -> Dict: self.run_and_check( stage=lowerCamelCase , model=lowerCamelCase , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase , name_func=lowerCamelCase ) def __snake_case ( self : str , lowerCamelCase : str , lowerCamelCase : Any ) -> str: self.run_and_check( stage=lowerCamelCase , model=lowerCamelCase , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) def __snake_case ( self : str , lowerCamelCase : List[Any] ) -> Union[str, Any]: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def __snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : int = 10 , lowerCamelCase : bool = True , lowerCamelCase : bool = True , lowerCamelCase : bool = True , ) -> Tuple: __snake_case : Any = models[model] __snake_case : Tuple = self.run_trainer( stage=lowerCamelCase , model_name=lowerCamelCase , eval_steps=lowerCamelCase , num_train_epochs=1 , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) self.do_checks(lowerCamelCase ) return output_dir def __snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : int = 10 , lowerCamelCase : int = 1 , lowerCamelCase : bool = True , lowerCamelCase : bool = True , ) -> Tuple: __snake_case : Optional[int] = self.get_auto_remove_tmp_dir("./xxx" , after=lowerCamelCase ) __snake_case : Optional[int] = F'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(lowerCamelCase )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __snake_case : Optional[int] = F'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split() __snake_case : Dict = [F'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'] __snake_case : Any = self.get_launcher(lowerCamelCase ) __snake_case : Optional[Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowerCamelCase , env=self.get_env() ) return output_dir def __snake_case ( self : str , lowerCamelCase : str=False ) -> Any: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) __snake_case : Dict = min(2 , get_gpu_count() ) if distributed else 1 return F'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
123
1
import datasets from .evaluate import evaluate __UpperCAmelCase = '''\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } ''' __UpperCAmelCase = ''' This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. ''' __UpperCAmelCase = ''' Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': the text of the answer references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the SQuAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}] >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}] >>> squad_metric = datasets.load_metric("squad") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): def _lowerCamelCase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def _lowerCamelCase ( self : Union[str, Any] , _a : List[str] , _a : int ): a__: Optional[Any] ={prediction["id"]: prediction["prediction_text"] for prediction in predictions} a__: Optional[Any] =[ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] a__: int =evaluate(dataset=_a , predictions=_a ) return score
42
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
42
1
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a_ = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): inspect_dataset(__a , __a ) __lowercase : Union[str, Any] = path + '.py' assert script_name in os.listdir(__a ) assert "__pycache__" not in os.listdir(__a ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): inspect_metric(__a , __a ) __lowercase : Any = path + '.py' assert script_name in os.listdir(__a ) assert "__pycache__" not in os.listdir(__a ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : Union[str, Any] = get_dataset_config_info(__a , config_name=__a ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): with pytest.raises(__a ): get_dataset_config_info(__a , config_name=__a ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): __lowercase : Dict = get_dataset_config_names(__a ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : int = get_dataset_infos(__a ) assert list(infos.keys() ) == expected_configs __lowercase : Union[str, Any] = expected_configs[0] assert expected_config in infos __lowercase : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : Any = get_dataset_infos(__a ) assert expected_config in infos __lowercase : List[Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): with pytest.raises(__a ): get_dataset_split_names(__a , config_name=__a )
249
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Optional[Any] = ["pixel_values"] def __init__( self : str , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PIL.Image.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : str , ) -> None: """simple docstring""" super().__init__(**_A ) snake_case_ : Dict = size if size is not None else {'height': 256, 'width': 256} snake_case_ : Tuple = get_size_dict(_A ) snake_case_ : str = crop_size if crop_size is not None else {'height': 224, 'width': 224} snake_case_ : int = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Union[str, Any] = do_resize snake_case_ : str = size snake_case_ : List[str] = resample snake_case_ : List[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : Tuple = do_rescale snake_case_ : Optional[Any] = rescale_factor snake_case_ : Any = do_normalize snake_case_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self : Optional[int] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PIL.Image.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray: """simple docstring""" snake_case_ : Tuple = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( _A , size=(size['height'], size['width']) , resample=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray: """simple docstring""" snake_case_ : Optional[int] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Dict , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ) -> str: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Any , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : List[str] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : Union[str, Any]=None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : int , ) -> PIL.Image.Image: """simple docstring""" snake_case_ : int = do_resize if do_resize is not None else self.do_resize snake_case_ : str = resample if resample is not None else self.resample snake_case_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Any = image_mean if image_mean is not None else self.image_mean snake_case_ : Dict = image_std if image_std is not None else self.image_std snake_case_ : int = size if size is not None else self.size snake_case_ : Optional[int] = get_size_dict(_A ) snake_case_ : int = crop_size if crop_size is not None else self.crop_size snake_case_ : Any = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Optional[Any] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case_ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: snake_case_ : Dict = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: snake_case_ : Optional[Any] = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: snake_case_ : Optional[int] = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: snake_case_ : str = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] snake_case_ : Dict = [to_channel_dimension_format(_A , _A ) for image in images] snake_case_ : Tuple = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
327
0
"""simple docstring""" def UpperCamelCase_( snake_case__: Any ) -> set: UpperCAmelCase__ = set() # edges = list of graph's edges UpperCAmelCase__ = get_edges(__lowerCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: UpperCAmelCase__ = edges.pop() chosen_vertices.add(__lowerCAmelCase ) chosen_vertices.add(__lowerCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(__lowerCAmelCase ) return chosen_vertices def UpperCamelCase_( snake_case__: List[Any] ) -> set: UpperCAmelCase__ = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
362
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 13 UpperCAmelCase__ = 7 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = 99 UpperCAmelCase__ = 384 UpperCAmelCase__ = 2 UpperCAmelCase__ = 4 UpperCAmelCase__ = 37 UpperCAmelCase__ = 'gelu' UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 512 UpperCAmelCase__ = 16 UpperCAmelCase__ = 2 UpperCAmelCase__ = 0.02 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = 128 UpperCAmelCase__ = 2 UpperCAmelCase__ = 9 UpperCAmelCase__ = 1 UpperCAmelCase__ = None def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple: """simple docstring""" UpperCAmelCase__ = TFConvBertModel(config=__a ) UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertForMaskedLM(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__a ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForTokenClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = True if hasattr(__a , 'use_cache' ): UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) for model_class in self.all_model_classes: UpperCAmelCase__ = self._prepare_for_class(__a , __a ) UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) UpperCAmelCase__ = os.path.join(__a , 'saved_model' , '1' ) UpperCAmelCase__ = tf.keras.models.load_model(__a ) UpperCAmelCase__ = model(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = outputs['encoder_hidden_states'] UpperCAmelCase__ = outputs['encoder_attentions'] else: UpperCAmelCase__ = outputs['hidden_states'] UpperCAmelCase__ = outputs['attentions'] self.assertEqual(len(__a ) , __a ) UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) def check_decoder_attentions_output(__a ): UpperCAmelCase__ = len(__a ) self.assertEqual(out_len % 2 , 0 ) UpperCAmelCase__ = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a ): UpperCAmelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__a )[0] UpperCAmelCase__ = [1, 6, 768] self.assertEqual(output.shape , __a ) UpperCAmelCase__ = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
335
0
import os import sys _a = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _a = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def __A ( *__lowerCAmelCase , **__lowerCAmelCase )-> str: """simple docstring""" return AutoConfig.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __A ( *__lowerCAmelCase , **__lowerCAmelCase )-> Optional[int]: """simple docstring""" return AutoTokenizer.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def __A ( *__lowerCAmelCase , **__lowerCAmelCase )-> int: """simple docstring""" return AutoModel.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __A ( *__lowerCAmelCase , **__lowerCAmelCase )-> Union[str, Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __A ( *__lowerCAmelCase , **__lowerCAmelCase )-> List[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __A ( *__lowerCAmelCase , **__lowerCAmelCase )-> Optional[Any]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __A ( *__lowerCAmelCase , **__lowerCAmelCase )-> Tuple: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
39
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = ComputeEnvironment.AMAZON_SAGEMAKER lowerCAmelCase_ = True lowerCAmelCase_ = "ml.p3.2xlarge" lowerCAmelCase_ = "accelerate_sagemaker_execution_role" lowerCAmelCase_ = "hf-sm" lowerCAmelCase_ = "us-east-1" lowerCAmelCase_ = 1 lowerCAmelCase_ = "accelerate-sagemaker-1" lowerCAmelCase_ = "1.6" lowerCAmelCase_ = "4.4" lowerCAmelCase_ = "train.py" lowerCAmelCase_ = [ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] lowerCAmelCase_ = [ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class __snake_case ( unittest.TestCase ): def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] , _lowercase ) assert isinstance(converted_args["""do_train"""] , _lowercase ) assert isinstance(converted_args["""epochs"""] , _lowercase ) assert isinstance(converted_args["""learning_rate"""] , _lowercase ) assert isinstance(converted_args["""max_steps"""] , _lowercase ) with pytest.raises(_lowercase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
219
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : Optional[Any] = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Any = "audio-spectrogram-transformer" def __init__( self , A=7_68 , A=12 , A=12 , A=30_72 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=16 , A=True , A=10 , A=10 , A=10_24 , A=1_28 , **A , ) -> Optional[Any]: '''simple docstring''' super().__init__(**A ) lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = initializer_range lowerCamelCase = layer_norm_eps lowerCamelCase = patch_size lowerCamelCase = qkv_bias lowerCamelCase = frequency_stride lowerCamelCase = time_stride lowerCamelCase = max_length lowerCamelCase = num_mel_bins
66
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class __lowercase : """simple docstring""" UpperCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCamelCase : Optional[str] = field( default=a_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCamelCase : Optional[str] = field( default=a_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCamelCase : Optional[str] = field( default=a_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) UpperCamelCase : bool = field( default=a_ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) UpperCamelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) UpperCamelCase : bool = field( default=a_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __lowercase : """simple docstring""" UpperCamelCase : Optional[str] = field(default=a_ , metadata={"help": "The input training data file (a text file)."} ) UpperCamelCase : Optional[str] = field( default=a_ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) UpperCamelCase : bool = field( default=a_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) UpperCamelCase : Optional[int] = field( default=a_ , metadata={"help": "The number of processes to use for the preprocessing."} , ) UpperCamelCase : Optional[int] = field( default=a_ , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCamelCase : bool = field( default=a_ , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) UpperCamelCase : Optional[int] = field( default=a_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) UpperCamelCase : Optional[int] = field( default=a_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def __A ( self ) -> Any: '''simple docstring''' if self.train_file is not None: lowerCamelCase = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCamelCase = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __lowercase : """simple docstring""" UpperCamelCase : PreTrainedTokenizerBase UpperCamelCase : Union[bool, str, PaddingStrategy] = True UpperCamelCase : Optional[int] = None UpperCamelCase : Optional[int] = None def __call__( self , A ) -> Dict: '''simple docstring''' lowerCamelCase = """label""" if """label""" in features[0].keys() else """labels""" lowerCamelCase = [feature.pop(A ) for feature in features] lowerCamelCase = len(A ) lowerCamelCase = len(features[0]["""input_ids"""] ) lowerCamelCase = [ [{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features ] lowerCamelCase = list(chain(*A ) ) lowerCamelCase = self.tokenizer.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten lowerCamelCase = {k: v.view(A , A , -1 ) for k, v in batch.items()} # Add back labels lowerCamelCase = torch.tensor(A , dtype=torch.intaa ) return batch def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase , lowerCamelCase , lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase , lowerCamelCase , lowerCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCamelCase__ , lowerCamelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase = training_args.get_process_log_level() logger.setLevel(lowerCamelCase__ ) datasets.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowerCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCamelCase = {} if data_args.train_file is not None: lowerCamelCase = data_args.train_file if data_args.validation_file is not None: lowerCamelCase = data_args.validation_file lowerCamelCase = data_args.train_file.split(""".""" )[-1] lowerCamelCase = load_dataset( lowerCamelCase__ , data_files=lowerCamelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowerCamelCase = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCamelCase = [f'ending{i}' for i in range(4 )] lowerCamelCase = """sent1""" lowerCamelCase = """sent2""" if data_args.max_seq_length is None: lowerCamelCase = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) lowerCamelCase = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) lowerCamelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase__ : int ): lowerCamelCase = [[context] * 4 for context in examples[context_name]] lowerCamelCase = examples[question_header_name] lowerCamelCase = [ [f'{header} {examples[end][i]}' for end in ending_names] for i, header in enumerate(lowerCamelCase__ ) ] # Flatten out lowerCamelCase = list(chain(*lowerCamelCase__ ) ) lowerCamelCase = list(chain(*lowerCamelCase__ ) ) # Tokenize lowerCamelCase = tokenizer( lowerCamelCase__ , lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) lowerCamelCase = raw_datasets["""train"""] if data_args.max_train_samples is not None: lowerCamelCase = min(len(lowerCamelCase__ ) , data_args.max_train_samples ) lowerCamelCase = train_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): lowerCamelCase = train_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) lowerCamelCase = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: lowerCamelCase = min(len(lowerCamelCase__ ) , data_args.max_eval_samples ) lowerCamelCase = eval_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): lowerCamelCase = eval_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowerCamelCase = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase__ : Optional[int] ): lowerCamelCase , lowerCamelCase = eval_predictions lowerCamelCase = np.argmax(lowerCamelCase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCamelCase = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase__ , data_collator=lowerCamelCase__ , compute_metrics=lowerCamelCase__ , ) # Training if training_args.do_train: lowerCamelCase = None if training_args.resume_from_checkpoint is not None: lowerCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase = last_checkpoint lowerCamelCase = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase = train_result.metrics lowerCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase__ ) ) lowerCamelCase = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics("""train""" , lowerCamelCase__ ) trainer.save_metrics("""train""" , lowerCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCamelCase = trainer.evaluate() lowerCamelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase__ ) lowerCamelCase = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics("""eval""" , lowerCamelCase__ ) trainer.save_metrics("""eval""" , lowerCamelCase__ ) lowerCamelCase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase__ ) else: trainer.create_model_card(**lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ : List[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
66
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ : Optional[int] = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[int] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
270
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : Optional[Any] = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : int = [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
270
1
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase__ =get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( _a ,unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[Any] = DebertaVaTokenizer _SCREAMING_SNAKE_CASE : Any = DebertaVaTokenizerFast _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : Tuple = True def lowerCAmelCase (self : Union[str, Any] ): super().setUp() # We have a SentencePiece fixture for testing __a : Tuple = DebertaVaTokenizer(__lowerCamelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase (self : int , snake_case_ : Union[str, Any] ): __a : str = """this is a test""" __a : Dict = """this is a test""" return input_text, output_text def lowerCAmelCase (self : Tuple ): __a : Optional[Any] = """<pad>""" __a : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def lowerCAmelCase (self : int ): __a : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(__lowerCamelCase ) , 3_0_0_0_1 ) def lowerCAmelCase (self : Optional[int] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def lowerCAmelCase (self : str ): # fmt: off __a : Optional[int] = """ \tHeLLo!how \n Are yoU? """ __a : Any = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __a : Optional[Any] = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase ) __a : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __a : Any = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase ) __a : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def lowerCAmelCase (self : Dict ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def lowerCAmelCase (self : Optional[Any] ): pass def lowerCAmelCase (self : Optional[int] ): # fmt: off __a : Union[str, Any] = """I was born in 92000, and this is falsé.""" __a : int = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __a : int = DebertaVaTokenizer(__lowerCamelCase , split_by_punct=__lowerCamelCase ) __a : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __a : Optional[int] = DebertaVaTokenizerFast(__lowerCamelCase , split_by_punct=__lowerCamelCase ) __a : Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase (self : int ): # fmt: off __a : Union[str, Any] = """I was born in 92000, and this is falsé.""" __a : Any = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __a : Tuple = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) __a : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __a : Union[str, Any] = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) __a : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase (self : Any ): # fmt: off __a : Union[str, Any] = """I was born in 92000, and this is falsé.""" __a : List[Any] = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __a : Tuple = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) __a : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __a : Union[str, Any] = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) __a : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase (self : str ): # fmt: off __a : List[str] = """I was born in 92000, and this is falsé.""" __a : int = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __a : List[str] = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) __a : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __a : List[str] = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) __a : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase (self : Optional[Any] ): # fmt: off __a : Optional[Any] = """ \tHeLLo!how \n Are yoU? """ __a : Dict = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __a : int = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) __a : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __a : Any = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) __a : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase (self : int ): __a : int = self.get_tokenizer() __a : str = self.get_rust_tokenizer() __a : Dict = """I was born in 92000, and this is falsé.""" __a : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) __a : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __a : List[str] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __a : Optional[int] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __a : int = self.get_rust_tokenizer() __a : Tuple = tokenizer.encode(__lowerCamelCase ) __a : Dict = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase (self : Dict ): __a : Optional[int] = """This is a test""" __a : str = [1_3, 1, 4_3_9_8, 2_5, 2_1, 1_2_8_9] __a : int = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __a : Any = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __a : str = DebertaVaTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) __a : Union[str, Any] = DebertaVaTokenizerFast(__lowerCamelCase , keep_accents=__lowerCamelCase ) __a : Optional[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __a : Union[str, Any] = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __a : Any = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __a : List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __a : Optional[Any] = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __a : int = rust_tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # fmt: off __a : Optional[Any] = """I was born in 92000, and this is falsé.""" __a : Any = [1_3, 1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] __a : Union[str, Any] = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __a : Optional[Any] = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __a : str = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __a : Any = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __a : Union[str, Any] = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __a : List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __a : int = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __a : Dict = rust_tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase (self : Optional[int] ): __a : str = DebertaVaTokenizer(__lowerCamelCase ) __a : Union[str, Any] = tokenizer.encode('''sequence builders''' ) __a : Any = tokenizer.encode('''multi-sequence build''' ) __a : Optional[int] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) __a : str = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , __lowerCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , __lowerCamelCase , ) @slow def lowerCAmelCase (self : List[Any] ): # fmt: off __a : Union[str, Any] = {"""input_ids""": [[1, 3_9_8_6_7, 3_6, 1_9_3_9_0, 4_8_6, 2_7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 6_0_6_8_5, 1_2_2_5, 7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 9_3_6_7, 1_6_8_9_9, 1_8, 1_5_9_3_7, 5_3, 5_9_4, 7_7_3, 1_8, 1_6_2_8_7, 3_0_4_6_5, 3_6, 1_5_9_3_7, 6, 4_1_1_3_9, 3_8, 3_6_9_7_9, 6_0_7_6_3, 1_9_1, 6, 3_4_1_3_2, 9_9, 6, 5_0_5_3_8, 3_9_0, 4_3_2_3_0, 6, 3_4_1_3_2, 2_7_7_9, 2_0_8_5_0, 1_4, 6_9_9, 1_0_7_2, 1_1_9_4, 3_6, 3_8_2, 1_0_9_0_1, 5_3, 7, 6_9_9, 1_0_7_2, 2_0_8_4, 3_6, 2_0_4_2_2, 6_3_0, 5_3, 1_9, 1_0_5, 3_0_4_9, 1_8_9_6, 1_0_5_3, 1_6_8_9_9, 1_5_0_6, 1_1, 3_7_9_7_8, 4_2_4_3, 7, 1_2_3_7, 3_1_8_6_9, 2_0_0, 1_6_5_6_6, 6_5_4, 6, 3_5_0_5_2, 8_1_4_3_6, 7, 5_5_6_3_0, 1_3_5_9_3, 4, 2], [1, 2_6, 1_5_0_1_1, 1_3, 6_6_7, 8, 1_0_5_3, 1_8, 2_3_6_1_1, 1_2_3_7, 7_2_3_5_6, 1_2_8_2_0, 3_4, 1_0_4_1_3_4, 1_2_0_9, 3_5, 1_3_3_1_3, 6_6_2_7, 2_1, 2_0_2, 3_4_7, 7, 1_6_4, 2_3_9_9, 1_1, 4_6, 4_4_8_5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_2_3_2, 2_8_6_4, 1_5_7_8_5, 1_4_9_5_1, 1_0_5, 5, 8_5_8_1, 1_2_5_0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
368
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase__ ='bert-base-cased' lowercase__ ='google/pegasus-xsum' lowercase__ =[' Sam ate lunch today.', 'Sams lunch ingredients.'] lowercase__ =['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] lowercase__ ='patrickvonplaten/t5-tiny-random' lowercase__ ='sshleifer/bart-tiny-random' lowercase__ ='sshleifer/tiny-mbart' lowercase__ ='sshleifer/tiny-marian-en-de' def __UpperCamelCase ( lowerCAmelCase__ : Path , lowerCAmelCase__ : list ): __a : List[Any] = '''\n'''.join(lowerCAmelCase__ ) Path(lowerCAmelCase__ ).open('''w''' ).writelines(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : int ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(lowerCAmelCase__ , f"{split}.source" ) , lowerCAmelCase__ ) _dump_articles(os.path.join(lowerCAmelCase__ , f"{split}.target" ) , lowerCAmelCase__ ) return tmp_dir class UpperCamelCase__ ( __lowercase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def lowerCAmelCase (self : int , snake_case_ : int ): __a : Optional[Any] = AutoTokenizer.from_pretrained(snake_case_ ) __a : Optional[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __a : Union[str, Any] = max(len(tokenizer.encode(snake_case_ ) ) for a in ARTICLES ) __a : str = max(len(tokenizer.encode(snake_case_ ) ) for a in SUMMARIES ) __a : str = 4 __a : Dict = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __a , __a : Any = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. __a : List[Any] = SeqaSeqDataset( snake_case_ , data_dir=snake_case_ , type_path='''train''' , max_source_length=snake_case_ , max_target_length=snake_case_ , src_lang=snake_case_ , tgt_lang=snake_case_ , ) __a : Dict = DataLoader(snake_case_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(snake_case_ , snake_case_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __a : Dict = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def lowerCAmelCase (self : Optional[Any] , snake_case_ : str ): __a : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case_ ) __a : str = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __a : Any = max(len(tokenizer.encode(snake_case_ ) ) for a in ARTICLES ) __a : Any = max(len(tokenizer.encode(snake_case_ ) ) for a in SUMMARIES ) __a : Dict = 4 __a : Optional[int] = LegacySeqaSeqDataset( snake_case_ , data_dir=snake_case_ , type_path='''train''' , max_source_length=2_0 , max_target_length=snake_case_ , ) __a : Optional[Any] = DataLoader(snake_case_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 2_0 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def lowerCAmelCase (self : List[str] ): __a : int = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' ) __a : Any = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __a : Optional[int] = tmp_dir.joinpath('''train.source''' ).open().readlines() __a : List[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(snake_case_ , snake_case_ , 1_2_8 , snake_case_ ) __a : Optional[Any] = {x.name for x in tmp_dir.iterdir()} __a : Union[str, Any] = {x.name for x in save_dir.iterdir()} __a : str = save_dir.joinpath('''train.source''' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(snake_case_ ) < len(snake_case_ ) assert len(snake_case_ ) == 1 assert len(packed_examples[0] ) == sum(len(snake_case_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' ) def lowerCAmelCase (self : Any ): if not FAIRSEQ_AVAILABLE: return __a , __a , __a : Any = self._get_dataset(max_len=6_4 ) __a : int = 6_4 __a : List[str] = ds.make_dynamic_sampler(snake_case_ , required_batch_size_multiple=snake_case_ ) __a : List[str] = [len(snake_case_ ) for x in batch_sampler] assert len(set(snake_case_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(snake_case_ ) == len(snake_case_ ) # no dropped or added examples __a : Union[str, Any] = DataLoader(snake_case_ , batch_sampler=snake_case_ , collate_fn=ds.collate_fn , num_workers=2 ) __a : Tuple = [] __a : Union[str, Any] = [] for batch in data_loader: __a : Any = batch['''input_ids'''].shape __a : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __a : Optional[Any] = np.product(batch['''input_ids'''].shape ) num_src_per_batch.append(snake_case_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(snake_case_ ) assert num_src_per_batch[0] == max(snake_case_ ) if failures: raise AssertionError(f"too many tokens in {len(snake_case_ )} batches" ) def lowerCAmelCase (self : int ): __a , __a , __a : Optional[int] = self._get_dataset(max_len=5_1_2 ) __a : Union[str, Any] = 2 __a : str = ds.make_sortish_sampler(snake_case_ , shuffle=snake_case_ ) __a : Tuple = DataLoader(snake_case_ , batch_size=snake_case_ , collate_fn=ds.collate_fn , num_workers=2 ) __a : Tuple = DataLoader(snake_case_ , batch_size=snake_case_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=snake_case_ ) __a : Optional[int] = tokenizer.pad_token_id def count_pad_tokens(snake_case_ : Union[str, Any] , snake_case_ : List[str]="input_ids" ): return [batch[k].eq(snake_case_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(snake_case_ , k='''labels''' ) ) < sum(count_pad_tokens(snake_case_ , k='''labels''' ) ) assert sum(count_pad_tokens(snake_case_ ) ) < sum(count_pad_tokens(snake_case_ ) ) assert len(snake_case_ ) == len(snake_case_ ) def lowerCAmelCase (self : int , snake_case_ : int=1_0_0_0 , snake_case_ : Optional[Any]=1_2_8 ): if os.getenv('''USE_REAL_DATA''' , snake_case_ ): __a : Optional[int] = '''examples/seq2seq/wmt_en_ro''' __a : List[Any] = max_len * 2 * 6_4 if not Path(snake_case_ ).joinpath('''train.len''' ).exists(): save_len_file(snake_case_ , snake_case_ ) else: __a : int = '''examples/seq2seq/test_data/wmt_en_ro''' __a : List[str] = max_len * 4 save_len_file(snake_case_ , snake_case_ ) __a : str = AutoTokenizer.from_pretrained(snake_case_ ) __a : Optional[int] = SeqaSeqDataset( snake_case_ , data_dir=snake_case_ , type_path='''train''' , max_source_length=snake_case_ , max_target_length=snake_case_ , n_obs=snake_case_ , ) return ds, max_tokens, tokenizer def lowerCAmelCase (self : List[str] ): __a , __a , __a : str = self._get_dataset() __a : Optional[Any] = set(DistributedSortishSampler(snake_case_ , 2_5_6 , num_replicas=2 , rank=0 , add_extra_examples=snake_case_ ) ) __a : Tuple = set(DistributedSortishSampler(snake_case_ , 2_5_6 , num_replicas=2 , rank=1 , add_extra_examples=snake_case_ ) ) assert idsa.intersection(snake_case_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def lowerCAmelCase (self : str , snake_case_ : Union[str, Any] ): __a : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case_ , use_fast=snake_case_ ) if tok_name == MBART_TINY: __a : Any = SeqaSeqDataset( snake_case_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) __a : Tuple = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __a : Optional[Any] = SeqaSeqDataset( snake_case_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) __a : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(snake_case_ ) == 1 if tok_name == BART_TINY else len(snake_case_ ) == 0
90
0
def UpperCamelCase( __UpperCamelCase : int ,__UpperCamelCase : int ): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) lowerCAmelCase_ : Optional[int] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" lowerCAmelCase_ : List[Any] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" lowerCAmelCase_ : Union[str, Any] = max(len(__UpperCamelCase ) ,len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) ,b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
103
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __snake_case = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __snake_case = parser.parse_args() __snake_case = '''cpu''' __snake_case = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __snake_case = '''path-to-your-trained-model''' __snake_case = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __snake_case = pipe.to(device) # to channels last __snake_case = pipe.unet.to(memory_format=torch.channels_last) __snake_case = pipe.vae.to(memory_format=torch.channels_last) __snake_case = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __snake_case = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __snake_case = torch.randn(2, 4, 64, 64) __snake_case = torch.rand(1) * 9_99 __snake_case = torch.randn(2, 77, 7_68) __snake_case = (sample, timestep, encoder_hidden_status) try: __snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __snake_case = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __snake_case = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __snake_case = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __snake_case = 6_66 __snake_case = torch.Generator(device).manual_seed(seed) __snake_case = {'''generator''': generator} if args.steps is not None: __snake_case = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __snake_case = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
348
0
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : str =KandinskyVaaControlnetPipeline UpperCamelCase__ : Optional[Any] =["""image_embeds""", """negative_image_embeds""", """hint"""] UpperCamelCase__ : List[Any] =["""image_embeds""", """negative_image_embeds""", """hint"""] UpperCamelCase__ : List[Any] =[ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase__ : Union[str, Any] =False @property def __lowercase ( self ): """simple docstring""" return 32 @property def __lowercase ( self ): """simple docstring""" return 32 @property def __lowercase ( self ): """simple docstring""" return self.time_input_dim @property def __lowercase ( self ): """simple docstring""" return self.time_input_dim * 4 @property def __lowercase ( self ): """simple docstring""" return 100 @property def __lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) __UpperCamelCase : Tuple ={ 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __UpperCamelCase : Dict =UNetaDConditionModel(**lowerCamelCase__ ) return model @property def __lowercase ( self ): """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) __UpperCamelCase : Optional[int] =VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =self.dummy_unet __UpperCamelCase : Dict =self.dummy_movq __UpperCamelCase : Any =DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , steps_offset=1 , prediction_type='epsilon' , thresholding=lowerCamelCase__ , ) __UpperCamelCase : Optional[Any] ={ 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=0 ): """simple docstring""" __UpperCamelCase : Tuple =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) __UpperCamelCase : List[str] =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCamelCase__ ) # create hint __UpperCamelCase : Any =floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) if str(lowerCamelCase__ ).startswith('mps' ): __UpperCamelCase : Dict =torch.manual_seed(lowerCamelCase__ ) else: __UpperCamelCase : Dict =torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __UpperCamelCase : Tuple ={ 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] ='cpu' __UpperCamelCase : Dict =self.get_dummy_components() __UpperCamelCase : Optional[Any] =self.pipeline_class(**lowerCamelCase__ ) __UpperCamelCase : str =pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) __UpperCamelCase : Dict =output.images __UpperCamelCase : Optional[Any] =pipe( **self.get_dummy_inputs(lowerCamelCase__ ) , return_dict=lowerCamelCase__ , )[0] __UpperCamelCase : Tuple =image[0, -3:, -3:, -1] __UpperCamelCase : Any =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCamelCase : int =np.array( [0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' ) __UpperCamelCase : Tuple =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) __UpperCamelCase : List[Any] =torch.from_numpy(np.array(lowerCamelCase__ ) ).float() / 255.0 __UpperCamelCase : Tuple =hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __UpperCamelCase : Tuple =KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase__ ) __UpperCamelCase : Optional[int] =KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) __UpperCamelCase : Dict =pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Tuple ='A robot, 4k photo' __UpperCamelCase : str =torch.Generator(device='cuda' ).manual_seed(0 ) __UpperCamelCase , __UpperCamelCase : Tuple =pipe_prior( lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __UpperCamelCase : Union[str, Any] =torch.Generator(device='cuda' ).manual_seed(0 ) __UpperCamelCase : Dict =pipeline( image_embeds=lowerCamelCase__ , negative_image_embeds=lowerCamelCase__ , hint=lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=100 , output_type='np' , ) __UpperCamelCase : int =output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ )
245
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): A_ :Any = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) A_ :Dict = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } A_ :str = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :Dict = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :List[str] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } A_ :int = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :Tuple = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) A_ :Tuple = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :Optional[int] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) A_ :Dict = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :Optional[int] = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' A_ :Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :List[Any] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' A_ :Dict = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' A_ :Union[str, Any] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' A_ :Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' A_ :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' A_ :Tuple = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' A_ :Union[str, Any] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' A_ :Optional[Any] = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' A_ :Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' A_ :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' A_ :str = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' A_ :str = '''''' A_ :Optional[int] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' A_ :Dict = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :List[str] = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def A ( a_ ,a_ ) -> List[str]: assert ReadMe.from_string(a_ ,a_ ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def A ( a_ ,a_ ) -> int: with pytest.raises(a_ ,match=re.escape(expected_error.format(path='root' ) ) ): __UpperCamelCase : List[Any] =ReadMe.from_string(a_ ,a_ ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def A ( a_ ,a_ ) -> Union[str, Any]: with pytest.raises(a_ ,match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(a_ ,a_ ) @pytest.mark.parametrize( 'readme_md,' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def A ( a_ ) -> Tuple: ReadMe.from_string(a_ ,a_ ,suppress_parsing_errors=a_ ) @pytest.mark.parametrize( 'readme_md, expected_dict' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def A ( a_ ,a_ ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase : Dict =Path(a_ ) / 'README.md' with open(a_ ,'w+' ) as readme_file: readme_file.write(a_ ) __UpperCamelCase : Optional[Any] =ReadMe.from_readme(a_ ,a_ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def A ( a_ ,a_ ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase : Any =Path(a_ ) / 'README.md' with open(a_ ,'w+' ) as readme_file: readme_file.write(a_ ) __UpperCamelCase : Optional[int] =expected_error.format(path=a_ ) with pytest.raises(a_ ,match=re.escape(a_ ) ): __UpperCamelCase : List[str] =ReadMe.from_readme(a_ ,a_ ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def A ( a_ ,a_ ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase : Optional[Any] =Path(a_ ) / 'README.md' with open(a_ ,'w+' ) as readme_file: readme_file.write(a_ ) __UpperCamelCase : Optional[int] =expected_error.format(path=a_ ) with pytest.raises(a_ ,match=re.escape(a_ ) ): ReadMe.from_readme(a_ ,a_ ) @pytest.mark.parametrize( 'readme_md,' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def A ( a_ ) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase : Union[str, Any] =Path(a_ ) / 'README.md' with open(a_ ,'w+' ) as readme_file: readme_file.write(a_ ) ReadMe.from_readme(a_ ,a_ ,suppress_parsing_errors=a_ )
245
1
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
58
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase ( __lowerCamelCase : int ) ->list[int]: if num <= 0: _SCREAMING_SNAKE_CASE = F'{num}: Invalid input, please enter a positive integer.' raise ValueError(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = [True] * (num + 1) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = int(math.sqrt(__lowerCamelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(__lowerCamelCase ) # Set multiples of start be False for i in range(start * start , num + 1 , __lowerCamelCase ): if sieve[i] is True: _SCREAMING_SNAKE_CASE = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(__lowerCamelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
58
1
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = ['''image_processor''', '''tokenizer'''] UpperCamelCase__ = '''BlipImageProcessor''' UpperCamelCase__ = '''AutoTokenizer''' def __init__( self : str , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] ): super().__init__(lowercase_ , lowercase_ ) # add QFormer tokenizer lowercase_ : Optional[int] = qformer_tokenizer def __call__( self : List[Any] , lowercase_ : ImageInput = None , lowercase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase_ : bool = True , lowercase_ : Union[bool, str, PaddingStrategy] = False , lowercase_ : Union[bool, str, TruncationStrategy] = None , lowercase_ : Optional[int] = None , lowercase_ : int = 0 , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = True , lowercase_ : Optional[Union[str, TensorType]] = None , **lowercase_ : Dict , ): if images is None and text is None: raise ValueError("""You have to specify at least images or text.""" ) lowercase_ : List[str] = BatchFeature() if text is not None: lowercase_ : Optional[Any] = self.tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) encoding.update(lowercase_ ) lowercase_ : Tuple = self.qformer_tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) lowercase_ : List[Any] = qformer_text_encoding.pop("""input_ids""" ) lowercase_ : List[Any] = qformer_text_encoding.pop("""attention_mask""" ) if images is not None: lowercase_ : str = self.image_processor(lowercase_ , return_tensors=lowercase_ ) encoding.update(lowercase_ ) return encoding def SCREAMING_SNAKE_CASE_ ( self : List[str] , *lowercase_ : int , **lowercase_ : Any ): return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : Optional[Any] ): return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Tuple = self.tokenizer.model_input_names lowercase_ : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[str] , **lowercase_ : Optional[int] ): if os.path.isfile(lowercase_ ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowercase_ : List[Any] = os.path.join(lowercase_ , """qformer_tokenizer""" ) self.qformer_tokenizer.save_pretrained(lowercase_ ) return super().save_pretrained(lowercase_ , **lowercase_ ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , lowercase_ : Any , **lowercase_ : str ): lowercase_ : Tuple = AutoTokenizer.from_pretrained(lowercase_ , subfolder="""qformer_tokenizer""" ) lowercase_ : List[Any] = cls._get_arguments_from_pretrained(lowercase_ , **lowercase_ ) args.append(lowercase_ ) return cls(*lowercase_ )
21
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _lowercase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( _UpperCAmelCase): def __init__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : str ): super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : List[str] , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ): if audio_length_in_s is None: lowercase_ : List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate lowercase_ : Dict = audio_length_in_s * self.unet.config.sample_rate lowercase_ : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowercase_ : List[Any] = int(lowercase_ ) if sample_size % down_scale_factor != 0: lowercase_ : int = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' """ process.""" ) lowercase_ : Any = int(lowercase_ ) lowercase_ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowercase_ : List[str] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowercase_ : Any = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) # set step values self.scheduler.set_timesteps(lowercase_ , device=audio.device ) lowercase_ : Optional[Any] = self.scheduler.timesteps.to(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase_ : Dict = self.unet(lowercase_ , lowercase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowercase_ : List[str] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowercase_ : str = audio.clamp(-1 , 1 ).float().cpu().numpy() lowercase_ : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowercase_ )
21
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
157
def _UpperCamelCase ( snake_case__ ) -> bool: if not isinstance(snake_case__, snake_case__ ): raise ValueError("check_bouncy() accepts only integer arguments" ) __UpperCAmelCase : Optional[int] = str(snake_case__ ) __UpperCAmelCase : Any = "".join(sorted(snake_case__ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _UpperCamelCase ( snake_case__ = 99 ) -> int: if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100" ) __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : int = 1 while True: if check_bouncy(snake_case__ ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'{solution(99)}')
157
1
def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> Dict: # Check if the input is valid if not len(UpperCAmelCase ) == len(UpperCAmelCase ) == 3: raise ValueError('''Please enter a valid equation.''' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('''Both a & b of two equations can\'t be zero.''' ) # Extract the coefficients UpperCAmelCase : Any = equationa UpperCAmelCase : Union[str, Any] = equationa # Calculate the determinants of the matrices UpperCAmelCase : Optional[Any] = aa * ba - aa * ba UpperCAmelCase : Optional[int] = ca * ba - ca * ba UpperCAmelCase : List[Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('''Infinite solutions. (Consistent system)''' ) else: raise ValueError('''No solution. (Inconsistent system)''' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: UpperCAmelCase : Optional[int] = determinant_x / determinant UpperCAmelCase : List[Any] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
371
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _lowerCamelCase : Optional[Any] = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def a__ ( ) -> List[Any]: UpperCAmelCase : Dict = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: UpperCAmelCase : List[Any] = get_sagemaker_input() else: UpperCAmelCase : Optional[Any] = get_cluster_input() return config def a__ ( UpperCAmelCase : Union[str, Any]=None ) -> List[Any]: if subparsers is not None: UpperCAmelCase : Optional[Any] = subparsers.add_parser('''config''' , description=UpperCAmelCase ) else: UpperCAmelCase : List[str] = argparse.ArgumentParser('''Accelerate config command''' , description=UpperCAmelCase ) parser.add_argument( '''--config_file''' , default=UpperCAmelCase , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase ) return parser def a__ ( UpperCAmelCase : List[Any] ) -> Optional[int]: UpperCAmelCase : str = get_user_input() if args.config_file is not None: UpperCAmelCase : Any = args.config_file else: if not os.path.isdir(UpperCAmelCase ): os.makedirs(UpperCAmelCase ) UpperCAmelCase : List[str] = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(UpperCAmelCase ) else: config.to_yaml_file(UpperCAmelCase ) print(f'''accelerate configuration saved at {config_file}''' ) def a__ ( ) -> Dict: UpperCAmelCase : str = config_command_parser() UpperCAmelCase : str = parser.parse_args() config_command(UpperCAmelCase ) if __name__ == "__main__": main()
99
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> float: if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
69
'''simple docstring''' __SCREAMING_SNAKE_CASE : Dict = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def UpperCamelCase_ ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCamelCase_ ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
31
0
'''simple docstring''' def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCamelCase : List[Any] = str(bin(A__ ) )[2:] # remove the leading "0b" _UpperCamelCase : int = str(bin(A__ ) )[2:] # remove the leading "0b" _UpperCamelCase : Optional[int] = max(len(A__ ) , len(A__ ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(A__ ) , b_binary.zfill(A__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
357
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case_ : Any = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys snake_case_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
236
0
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": a : Any = argparse.ArgumentParser( description=( "Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="bert", choices=["bert"]) parser.add_argument("--model_name", default="bert-base-uncased", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") a : Union[str, Any] = parser.parse_args() if args.model_type == "bert": a : Optional[Any] = BertForMaskedLM.from_pretrained(args.model_name) a : List[str] = "bert" else: raise ValueError("args.model_type should be \"bert\".") a : Dict = model.state_dict() a : Union[str, Any] = {} for w in ["word_embeddings", "position_embeddings"]: a : Tuple = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: a : int = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] a : Optional[int] = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: a : List[str] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] a : str = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] a : Tuple = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] a : Tuple = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] a : Union[str, Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] a : str = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] a : List[str] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] a : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 a : int = state_dict["cls.predictions.decoder.weight"] a : Optional[Any] = state_dict["cls.predictions.bias"] if args.vocab_transform: for w in ["weight", "bias"]: a : Optional[Any] = state_dict[f"""cls.predictions.transform.dense.{w}"""] a : Dict = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
114
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class a ( lowercase__ ): """simple docstring""" def __init__( self : Any , __lowercase : Optional[NestedDataStructureLike[PathLike]] = None , __lowercase : Optional[NamedSplit] = None , __lowercase : Optional[Features] = None , __lowercase : str = None , __lowercase : bool = False , __lowercase : bool = False , __lowercase : Optional[int] = None , **__lowercase : List[str] , ) -> Tuple: __UpperCAmelCase : Any = path_or_paths __UpperCAmelCase : Dict = split if split or isinstance(__lowercase , __lowercase ) else """train""" __UpperCAmelCase : Optional[int] = features __UpperCAmelCase : str = cache_dir __UpperCAmelCase : str = keep_in_memory __UpperCAmelCase : Optional[int] = streaming __UpperCAmelCase : Dict = num_proc __UpperCAmelCase : Tuple = kwargs @abstractmethod def UpperCAmelCase ( self : List[Any] ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class a ( lowercase__ ): """simple docstring""" def __init__( self : List[str] , __lowercase : Optional[Features] = None , __lowercase : str = None , __lowercase : bool = False , __lowercase : bool = False , __lowercase : Optional[int] = None , **__lowercase : Optional[Any] , ) -> Optional[int]: __UpperCAmelCase : Optional[Any] = features __UpperCAmelCase : str = cache_dir __UpperCAmelCase : Optional[int] = keep_in_memory __UpperCAmelCase : Dict = streaming __UpperCAmelCase : Optional[Any] = num_proc __UpperCAmelCase : Union[str, Any] = kwargs @abstractmethod def UpperCAmelCase ( self : List[str] ) -> Union[Dataset, IterableDataset]: pass
114
1
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker __SCREAMING_SNAKE_CASE = """CompVis/stable-diffusion-v1-1""" __SCREAMING_SNAKE_CASE = """CompVis/stable-diffusion-v1-2""" __SCREAMING_SNAKE_CASE = """CompVis/stable-diffusion-v1-3""" __SCREAMING_SNAKE_CASE = """CompVis/stable-diffusion-v1-4""" class lowerCamelCase_ ( _A ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : AutoencoderKL , __lowerCamelCase : CLIPTextModel , __lowerCamelCase : CLIPTokenizer , __lowerCamelCase : UNetaDConditionModel , __lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __lowerCamelCase : StableDiffusionSafetyChecker , __lowerCamelCase : CLIPImageProcessor , __lowerCamelCase : bool = True , ) -> Any: super()._init_() A : Tuple = StableDiffusionPipeline.from_pretrained(__lowerCamelCase ) A : str = StableDiffusionPipeline.from_pretrained(__lowerCamelCase ) A : Optional[int] = StableDiffusionPipeline.from_pretrained(__lowerCamelCase ) A : int = StableDiffusionPipeline( vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , requires_safety_checker=__lowerCamelCase , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Dict[str, Any]: return {k: getattr(self , __lowerCamelCase ) for k in self.config.keys() if not k.startswith("_" )} def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : Optional[Union[str, int]] = "auto" ) -> Optional[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Tuple: self.enable_attention_slicing(__lowerCamelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self : Tuple , __lowerCamelCase : Union[str, List[str]] , __lowerCamelCase : int = 5_12 , __lowerCamelCase : int = 5_12 , __lowerCamelCase : int = 50 , __lowerCamelCase : float = 7.5 , __lowerCamelCase : Optional[Union[str, List[str]]] = None , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : Optional[torch.Generator] = None , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCamelCase : int = 1 , **__lowerCamelCase : Optional[Any] , ) -> Optional[Any]: return self.pipea( prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self : Tuple , __lowerCamelCase : Union[str, List[str]] , __lowerCamelCase : int = 5_12 , __lowerCamelCase : int = 5_12 , __lowerCamelCase : int = 50 , __lowerCamelCase : float = 7.5 , __lowerCamelCase : Optional[Union[str, List[str]]] = None , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : Optional[torch.Generator] = None , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCamelCase : int = 1 , **__lowerCamelCase : Optional[Any] , ) -> Dict: return self.pipea( prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , __lowerCamelCase : Union[str, List[str]] , __lowerCamelCase : int = 5_12 , __lowerCamelCase : int = 5_12 , __lowerCamelCase : int = 50 , __lowerCamelCase : float = 7.5 , __lowerCamelCase : Optional[Union[str, List[str]]] = None , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : Optional[torch.Generator] = None , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCamelCase : int = 1 , **__lowerCamelCase : List[Any] , ) -> int: return self.pipea( prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self : Tuple , __lowerCamelCase : Union[str, List[str]] , __lowerCamelCase : int = 5_12 , __lowerCamelCase : int = 5_12 , __lowerCamelCase : int = 50 , __lowerCamelCase : float = 7.5 , __lowerCamelCase : Optional[Union[str, List[str]]] = None , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : Optional[torch.Generator] = None , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCamelCase : int = 1 , **__lowerCamelCase : Dict , ) -> Tuple: return self.pipea( prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : Union[str, List[str]] , __lowerCamelCase : int = 5_12 , __lowerCamelCase : int = 5_12 , __lowerCamelCase : int = 50 , __lowerCamelCase : float = 7.5 , __lowerCamelCase : Optional[Union[str, List[str]]] = None , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : Optional[torch.Generator] = None , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCamelCase : int = 1 , **__lowerCamelCase : Optional[Any] , ) -> int: A : List[Any] = "cuda" if torch.cuda.is_available() else "cpu" self.to(__lowerCamelCase ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 A : List[Any] = self.textaimg_sda_a( prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.2 A : Optional[int] = self.textaimg_sda_a( prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.3 A : Optional[Any] = self.textaimg_sda_a( prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.4 A : Optional[Any] = self.textaimg_sda_a( prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
363
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): for attribute in key.split("." ): A : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: A : List[str] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: A : Any = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": A : List[str] = value elif weight_type == "weight_g": A : List[Any] = value elif weight_type == "weight_v": A : Any = value elif weight_type == "bias": A : Dict = value else: A : Any = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A : Dict = [] A : List[str] = fairseq_model.state_dict() A : List[Any] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): A : List[str] = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) A : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): A : Dict = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: A : List[str] = True if "*" in mapped_key: A : Any = name.split(_lowerCamelCase )[0].split("." )[-2] A : Union[str, Any] = mapped_key.replace("*" , _lowerCamelCase ) if "weight_g" in name: A : Optional[Any] = "weight_g" elif "weight_v" in name: A : int = "weight_v" elif "weight" in name: A : Dict = "weight" elif "bias" in name: A : Optional[int] = "bias" else: A : Dict = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A : Optional[int] = full_name.split("conv_layers." )[-1] A : str = name.split("." ) A : str = int(items[0] ) A : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) A : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) A : Dict = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) A : str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) A : str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): A : Union[str, Any] = SEWConfig() if is_finetuned: A : int = model.wav_encoder.wav_model.cfg else: A : Any = model.cfg A : List[str] = fs_config.conv_bias A : Optional[Any] = eval(fs_config.conv_feature_layers ) A : Dict = [x[0] for x in conv_layers] A : int = [x[1] for x in conv_layers] A : Dict = [x[2] for x in conv_layers] A : Tuple = "gelu" A : List[Any] = "layer" if fs_config.extractor_mode == "layer_norm" else "group" A : List[str] = 0.0 A : Union[str, Any] = fs_config.activation_fn.name A : int = fs_config.encoder_embed_dim A : List[str] = 0.02 A : Dict = fs_config.encoder_ffn_embed_dim A : List[str] = 1e-5 A : List[str] = fs_config.encoder_layerdrop A : Optional[int] = fs_config.encoder_attention_heads A : Any = fs_config.conv_pos_groups A : str = fs_config.conv_pos A : str = len(_lowerCamelCase ) A : Optional[int] = fs_config.encoder_layers A : List[str] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: A : int = model.cfg A : List[str] = fs_config.final_dropout A : Optional[int] = fs_config.layerdrop A : Dict = fs_config.activation_dropout A : Dict = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 A : Dict = fs_config.attention_dropout A : Optional[Any] = fs_config.dropout_input A : Union[str, Any] = fs_config.dropout A : Tuple = fs_config.mask_channel_length A : int = fs_config.mask_channel_prob A : Optional[Any] = fs_config.mask_length A : Union[str, Any] = fs_config.mask_prob A : int = "Wav2Vec2FeatureExtractor" A : List[Any] = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ): if is_finetuned: A , A , A : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: A , A , A : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: A : Any = SEWConfig.from_pretrained(_lowerCamelCase ) else: A : List[str] = convert_config(model[0] , _lowerCamelCase ) A : List[str] = model[0].eval() A : Optional[int] = True if config.feat_extract_norm == "layer" else False A : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if is_finetuned: if dict_path: A : Union[str, Any] = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A : str = target_dict.pad_index A : Dict = target_dict.bos_index A : List[str] = target_dict.pad_index A : Any = target_dict.bos_index A : str = target_dict.eos_index A : Dict = len(target_dict.symbols ) A : List[Any] = os.path.join(_lowerCamelCase , "vocab.json" ) if not os.path.isdir(_lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) A : str = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , ) A : int = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) A : Optional[int] = SEWForCTC(_lowerCamelCase ) else: A : Dict = SEWModel(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
256
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase_ : Tuple = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } UpperCAmelCase_ : Optional[int] = { '''bert-base-uncased''': 5_12, '''bert-large-uncased''': 5_12, '''bert-base-cased''': 5_12, '''bert-large-cased''': 5_12, '''bert-base-multilingual-uncased''': 5_12, '''bert-base-multilingual-cased''': 5_12, '''bert-base-chinese''': 5_12, '''bert-base-german-cased''': 5_12, '''bert-large-uncased-whole-word-masking''': 5_12, '''bert-large-cased-whole-word-masking''': 5_12, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 5_12, '''bert-large-cased-whole-word-masking-finetuned-squad''': 5_12, '''bert-base-cased-finetuned-mrpc''': 5_12, '''bert-base-german-dbmdz-cased''': 5_12, '''bert-base-german-dbmdz-uncased''': 5_12, '''TurkuNLP/bert-base-finnish-cased-v1''': 5_12, '''TurkuNLP/bert-base-finnish-uncased-v1''': 5_12, '''wietsedv/bert-base-dutch-cased''': 5_12, } UpperCAmelCase_ : List[str] = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Tuple = VOCAB_FILES_NAMES snake_case__ : List[str] = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION snake_case__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : List[str] = BertTokenizer def __init__( self : Optional[Any] , __lowerCamelCase : str=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Tuple="[UNK]" , __lowerCamelCase : Dict="[SEP]" , __lowerCamelCase : Any="[PAD]" , __lowerCamelCase : str="[CLS]" , __lowerCamelCase : Dict="[MASK]" , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Union[str, Any] , ): super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , ) UpperCamelCase :Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __lowerCamelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __lowerCamelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __lowerCamelCase ) != tokenize_chinese_chars ): UpperCamelCase :Union[str, Any] = getattr(__lowerCamelCase , normalizer_state.pop("""type""" ) ) UpperCamelCase :Optional[int] = do_lower_case UpperCamelCase :Tuple = strip_accents UpperCamelCase :str = tokenize_chinese_chars UpperCamelCase :str = normalizer_class(**__lowerCamelCase ) UpperCamelCase :Optional[int] = do_lower_case def _A ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any=None ): UpperCamelCase :Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _A ( self : Union[str, Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): UpperCamelCase :Optional[int] = [self.sep_token_id] UpperCamelCase :Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _A ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): UpperCamelCase :Dict = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase )
38
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict: '''simple docstring''' model.train() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = F.mse_loss(SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' set_seed(4_2 ) __UpperCAmelCase = RegressionModel() __UpperCAmelCase = deepcopy(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __UpperCAmelCase = AdamW(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) # Make a copy of `model` if sched: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' # Test when on a single CPU or GPU that the context manager does nothing __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' # Test on distributed setup that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[str]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' __UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def __a ( ) -> str: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase = RegressionDataset(length=9_6 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if iteration < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if batch_num < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __a ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case: '''simple docstring''' def __init__( self , A_ , A_=13 , A_=32 , A_=3 , A_=4 , A_=[10, 20, 30, 40] , A_=[2, 2, 3, 2] , A_=True , A_=True , A_=37 , A_="gelu" , A_=10 , A_=0.0_2 , A_=["stage2", "stage3", "stage4"] , A_=[2, 3, 4] , A_=None , ) -> int: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = image_size lowerCAmelCase = num_channels lowerCAmelCase = num_stages lowerCAmelCase = hidden_sizes lowerCAmelCase = depths lowerCAmelCase = is_training lowerCAmelCase = use_labels lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = num_labels lowerCAmelCase = initializer_range lowerCAmelCase = out_features lowerCAmelCase = out_indices lowerCAmelCase = scope def __snake_case ( self ) -> Tuple: lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase = self.get_config() return config, pixel_values, labels def __snake_case ( self ) -> List[Any]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __snake_case ( self , A_ , A_ , A_ ) -> Optional[int]: lowerCAmelCase = ConvNextModel(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __snake_case ( self , A_ , A_ , A_ ) -> Dict: lowerCAmelCase = ConvNextForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self , A_ , A_ , A_ ) -> Any: lowerCAmelCase = ConvNextBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase = None lowerCAmelCase = ConvNextBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __snake_case ( self ) -> List[Any]: lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase = config_and_inputs lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : int = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) UpperCAmelCase : Any = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) UpperCAmelCase : Optional[Any] = True UpperCAmelCase : Optional[int] = False UpperCAmelCase : Dict = False UpperCAmelCase : List[Any] = False UpperCAmelCase : Dict = False def __snake_case ( self ) -> List[str]: lowerCAmelCase = ConvNextModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def __snake_case ( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self ) -> Any: return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def __snake_case ( self ) -> Optional[Any]: pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def __snake_case ( self ) -> List[str]: pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def __snake_case ( self ) -> Optional[Any]: pass def __snake_case ( self ) -> int: lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(A_ ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A_ ) def __snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __snake_case ( self ) -> Dict: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def __snake_case ( self ) -> Dict: def check_hidden_states_output(A_ , A_ , A_ ): lowerCAmelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(A_ , A_ ) ) lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(A_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase = True check_hidden_states_output(A_ , A_ , A_ ) def __snake_case ( self ) -> int: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def __snake_case ( self ) -> str: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = ConvNextModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _snake_case ( ) -> Tuple: """simple docstring""" lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __snake_case( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ) -> Any: return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(A_ ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=A_ , return_tensors="""pt""" ).to(A_ ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**A_ ) # verify the logits lowerCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCAmelCase = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) ) @require_torch class __snake_case( unittest.TestCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase : Any = (ConvNextBackbone,) if is_torch_available() else () UpperCAmelCase : Any = ConvNextConfig UpperCAmelCase : Union[str, Any] = False def __snake_case ( self ) -> List[str]: lowerCAmelCase = ConvNextModelTester(self )
356
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip UpperCAmelCase = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def _snake_case ( _SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def _snake_case ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str ) -> Dict: """simple docstring""" return max(metric_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for gt in ground_truths ) def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , """r""" ).readlines()] lowerCAmelCase = [] if args.gold_data_mode == "qa": lowerCAmelCase = pd.read_csv(_SCREAMING_SNAKE_CASE , sep="""\t""" , header=_SCREAMING_SNAKE_CASE ) for answer_list in data[1]: lowerCAmelCase = ast.literal_eval(_SCREAMING_SNAKE_CASE ) answers.append(_SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , """r""" ).readlines()] lowerCAmelCase = [[reference] for reference in references] lowerCAmelCase = lowerCAmelCase = lowerCAmelCase = 0 for prediction, ground_truths in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): total += 1 em += metric_max_over_ground_truths(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) fa += metric_max_over_ground_truths(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = 100.0 * em / total lowerCAmelCase = 100.0 * fa / total logger.info(f'F1: {fa:.2f}' ) logger.info(f'EM: {em:.2f}' ) def _snake_case ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = args.k lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , """r""" ).readlines()] lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , """r""" ).readlines()] lowerCAmelCase = lowerCAmelCase = 0 for hypo, reference in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase = set(hypo.split("""\t""" )[:k] ) lowerCAmelCase = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k lowerCAmelCase = 100.0 * em / total logger.info(f'Precision@{k}: {em: .2f}' ) def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" def strip_title(_SCREAMING_SNAKE_CASE : Union[str, Any] ): if title.startswith("""\"""" ): lowerCAmelCase = title[1:] if title.endswith("""\"""" ): lowerCAmelCase = title[:-1] return title lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _SCREAMING_SNAKE_CASE , return_tensors="""pt""" , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , )["""input_ids"""].to(args.device ) lowerCAmelCase = rag_model.rag.question_encoder(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = question_enc_outputs[0] lowerCAmelCase = rag_model.retriever( _SCREAMING_SNAKE_CASE , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) lowerCAmelCase = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) lowerCAmelCase = [] for docs in all_docs: lowerCAmelCase = [strip_title(_SCREAMING_SNAKE_CASE ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(_SCREAMING_SNAKE_CASE ) ) return provenance_strings def _snake_case ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str ) -> Tuple: """simple docstring""" with torch.no_grad(): lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _SCREAMING_SNAKE_CASE , return_tensors="""pt""" , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = inputs_dict.input_ids.to(args.device ) lowerCAmelCase = inputs_dict.attention_mask.to(args.device ) lowerCAmelCase = rag_model.generate( # rag_model overwrites generate _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_SCREAMING_SNAKE_CASE , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) lowerCAmelCase = rag_model.retriever.generator_tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) if args.print_predictions: for q, a in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): logger.info("""Q: {} - A: {}""".format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) return answers def _snake_case ( ) -> Dict: """simple docstring""" lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=_SCREAMING_SNAKE_CASE , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=_SCREAMING_SNAKE_CASE , choices=["""exact""", """compressed""", """legacy"""] , type=_SCREAMING_SNAKE_CASE , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=_SCREAMING_SNAKE_CASE , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=_SCREAMING_SNAKE_CASE , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=_SCREAMING_SNAKE_CASE , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=_SCREAMING_SNAKE_CASE , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=_SCREAMING_SNAKE_CASE , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=_SCREAMING_SNAKE_CASE , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=_SCREAMING_SNAKE_CASE , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=_SCREAMING_SNAKE_CASE , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=_SCREAMING_SNAKE_CASE , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def _snake_case ( _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = {} if args.model_type is None: lowerCAmelCase = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): lowerCAmelCase = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration lowerCAmelCase = args.n_docs if args.index_name is not None: lowerCAmelCase = args.index_name if args.index_path is not None: lowerCAmelCase = args.index_path else: lowerCAmelCase = BartForConditionalGeneration lowerCAmelCase = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = get_scores if args.eval_mode == """e2e""" else get_precision_at_k lowerCAmelCase = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(_SCREAMING_SNAKE_CASE , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(_SCREAMING_SNAKE_CASE ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): lowerCAmelCase = RagRetriever.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , retriever=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) model.retriever.init_retrieval() else: lowerCAmelCase = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: lowerCAmelCase = [] for line in tqdm(_SCREAMING_SNAKE_CASE ): questions.append(line.strip() ) if len(_SCREAMING_SNAKE_CASE ) == args.eval_batch_size: lowerCAmelCase = evaluate_batch_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) preds_file.write("""\n""".join(_SCREAMING_SNAKE_CASE ) + """\n""" ) preds_file.flush() lowerCAmelCase = [] if len(_SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase = evaluate_batch_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) preds_file.write("""\n""".join(_SCREAMING_SNAKE_CASE ) ) preds_file.flush() score_fn(_SCREAMING_SNAKE_CASE , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": UpperCAmelCase = get_args() main(args)
187
0
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( snake_case_ ): _lowercase: Optional[int] = (UniPCMultistepScheduler,) _lowercase: List[str] = (('''num_inference_steps''', 25),) def lowercase__ ( self : Union[str, Any] , **__snake_case : Dict ) -> List[Any]: _lowerCAmelCase = { """num_train_timesteps""": 10_00, """beta_start""": 0.00_01, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, """solver_type""": """bh2""", } config.update(**__snake_case ) return config def lowercase__ ( self : Dict , __snake_case : Any=0 , **__snake_case : Union[str, Any] ) -> List[str]: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("""num_inference_steps""" , __snake_case ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**__snake_case ) _lowerCAmelCase = scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) _lowerCAmelCase = scheduler_class.from_pretrained(__snake_case ) new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase , _lowerCAmelCase = sample, sample for t in range(__snake_case , time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample _lowerCAmelCase = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase__ ( self : Optional[int] , __snake_case : List[Any]=0 , **__snake_case : Tuple ) -> Tuple: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("""num_inference_steps""" , __snake_case ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) _lowerCAmelCase = scheduler_class.from_pretrained(__snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample _lowerCAmelCase = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase__ ( self : Optional[Any] , __snake_case : Optional[Any]=None , **__snake_case : str ) -> Optional[Any]: if scheduler is None: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**__snake_case ) _lowerCAmelCase = scheduler_class(**__snake_case ) _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**__snake_case ) _lowerCAmelCase = scheduler_class(**__snake_case ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__snake_case ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(__snake_case , __snake_case ) _lowerCAmelCase = scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample return sample def lowercase__ ( self : Dict ) -> Tuple: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("""num_inference_steps""" , __snake_case ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**__snake_case ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(__snake_case , """set_timesteps""" ): scheduler.set_timesteps(__snake_case ) elif num_inference_steps is not None and not hasattr(__snake_case , """set_timesteps""" ): _lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase = scheduler.timesteps[5] _lowerCAmelCase = scheduler.timesteps[6] _lowerCAmelCase = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample _lowerCAmelCase = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase__ ( self : int ) -> Any: # make sure that iterating over schedulers with same config names gives same results # for defaults _lowerCAmelCase = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = self.full_loop(scheduler=__snake_case ) _lowerCAmelCase = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 _lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = self.full_loop(scheduler=__snake_case ) _lowerCAmelCase = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 def lowercase__ ( self : str ) -> Union[str, Any]: for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=__snake_case ) def lowercase__ ( self : Any ) -> Union[str, Any]: self.check_over_configs(thresholding=__snake_case ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__snake_case , prediction_type=__snake_case , sample_max_value=__snake_case , solver_order=__snake_case , solver_type=__snake_case , ) def lowercase__ ( self : Any ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__snake_case ) def lowercase__ ( self : Any ) -> Any: for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__snake_case , solver_type=__snake_case , prediction_type=__snake_case , ) _lowerCAmelCase = self.full_loop( solver_order=__snake_case , solver_type=__snake_case , prediction_type=__snake_case , ) assert not torch.isnan(__snake_case ).any(), "Samples have nan numbers" def lowercase__ ( self : List[Any] ) -> str: self.check_over_configs(lower_order_final=__snake_case ) self.check_over_configs(lower_order_final=__snake_case ) def lowercase__ ( self : Optional[Any] ) -> Any: for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=__snake_case , time_step=0 ) def lowercase__ ( self : int ) -> Any: _lowerCAmelCase = self.full_loop() _lowerCAmelCase = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 def lowercase__ ( self : Optional[Any] ) -> Dict: _lowerCAmelCase = self.full_loop(prediction_type="""v_prediction""" ) _lowerCAmelCase = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 0.10_14 ) < 1E-3 def lowercase__ ( self : str ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(thresholding=__snake_case , dynamic_thresholding_ratio=0 ) _lowerCAmelCase = scheduler_class(**__snake_case ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(__snake_case ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(__snake_case , __snake_case ) _lowerCAmelCase = scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample assert sample.dtype == torch.floataa def lowercase__ ( self : Any , **__snake_case : List[Any] ) -> List[str]: for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**__snake_case ) _lowerCAmelCase = scheduler_class(**__snake_case ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
70
import datasets from .evaluate import evaluate _A : Optional[int] = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' _A : int = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' _A : int = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def __lowerCamelCase ( self : Optional[Any] ) ->List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.Value('''string''' )}, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , ) def __lowerCamelCase ( self : Dict , A : Tuple , A : Tuple ) ->int: lowerCamelCase__ : Optional[Any] = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} lowerCamelCase__ : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] lowerCamelCase__ : Tuple = evaluate(dataset=A , predictions=A ) return score
142
0
import os import string import sys A_ : Any = 1 << 8 A_ : int = { 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } A_ : Union[str, Any] = KEYMAP['up'] A_ : List[str] = KEYMAP['left'] if sys.platform == "win32": A_ : Dict = [] A_ : Dict = { b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): A_ : str = ord(str(i)) def UpperCamelCase () -> str: if os.name == "nt": import msvcrt A__ : int = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase_ ) == 0: # Read the keystroke A__ : List[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): A__ : List[str] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: A__ : List[str] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(lowercase_ ) if ord(lowercase_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) A__ : Tuple = chr(KEYMAP["""esc"""] ) except KeyError: A__ : str = cha[1] else: A__ : Dict = ch.decode(lowercase_ ) else: A__ : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty A__ : int = sys.stdin.fileno() A__ : int = termios.tcgetattr(lowercase_ ) try: tty.setraw(lowercase_ ) A__ : int = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase_ , termios.TCSADRAIN , lowercase_ ) return ch def UpperCamelCase () -> Any: A__ : Dict = get_raw_chars() if ord(lowercase_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase_ ) == KEYMAP["esc"]: A__ : Tuple = get_raw_chars() if ord(lowercase_ ) == KEYMAP["mod_int"]: A__ : int = get_raw_chars() if ord(lowercase_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
365
import argparse from collections import defaultdict def UpperCamelCase (lowercase_: List[str] , lowercase_: Optional[int] , lowercase_: Optional[Any] , lowercase_: Union[str, Any] , lowercase_: Any ) -> int: A__ : Optional[Any] = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(lowercase_ , """r""" ) as f: A__ : Union[str, Any] = f.readlines() A__ : str = f"""class {class_name}(""" A__ : Optional[Any] = f"""{4 * ' '}def {test_name}(""" A__ : Union[str, Any] = f"""{8 * ' '}{correct_line.split()[0]}""" A__ : Optional[int] = f"""{16 * ' '}{correct_line.split()[0]}""" A__ : int = False A__ : str = False A__ : Tuple = False A__ : Optional[int] = False A__ : Optional[Any] = 0 A__ : Dict = 0 A__ : List[str] = [] for line in lines: if line.startswith(lowercase_ ): A__ : Dict = True elif in_class and line.startswith(lowercase_ ): A__ : Optional[Any] = True elif in_class and in_func and (line.startswith(lowercase_ ) or line.startswith(lowercase_ )): A__ : Tuple = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: A__ : Any = True if in_class and in_func and in_line: if ")" not in line: continue else: A__ : Dict = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * ' '}{correct_line}""" ) A__ : List[str] = False else: new_lines.append(lowercase_ ) with open(lowercase_ , """w""" ) as f: for line in new_lines: f.write(lowercase_ ) def UpperCamelCase (lowercase_: List[str] , lowercase_: Optional[Any]=None ) -> Any: if fail is not None: with open(lowercase_ , """r""" ) as f: A__ : Dict = {l.strip() for l in f.readlines()} else: A__ : List[str] = None with open(lowercase_ , """r""" ) as f: A__ : int = f.readlines() A__ : Union[str, Any] = defaultdict(lowercase_ ) for line in correct_lines: A__ , A__ , A__ , A__ : Optional[int] = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) A_ : Optional[Any] = parser.parse_args() main(args.correct_filename, args.fail_filename)
141
0
"""simple docstring""" import math def _snake_case ( lowercase__ ): if not isinstance(lowercase__ , lowercase__ ): _lowerCamelCase : Any = f'''Input value of [number={number}] must be an integer''' raise TypeError(lowercase__ ) if number < 1: _lowerCamelCase : Tuple = f'''Input value of [number={number}] must be > 0''' raise ValueError(lowercase__ ) elif number == 1: return 3 elif number == 2: return 5 else: _lowerCamelCase : Optional[Any] = int(math.log(number // 3 , 2 ) ) + 2 _lowerCamelCase : int = [3, 5] _lowerCamelCase : Dict = 2 _lowerCamelCase : Optional[int] = 3 for block in range(1 , lowercase__ ): for _ in range(lowercase__ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): lowercase__ = 0 try: lowercase__ = proth(number) except ValueError: print(F"ValueError: there is no {number}th Proth number") continue print(F"The {number}th Proth number: {value}")
96
"""simple docstring""" import math def _snake_case ( lowercase__ ): return math.sqrt(lowercase__ ) * math.sqrt(lowercase__ ) == num def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[Any] = n while left <= right: _lowerCamelCase : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: _lowerCamelCase : str = mid - 1 else: _lowerCamelCase : Optional[int] = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
96
1
from manim import * class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def A ( self : Dict ): '''simple docstring''' _snake_case = Rectangle(height=0.5 , width=0.5 ) _snake_case = Rectangle(height=0.25 , width=0.25 ) _snake_case = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _snake_case = [mem.copy() for i in range(6 )] _snake_case = [mem.copy() for i in range(6 )] _snake_case = VGroup(*lowercase ).arrange(lowercase , buff=0 ) _snake_case = VGroup(*lowercase ).arrange(lowercase , buff=0 ) _snake_case = VGroup(lowercase , lowercase ).arrange(lowercase , buff=0 ) _snake_case = Text('CPU' , font_size=24 ) _snake_case = Group(lowercase , lowercase ).arrange(lowercase , buff=0.5 , aligned_edge=lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase ) _snake_case = [mem.copy() for i in range(4 )] _snake_case = VGroup(*lowercase ).arrange(lowercase , buff=0 ) _snake_case = Text('GPU' , font_size=24 ) _snake_case = Group(lowercase , lowercase ).arrange(lowercase , buff=0.5 , aligned_edge=lowercase ) gpu.move_to([-1, -1, 0] ) self.add(lowercase ) _snake_case = [mem.copy() for i in range(6 )] _snake_case = VGroup(*lowercase ).arrange(lowercase , buff=0 ) _snake_case = Text('Model' , font_size=24 ) _snake_case = Group(lowercase , lowercase ).arrange(lowercase , buff=0.5 , aligned_edge=lowercase ) model.move_to([3, -1.0, 0] ) self.add(lowercase ) _snake_case = [] _snake_case = [] _snake_case = [] for i, rect in enumerate(lowercase ): rect.set_stroke(lowercase ) _snake_case = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=lowercase , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=lowercase , buff=0.0 ) self.add(lowercase ) model_cpu_arr.append(lowercase ) self.add(*lowercase , *lowercase , *lowercase ) _snake_case = [mem.copy() for i in range(6 )] _snake_case = VGroup(*lowercase ).arrange(lowercase , buff=0 ) _snake_case = Text('Loaded Checkpoint' , font_size=24 ) _snake_case = Group(lowercase , lowercase ).arrange(lowercase , buff=0.5 , aligned_edge=lowercase ) checkpoint.move_to([3, 0.5, 0] ) self.add(lowercase ) _snake_case = [] _snake_case = [] for i, rect in enumerate(lowercase ): _snake_case = fill.copy().set_fill(lowercase , opacity=0.7 ) target.move_to(lowercase ) ckpt_arr.append(lowercase ) _snake_case = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(lowercase ) self.add(*lowercase , *lowercase ) _snake_case = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _snake_case = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase , lowercase ) _snake_case = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(lowercase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(lowercase ) _snake_case = MarkupText( f'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) _snake_case = [meta_mem.copy() for i in range(6 )] _snake_case = [meta_mem.copy() for i in range(6 )] _snake_case = VGroup(*lowercase ).arrange(lowercase , buff=0 ) _snake_case = VGroup(*lowercase ).arrange(lowercase , buff=0 ) _snake_case = VGroup(lowercase , lowercase ).arrange(lowercase , buff=0 ) _snake_case = Text('Disk' , font_size=24 ) _snake_case = Group(lowercase , lowercase ).arrange(lowercase , buff=0.5 , aligned_edge=lowercase ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(lowercase , run_time=3 ) , Write(lowercase , run_time=1 ) , Create(lowercase , run_time=1 ) ) _snake_case = [] for i, rect in enumerate(lowercase ): _snake_case = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(lowercase , run_time=1.5 ) ) self.play(*lowercase ) self.play(FadeOut(lowercase ) ) _snake_case = MarkupText(f'''Then, the checkpoint is removed from memory\nthrough garbage collection.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase , run_time=3 ) ) self.play( FadeOut(lowercase , lowercase , *lowercase , *lowercase ) , ) self.wait()
130
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Tuple = RobertaTokenizer _UpperCAmelCase : Dict = RobertaTokenizerFast _UpperCAmelCase : List[Any] = True _UpperCAmelCase : Any = {"cls_token": "<s>"} def A ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case = dict(zip(lowercase , range(len(lowercase ) ) ) ) _snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase ) ) def A ( self : List[str] , **lowercase : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : List[str] , **lowercase : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Optional[Any] , lowercase : List[str] ): '''simple docstring''' _snake_case = 'lower newer' _snake_case = 'lower newer' return input_text, output_text def A ( self : str ): '''simple docstring''' _snake_case = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _snake_case = 'lower newer' _snake_case = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _snake_case = tokenizer.tokenize(lowercase ) # , add_prefix_space=True) self.assertListEqual(lowercase , lowercase ) _snake_case = tokens + [tokenizer.unk_token] _snake_case = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=lowercase ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=lowercase ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.tokenizer_class.from_pretrained('roberta-base' ) _snake_case = tokenizer.encode('sequence builders' , add_special_tokens=lowercase ) _snake_case = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase ) _snake_case = tokenizer.encode( 'sequence builders' , add_special_tokens=lowercase , add_prefix_space=lowercase ) _snake_case = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowercase , add_prefix_space=lowercase ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowercase ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def A ( self : int ): '''simple docstring''' _snake_case = self.get_tokenizer() _snake_case = 'Encode this sequence.' _snake_case = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase , lowercase ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase , lowercase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase , lowercase ) # Testing spaces after special tokens _snake_case = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase )} ) # mask token has a left space _snake_case = tokenizer.convert_tokens_to_ids(lowercase ) _snake_case = 'Encode <mask> sequence' _snake_case = 'Encode <mask>sequence' _snake_case = tokenizer.encode(lowercase ) _snake_case = encoded.index(lowercase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase , lowercase ) _snake_case = tokenizer.encode(lowercase ) _snake_case = encoded.index(lowercase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase , lowercase ) def A ( self : List[str] ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) _snake_case = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) _snake_case = 'A, <mask> AllenNLP sentence.' _snake_case = tokenizer_r.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) _snake_case = tokenizer_p.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowercase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def A ( self : str ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _snake_case = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _snake_case = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , lowercase ) self.assertEqual(post_processor_state['add_prefix_space'] , lowercase ) self.assertEqual(post_processor_state['trim_offsets'] , lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _snake_case = f'''{text_of_1_token} {text_of_1_token}''' _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ) + 1, 1 + len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , )
130
1
UpperCAmelCase_ = 8.314_4598 def lowerCAmelCase_ ( __UpperCAmelCase: float , __UpperCAmelCase: float ) -> float: if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example UpperCAmelCase_ = 300 UpperCAmelCase_ = 28 UpperCAmelCase_ = rms_speed_of_molecule(temperature, molar_mass) print(F'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
201
def lowerCAmelCase_ ( __UpperCAmelCase: float , __UpperCAmelCase: int ) -> float: if digit_amount > 0: return round(number - int(__UpperCAmelCase ) , __UpperCAmelCase ) return number - int(__UpperCAmelCase ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
201
1
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __a: """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,) -> str: UpperCAmelCase_ : Optional[Any] = parent UpperCAmelCase_ : Union[str, Any] = 13 UpperCAmelCase_ : Optional[int] = 7 UpperCAmelCase_ : List[str] = 30 UpperCAmelCase_ : Optional[Any] = self.seq_length + self.mem_len UpperCAmelCase_ : Dict = 15 UpperCAmelCase_ : List[str] = True UpperCAmelCase_ : str = True UpperCAmelCase_ : int = 99 UpperCAmelCase_ : List[Any] = [10, 50, 80] UpperCAmelCase_ : Union[str, Any] = 32 UpperCAmelCase_ : str = 32 UpperCAmelCase_ : List[str] = 4 UpperCAmelCase_ : Tuple = 8 UpperCAmelCase_ : str = 128 UpperCAmelCase_ : Any = 2 UpperCAmelCase_ : int = 2 UpperCAmelCase_ : str = None UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : Union[str, Any] = 3 UpperCAmelCase_ : Optional[Any] = self.vocab_size - 1 UpperCAmelCase_ : List[Any] = 0.01 def a__ ( self ) -> Dict: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : List[str] = TransfoXLConfig( vocab_size=self.vocab_size ,mem_len=self.mem_len ,clamp_len=self.clamp_len ,cutoffs=self.cutoffs ,d_model=self.hidden_size ,d_embed=self.d_embed ,n_head=self.num_attention_heads ,d_head=self.d_head ,d_inner=self.d_inner ,div_val=self.div_val ,n_layer=self.num_hidden_layers ,eos_token_id=self.eos_token_id ,pad_token_id=self.vocab_size - 1 ,init_range=self.init_range ,num_labels=self.num_labels ,) return (config, input_ids_a, input_ids_a, lm_labels) def a__ ( self ) -> Optional[Any]: random.seed(self.seed ) tf.random.set_seed(self.seed ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ : Any = TFTransfoXLModel(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ).to_tuple() UpperCAmelCase_ : Optional[int] = {"""input_ids""": input_ids_a, """mems""": mems_a} UpperCAmelCase_ : int = model(SCREAMING_SNAKE_CASE_ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Dict: UpperCAmelCase_ : int = TFTransfoXLLMHeadModel(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ).to_tuple() UpperCAmelCase_ : Tuple = {"""input_ids""": input_ids_a, """labels""": lm_labels} UpperCAmelCase_ : List[str] = model(SCREAMING_SNAKE_CASE_ ).to_tuple() UpperCAmelCase_ : Any = model([input_ids_a, mems_a] ).to_tuple() UpperCAmelCase_ : Tuple = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} UpperCAmelCase_ : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) self.parent.assertEqual(lm_logits_a.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: UpperCAmelCase_ : Union[str, Any] = TFTransfoXLForSequenceClassification(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : Any = self.prepare_config_and_inputs() (UpperCAmelCase_) : int = config_and_inputs UpperCAmelCase_ : int = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __a( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCAmelCase = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) lowerCAmelCase = () if is_tf_available() else () lowerCAmelCase = ( { 'feature-extraction': TFTransfoXLModel, 'text-classification': TFTransfoXLForSequenceClassification, 'text-generation': TFTransfoXLLMHeadModel, 'zero-shot': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[str]: if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def a__ ( self ) -> List[str]: UpperCAmelCase_ : Optional[int] = TFTransfoXLModelTester(self ) UpperCAmelCase_ : Optional[Any] = ConfigTester(self ,config_class=SCREAMING_SNAKE_CASE_ ,d_embed=37 ) def a__ ( self ) -> List[str]: self.config_tester.run_common_tests() def a__ ( self ) -> str: self.model_tester.set_seed() UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*SCREAMING_SNAKE_CASE_ ) def a__ ( self ) -> List[Any]: self.model_tester.set_seed() UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*SCREAMING_SNAKE_CASE_ ) def a__ ( self ) -> str: UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: UpperCAmelCase_ : Tuple = model.get_output_embeddings() assert isinstance(SCREAMING_SNAKE_CASE_ ,tf.keras.layers.Layer ) UpperCAmelCase_ : List[Any] = model.get_bias() assert name is None else: UpperCAmelCase_ : Optional[Any] = model.get_output_embeddings() assert x is None UpperCAmelCase_ : Tuple = model.get_bias() assert name is None def a__ ( self ) -> List[str]: # TODO JP: Make TransfoXL XLA compliant pass @slow def a__ ( self ) -> Any: for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = TFTransfoXLModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def a__ ( self ) -> List[str]: pass @require_tf class __a( unittest.TestCase ): """simple docstring""" @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def a__ ( self ) -> Tuple: UpperCAmelCase_ : int = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off UpperCAmelCase_ : Optional[Any] = tf.convert_to_tensor([[33,1_297,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,22,1_706,17,20_098,5,3_215,21,37,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,6_224,831,16_002,2,8,603,78_967,29_546,23,803,20,25,416,5,8,232,4,277,6,1_855,4_601,3,29_546,54,8,3_609,5,57_211,49,4,1,277,18,8,1_755,15_691,3,341,25,416,693,42_573,71,17,401,94,31,17_919,2,29_546,7_873,18,1,435,23,11_011,755,5,5_167,3,7_983,98,84,2,29_546,3_267,8,3_609,4,1,4_865,1_075,2,6_087,71,6,346,8,5_854,3,29_546,824,1_400,1_868,2,19,160,2,311,8,5_496,2,20_920,17,25,15_097,3,24,24,0]] ,dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off UpperCAmelCase_ : List[Any] = [33,1_297,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,22,1_706,17,20_098,5,3_215,21,37,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,6_224,831,16_002,2,8,603,78_967,29_546,23,803,20,25,416,5,8,232,4,277,6,1_855,4_601,3,29_546,54,8,3_609,5,57_211,49,4,1,277,18,8,1_755,15_691,3,341,25,416,693,42_573,71,17,401,94,31,17_919,2,29_546,7_873,18,1,435,23,11_011,755,5,5_167,3,7_983,98,84,2,29_546,3_267,8,3_609,4,1,4_865,1_075,2,6_087,71,6,346,8,5_854,3,29_546,824,1_400,1_868,2,19,160,2,311,8,5_496,2,20_920,17,25,15_097,3,24,24,0,33,1,1_857,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,28,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> UpperCAmelCase_ : List[Any] = model.generate(SCREAMING_SNAKE_CASE_ ,max_length=200 ,do_sample=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(output_ids[0].numpy().tolist() ,SCREAMING_SNAKE_CASE_ )
355
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __a = logging.get_logger(__name__) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : str = r'''\w+[.]\d+''' UpperCAmelCase_ : int = re.findall(_lowercase , _lowercase ) for pat in pats: UpperCAmelCase_ : List[Any] = key.replace(_lowercase , '''_'''.join(pat.split('''.''' ) ) ) return key def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Dict = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase_ : List[Any] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase_ : Any = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase_ : Tuple = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase_ : List[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase_ : List[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase_ : Dict = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": UpperCAmelCase_ : Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase_ : Any = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase_ : Tuple = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase=42 ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase_ : str = flax_model.init_weights(PRNGKey(_lowercase ) ) UpperCAmelCase_ : List[Any] = flatten_dict(_lowercase ) UpperCAmelCase_ : int = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase_ : Optional[int] = rename_key(_lowercase ) UpperCAmelCase_ : List[str] = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters UpperCAmelCase_, UpperCAmelCase_ : Any = rename_key_and_reshape_tensor(_lowercase , _lowercase , _lowercase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown UpperCAmelCase_ : int = jnp.asarray(_lowercase ) return unflatten_dict(_lowercase )
235
0
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) def __lowercase ( _A , _A , _A ) -> Tuple: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def __lowercase ( _A , _A , _A = None ) -> Any: SCREAMING_SNAKE_CASE : List[str] = tesseract_config if tesseract_config is not None else """""" # apply OCR SCREAMING_SNAKE_CASE : List[Any] = to_pil_image(_A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = pil_image.size SCREAMING_SNAKE_CASE : int = pytesseract.image_to_data(_A , lang=_A , output_type="""dict""" , config=_A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates SCREAMING_SNAKE_CASE : int = [idx for idx, word in enumerate(_A ) if not word.strip()] SCREAMING_SNAKE_CASE : Dict = [word for idx, word in enumerate(_A ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE : Optional[Any] = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE : int = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE : str = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE : str = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format SCREAMING_SNAKE_CASE : Any = [] for x, y, w, h in zip(_A , _A , _A , _A ): SCREAMING_SNAKE_CASE : str = [x, y, x + w, y + h] actual_boxes.append(_A ) # finally, normalize the bounding boxes SCREAMING_SNAKE_CASE : int = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_A , _A , _A ) ) assert len(_A ) == len(_A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] =["""pixel_values"""] def __init__( self : str , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = "" , **UpperCAmelCase__ : List[Any] , ) ->None: """simple docstring""" super().__init__(**UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = size if size is not None else {"""height""": 2_2_4, """width""": 2_2_4} SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = do_resize SCREAMING_SNAKE_CASE : List[Any] = size SCREAMING_SNAKE_CASE : Dict = resample SCREAMING_SNAKE_CASE : Optional[int] = apply_ocr SCREAMING_SNAKE_CASE : List[str] = ocr_lang SCREAMING_SNAKE_CASE : Tuple = tesseract_config def _lowercase ( self : int , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Dict , ) ->np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) SCREAMING_SNAKE_CASE : Dict = (size["""height"""], size["""width"""]) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Dict , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : Optional[Any] , ) ->PIL.Image.Image: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : List[str] = size if size is not None else self.size SCREAMING_SNAKE_CASE : Dict = get_size_dict(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : Tuple = apply_ocr if apply_ocr is not None else self.apply_ocr SCREAMING_SNAKE_CASE : Optional[Any] = ocr_lang if ocr_lang is not None else self.ocr_lang SCREAMING_SNAKE_CASE : str = tesseract_config if tesseract_config is not None else self.tesseract_config SCREAMING_SNAKE_CASE : List[str] = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : int = [to_numpy_array(UpperCAmelCase__ ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : int = [] for image in images: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = apply_tesseract(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) words_batch.append(UpperCAmelCase__ ) boxes_batch.append(UpperCAmelCase__ ) if do_resize: SCREAMING_SNAKE_CASE : Tuple = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) SCREAMING_SNAKE_CASE : Union[str, Any] = [flip_channel_order(UpperCAmelCase__ ) for image in images] SCREAMING_SNAKE_CASE : Union[str, Any] = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] SCREAMING_SNAKE_CASE : Dict = BatchFeature(data={"""pixel_values""": images} , tensor_type=UpperCAmelCase__ ) if apply_ocr: SCREAMING_SNAKE_CASE : Optional[Any] = words_batch SCREAMING_SNAKE_CASE : List[Any] = boxes_batch return data
245
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCAmelCase__ : Tuple = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase ) class a__ ( UpperCAmelCase ): """simple docstring""" def __init__( self : Any , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Dict ) ->List[str]: """simple docstring""" super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) requires_backends(self , """vision""" ) self.check_model_type(UpperCAmelCase__ ) def __call__( self : Any , UpperCAmelCase__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCAmelCase__ : List[str] ) ->Any: """simple docstring""" return super().__call__(UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Dict , **UpperCAmelCase__ : Optional[int] ) ->Any: """simple docstring""" return {}, {}, {} def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Tuple ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = load_image(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = image.size SCREAMING_SNAKE_CASE : Tuple = self.image_processor(images=UpperCAmelCase__ , return_tensors=self.framework ) return model_inputs def _lowercase ( self : int , UpperCAmelCase__ : Any ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.model(**UpperCAmelCase__ ) return model_outputs def _lowercase ( self : Tuple , UpperCAmelCase__ : Union[str, Any] ) ->str: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = model_outputs.predicted_depth SCREAMING_SNAKE_CASE : Any = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = prediction.squeeze().cpu().numpy() SCREAMING_SNAKE_CASE : str = (output * 2_5_5 / np.max(UpperCAmelCase__ )).astype("""uint8""" ) SCREAMING_SNAKE_CASE : Tuple = Image.fromarray(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = {} SCREAMING_SNAKE_CASE : Dict = predicted_depth SCREAMING_SNAKE_CASE : Optional[int] = depth return output_dict
245
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable snake_case : Tuple = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = ['''DPTFeatureExtractor'''] snake_case : List[Any] = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[str] = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys snake_case : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
109
def __lowercase ( __lowerCAmelCase : int ): if num <= 0: raise ValueError('Input must be a positive integer' ) a__ = [True] * (num + 1) a__ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , __lowerCAmelCase ): a__ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() snake_case : Optional[Any] = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
109
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _SCREAMING_SNAKE_CASE : str = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys _SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
183
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin _SCREAMING_SNAKE_CASE : Optional[int] = ''' Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] ''' class a ( unittest.TestCase , __snake_case ): def UpperCamelCase ( self : int ) -> Optional[int]: lowerCamelCase_ = load_tool('text-question-answering' ) self.tool.setup() lowerCamelCase_ = load_tool('text-question-answering' , remote=__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Dict ) -> Tuple: lowerCamelCase_ = self.tool(__SCREAMING_SNAKE_CASE , 'What did Hugging Face do in April 2021?' ) self.assertEqual(__SCREAMING_SNAKE_CASE , 'launched the BigScience Research Workshop' ) def UpperCamelCase ( self : List[Any] ) -> Optional[int]: lowerCamelCase_ = self.remote_tool(__SCREAMING_SNAKE_CASE , 'What did Hugging Face do in April 2021?' ) self.assertEqual(__SCREAMING_SNAKE_CASE , 'launched the BigScience Research Workshop' ) def UpperCamelCase ( self : List[str] ) -> Optional[int]: lowerCamelCase_ = self.tool(text=__SCREAMING_SNAKE_CASE , question='What did Hugging Face do in April 2021?' ) self.assertEqual(__SCREAMING_SNAKE_CASE , 'launched the BigScience Research Workshop' ) def UpperCamelCase ( self : Union[str, Any] ) -> int: lowerCamelCase_ = self.remote_tool(text=__SCREAMING_SNAKE_CASE , question='What did Hugging Face do in April 2021?' ) self.assertEqual(__SCREAMING_SNAKE_CASE , 'launched the BigScience Research Workshop' )
183
1
'''simple docstring''' import math import flax.linen as nn import jax.numpy as jnp def a_ ( __snake_case : jnp.ndarray , __snake_case : int , __snake_case : float = 1 , __snake_case : float = 1 , __snake_case : float = 1.0e4 , __snake_case : bool = False , __snake_case : float = 1.0 , ) -> jnp.ndarray: """simple docstring""" assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F'''Embedding dimension {embedding_dim} should be even''' lowerCamelCase_ =float(embedding_dim // 2 ) lowerCamelCase_ =math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) lowerCamelCase_ =min_timescale * jnp.exp(jnp.arange(__snake_case , dtype=jnp.floataa ) * -log_timescale_increment ) lowerCamelCase_ =jnp.expand_dims(__snake_case , 1 ) * jnp.expand_dims(__snake_case , 0 ) # scale embeddings lowerCamelCase_ =scale * emb if flip_sin_to_cos: lowerCamelCase_ =jnp.concatenate([jnp.cos(__snake_case ), jnp.sin(__snake_case )] , axis=1 ) else: lowerCamelCase_ =jnp.concatenate([jnp.sin(__snake_case ), jnp.cos(__snake_case )] , axis=1 ) lowerCamelCase_ =jnp.reshape(__snake_case , [jnp.shape(__snake_case )[0], embedding_dim] ) return signal class __UpperCamelCase ( nn.Module ): lowercase : int =32 lowercase : jnp.dtype =jnp.floataa @nn.compact def __call__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =nn.Dense(self.time_embed_dim, dtype=self.dtype, name='''linear_1''' )(lowerCAmelCase ) lowerCamelCase_ =nn.silu(lowerCAmelCase ) lowerCamelCase_ =nn.Dense(self.time_embed_dim, dtype=self.dtype, name='''linear_2''' )(lowerCAmelCase ) return temb class __UpperCamelCase ( nn.Module ): lowercase : int =32 lowercase : bool =False lowercase : float =1 @nn.compact def __call__( self, lowerCAmelCase ): """simple docstring""" return get_sinusoidal_embeddings( lowerCAmelCase, embedding_dim=self.dim, flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.freq_shift )
363
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : str =['speech'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''speech'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Any =['speech'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''speech'''] )
6
0
'''simple docstring''' import argparse from collections import defaultdict import yaml __lowerCamelCase = '''docs/source/en/_toctree.yml''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]: A_ = defaultdict(UpperCAmelCase__ ) for doc in model_doc: counts[doc["local"]] += 1 A_ = [key for key, value in counts.items() if value > 1] A_ = [] for duplicate_key in duplicates: A_ = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(UpperCAmelCase__ ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(UpperCAmelCase__, key=lambda UpperCAmelCase__ : s["title"].lower() ) def UpperCAmelCase__ ( UpperCAmelCase__=False ) -> Tuple: with open(UpperCAmelCase__, encoding="""utf-8""" ) as f: A_ = yaml.safe_load(f.read() ) # Get to the API doc A_ = 0 while content[api_idx]["title"] != "API": api_idx += 1 A_ = content[api_idx]["""sections"""] # Then to the model doc A_ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 A_ = api_doc[model_idx]["""sections"""] A_ = [(idx, section) for idx, section in enumerate(UpperCAmelCase__ ) if """sections""" in section] A_ = False for idx, modality_doc in modalities_docs: A_ = modality_doc["""sections"""] A_ = clean_model_doc_toc(UpperCAmelCase__ ) if old_modality_doc != new_modality_doc: A_ = True if overwrite: A_ = new_modality_doc if diff: if overwrite: A_ = model_doc A_ = api_doc with open(UpperCAmelCase__, """w""", encoding="""utf-8""" ) as f: f.write(yaml.dump(UpperCAmelCase__, allow_unicode=UpperCAmelCase__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __lowerCamelCase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
162
'''simple docstring''' from __future__ import annotations def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: A_ = len(UpperCAmelCase__ ) # We need to create solution object to save path. A_ = [[0 for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )] A_ = run_maze(UpperCAmelCase__, 0, 0, UpperCAmelCase__ ) if solved: print("""\n""".join(str(UpperCAmelCase__ ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> bool: A_ = len(UpperCAmelCase__ ) # Final check point. if i == j == (size - 1): A_ = 1 return True A_ = (not i < 0) and (not j < 0) # Check lower bounds A_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. A_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited A_ = 1 # check for directions if ( run_maze(UpperCAmelCase__, i + 1, UpperCAmelCase__, UpperCAmelCase__ ) or run_maze(UpperCAmelCase__, UpperCAmelCase__, j + 1, UpperCAmelCase__ ) or run_maze(UpperCAmelCase__, i - 1, UpperCAmelCase__, UpperCAmelCase__ ) or run_maze(UpperCAmelCase__, UpperCAmelCase__, j - 1, UpperCAmelCase__ ) ): return True A_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
162
1
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def a( A : Tuple , A : List[str] , A : Tuple , A : int ) -> Union[str, Any]: """simple docstring""" if isinstance(A , A ): a = np.full((len(A ), sequence_length, 2) , A ) else: a = np.full((len(A ), sequence_length) , A ) for i, tensor in enumerate(A ): if padding_side == "right": if isinstance(A , A ): a = tensor[:sequence_length] else: a = tensor[:sequence_length] else: if isinstance(A , A ): a = tensor[:sequence_length] else: a = tensor[:sequence_length] return out_tensor.tolist() def a( A : Union[str, Any] ) -> Optional[int]: """simple docstring""" a = ord(A ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True a = unicodedata.category(A ) if cat.startswith("P" ): return True return False @dataclass class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = 42 __A = True __A = None __A = None __A = -100 __A = "pt" def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" import torch a = "label" if "label" in features[0].keys() else "labels" a = [feature[label_name] for feature in features] if label_name in features[0].keys() else None a = self.tokenizer.pad( lowerCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , ) if labels is None: return batch a = torch.tensor(batch["entity_ids"] ).shape[1] a = self.tokenizer.padding_side if padding_side == "right": a = [ list(lowerCamelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(lowerCamelCase_ )) for label in labels ] else: a = [ [self.label_pad_token_id] * (sequence_length - len(lowerCamelCase_ )) + list(lowerCamelCase_ ) for label in labels ] a = [feature["ner_tags"] for feature in features] a = padding_tensor(lowerCamelCase_ , -1 , lowerCamelCase_ , lowerCamelCase_ ) a = [feature["original_entity_spans"] for feature in features] a = padding_tensor(lowerCamelCase_ , (-1, -1) , lowerCamelCase_ , lowerCamelCase_ ) a = {k: torch.tensor(lowerCamelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
365
def a( A : int , A : float , A : float ) -> float: """simple docstring""" return round(float(moles / volume ) * nfactor ) def a( A : float , A : float , A : float ) -> float: """simple docstring""" return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def a( A : float , A : float , A : float ) -> float: """simple docstring""" return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def a( A : float , A : float , A : float ) -> float: """simple docstring""" return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
71
0
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return EnvironmentCommand() class _a ( UpperCamelCase__ ): @staticmethod def lowerCamelCase_ ( UpperCamelCase_: ArgumentParser ) -> str: """simple docstring""" lowercase__ = parser.add_parser('''env''' ) download_parser.set_defaults(func=UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Tuple: """simple docstring""" lowercase__ = huggingface_hub.__version__ lowercase__ = '''not installed''' lowercase__ = '''NA''' if is_torch_available(): import torch lowercase__ = torch.__version__ lowercase__ = torch.cuda.is_available() lowercase__ = '''not installed''' if is_transformers_available(): import transformers lowercase__ = transformers.__version__ lowercase__ = '''not installed''' if is_accelerate_available(): import accelerate lowercase__ = accelerate.__version__ lowercase__ = '''not installed''' if is_xformers_available(): import xformers lowercase__ = xformers.__version__ lowercase__ = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': f'{pt_version} ({pt_cuda_available})', '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(UpperCamelCase_ ) ) return info @staticmethod def lowerCamelCase_ ( UpperCamelCase_: Dict ) -> Optional[int]: """simple docstring""" return "\n".join([f'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
110
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _a ( UpperCamelCase__ ): _lowercase : torch.FloatTensor class _a ( nn.Module ): def __init__( self: int , UpperCamelCase_: int=3 , UpperCamelCase_: Optional[Any]=3 , UpperCamelCase_: Union[str, Any]=("DownEncoderBlock2D",) , UpperCamelCase_: Optional[int]=(64,) , UpperCamelCase_: Tuple=2 , UpperCamelCase_: Dict=32 , UpperCamelCase_: Any="silu" , UpperCamelCase_: Optional[int]=True , ) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ = layers_per_block lowercase__ = torch.nn.Convad( UpperCamelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) lowercase__ = None lowercase__ = nn.ModuleList([] ) # down lowercase__ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase_ ): lowercase__ = output_channel lowercase__ = block_out_channels[i] lowercase__ = i == len(UpperCamelCase_ ) - 1 lowercase__ = get_down_block( UpperCamelCase_ , num_layers=self.layers_per_block , in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase_ , resnet_groups=UpperCamelCase_ , attention_head_dim=UpperCamelCase_ , temb_channels=UpperCamelCase_ , ) self.down_blocks.append(UpperCamelCase_ ) # mid lowercase__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=UpperCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase_ , temb_channels=UpperCamelCase_ , ) # out lowercase__ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase_ , eps=1E-6 ) lowercase__ = nn.SiLU() lowercase__ = 2 * out_channels if double_z else out_channels lowercase__ = nn.Convad(block_out_channels[-1] , UpperCamelCase_ , 3 , padding=1 ) lowercase__ = False def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: str ) -> str: """simple docstring""" lowercase__ = x lowercase__ = self.conv_in(UpperCamelCase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase_: Dict ): def custom_forward(*UpperCamelCase_: List[str] ): return module(*UpperCamelCase_ ) return custom_forward # down if is_torch_version('''>=''' , '''1.11.0''' ): for down_block in self.down_blocks: lowercase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase_ ) , UpperCamelCase_ , use_reentrant=UpperCamelCase_ ) # middle lowercase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase_ , use_reentrant=UpperCamelCase_ ) else: for down_block in self.down_blocks: lowercase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase_ ) , UpperCamelCase_ ) # middle lowercase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase_ ) else: # down for down_block in self.down_blocks: lowercase__ = down_block(UpperCamelCase_ ) # middle lowercase__ = self.mid_block(UpperCamelCase_ ) # post-process lowercase__ = self.conv_norm_out(UpperCamelCase_ ) lowercase__ = self.conv_act(UpperCamelCase_ ) lowercase__ = self.conv_out(UpperCamelCase_ ) return sample class _a ( nn.Module ): def __init__( self: Dict , UpperCamelCase_: int=3 , UpperCamelCase_: Optional[Any]=3 , UpperCamelCase_: int=("UpDecoderBlock2D",) , UpperCamelCase_: Any=(64,) , UpperCamelCase_: Optional[Any]=2 , UpperCamelCase_: List[Any]=32 , UpperCamelCase_: Optional[Any]="silu" , UpperCamelCase_: Dict="group" , ) -> Any: """simple docstring""" super().__init__() lowercase__ = layers_per_block lowercase__ = nn.Convad( UpperCamelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) lowercase__ = None lowercase__ = nn.ModuleList([] ) lowercase__ = in_channels if norm_type == '''spatial''' else None # mid lowercase__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=UpperCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase_ , temb_channels=UpperCamelCase_ , ) # up lowercase__ = list(reversed(UpperCamelCase_ ) ) lowercase__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase_ ): lowercase__ = output_channel lowercase__ = reversed_block_out_channels[i] lowercase__ = i == len(UpperCamelCase_ ) - 1 lowercase__ = get_up_block( UpperCamelCase_ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , prev_output_channel=UpperCamelCase_ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=UpperCamelCase_ , resnet_groups=UpperCamelCase_ , attention_head_dim=UpperCamelCase_ , temb_channels=UpperCamelCase_ , resnet_time_scale_shift=UpperCamelCase_ , ) self.up_blocks.append(UpperCamelCase_ ) lowercase__ = output_channel # out if norm_type == "spatial": lowercase__ = SpatialNorm(block_out_channels[0] , UpperCamelCase_ ) else: lowercase__ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase_ , eps=1E-6 ) lowercase__ = nn.SiLU() lowercase__ = nn.Convad(block_out_channels[0] , UpperCamelCase_ , 3 , padding=1 ) lowercase__ = False def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[str]=None ) -> int: """simple docstring""" lowercase__ = z lowercase__ = self.conv_in(UpperCamelCase_ ) lowercase__ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase_: List[str] ): def custom_forward(*UpperCamelCase_: int ): return module(*UpperCamelCase_ ) return custom_forward if is_torch_version('''>=''' , '''1.11.0''' ): # middle lowercase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase_ , UpperCamelCase_ , use_reentrant=UpperCamelCase_ ) lowercase__ = sample.to(UpperCamelCase_ ) # up for up_block in self.up_blocks: lowercase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ , use_reentrant=UpperCamelCase_ ) else: # middle lowercase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = sample.to(UpperCamelCase_ ) # up for up_block in self.up_blocks: lowercase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ ) else: # middle lowercase__ = self.mid_block(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = sample.to(UpperCamelCase_ ) # up for up_block in self.up_blocks: lowercase__ = up_block(UpperCamelCase_ , UpperCamelCase_ ) # post-process if latent_embeds is None: lowercase__ = self.conv_norm_out(UpperCamelCase_ ) else: lowercase__ = self.conv_norm_out(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.conv_act(UpperCamelCase_ ) lowercase__ = self.conv_out(UpperCamelCase_ ) return sample class _a ( nn.Module ): def __init__( self: Tuple , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: List[str]="random" , UpperCamelCase_: Union[str, Any]=False , UpperCamelCase_: Dict=True ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ = n_e lowercase__ = vq_embed_dim lowercase__ = beta lowercase__ = legacy lowercase__ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) lowercase__ = remap if self.remap is not None: self.register_buffer('''used''' , torch.tensor(np.load(self.remap ) ) ) lowercase__ = self.used.shape[0] lowercase__ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": lowercase__ = self.re_embed lowercase__ = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: lowercase__ = n_e lowercase__ = sane_index_shape def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Any ) -> Dict: """simple docstring""" lowercase__ = inds.shape assert len(UpperCamelCase_ ) > 1 lowercase__ = inds.reshape(ishape[0] , -1 ) lowercase__ = self.used.to(UpperCamelCase_ ) lowercase__ = (inds[:, :, None] == used[None, None, ...]).long() lowercase__ = match.argmax(-1 ) lowercase__ = match.sum(2 ) < 1 if self.unknown_index == "random": lowercase__ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: lowercase__ = self.unknown_index return new.reshape(UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple ) -> str: """simple docstring""" lowercase__ = inds.shape assert len(UpperCamelCase_ ) > 1 lowercase__ = inds.reshape(ishape[0] , -1 ) lowercase__ = self.used.to(UpperCamelCase_ ) if self.re_embed > self.used.shape[0]: # extra token lowercase__ = 0 # simply set to zero lowercase__ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase_ ) return back.reshape(UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Any ) -> Tuple: """simple docstring""" lowercase__ = z.permute(0 , 2 , 3 , 1 ).contiguous() lowercase__ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z lowercase__ = torch.argmin(torch.cdist(UpperCamelCase_ , self.embedding.weight ) , dim=1 ) lowercase__ = self.embedding(UpperCamelCase_ ).view(z.shape ) lowercase__ = None lowercase__ = None # compute loss for embedding if not self.legacy: lowercase__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: lowercase__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients lowercase__ = z + (z_q - z).detach() # reshape back to match original input shape lowercase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: lowercase__ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis lowercase__ = self.remap_to_used(UpperCamelCase_ ) lowercase__ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: lowercase__ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: List[Any] ) -> List[str]: """simple docstring""" if self.remap is not None: lowercase__ = indices.reshape(shape[0] , -1 ) # add batch axis lowercase__ = self.unmap_to_all(UpperCamelCase_ ) lowercase__ = indices.reshape(-1 ) # flatten again # get quantized latent vectors lowercase__ = self.embedding(UpperCamelCase_ ) if shape is not None: lowercase__ = z_q.view(UpperCamelCase_ ) # reshape back to match original input shape lowercase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class _a ( UpperCamelCase__ ): def __init__( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any]=False ) -> str: """simple docstring""" lowercase__ = parameters lowercase__ , lowercase__ = torch.chunk(UpperCamelCase_ , 2 , dim=1 ) lowercase__ = torch.clamp(self.logvar , -30.0 , 20.0 ) lowercase__ = deterministic lowercase__ = torch.exp(0.5 * self.logvar ) lowercase__ = torch.exp(self.logvar ) if self.deterministic: lowercase__ = lowercase__ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Optional[torch.Generator] = None ) -> torch.FloatTensor: """simple docstring""" lowercase__ = randn_tensor( self.mean.shape , generator=UpperCamelCase_ , device=self.parameters.device , dtype=self.parameters.dtype ) lowercase__ = self.mean + self.std * sample return x def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: str=None ) -> Tuple: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Any , UpperCamelCase_: Any=[1, 2, 3] ) -> Tuple: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) lowercase__ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> Any: """simple docstring""" return self.mean
110
1
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=4 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = True snake_case_ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] __lowerCamelCase = [1, 11, 50_265] self.assertEqual(list(output.shape ) , lowerCamelCase__ ) # compare the actual values for a slice. __lowerCamelCase = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] # compare the actual values for a slice. __lowerCamelCase = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
348
import requests __A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None: """simple docstring""" __lowerCamelCase = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
348
1
def _UpperCAmelCase ( a__ , a__): '''simple docstring''' print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""") for i in range(a__): for j in range(a__): if dist[i][j] != float("""inf"""): print(int(dist[i][j]) , end="""\t""") else: print("""INF""" , end="""\t""") print() def _UpperCAmelCase ( a__ , a__): '''simple docstring''' a_ : List[Any] = [[float("""inf""") for _ in range(a__)] for _ in range(a__)] for i in range(a__): for j in range(a__): a_ : str = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(a__): # looping through rows of graph array for i in range(a__): # looping through columns of graph array for j in range(a__): if ( dist[i][k] != float("""inf""") and dist[k][j] != float("""inf""") and dist[i][k] + dist[k][j] < dist[i][j] ): a_ : Union[str, Any] = dist[i][k] + dist[k][j] _print_dist(a__ , a__) return dist, v if __name__ == "__main__": __snake_case : Any = int(input("""Enter number of vertices: """)) __snake_case : int = int(input("""Enter number of edges: """)) __snake_case : List[Any] = [[float("""inf""") for i in range(v)] for j in range(v)] for i in range(v): __snake_case : Union[str, Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("""\nEdge """, i + 1) __snake_case : List[Any] = int(input("""Enter source:""")) __snake_case : List[str] = int(input("""Enter destination:""")) __snake_case : Dict = float(input("""Enter weight:""")) __snake_case : Union[str, Any] = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
248
# Algorithm for the pigeonhole sorting def _UpperCAmelCase ( a__): '''simple docstring''' a_ : List[Any] = min(a__) # min() finds the minimum value a_ : List[str] = max(a__) # max() finds the maximum value a_ : str = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size a_ : Any = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(a__ , a__), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. a_ : Tuple = 0 for count in range(a__): while holes[count] > 0: holes[count] -= 1 a_ : Optional[Any] = count + min_val i += 1 def _UpperCAmelCase ( ): '''simple docstring''' a_ : List[Any] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(a__) print("""Sorted order is:""" , """ """.join(a__)) if __name__ == "__main__": main()
248
1
'''simple docstring''' from __future__ import annotations def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : list[list[int]] = [] _UpperCAmelCase : list[int] = [] _UpperCAmelCase : str = 0 _UpperCAmelCase : Dict = sum(__lowerCAmelCase ) create_state_space_tree(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return result def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): if sum(__lowerCAmelCase ) > max_sum or (remaining_nums_sum + sum(__lowerCAmelCase )) < max_sum: return if sum(__lowerCAmelCase ) == max_sum: result.append(__lowerCAmelCase ) return for index in range(__lowerCAmelCase , len(__lowerCAmelCase ) ): create_state_space_tree( __lowerCAmelCase , __lowerCAmelCase , index + 1 , [*path, nums[index]] , __lowerCAmelCase , remaining_nums_sum - nums[index] , ) lowerCamelCase__ = [3, 34, 4, 12, 5, 2] lowerCamelCase__ = 9 lowerCamelCase__ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
368
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase__ = TypeVar('T') class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Union[str, Any] , lowerCamelCase__ : T ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = data _UpperCAmelCase : Node[T] | None = None def __str__( self : Any ) ->str: '''simple docstring''' return F"""{self.data}""" class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) ->None: '''simple docstring''' _UpperCAmelCase : Node[T] | None = None def __iter__( self : List[str] ) ->Iterator[T]: '''simple docstring''' _UpperCAmelCase : Any = self.top while node: yield node.data _UpperCAmelCase : Dict = node.next def __str__( self : Dict ) ->str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __len__( self : Optional[int] ) ->int: '''simple docstring''' return len(tuple(iter(self ) ) ) def lowerCAmelCase__ ( self : List[Any] ) ->bool: '''simple docstring''' return self.top is None def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : T ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = Node(lowerCamelCase__ ) if not self.is_empty(): _UpperCAmelCase : Tuple = self.top _UpperCAmelCase : List[str] = node def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.top _UpperCAmelCase : Optional[Any] = self.top.next return pop_node.data def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def lowerCAmelCase__ ( self : List[Any] ) ->None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
322
0
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : int ) -> int: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError('Input must be an integer' ) if input_num <= 0: raise ValueError('Input must be positive' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
47
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowercase__ : Optional[Any] = logging.getLogger() def a__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) _UpperCamelCase = parser.parse_args() return args.f def a__ ( lowercase : Dict ) -> int: """simple docstring""" _UpperCamelCase = {} _UpperCamelCase = os.path.join(lowercase, '''all_results.json''' ) if os.path.exists(lowercase ): with open(lowercase, '''r''' ) as f: _UpperCamelCase = json.load(lowercase ) else: raise ValueError(F"""can't find {path}""" ) return results def a__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowercase__ : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @classmethod def snake_case__ ( cls : Optional[int] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) _UpperCamelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Tuple ) -> int: '''simple docstring''' shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Any ) -> Dict: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase = 7 if get_gpu_count() > 1 else 2 _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : int ) -> int: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : List[str] ) -> int: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : str ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''translation_no_trainer''' ) ) ) @slow def snake_case__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCAmelCase__ ) _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''image_classification_no_trainer''' ) ) )
324
0
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __a ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] , lowercase_ : Dict ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): UpperCamelCase__ : Union[str, Any] =model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(lowercase_ ) def _lowerCAmelCase ( self : List[str] ): UpperCamelCase__ : List[Any] ='''sshleifer/tiny-gpt2''' UpperCamelCase__ : Dict =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=lowercase_ , multi_process=lowercase_ , ) UpperCamelCase__ : str =TensorFlowBenchmark(lowercase_ ) UpperCamelCase__ : int =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self : int ): UpperCamelCase__ : Any ='''sgugger/tiny-distilbert-classification''' UpperCamelCase__ : List[Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , only_pretrain_model=lowercase_ , ) UpperCamelCase__ : str =TensorFlowBenchmark(lowercase_ ) UpperCamelCase__ : int =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self : List[str] ): UpperCamelCase__ : Any ='''sshleifer/tiny-gpt2''' UpperCamelCase__ : Dict =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) UpperCamelCase__ : Any =TensorFlowBenchmark(lowercase_ ) UpperCamelCase__ : List[str] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ : int ='''sshleifer/tiny-gpt2''' UpperCamelCase__ : Optional[Any] =AutoConfig.from_pretrained(lowercase_ ) UpperCamelCase__ : int =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=lowercase_ , multi_process=lowercase_ , ) UpperCamelCase__ : Tuple =TensorFlowBenchmark(lowercase_ , [config] ) UpperCamelCase__ : Optional[int] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self : Tuple ): UpperCamelCase__ : List[str] ='''sshleifer/tiny-gpt2''' UpperCamelCase__ : List[Any] =AutoConfig.from_pretrained(lowercase_ ) UpperCamelCase__ : Optional[int] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) UpperCamelCase__ : Any =TensorFlowBenchmark(lowercase_ , [config] ) UpperCamelCase__ : Any =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : Dict ='''sshleifer/tiny-gpt2''' UpperCamelCase__ : Optional[Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) UpperCamelCase__ : List[Any] =TensorFlowBenchmark(lowercase_ ) UpperCamelCase__ : List[str] =benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : List[Any] ='''sshleifer/tiny-gpt2''' UpperCamelCase__ : Any =AutoConfig.from_pretrained(lowercase_ ) UpperCamelCase__ : Optional[Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) UpperCamelCase__ : int =TensorFlowBenchmark(lowercase_ , [config] ) UpperCamelCase__ : Dict =benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowerCAmelCase ( self : Union[str, Any] ): UpperCamelCase__ : str ='''patrickvonplaten/t5-tiny-random''' UpperCamelCase__ : Optional[int] =AutoConfig.from_pretrained(lowercase_ ) UpperCamelCase__ : str =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) UpperCamelCase__ : List[Any] =TensorFlowBenchmark(lowercase_ , configs=[config] ) UpperCamelCase__ : List[str] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ : Union[str, Any] ='''sshleifer/tiny-gpt2''' UpperCamelCase__ : List[str] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=lowercase_ , multi_process=lowercase_ , ) UpperCamelCase__ : List[Any] =TensorFlowBenchmark(lowercase_ ) UpperCamelCase__ : Optional[Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self : List[str] ): UpperCamelCase__ : Union[str, Any] ='''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ : int =TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=lowercase_ , save_to_csv=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowercase_ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(lowercase_ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(lowercase_ , '''env.csv''' ) , multi_process=lowercase_ , ) UpperCamelCase__ : Optional[int] =TensorFlowBenchmark(lowercase_ ) benchmark.run() self.assertTrue(Path(os.path.join(lowercase_ , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_ , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_ , '''env.csv''' ) ).exists() ) def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : Optional[Any] ='''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(lowercase_ : List[Any] ): self.assertTrue(hasattr(lowercase_ , '''sequential''' ) ) self.assertTrue(hasattr(lowercase_ , '''cumulative''' ) ) self.assertTrue(hasattr(lowercase_ , '''current''' ) ) self.assertTrue(hasattr(lowercase_ , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ : str =TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowercase_ , '''log.txt''' ) , log_print=lowercase_ , trace_memory_line_by_line=lowercase_ , eager_mode=lowercase_ , multi_process=lowercase_ , ) UpperCamelCase__ : str =TensorFlowBenchmark(lowercase_ ) UpperCamelCase__ : Any =benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(lowercase_ , '''log.txt''' ) ).exists() )
157
"""simple docstring""" import torch from diffusers import StableDiffusionPipeline _SCREAMING_SNAKE_CASE : Optional[int] = """path-to-your-trained-model""" _SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") _SCREAMING_SNAKE_CASE : Dict = """A photo of sks dog in a bucket""" _SCREAMING_SNAKE_CASE : Any = pipe(prompt, num_inference_steps=5_0, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
157
1
"""simple docstring""" from collections import defaultdict def lowercase ( __snake_case : str , __snake_case : str ): lowercase_ : int = first_str.lower().strip() lowercase_ : Any = second_str.lower().strip() # Remove whitespace lowercase_ : int = first_str.replace(''' ''' , '''''' ) lowercase_ : Optional[int] = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(__snake_case ) != len(__snake_case ): return False # Default values for count should be 0 lowercase_ : defaultdict[str, int] = defaultdict(__snake_case ) # For each character in input strings, # increment count in the corresponding for i in range(len(__snake_case ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __A : Optional[Any] = input('''Enter the first string ''').strip() __A : Any = input('''Enter the second string ''').strip() __A : Any = check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {'' if status else 'not '}anagrams.""")
33
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ : Dict = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Union[str, Any] = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : int = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys lowerCAmelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
143
0
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , a__ : Any , a__ : Tuple=sys.maxsize ): __magic_name__ = '''bilinear''' __magic_name__ = max_size __magic_name__ = short_edge_length def __call__( self : Tuple , a__ : List[str] ): __magic_name__ = [] for img in imgs: __magic_name__ , __magic_name__ = img.shape[:2] # later: provide list and randomly choose index for resize __magic_name__ = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img __magic_name__ = size * 1.0 / min(a__ , a__ ) if h < w: __magic_name__ , __magic_name__ = size, scale * w else: __magic_name__ , __magic_name__ = scale * h, size if max(a__ , a__ ) > self.max_size: __magic_name__ = self.max_size * 1.0 / max(a__ , a__ ) __magic_name__ = newh * scale __magic_name__ = neww * scale __magic_name__ = int(neww + 0.5 ) __magic_name__ = int(newh + 0.5 ) if img.dtype == np.uinta: __magic_name__ = Image.fromarray(a__ ) __magic_name__ = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) __magic_name__ = np.asarray(a__ ) else: __magic_name__ = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw __magic_name__ = nn.functional.interpolate( a__ , (newh, neww) , mode=self.interp_method , align_corners=a__ ).squeeze(0 ) img_augs.append(a__ ) return img_augs class _SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , a__ : Tuple ): __magic_name__ = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) __magic_name__ = cfg.INPUT.FORMAT __magic_name__ = cfg.SIZE_DIVISIBILITY __magic_name__ = cfg.PAD_VALUE __magic_name__ = cfg.INPUT.MAX_SIZE_TEST __magic_name__ = cfg.MODEL.DEVICE __magic_name__ = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __magic_name__ = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __magic_name__ = lambda a__ : (x - self.pixel_mean) / self.pixel_std def snake_case__ ( self : Union[str, Any] , a__ : Dict ): __magic_name__ = tuple(max(a__ ) for s in zip(*[img.shape for img in images] ) ) __magic_name__ = [im.shape[-2:] for im in images] __magic_name__ = [ nn.functional.pad( a__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(a__ , a__ ) ] return torch.stack(a__ ), torch.tensor(a__ ) def __call__( self : Dict , a__ : Dict , a__ : List[str]=False ): with torch.no_grad(): if not isinstance(a__ , a__ ): __magic_name__ = [images] if single_image: assert len(a__ ) == 1 for i in range(len(a__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(a__ , images.pop(a__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( a__ , torch.as_tensor(img_tensorize(images.pop(a__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge __magic_name__ = torch.tensor([im.shape[:2] for im in images] ) __magic_name__ = self.aug(a__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __magic_name__ = [self.normalizer(a__ ) for x in images] # now pad them to do the following operations __magic_name__ , __magic_name__ = self.pad(a__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __magic_name__ = torch.true_divide(a__ , a__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def UpperCamelCase ( a , a ) -> List[Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def UpperCamelCase ( a , a ) -> Any: '''simple docstring''' assert torch.isfinite(a ).all(), "Box tensor contains infinite or NaN!" __magic_name__ , __magic_name__ = box_size tensor[:, 0].clamp_(min=0 , max=a ) tensor[:, 1].clamp_(min=0 , max=a ) tensor[:, 2].clamp_(min=0 , max=a ) tensor[:, 3].clamp_(min=0 , max=a )
364
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] _lowerCAmelCase = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
98
0
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Union[str, Any] = SwinConfig(image_size=192 ) if "base" in model_name: lowercase__ : List[Any] = 6 lowercase__ : List[str] = 128 lowercase__ : Optional[Any] = (2, 2, 18, 2) lowercase__ : Optional[int] = (4, 8, 16, 32) elif "large" in model_name: lowercase__ : Optional[Any] = 12 lowercase__ : List[str] = 192 lowercase__ : int = (2, 2, 18, 2) lowercase__ : Optional[int] = (6, 12, 24, 48) else: raise ValueError("Model not supported, only supports base and large variants" ) lowercase__ : str = window_size lowercase__ : Union[str, Any] = embed_dim lowercase__ : List[str] = depths lowercase__ : Any = num_heads return config def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" if "encoder.mask_token" in name: lowercase__ : Any = name.replace("encoder.mask_token" , "embeddings.mask_token" ) if "encoder.patch_embed.proj" in name: lowercase__ : Tuple = name.replace("encoder.patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "encoder.patch_embed.norm" in name: lowercase__ : Dict = name.replace("encoder.patch_embed.norm" , "embeddings.norm" ) if "attn.proj" in name: lowercase__ : Union[str, Any] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowercase__ : List[Any] = name.replace("attn" , "attention.self" ) if "norm1" in name: lowercase__ : Any = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowercase__ : Optional[int] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowercase__ : Dict = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowercase__ : List[str] = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": lowercase__ : str = "layernorm.weight" if name == "encoder.norm.bias": lowercase__ : List[Any] = "layernorm.bias" if "decoder" in name: pass else: lowercase__ : List[str] = "swin." + name return name def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ : Optional[int] = orig_state_dict.pop(lowerCamelCase__ ) if "attn_mask" in key: pass elif "qkv" in key: lowercase__ : Dict = key.split("." ) lowercase__ : Tuple = int(key_split[2] ) lowercase__ : Optional[int] = int(key_split[4] ) lowercase__ : Optional[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ : List[Any] = val[:dim, :] lowercase__ : Optional[Any] = val[ dim : dim * 2, : ] lowercase__ : Any = val[-dim:, :] else: lowercase__ : int = val[ :dim ] lowercase__ : str = val[ dim : dim * 2 ] lowercase__ : str = val[ -dim: ] else: lowercase__ : int = val return orig_state_dict def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[Any] = torch.load(lowerCamelCase__ , map_location="cpu" )["model"] lowercase__ : Optional[Any] = get_swin_config(lowerCamelCase__ ) lowercase__ : Any = SwinForMaskedImageModeling(lowerCamelCase__ ) model.eval() lowercase__ : List[str] = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) lowercase__ : int = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = ViTImageProcessor(size={"height": 192, "width": 192} ) lowercase__ : Union[str, Any] = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) lowercase__ : List[Any] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ) with torch.no_grad(): lowercase__ : Union[str, Any] = model(**lowerCamelCase__ ).logits print(outputs.keys() ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print(F"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(F"""microsoft/{model_name}""" ) image_processor.push_to_hub(F"""microsoft/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCAmelCase__ = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
130
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__(_UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = LEDTokenizer lowercase_ = LEDTokenizerFast lowercase_ = True def snake_case ( self : str ): super().setUp() lowercase__ : Tuple = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase__ : Any = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) lowercase__ : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ : List[str] = {"unk_token": "<unk>"} lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE ) ) def snake_case ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE : int ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[int] , **SCREAMING_SNAKE_CASE : Tuple ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def snake_case ( self : str , SCREAMING_SNAKE_CASE : Optional[int] ): return "lower newer", "lower newer" @cached_property def snake_case ( self : List[str] ): return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def snake_case ( self : Union[str, Any] ): return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def snake_case ( self : str ): lowercase__ : List[str] = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ : List[str] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : str = tokenizer(SCREAMING_SNAKE_CASE , max_length=len(SCREAMING_SNAKE_CASE ) , padding=SCREAMING_SNAKE_CASE , return_tensors="pt" ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowercase__ : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @require_torch def snake_case ( self : Optional[int] ): lowercase__ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Any = tokenizer(SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , return_tensors="pt" ) self.assertIn("input_ids" , SCREAMING_SNAKE_CASE ) self.assertIn("attention_mask" , SCREAMING_SNAKE_CASE ) self.assertNotIn("labels" , SCREAMING_SNAKE_CASE ) self.assertNotIn("decoder_attention_mask" , SCREAMING_SNAKE_CASE ) @require_torch def snake_case ( self : List[str] ): lowercase__ : List[str] = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Any = tokenizer(text_target=SCREAMING_SNAKE_CASE , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def snake_case ( self : Optional[int] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Tuple = tokenizer( ["I am a small frog" * 1_024, "I am a small frog"] , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , return_tensors="pt" ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def snake_case ( self : Tuple ): lowercase__ : int = ["A long paragraph for summarization."] lowercase__ : Union[str, Any] = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Tuple = tokenizer(SCREAMING_SNAKE_CASE , return_tensors="pt" ) lowercase__ : List[str] = tokenizer(text_target=SCREAMING_SNAKE_CASE , return_tensors="pt" ) lowercase__ : Union[str, Any] = inputs["input_ids"] lowercase__ : List[str] = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def snake_case ( self : Dict ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Optional[int] = ["Summary of the text.", "Another summary."] lowercase__ : List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowercase__ : Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = [[0] * len(SCREAMING_SNAKE_CASE ) for x in encoded_output["input_ids"]] lowercase__ : Optional[int] = tokenizer.pad(SCREAMING_SNAKE_CASE ) self.assertSequenceEqual(outputs["global_attention_mask"] , SCREAMING_SNAKE_CASE ) def snake_case ( self : List[str] ): pass def snake_case ( self : str ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : Tuple = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = "A, <mask> AllenNLP sentence." lowercase__ : Any = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE ) self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) lowercase__ : Optional[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) lowercase__ : str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
130
1
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC a : Optional[Any] = parse(importlib.metadata.version('''torch''')) def _SCREAMING_SNAKE_CASE ( _lowercase : Union[str, Version] , _lowercase : str , _lowercase : str ) ->List[str]: '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) a : List[str] = STR_OPERATION_TO_FUNC[operation] if isinstance(_lowercase , _lowercase ): a : Optional[int] = parse(importlib.metadata.version(_lowercase ) ) return operation(_lowercase , parse(_lowercase ) ) def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : str ) ->List[str]: '''simple docstring''' return compare_versions(_lowercase , _lowercase , _lowercase )
79
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def _SCREAMING_SNAKE_CASE ( _lowercase : dict ) ->tuple: '''simple docstring''' return (data["data"], data["target"]) def _SCREAMING_SNAKE_CASE ( _lowercase : np.ndarray , _lowercase : np.ndarray ) ->XGBClassifier: '''simple docstring''' a : List[Any] = XGBClassifier() classifier.fit(_lowercase , _lowercase ) return classifier def _SCREAMING_SNAKE_CASE ( ) ->None: '''simple docstring''' a : List[str] = load_iris() a, a : Optional[int] = data_handling(_lowercase ) a, a, a, a : Tuple = train_test_split( _lowercase , _lowercase , test_size=0.25 ) a : List[Any] = iris["target_names"] # Create an XGBoost Classifier from the training data a : Dict = xgboost(_lowercase , _lowercase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _lowercase , _lowercase , _lowercase , display_labels=_lowercase , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
79
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : Any = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
91
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowercase_ , '''hidden_sizes''')) self.parent.assertTrue(hasattr(lowercase_ , '''num_attention_heads''')) class lowerCAmelCase__ : '''simple docstring''' def __init__( self : str , lowercase_ : Union[str, Any] , lowercase_ : List[Any]=13 , lowercase_ : Dict=64 , lowercase_ : Dict=3 , lowercase_ : Optional[Any]=3 , lowercase_ : List[Any]=2 , lowercase_ : Any=1 , lowercase_ : List[Any]=16 , lowercase_ : int=[128, 256, 384] , lowercase_ : str=[4, 6, 8] , lowercase_ : Optional[Any]=[2, 3, 4] , lowercase_ : Union[str, Any]=[16, 16, 16] , lowercase_ : Optional[Any]=0 , lowercase_ : Optional[int]=[2, 2, 2] , lowercase_ : Any=[2, 2, 2] , lowercase_ : List[str]=0.02 , lowercase_ : Any=True , lowercase_ : Union[str, Any]=True , lowercase_ : Optional[int]=2 , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = parent SCREAMING_SNAKE_CASE_ : Any = batch_size SCREAMING_SNAKE_CASE_ : Optional[Any] = image_size SCREAMING_SNAKE_CASE_ : int = num_channels SCREAMING_SNAKE_CASE_ : List[Any] = kernel_size SCREAMING_SNAKE_CASE_ : Optional[Any] = stride SCREAMING_SNAKE_CASE_ : List[str] = padding SCREAMING_SNAKE_CASE_ : int = hidden_sizes SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : int = depths SCREAMING_SNAKE_CASE_ : Optional[Any] = key_dim SCREAMING_SNAKE_CASE_ : Optional[Any] = drop_path_rate SCREAMING_SNAKE_CASE_ : Tuple = patch_size SCREAMING_SNAKE_CASE_ : Optional[Any] = attention_ratio SCREAMING_SNAKE_CASE_ : str = mlp_ratio SCREAMING_SNAKE_CASE_ : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE_ : Any = is_training SCREAMING_SNAKE_CASE_ : Tuple = use_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_labels SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size] , self.num_labels) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : Any , lowercase_ : int , lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = LevitModel(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(lowercase_) SCREAMING_SNAKE_CASE_ : Any = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = image_size[0], image_size[1] for _ in range(4): SCREAMING_SNAKE_CASE_ : List[Any] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1) SCREAMING_SNAKE_CASE_ : Dict = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4) * ceil(width / 4), self.hidden_sizes[-1]) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = LevitForImageClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) __UpperCamelCase = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = LevitModelTester(self) SCREAMING_SNAKE_CASE_ : List[Any] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' return @unittest.skip(reason='''Levit does not use inputs_embeds''') def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' pass @unittest.skip(reason='''Levit does not support input and output embeddings''') def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' pass @unittest.skip(reason='''Levit does not output attentions''') def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Any = model_class(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : Dict = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' def check_hidden_states_output(lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : str): SCREAMING_SNAKE_CASE_ : str = model_class(lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Tuple = model(**self._prepare_for_class(lowercase_ , lowercase_)) SCREAMING_SNAKE_CASE_ : str = outputs.hidden_states SCREAMING_SNAKE_CASE_ : Optional[int] = len(self.model_tester.depths) + 1 self.assertEqual(len(lowercase_) , lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_size[0], image_size[1] for _ in range(4): SCREAMING_SNAKE_CASE_ : Optional[Any] = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1) SCREAMING_SNAKE_CASE_ : Optional[int] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[int] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ : Tuple = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Tuple=False): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Union[str, Any] = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowercase_) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_class(lowercase_) model.to(lowercase_) model.train() SCREAMING_SNAKE_CASE_ : Optional[Any] = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = model(**lowercase_).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Optional[int] = True for model_class in self.all_model_classes: if model_class in get_values(lowercase_) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE_ : List[str] = model_class(lowercase_) model.gradient_checkpointing_enable() model.to(lowercase_) model.train() SCREAMING_SNAKE_CASE_ : Dict = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = model(**lowercase_).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[Any] = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowercase_), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}'): SCREAMING_SNAKE_CASE_ : Optional[int] = problem_type['''title'''] SCREAMING_SNAKE_CASE_ : Optional[int] = problem_type['''num_labels'''] SCREAMING_SNAKE_CASE_ : str = model_class(lowercase_) model.to(lowercase_) model.train() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE_ : str = inputs['''labels'''].unsqueeze(1).repeat(1 , problem_type['''num_labels''']) SCREAMING_SNAKE_CASE_ : Any = inputs['''labels'''].to(problem_type['''dtype''']) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowercase_) as warning_list: SCREAMING_SNAKE_CASE_ : int = model(**lowercase_).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( F'Something is going wrong in the regression problem: intercepted {w.message}') loss.backward() @slow def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Optional[Any] = LevitModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def _A () -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = self.default_image_processor SCREAMING_SNAKE_CASE_ : str = prepare_img() SCREAMING_SNAKE_CASE_ : List[Any] = image_processor(images=lowercase_ , return_tensors='''pt''').to(lowercase_) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Any = model(**lowercase_) # verify the logits SCREAMING_SNAKE_CASE_ : Tuple = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([1.04_48, -0.37_45, -1.83_17]).to(lowercase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4))
91
1
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , ) -> str: if attention_mask is None: a = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: a = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: a = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=_lowerCAmelCase) if decoder_head_mask is None: a = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_lowerCAmelCase) if cross_attn_head_mask is None: a = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_lowerCAmelCase) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class a__ : def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=16 , A=2 , A=4 , A=4 , A="relu" , A=0.1 , A=0.1 , A=0.0 , A=0.0 , A=20 , A=2 , A=1 , A=0 , ) -> List[str]: '''simple docstring''' a = parent a = batch_size a = seq_length a = is_training a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = encoder_layerdrop a = decoder_layerdrop a = max_position_embeddings a = eos_token_id a = pad_token_id a = bos_token_id def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = self.eos_token_id # Eos Token a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input a = input_ids.clamp(self.pad_token_id + 1 ) a = decoder_input_ids.clamp(self.pad_token_id + 1 ) a = self.get_config() a = prepare_mam_aaa_inputs_dict(snake_case_ , snake_case_ , snake_case_ ) return config, inputs_dict def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' a = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase_ ( self , A , A ) -> int: '''simple docstring''' a = MaMaaaModel(config=snake_case_ ).get_decoder().to(snake_case_ ).eval() a = inputs_dict["""input_ids"""] a = inputs_dict["""attention_mask"""] a = inputs_dict["""head_mask"""] # first forward pass a = model(snake_case_ , attention_mask=snake_case_ , head_mask=snake_case_ , use_cache=snake_case_ ) a = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids a = ids_tensor((self.batch_size, 3) , config.vocab_size ) a = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and a = torch.cat([input_ids, next_tokens] , dim=-1 ) a = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) a = model(snake_case_ , attention_mask=snake_case_ )["""last_hidden_state"""] a = model(snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ )[ """last_hidden_state""" ] # select random slice a = ids_tensor((1,) , output_from_past.shape[-1] ).item() a = output_from_no_past[:, -3:, random_slice_idx].detach() a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1e-2 ) ) def lowerCAmelCase_ ( self , A , A ) -> List[Any]: '''simple docstring''' a = MaMaaaModel(config=snake_case_ ).to(snake_case_ ).eval() a = model(**snake_case_ ) a = outputs.encoder_last_hidden_state a = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: a = model.get_encoder() encoder.save_pretrained(snake_case_ ) a = MaMaaaEncoder.from_pretrained(snake_case_ ).to(snake_case_ ) a = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: a = model.get_decoder() decoder.save_pretrained(snake_case_ ) a = MaMaaaDecoder.from_pretrained(snake_case_ ).to(snake_case_ ) a = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=snake_case_ , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class a__ ( _a , _a , _a , unittest.TestCase ): a : Union[str, Any] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a : Tuple = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a : int = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a : List[str] = True a : str = True a : List[str] = False a : int = False def lowerCAmelCase_ ( self , A , A , A , A , A ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' a = MaMaaaModelTester(self ) a = ConfigTester(self , config_class=snake_case_ ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: a = model_class(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) a = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertEqual(info["missing_keys"] , [] ) def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*snake_case_ ) def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ ) def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): a = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() a = copy.deepcopy(self._prepare_for_class(snake_case_ , snake_case_ ) ) if not self.is_encoder_decoder: a = inputs["""input_ids"""] del inputs["input_ids"] else: a = inputs["""input_ids"""] a = inputs.get("decoder_input_ids" , snake_case_ ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , snake_case_ ) a = model.get_input_embeddings() if not self.is_encoder_decoder: a = wte(snake_case_ ) else: a = wte(snake_case_ ) a = wte(snake_case_ ) with torch.no_grad(): model(**snake_case_ )[0] def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() a = input_dict["""input_ids"""] a = input_ids.ne(1 ).to(snake_case_ ) a = MaMaaaForConditionalGeneration(snake_case_ ).eval().to(snake_case_ ) if torch_device == "cuda": model.half() model.generate(snake_case_ , attention_mask=snake_case_ ) model.generate(num_beams=4 , do_sample=snake_case_ , early_stopping=snake_case_ , num_return_sequences=3 ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Optional[Any]: return torch.tensor(_lowerCAmelCase , dtype=torch.long , device=_lowerCAmelCase) lowercase__ : Union[str, Any] = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class a__ ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' a = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(snake_case_ ) a = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) a = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) a = prepare_mam_aaa_inputs_dict(model.config , snake_case_ , snake_case_ ) with torch.no_grad(): a = model(**snake_case_ )[0] a = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , snake_case_ ) # change to expected output here a = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=snake_case_ ) ) def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' a = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(snake_case_ ) # change to intended input a = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) a = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) a = prepare_mam_aaa_inputs_dict(model.config , snake_case_ , snake_case_ ) with torch.no_grad(): a = model(**snake_case_ )[0] a = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , snake_case_ ) # change to expected output here a = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=snake_case_ ) ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' a = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(snake_case_ ) a = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) a = [ """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent""" """ Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de""" """ l'ampleur de la surveillance américaine sur l'ensemble des communications en France.""", ] # The below article tests that we don't add any hypotheses outside of the top n_beams a = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) a = model.generate( input_ids=dct["input_ids"].to(snake_case_ ) , attention_mask=dct["attention_mask"].to(snake_case_ ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) a = [ """The NSA case highlights the total absence of intelligence debate""", """I think there are two levels of response from the French government.""", """When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.""" """ Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all""" """ communications in France.""", ] a = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=snake_case_ , skip_special_tokens=snake_case_ ) assert generated == expected_en
371
import math def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__UpperCamelCase) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE ( __UpperCamelCase = 0.1) -> int: a = 3 a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(__UpperCamelCase) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
180
0
'''simple docstring''' def snake_case_ (_a : Union[str, Any] , _a : Dict ): UpperCAmelCase = len(snake_case__ ) + 1 UpperCAmelCase = len(snake_case__ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase = [[0 for i in range(snake_case__ )] for j in range(snake_case__ )] # since string of zero length match pattern of zero length UpperCAmelCase = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , snake_case__ ): UpperCAmelCase = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , snake_case__ ): UpperCAmelCase = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , snake_case__ ): for j in range(1 , snake_case__ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase = dp[i - 1][j] else: UpperCAmelCase = 0 else: UpperCAmelCase = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") A ='''aab''' A ='''c*a*b''' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f"""{input_string} matches the given pattern {pattern}""") else: print(f"""{input_string} does not match with the given pattern {pattern}""")
34
import unittest import numpy as np def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , ) -> np.ndarray: lowerCAmelCase = np.shape(snake_case__ ) lowerCAmelCase = np.shape(snake_case__ ) lowerCAmelCase = np.shape(snake_case__ ) if shape_a[0] != shape_b[0]: lowerCAmelCase = ( '''Expected the same number of rows for A and B. ''' f"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(snake_case__ ) if shape_b[1] != shape_c[1]: lowerCAmelCase = ( '''Expected the same number of columns for B and C. ''' f"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(snake_case__ ) lowerCAmelCase = pseudo_inv if a_inv is None: try: lowerCAmelCase = np.linalg.inv(snake_case__ ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class lowercase_ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->None: lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCAmelCase = np.array([[2, 1], [6, 3]] ) lowerCAmelCase = schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCAmelCase = np.block([[a, b], [b.T, c]] ) lowerCAmelCase = np.linalg.det(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = np.linalg.det(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = np.linalg.det(__SCREAMING_SNAKE_CASE ) self.assertAlmostEqual(__SCREAMING_SNAKE_CASE , det_a * det_s ) def SCREAMING_SNAKE_CASE_ ( self ) ->None: lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCAmelCase = np.array([[2, 1], [6, 3]] ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->None: lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCAmelCase = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
338
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _A = logging.get_logger(__name__) _A = {'''vocab_file''': '''spiece.model'''} _A = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } _A = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) _A = 0 _A = 1 _A = 2 _A = 3 _A = 4 class A ( __UpperCAmelCase ): __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = 'left' def __init__( self, UpperCamelCase__, UpperCamelCase__=False, UpperCamelCase__=True, UpperCamelCase__=False, UpperCamelCase__="<s>", UpperCamelCase__="</s>", UpperCamelCase__="<unk>", UpperCamelCase__="<sep>", UpperCamelCase__="<pad>", UpperCamelCase__="<cls>", UpperCamelCase__="<mask>", UpperCamelCase__=["<eop>", "<eod>"], UpperCamelCase__ = None, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else mask_token lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase__, remove_space=UpperCamelCase__, keep_accents=UpperCamelCase__, bos_token=UpperCamelCase__, eos_token=UpperCamelCase__, unk_token=UpperCamelCase__, sep_token=UpperCamelCase__, pad_token=UpperCamelCase__, cls_token=UpperCamelCase__, mask_token=UpperCamelCase__, additional_special_tokens=UpperCamelCase__, sp_model_kwargs=self.sp_model_kwargs, **UpperCamelCase__, ) lowerCAmelCase_ = 3 lowerCAmelCase_ = do_lower_case lowerCAmelCase_ = remove_space lowerCAmelCase_ = keep_accents lowerCAmelCase_ = vocab_file lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return len(self.sp_model ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowerCAmelCase_ = self.__dict__.copy() lowerCAmelCase_ = None return state def __setstate__( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowerCAmelCase_ = {} lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if self.remove_space: lowerCAmelCase_ = ''' '''.join(inputs.strip().split() ) else: lowerCAmelCase_ = inputs lowerCAmelCase_ = outputs.replace('''``''', '''"''' ).replace('''\'\'''', '''"''' ) if not self.keep_accents: lowerCAmelCase_ = unicodedata.normalize('''NFKD''', UpperCamelCase__ ) lowerCAmelCase_ = ''''''.join([c for c in outputs if not unicodedata.combining(UpperCamelCase__ )] ) if self.do_lower_case: lowerCAmelCase_ = outputs.lower() return outputs def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.preprocess_text(UpperCamelCase__ ) lowerCAmelCase_ = self.sp_model.encode(UpperCamelCase__, out_type=UpperCamelCase__ ) lowerCAmelCase_ = [] for piece in pieces: if len(UpperCamelCase__ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): lowerCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCamelCase__, '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCAmelCase_ = cur_pieces[1:] else: lowerCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCamelCase__ ) else: new_pieces.append(UpperCamelCase__ ) return new_pieces def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return self.sp_model.PieceToId(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return self.sp_model.IdToPiece(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = ''''''.join(UpperCamelCase__ ).replace(UpperCamelCase__, ''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = False, UpperCamelCase__ = None, UpperCamelCase__ = True, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = kwargs.pop('''use_source_tokenizer''', UpperCamelCase__ ) lowerCAmelCase_ = self.convert_ids_to_tokens(UpperCamelCase__, skip_special_tokens=UpperCamelCase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCAmelCase_ = [] lowerCAmelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCamelCase__ ) ) lowerCAmelCase_ = [] sub_texts.append(UpperCamelCase__ ) else: current_sub_text.append(UpperCamelCase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCamelCase__ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowerCAmelCase_ = ''''''.join(UpperCamelCase__ ) lowerCAmelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCAmelCase_ = self.clean_up_tokenization(UpperCamelCase__ ) return clean_text else: return text def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None, UpperCamelCase__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__, token_ids_a=UpperCamelCase__, already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is not None: return ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] return ([0] * len(UpperCamelCase__ )) + [1, 1] def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" if not os.path.isdir(UpperCamelCase__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase_ = os.path.join( UpperCamelCase__, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__, '''wb''' ) as fi: lowerCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
167
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device _A = False class A ( unittest.TestCase ): pass @nightly @require_torch_gpu class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = '''A painting of a squirrel eating a burger ''' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=UpperCamelCase__, generator=UpperCamelCase__, guidance_scale=7.5, num_inference_steps=2, output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCamelCase__ ) lowerCAmelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained(UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = generator.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=UpperCamelCase__, generator=UpperCamelCase__, guidance_scale=7.5, num_inference_steps=2, output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''', torch_dtype=torch.floataa ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = '''A painting of a squirrel eating a burger ''' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=UpperCamelCase__, generator=UpperCamelCase__, guidance_scale=7.5, num_inference_steps=50, output_type='''numpy''' ).images lowerCAmelCase_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase_ = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
167
1
from __future__ import annotations def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Dict ) -> list[int]: '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = len(a__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _UpperCAmelCase = i + 1 else: _UpperCAmelCase = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
339
from __future__ import annotations import typing from collections import Counter def __lowerCAmelCase ( a__ ) -> typing.Counter[int]: __a = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a__ , max_perimeter + 1 ): __a = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a__ ): __a = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __lowerCAmelCase ( a__ = 1000 ) -> int: __a = pythagorean_triple(a__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
6
0
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __lowercase ( pl.LightningModule ): """simple docstring""" def __init__( self , A ) -> Any: '''simple docstring''' super().__init__() lowerCamelCase = model lowerCamelCase = 2 lowerCamelCase = nn.Linear(self.model.config.hidden_size , self.num_labels ) def __A ( self ) -> int: '''simple docstring''' pass def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = LongformerModel.from_pretrained(lowerCamelCase__ ) lowerCamelCase = LightningModel(lowerCamelCase__ ) lowerCamelCase = torch.load(lowerCamelCase__ , map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model lowerCamelCase = LongformerForQuestionAnswering.from_pretrained(lowerCamelCase__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowerCamelCase__ ) print(f'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
66
import math import tensorflow as tf from packaging import version def __lowerCamelCase ( lowerCamelCase__ : Optional[Any] ): '''simple docstring''' lowerCamelCase = tf.convert_to_tensor(lowerCamelCase__ ) lowerCamelCase = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCamelCase ( lowerCamelCase__ : Dict ): '''simple docstring''' lowerCamelCase = tf.convert_to_tensor(lowerCamelCase__ ) lowerCamelCase = tf.cast(math.pi , x.dtype ) lowerCamelCase = tf.cast(0.0_4_4_7_1_5 , x.dtype ) lowerCamelCase = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase__ , 3 )) )) return x * cdf def __lowerCamelCase ( lowerCamelCase__ : Any ): '''simple docstring''' lowerCamelCase = tf.convert_to_tensor(lowerCamelCase__ ) return x * tf.tanh(tf.math.softplus(lowerCamelCase__ ) ) def __lowerCamelCase ( lowerCamelCase__ : List[Any] ): '''simple docstring''' lowerCamelCase = tf.convert_to_tensor(lowerCamelCase__ ) lowerCamelCase = tf.cast(0.0_4_4_7_1_5 , x.dtype ) lowerCamelCase = tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = tf.convert_to_tensor(lowerCamelCase__ ) lowerCamelCase = tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCamelCase ( lowerCamelCase__ : List[str] ): '''simple docstring''' return tf.clip_by_value(_gelu(lowerCamelCase__ ) , -10 , 10 ) def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int]=-1 ): '''simple docstring''' lowerCamelCase , lowerCamelCase = tf.split(lowerCamelCase__ , 2 , axis=lowerCamelCase__ ) return a * tf.math.sigmoid(lowerCamelCase__ ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def __lowerCamelCase ( lowerCamelCase__ : List[str] ): '''simple docstring''' return tf.keras.activations.gelu(lowerCamelCase__ , approximate=lowerCamelCase__ ) UpperCAmelCase : Union[str, Any] = tf.keras.activations.gelu UpperCAmelCase : Optional[Any] = approximate_gelu_wrap else: UpperCAmelCase : List[Any] = _gelu UpperCAmelCase : str = _gelu_new UpperCAmelCase : Union[str, Any] = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def __lowerCamelCase ( lowerCamelCase__ : List[Any] ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
66
1
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def UpperCamelCase_( lowerCamelCase_ ) -> int: _lowercase : Optional[Any] = prime_factors(lowerCamelCase_ ) if is_square_free(lowerCamelCase_ ): return -1 if len(lowerCamelCase_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
21
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def UpperCamelCase_( lowerCamelCase_ ) -> bool: _lowercase : int = int(number**0.5 ) return number == sq * sq def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> tuple[int, int]: _lowercase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _lowercase : int = x_den * y_den * z_den _lowercase : int = gcd(lowerCamelCase_ , lowerCamelCase_ ) top //= hcf bottom //= hcf return top, bottom def UpperCamelCase_( lowerCamelCase_ = 35 ) -> int: _lowercase : set = set() _lowercase : int _lowercase : Fraction = Fraction(0 ) _lowercase : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _lowercase : int = x_num * y_den + x_den * y_num _lowercase : int = x_den * y_den _lowercase : str = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : List[Any] = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 _lowercase : Dict = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _lowercase : List[Any] = x_den * x_den * y_den * y_den if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): _lowercase : Tuple = int(sqrt(lowerCamelCase_ ) ) _lowercase : int = int(sqrt(lowerCamelCase_ ) ) _lowercase : Any = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : Optional[int] = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=-1 _lowercase : Any = x_num * y_num _lowercase : str = x_den * y_num + x_num * y_den _lowercase : Any = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : int = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 _lowercase : str = x_num * x_num * y_num * y_num _lowercase : Optional[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): _lowercase : Tuple = int(sqrt(lowerCamelCase_ ) ) _lowercase : List[str] = int(sqrt(lowerCamelCase_ ) ) _lowercase : Union[str, Any] = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : Tuple = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) for num, den in unique_s: total += Fraction(lowerCamelCase_ , lowerCamelCase_ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"{solution() = }")
21
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Any = StableDiffusionInstructPixaPixPipeline _UpperCAmelCase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"} _UpperCAmelCase : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _UpperCAmelCase : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def A ( self : int ): '''simple docstring''' torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _snake_case = PNDMScheduler(skip_prk_steps=lowercase ) torch.manual_seed(0 ) _snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) _snake_case = CLIPTextModel(lowercase ) _snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def A ( self : List[Any] , lowercase : List[Any] , lowercase : Optional[Any]=0 ): '''simple docstring''' _snake_case = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase ) ).to(lowercase ) _snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case = Image.fromarray(np.uinta(lowercase ) ).convert('RGB' ) if str(lowercase ).startswith('mps' ): _snake_case = torch.manual_seed(lowercase ) else: _snake_case = torch.Generator(device=lowercase ).manual_seed(lowercase ) _snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionInstructPixaPixPipeline(**lowercase ) _snake_case = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) _snake_case = self.get_dummy_inputs(lowercase ) _snake_case = sd_pipe(**lowercase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def A ( self : int ): '''simple docstring''' _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionInstructPixaPixPipeline(**lowercase ) _snake_case = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) _snake_case = self.get_dummy_inputs(lowercase ) _snake_case = 'french fries' _snake_case = sd_pipe(**lowercase , negative_prompt=lowercase ) _snake_case = output.images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def A ( self : str ): '''simple docstring''' _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionInstructPixaPixPipeline(**lowercase ) _snake_case = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) _snake_case = self.get_dummy_inputs(lowercase ) _snake_case = [inputs['prompt']] * 2 _snake_case = np.array(inputs['image'] ).astype(np.floataa ) / 255.0 _snake_case = torch.from_numpy(lowercase ).unsqueeze(0 ).to(lowercase ) _snake_case = image / 2 + 0.5 _snake_case = image.permute(0 , 3 , 1 , 2 ) _snake_case = image.repeat(2 , 1 , 1 , 1 ) _snake_case = sd_pipe(**lowercase ).images _snake_case = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) _snake_case = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' ) _snake_case = StableDiffusionInstructPixaPixPipeline(**lowercase ) _snake_case = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) _snake_case = self.get_dummy_inputs(lowercase ) _snake_case = sd_pipe(**lowercase ).images _snake_case = image[0, -3:, -3:, -1] _snake_case = [round(lowercase , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(lowercase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) _snake_case = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def A ( self : Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.get_dummy_components() _snake_case = StableDiffusionInstructPixaPixPipeline(**lowercase ) _snake_case = VaeImageProcessor(do_resize=lowercase , do_normalize=lowercase ) _snake_case = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = pipe(**self.get_dummy_inputs_by_type(lowercase , input_image_type='pt' ) )[0] _snake_case = components['vae'] _snake_case = self.get_dummy_inputs_by_type(lowercase , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): _snake_case = vae.encode(inputs[image_param] ).latent_dist.mode() _snake_case = pipe(**lowercase )[0] _snake_case = np.abs(out - out_latents_inputs ).max() self.assertLess(lowercase , 1E-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Any , lowercase : Tuple=0 ): '''simple docstring''' _snake_case = torch.manual_seed(lowercase ) _snake_case = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) _snake_case = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() _snake_case = pipe(**lowercase ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _snake_case = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def A ( self : Dict ): '''simple docstring''' _snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowercase ) _snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() _snake_case = pipe(**lowercase ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _snake_case = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def A ( self : Dict ): '''simple docstring''' _snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowercase ) _snake_case = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() _snake_case = pipe(**lowercase ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _snake_case = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def A ( self : int ): '''simple docstring''' _snake_case = 0 def callback_fn(lowercase : int , lowercase : int , lowercase : torch.FloatTensor ) -> None: _snake_case = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _snake_case = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) _snake_case = latents[0, -3:, -3:, -1] _snake_case = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: _snake_case = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) _snake_case = latents[0, -3:, -3:, -1] _snake_case = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 _snake_case = False _snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowercase , torch_dtype=torch.floataa ) _snake_case = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() pipe(**lowercase , callback=lowercase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def A ( self : Optional[int] ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowercase , torch_dtype=torch.floataa ) _snake_case = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _snake_case = self.get_inputs() _snake_case = pipe(**lowercase ) _snake_case = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def A ( self : List[str] ): '''simple docstring''' _snake_case = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 _snake_case = inputs['image'].resize((504, 504) ) _snake_case = 'timbrooks/instruct-pix2pix' _snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowercase , safety_checker=lowercase , ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() _snake_case = pipe(**lowercase ) _snake_case = output.images[0] _snake_case = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) _snake_case = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
361
def a_ ( __lowercase : int = 50_000_000 ) -> int: _snake_case = set() _snake_case = int((limit - 24) ** (1 / 2) ) _snake_case = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , __lowercase ) ) ) for primea in primes: _snake_case = primea * primea for primea in primes: _snake_case = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: _snake_case = primea * primea * primea * primea _snake_case = square + cube + tetr if total >= limit: break ret.add(__lowercase ) return len(__lowercase ) if __name__ == "__main__": print(F'{solution() = }')
130
0
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate _a : int= TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) _a : Optional[int]= [] _a : Optional[Any]= [] _a : Optional[int]= {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} _a : int= [ { "type": "header", "text": { "type": "plain_text", "text": f'''🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results''', "emoji": True, }, } ] _a : str= 0 for log in Path().glob("*.log"): _a : str= 0 with open(log, "r") as f: for line in f: _a : List[str]= json.loads(line) if line.get("nodeid", "") != "": _a : Union[str, Any]= line["nodeid"] if line.get("duration", None) is not None: _a : Tuple= f'''{line['duration']:.4f}''' if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) _a : Optional[int]= [] log.unlink() _a : List[str]= "" _a : Optional[int]= [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" _a : Optional[int]= [] _a : int= {} for test in failed_tests: _a : Dict= test[0].split("::") _a : List[Any]= data[0].split("/")[-1] if data[0] not in filesafailed: _a : Any= [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) _a : str= [test[0] for test in failed_table] _a : Union[str, Any]= list(set(files)) # Count number of instances in failed_tests _a : Dict= [] for file in individual_files: table.append([file, len(filesafailed[file])]) _a : List[str]= tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_000: _a : str= "Too many failed tests, please see the full report in the Action results." _a : Union[str, Any]= len(err) + 10 _a : Union[str, Any]= message[: 3_000 - offset] + f'''\n...\n```\n{err}''' print(f'''### {message}''') else: _a : Tuple= "No failed tests! 🤗" print(f'''## {message}''') payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient _a : List[str]= WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": _a : Optional[int]= { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) _a : Optional[Any]= { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": f'''https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } payload.append(action_button) _a : List[Any]= { "type": "context", "elements": [ { "type": "plain_text", "text": f'''Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}''', } ], } payload.append(date_report) _a : List[str]= client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) _a : Dict= response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name _a : List[Any]= "" for i, row in enumerate(test_failures): if row[0] != test_class: _a : List[str]= row[0] else: _a : Optional[int]= "" _a : List[Any]= { "type": "section", "text": { "type": "mrkdwn", "text": f'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```''', }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
172
"""simple docstring""" import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _a : List[Any]= re.compile(R"\s+") def __UpperCAmelCase ( UpperCAmelCase_ : Tuple ) -> int: '''simple docstring''' return {"hash": hashlib.mda(re.sub(UpperCAmelCase_ , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def __UpperCAmelCase ( UpperCAmelCase_ : Any ) -> Optional[int]: '''simple docstring''' __snake_case : Any = [len(UpperCAmelCase_ ) for line in example['content'].splitlines()] return {"line_mean": np.mean(UpperCAmelCase_ ), "line_max": max(UpperCAmelCase_ )} def __UpperCAmelCase ( UpperCAmelCase_ : List[Any] ) -> str: '''simple docstring''' __snake_case : Tuple = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def __UpperCAmelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] ) -> List[str]: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def __UpperCAmelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any]=5 ) -> str: '''simple docstring''' __snake_case : Tuple = ['auto-generated', 'autogenerated', 'automatically generated'] __snake_case : Tuple = example['content'].splitlines() for _, line in zip(range(UpperCAmelCase_ ) , UpperCAmelCase_ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __UpperCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]=5 , UpperCAmelCase_ : Optional[int]=0.05 ) -> Optional[Any]: '''simple docstring''' __snake_case : List[Any] = ['unit tests', 'test file', 'configuration file'] __snake_case : Tuple = example['content'].splitlines() __snake_case : Tuple = 0 __snake_case : Any = 0 # first test for _, line in zip(range(UpperCAmelCase_ ) , UpperCAmelCase_ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test __snake_case : int = example['content'].count('\n' ) __snake_case : str = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __UpperCAmelCase ( UpperCAmelCase_ : Tuple ) -> Any: '''simple docstring''' __snake_case : Any = ['def ', 'class ', 'for ', 'while '] __snake_case : Optional[int] = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __UpperCAmelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any]=4 ) -> Dict: '''simple docstring''' __snake_case : Optional[Any] = example['content'].splitlines() __snake_case : Tuple = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __UpperCAmelCase ( UpperCAmelCase_ : Union[str, Any] ) -> Any: '''simple docstring''' __snake_case : List[Any] = tokenizer(example['content'] , truncation=UpperCAmelCase_ )['input_ids'] __snake_case : Union[str, Any] = len(example['content'] ) / len(UpperCAmelCase_ ) return {"ratio": ratio} def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> str: '''simple docstring''' __snake_case : List[Any] = {} results.update(get_hash(UpperCAmelCase_ ) ) results.update(line_stats(UpperCAmelCase_ ) ) results.update(alpha_stats(UpperCAmelCase_ ) ) results.update(char_token_ratio(UpperCAmelCase_ ) ) results.update(is_autogenerated(UpperCAmelCase_ ) ) results.update(is_config_or_test(UpperCAmelCase_ ) ) results.update(has_no_keywords(UpperCAmelCase_ ) ) results.update(has_few_assignments(UpperCAmelCase_ ) ) return results def __UpperCAmelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) -> Any: '''simple docstring''' if not check_uniques(UpperCAmelCase_ , UpperCAmelCase_ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __UpperCAmelCase ( UpperCAmelCase_ : Any ) -> Any: '''simple docstring''' with open(UpperCAmelCase_ , 'rb' ) as f_in: with gzip.open(str(UpperCAmelCase_ ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(UpperCAmelCase_ , UpperCAmelCase_ ) os.unlink(UpperCAmelCase_ ) # Settings _a : int= HfArgumentParser(PreprocessingArguments) _a : Union[str, Any]= parser.parse_args() if args.num_workers is None: _a : str= multiprocessing.cpu_count() _a : Optional[int]= AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _a : Tuple= time.time() _a : Dict= load_dataset(args.dataset_name, split="train") print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing _a : str= time.time() _a : int= ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes _a : Tuple= set(ds.unique("hash")) _a : Optional[int]= len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics _a : Union[str, Any]= time.time() _a : List[Any]= ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _a : Tuple= time.time() _a, _a : Tuple= deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file _a : Union[str, Any]= Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) _a : List[Any]= output_dir / "data" data_dir.mkdir(exist_ok=True) _a : Tuple= time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _a : List[str]= str(data_dir / f'''file-{file_number+1:012}.json''') _a : List[str]= min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
172
1
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCAmelCase__ ( _a : Any , _a : Union[str, Any] , _a : Dict=0 ): # Format the message. if name is None: snake_case_ : List[Any] = None else: snake_case_ : Dict = "." * max(0 , spaces - 2 ) + "# {:" + str(50 - spaces ) + "s}" snake_case_ : Dict = fmt.format(_a ) # Print and recurse (if needed). if isinstance(_a , _a ): if msg is not None: print(_a ) for k in val.keys(): recursive_print(_a , val[k] , spaces + 2 ) elif isinstance(_a , torch.Tensor ): print(_a , ":" , val.size() ) else: print(_a , ":" , _a ) def lowerCAmelCase__ ( _a : str , _a : Union[str, Any] , _a : Dict , _a : Dict , _a : Dict ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. snake_case_ : int = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : Any = param.view(*_a ) snake_case_ : Dict = param.transpose(0 , 2 ) snake_case_ : Optional[int] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Any = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : Union[str, Any] = param.view(*_a ) snake_case_ : List[str] = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*_a ) return param def lowerCAmelCase__ ( _a : List[Any] , _a : Optional[Any] , _a : str ): # The converted output model. snake_case_ : str = {} # old versions did not store training args snake_case_ : Tuple = input_state_dict.get("args" , _a ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Any = ds_args.padded_vocab_size snake_case_ : List[Any] = ds_args.max_position_embeddings snake_case_ : Any = ds_args.hidden_size snake_case_ : Any = ds_args.num_layers snake_case_ : Any = ds_args.num_attention_heads snake_case_ : Optional[Any] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : Dict = config.n_head # The hidden_size per head. snake_case_ : List[str] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Optional[Any] = input_state_dict["checkpoint_version"] else: snake_case_ : Optional[Any] = 0.0 # The model. snake_case_ : Any = input_state_dict["model"] # The language model. snake_case_ : List[str] = model["language_model"] # The embeddings. snake_case_ : List[Any] = lm["embedding"] # The word embeddings. snake_case_ : List[Any] = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. snake_case_ : Any = word_embeddings[: config.vocab_size, :] snake_case_ : int = word_embeddings # The position embeddings. snake_case_ : str = embeddings["position_embeddings"]["weight"] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : List[str] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. snake_case_ : Optional[int] = pos_embeddings # The transformer. snake_case_ : str = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. snake_case_ : List[str] = re.compile(R"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" ) # The simple map of names for "automated" rules. snake_case_ : int = { "attention.dense": ".attn.c_proj.", "self_attention.dense": ".attn.c_proj.", "mlp.dense_h_to_4h": ".mlp.c_fc.", "mlp.dense_4h_to_h": ".mlp.c_proj.", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : int = layer_re.match(_a ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : List[str] = int(m.group(1 ) ) # The name of the operation. snake_case_ : Tuple = m.group(2 ) # Is it a weight or a bias? snake_case_ : str = m.group(3 ) # The name of the layer. snake_case_ : Optional[Any] = F'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm" ): snake_case_ : Optional[int] = "ln_1" if op_name.startswith("input" ) else "ln_2" snake_case_ : int = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : Union[str, Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _a , _a ) snake_case_ : Dict = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : Optional[int] = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : List[str] = masked_bias snake_case_ : Union[str, Any] = fix_query_key_value_ordering(_a , _a , 3 , _a , _a ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : Optional[int] = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : str = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : str = fix_query_key_value_ordering(_a , _a , 3 , _a , _a ) # Store. No change of shape. snake_case_ : Any = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : Dict = megatron_to_transformers[op_name] snake_case_ : Any = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : Dict = megatron_to_transformers[op_name] snake_case_ : Dict = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : Any = transformer["final_layernorm.weight"] snake_case_ : Optional[Any] = transformer["final_layernorm.bias"] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Any = word_embeddings # It should be done! return output_state_dict def lowerCAmelCase__ ( ): # Create the argument parser. snake_case_ : Tuple = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure" , action="store_true" ) parser.add_argument( "path_to_checkpoint" , type=_a , help="Path to the checkpoint file (.zip archive or direct .pt file)" , ) parser.add_argument( "--config_file" , default="" , type=_a , help="An optional config json file describing the pre-trained model." , ) snake_case_ : List[Any] = parser.parse_args() # Extract the basename. snake_case_ : Any = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(".zip" ): with zipfile.ZipFile(args.path_to_checkpoint , "r" ) as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict: snake_case_ : str = torch.load(_a , map_location="cpu" ) else: snake_case_ : List[str] = torch.load(args.path_to_checkpoint , map_location="cpu" ) snake_case_ : Any = input_state_dict.get("args" , _a ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Any = "gelu_fast" elif ds_args.openai_gelu: snake_case_ : Any = "gelu_new" else: snake_case_ : List[Any] = "gelu" else: # in the very early days this used to be "gelu_new" snake_case_ : Any = "gelu_new" # Spell out all parameters in case the defaults change. snake_case_ : Tuple = GPTaConfig( vocab_size=5_02_57 , n_positions=10_24 , n_embd=10_24 , n_layer=24 , n_head=16 , n_inner=40_96 , activation_function=_a , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="cls_index" , summary_use_proj=_a , summary_activation=_a , summary_proj_to_labels=_a , summary_first_dropout=0.1 , scale_attn_weights=_a , use_cache=_a , bos_token_id=5_02_56 , eos_token_id=5_02_56 , ) else: snake_case_ : Dict = GPTaConfig.from_json_file(args.config_file ) snake_case_ : Optional[Any] = ["GPT2LMHeadModel"] # Convert. print("Converting" ) snake_case_ : List[str] = convert_megatron_checkpoint(_a , _a , _a ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_a , _a ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : Optional[Any] = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : List[Any] = "gpt2" elif tokenizer_type == "PretrainedFromHF": snake_case_ : List[Any] = ds_args.tokenizer_name_or_path else: raise ValueError(F'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: snake_case_ : Optional[Any] = "gpt2" snake_case_ : Any = AutoTokenizer.from_pretrained(_a ) snake_case_ : int = type(_a ).__name__ snake_case_ : str = tokenizer_class # Store the config to file. print("Saving config" ) config.save_pretrained(_a ) # Save tokenizer based on args print(F'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(_a ) # Store the state_dict to file. snake_case_ : Dict = os.path.join(_a , "pytorch_model.bin" ) print(F'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(_a , _a ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
36
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowerCAmelCase__ ( ): snake_case_ : str = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=_a , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=_a , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=_a ) return parser.parse_args() def lowerCAmelCase__ ( ): snake_case_ : str = parse_args() # Import training_script as a module. snake_case_ : Any = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) snake_case_ : Tuple = script_fpath.stem snake_case_ : str = importlib.import_module(_a ) # Patch sys.argv snake_case_ : Optional[int] = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
36
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ : Any = logging.get_logger(__name__) a_ : List[str] = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[int] ='xmod' def __init__( self, lowerCAmelCase=30_522, lowerCAmelCase=768, lowerCAmelCase=12, lowerCAmelCase=12, lowerCAmelCase=3_072, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=1e-12, lowerCAmelCase=1, lowerCAmelCase=0, lowerCAmelCase=2, lowerCAmelCase="absolute", lowerCAmelCase=True, lowerCAmelCase=None, lowerCAmelCase=False, lowerCAmelCase=2, lowerCAmelCase=False, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=("en_XX",), lowerCAmelCase=None, **lowerCAmelCase, ): """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase, bos_token_id=lowerCAmelCase, eos_token_id=lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =vocab_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =hidden_act lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =initializer_range lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =position_embedding_type lowerCamelCase_ =use_cache lowerCamelCase_ =classifier_dropout lowerCamelCase_ =pre_norm lowerCamelCase_ =adapter_reduction_factor lowerCamelCase_ =adapter_layer_norm lowerCamelCase_ =adapter_reuse_layer_norm lowerCamelCase_ =ln_before_adapter lowerCamelCase_ =list(lowerCAmelCase ) lowerCamelCase_ =default_language class __UpperCamelCase ( lowerCamelCase__ ): @property def lowercase__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCamelCase_ ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase_ ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
75
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __UpperCamelCase ( lowerCamelCase__ ): def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return 0.0 def a_ ( __snake_case : np.ndarray , __snake_case : int ) -> tuple[int | float, int | float]: """simple docstring""" lowerCamelCase_ =min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowerCamelCase_ =max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def a_ ( __snake_case : FilterType , __snake_case : int ) -> None: """simple docstring""" lowerCamelCase_ =512 lowerCamelCase_ =[1] + [0] * (size - 1) lowerCamelCase_ =[filter_type.process(__snake_case ) for item in inputs] lowerCamelCase_ =[0] * (samplerate - size) # zero-padding outputs += filler lowerCamelCase_ =np.abs(np.fft.fft(__snake_case ) ) lowerCamelCase_ =20 * np.logaa(__snake_case ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds lowerCamelCase_ =get_bounds(__snake_case , __snake_case ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(__snake_case ) plt.show() def a_ ( __snake_case : FilterType , __snake_case : int ) -> None: """simple docstring""" lowerCamelCase_ =512 lowerCamelCase_ =[1] + [0] * (size - 1) lowerCamelCase_ =[filter_type.process(__snake_case ) for item in inputs] lowerCamelCase_ =[0] * (samplerate - size) # zero-padding outputs += filler lowerCamelCase_ =np.angle(np.fft.fft(__snake_case ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(__snake_case , -2 * pi ) ) plt.show()
75
1
class UpperCamelCase : def __init__( self ): A__ = {} def __A ( self ): print(self.vertex ) for i in self.vertex: print(UpperCAmelCase__ , " -> " , " -> ".join([str(UpperCAmelCase__ ) for j in self.vertex[i]] ) ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(UpperCAmelCase__ ) else: # else make a new vertex A__ = [to_vertex] def __A ( self ): # visited array for storing already visited nodes A__ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(UpperCAmelCase__ , UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): # mark start vertex as visited A__ = True print(UpperCAmelCase__ , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
355
import argparse import struct import unittest class UpperCamelCase : def __init__( self , UpperCAmelCase__ ): A__ = data # Initialize hash values A__ = [ 0x6A_09E_667, 0xBB_67A_E85, 0x3C_6EF_372, 0xA5_4FF_53A, 0x51_0E5_27F, 0x9B_056_88C, 0x1F_83D_9AB, 0x5B_E0C_D19, ] # Initialize round constants A__ = [ 0x42_8A2_F98, 0x71_374_491, 0xB5_C0F_BCF, 0xE9_B5D_BA5, 0x39_56C_25B, 0x59_F11_1F1, 0x92_3F8_2A4, 0xAB_1C5_ED5, 0xD8_07A_A98, 0x12_835_B01, 0x24_318_5BE, 0x55_0C7_DC3, 0x72_BE5_D74, 0x80_DEB_1FE, 0x9B_DC0_6A7, 0xC1_9BF_174, 0xE4_9B6_9C1, 0xEF_BE4_786, 0x0F_C19_DC6, 0x24_0CA_1CC, 0x2D_E92_C6F, 0x4A_748_4AA, 0x5C_B0A_9DC, 0x76_F98_8DA, 0x98_3E5_152, 0xA8_31C_66D, 0xB0_032_7C8, 0xBF_597_FC7, 0xC6_E00_BF3, 0xD5_A79_147, 0x06_CA6_351, 0x14_292_967, 0x27_B70_A85, 0x2E_1B2_138, 0x4D_2C6_DFC, 0x53_380_D13, 0x65_0A7_354, 0x76_6A0_ABB, 0x81_C2C_92E, 0x92_722_C85, 0xA2_BFE_8A1, 0xA8_1A6_64B, 0xC2_4B8_B70, 0xC7_6C5_1A3, 0xD1_92E_819, 0xD6_990_624, 0xF4_0E3_585, 0x10_6AA_070, 0x19_A4C_116, 0x1E_376_C08, 0x27_487_74C, 0x34_B0B_CB5, 0x39_1C0_CB3, 0x4E_D8A_A4A, 0x5B_9CC_A4F, 0x68_2E6_FF3, 0x74_8F8_2EE, 0x78_A56_36F, 0x84_C87_814, 0x8C_C70_208, 0x90_BEF_FFA, 0xA4_506_CEB, 0xBE_F9A_3F7, 0xC6_717_8F2, ] A__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def __A ( UpperCAmelCase__ ): A__ = b"\x80" + (b"\x00" * (63 - (len(UpperCAmelCase__ ) + 8) % 64)) A__ = struct.pack(">Q" , (len(UpperCAmelCase__ ) * 8) ) return data + padding + big_endian_integer def __A ( self ): # Convert into blocks of 64 bytes A__ = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A__ = list(struct.unpack(">16L" , UpperCAmelCase__ ) ) # add 48 0-ed integers words += [0] * 48 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array A__ = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) A__ = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) A__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100_000_000 # Compression A__ = self.ror(UpperCAmelCase__ , 6 ) ^ self.ror(UpperCAmelCase__ , 11 ) ^ self.ror(UpperCAmelCase__ , 25 ) A__ = (e & f) ^ ((~e & 0xFF_FFF_FFF) & g) A__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100_000_000 A__ = self.ror(UpperCAmelCase__ , 2 ) ^ self.ror(UpperCAmelCase__ , 13 ) ^ self.ror(UpperCAmelCase__ , 22 ) A__ = (a & b) ^ (a & c) ^ (b & c) A__ = (sa + maj) % 0x100_000_000 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = ( g, f, e, ((d + tempa) % 0x100_000_000), c, b, a, ((tempa + tempa) % 0x100_000_000), ) A__ = [a, b, c, d, e, f, g, h] # Modify final values A__ = [ ((element + mutated_hash_values[index]) % 0x100_000_000) for index, element in enumerate(self.hashes ) ] A__ = "".join([hex(UpperCAmelCase__ )[2:].zfill(8 ) for value in self.hashes] ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): return 0xFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase ( unittest.TestCase ): def __A ( self ): import hashlib A__ = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(UpperCAmelCase__ ).hash , hashlib.shaaaa(UpperCAmelCase__ ).hexdigest() ) def UpperCamelCase ( )-> None: """simple docstring""" import doctest doctest.testmod() A__ = argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file" ) A__ = parser.parse_args() A__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: A__ = f.read() else: A__ = bytes(_A , "utf-8" ) print(SHAaaa(_A ).hash ) if __name__ == "__main__": main()
198
0
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class a ( __lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase :Union[str, Any] = CpmAntTokenizer lowerCamelCase :Tuple = False def UpperCAmelCase ( self ) -> List[Any]: super().setUp() _A = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def UpperCAmelCase ( self ) -> Dict: _A = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) _A = """今天天气真好!""" _A = ["""今天""", """天气""", """真""", """好""", """!"""] _A = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A = """今天天气真好!""" _A = [tokenizer.bos_token] + tokens _A = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ ) _A = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
180
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Union[str, Any]: _A = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() _A = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } _A = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_60_00, """return_attention_mask""": False, """do_normalize""": True, } _A = tempfile.mkdtemp() _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _A = os.path.join(self.tmpdirname , lowerCAmelCase_ ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) # load decoder from hub _A = """hf-internal-testing/ngram-beam-search-decoder""" def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Tuple: _A = self.add_kwargs_tokens_map.copy() kwargs.update(lowerCAmelCase_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Any: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Any: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> Tuple: _A = self.get_tokenizer() _A = self.get_feature_extractor() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) _A = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: _A = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _A = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCAmelCase ( self ) -> Optional[int]: _A = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(lowerCAmelCase_ , """include""" ): WavaVecaProcessorWithLM( tokenizer=lowerCAmelCase_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCAmelCase ( self ) -> Any: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = floats_list((3, 10_00) ) _A = feature_extractor(lowerCAmelCase_ , return_tensors="""np""" ) _A = processor(lowerCAmelCase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self ) -> Any: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = """This is a test string""" _A = processor(text=lowerCAmelCase_ ) _A = tokenizer(lowerCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self , lowerCAmelCase_=(2, 10, 16) , lowerCAmelCase_=77 ) -> Tuple: np.random.seed(lowerCAmelCase_ ) return np.random.rand(*lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _A = processor.decode(lowerCAmelCase_ ) _A = decoder.decode_beams(lowerCAmelCase_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _A = processor.batch_decode(lowerCAmelCase_ ) else: with get_context(lowerCAmelCase_ ).Pool() as pool: _A = processor.batch_decode(lowerCAmelCase_ , lowerCAmelCase_ ) _A = list(lowerCAmelCase_ ) with get_context("""fork""" ).Pool() as p: _A = decoder.decode_beams_batch(lowerCAmelCase_ , lowerCAmelCase_ ) _A , _A , _A = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.logit_score ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.lm_score ) def UpperCAmelCase ( self ) -> List[Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = self._get_dummy_logits() _A = 15 _A = -20.0 _A = -4.0 _A = processor.batch_decode( lowerCAmelCase_ , beam_width=lowerCAmelCase_ , beam_prune_logp=lowerCAmelCase_ , token_min_logp=lowerCAmelCase_ , ) _A = decoded_processor_out.text _A = list(lowerCAmelCase_ ) with get_context("""fork""" ).Pool() as pool: _A = decoder.decode_beams_batch( lowerCAmelCase_ , lowerCAmelCase_ , beam_width=lowerCAmelCase_ , beam_prune_logp=lowerCAmelCase_ , token_min_logp=lowerCAmelCase_ , ) _A = [d[0][0] for d in decoded_decoder_out] _A = [d[0][2] for d in decoded_decoder_out] _A = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , lowerCAmelCase_ ) self.assertTrue(np.array_equal(lowerCAmelCase_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , lowerCAmelCase_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(lowerCAmelCase_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , lowerCAmelCase_ , atol=1E-3 ) ) def UpperCAmelCase ( self ) -> List[Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = self._get_dummy_logits() _A = 2.0 _A = 5.0 _A = -20.0 _A = True _A = processor.batch_decode( lowerCAmelCase_ , alpha=lowerCAmelCase_ , beta=lowerCAmelCase_ , unk_score_offset=lowerCAmelCase_ , lm_score_boundary=lowerCAmelCase_ , ) _A = decoded_processor_out.text _A = list(lowerCAmelCase_ ) decoder.reset_params( alpha=lowerCAmelCase_ , beta=lowerCAmelCase_ , unk_score_offset=lowerCAmelCase_ , lm_score_boundary=lowerCAmelCase_ , ) with get_context("""fork""" ).Pool() as pool: _A = decoder.decode_beams_batch( lowerCAmelCase_ , lowerCAmelCase_ , ) _A = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , lowerCAmelCase_ ) _A = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = processor.decoder.model_container[processor.decoder._model_key] _A = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() _A = os.listdir(lowerCAmelCase_ ) _A = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: _A = snapshot_download("""hf-internal-testing/processor_with_lm""" ) _A = WavaVecaProcessorWithLM.from_pretrained(lowerCAmelCase_ ) _A = processor.decoder.model_container[processor.decoder._model_key] _A = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() _A = os.listdir(lowerCAmelCase_ ) _A = os.listdir(lowerCAmelCase_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: _A = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = floats_list((3, 10_00) ) _A = processor_wavaveca(lowerCAmelCase_ , return_tensors="""np""" ) _A = processor_auto(lowerCAmelCase_ , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _A = self._get_dummy_logits() _A = processor_wavaveca.batch_decode(lowerCAmelCase_ ) _A = processor_auto.batch_decode(lowerCAmelCase_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _A = [d[key] for d in offsets] return retrieved_list def UpperCAmelCase ( self ) -> Any: _A = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = self._get_dummy_logits()[0] _A = processor.decode(lowerCAmelCase_ , output_word_offsets=lowerCAmelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def UpperCAmelCase ( self ) -> Any: _A = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = self._get_dummy_logits() _A = processor.batch_decode(lowerCAmelCase_ , output_word_offsets=lowerCAmelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(lowerCAmelCase_ , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCAmelCase ( self ) -> Any: import torch _A = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=lowerCAmelCase_ ) _A = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) ) _A = iter(lowerCAmelCase_ ) _A = next(lowerCAmelCase_ ) _A = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) _A = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _A = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): _A = model(lowerCAmelCase_ ).logits.cpu().numpy() _A = processor.decode(logits[0] , output_word_offsets=lowerCAmelCase_ ) _A = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _A = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] _A = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(lowerCAmelCase_ , """word""" ) ) , lowerCAmelCase_ ) self.assertEqual(""" """.join(self.get_from_offsets(lowerCAmelCase_ , """word""" ) ) , output.text ) # output times _A = torch.tensor(self.get_from_offsets(lowerCAmelCase_ , """start_time""" ) ) _A = torch.tensor(self.get_from_offsets(lowerCAmelCase_ , """end_time""" ) ) # fmt: off _A = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _A = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=0.01 ) ) self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=0.01 ) )
180
1
'''simple docstring''' import pprint import requests UpperCamelCase_ : Tuple = '''https://zenquotes.io/api''' def __a ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + "/today" ).json() def __a ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": UpperCamelCase_ : Any = random_quotes() pprint.pprint(response)
364
'''simple docstring''' def __a ( _UpperCamelCase: int ) -> str: """simple docstring""" if number > 0: raise ValueError("input must be a negative integer" ) _snake_case = len(bin(_UpperCamelCase )[3:] ) _snake_case = bin(abs(_UpperCamelCase ) - (1 << binary_number_length) )[3:] _snake_case = ( ( "1" + "0" * (binary_number_length - len(_UpperCamelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
142
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _UpperCAmelCase : Union[str, Any] =logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCAmelCase : Union[str, Any] =''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class snake_case__( _lowerCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = 42 class snake_case__( _lowerCAmelCase ): '''simple docstring''' def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> str: super().__init__() self.register_modules( prior=__lowercase , image_encoder=__lowercase , image_processor=__lowercase , scheduler=__lowercase , renderer=__lowercase , ) def lowercase_ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Dict: if latents is None: lowerCAmelCase_ : Any = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowerCAmelCase_ : Dict = latents.to(__lowercase ) lowerCAmelCase_ : str = latents * scheduler.init_noise_sigma return latents def lowercase_ ( self , __lowercase=0 ) -> List[str]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowerCAmelCase_ : Dict = torch.device(f"""cuda:{gpu_id}""" ) lowerCAmelCase_ : Optional[Any] = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowercase , __lowercase ) @property def lowercase_ ( self ) -> Any: if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__lowercase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowercase_ ( self , __lowercase , __lowercase , __lowercase , __lowercase , ) -> List[Any]: if isinstance(__lowercase , __lowercase ) and isinstance(image[0] , torch.Tensor ): lowerCAmelCase_ : int = torch.cat(__lowercase , axis=0 ) if image[0].ndim == 4 else torch.stack(__lowercase , axis=0 ) if not isinstance(__lowercase , torch.Tensor ): lowerCAmelCase_ : Union[str, Any] = self.image_processor(__lowercase , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) lowerCAmelCase_ : Dict = image.to(dtype=self.image_encoder.dtype , device=__lowercase ) lowerCAmelCase_ : Optional[Any] = self.image_encoder(__lowercase )["last_hidden_state"] lowerCAmelCase_ : Optional[int] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCAmelCase_ : Tuple = image_embeds.repeat_interleave(__lowercase , dim=0 ) if do_classifier_free_guidance: lowerCAmelCase_ : Tuple = torch.zeros_like(__lowercase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase_ : Any = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__lowercase ) def __call__( self , __lowercase , __lowercase = 1 , __lowercase = 2_5 , __lowercase = None , __lowercase = None , __lowercase = 4.0 , __lowercase = 6_4 , __lowercase = "pil" , __lowercase = True , ) -> Dict: if isinstance(__lowercase , PIL.Image.Image ): lowerCAmelCase_ : List[str] = 1 elif isinstance(__lowercase , torch.Tensor ): lowerCAmelCase_ : Union[str, Any] = image.shape[0] elif isinstance(__lowercase , __lowercase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowerCAmelCase_ : List[str] = len(__lowercase ) else: raise ValueError( f"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__lowercase )}""" ) lowerCAmelCase_ : List[str] = self._execution_device lowerCAmelCase_ : Optional[Any] = batch_size * num_images_per_prompt lowerCAmelCase_ : str = guidance_scale > 1.0 lowerCAmelCase_ : List[Any] = self._encode_image(__lowercase , __lowercase , __lowercase , __lowercase ) # prior self.scheduler.set_timesteps(__lowercase , device=__lowercase ) lowerCAmelCase_ : Dict = self.scheduler.timesteps lowerCAmelCase_ : Tuple = self.prior.config.num_embeddings lowerCAmelCase_ : Dict = self.prior.config.embedding_dim lowerCAmelCase_ : Union[str, Any] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , __lowercase , __lowercase , __lowercase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCAmelCase_ : List[Any] = latents.reshape(latents.shape[0] , __lowercase , __lowercase ) for i, t in enumerate(self.progress_bar(__lowercase ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase_ : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase_ : Union[str, Any] = self.scheduler.scale_model_input(__lowercase , __lowercase ) lowerCAmelCase_ : Union[str, Any] = self.prior( __lowercase , timestep=__lowercase , proj_embedding=__lowercase , ).predicted_image_embedding # remove the variance lowerCAmelCase_ : Union[str, Any] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCAmelCase_ : Optional[int] = noise_pred.chunk(2 ) lowerCAmelCase_ : Tuple = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCAmelCase_ : int = self.scheduler.step( __lowercase , timestep=__lowercase , sample=__lowercase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__lowercase ) lowerCAmelCase_ : Dict = [] for i, latent in enumerate(__lowercase ): print() lowerCAmelCase_ : Tuple = self.renderer.decode( latent[None, :] , __lowercase , size=__lowercase , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(__lowercase ) lowerCAmelCase_ : str = torch.stack(__lowercase ) if output_type not in ["np", "pil"]: raise ValueError(f"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) lowerCAmelCase_ : Dict = images.cpu().numpy() if output_type == "pil": lowerCAmelCase_ : int = [self.numpy_to_pil(__lowercase ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__lowercase )
262
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) lowerCAmelCase : Tuple ={ '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class a_ ( _lowerCAmelCase ): __A = "vit_mae" def __init__( self : Any , lowercase : int=768 , lowercase : Tuple=12 , lowercase : str=12 , lowercase : Optional[Any]=3_072 , lowercase : List[Any]="gelu" , lowercase : Tuple=0.0 , lowercase : Union[str, Any]=0.0 , lowercase : str=0.02 , lowercase : Optional[int]=1e-1_2 , lowercase : List[Any]=224 , lowercase : str=16 , lowercase : List[str]=3 , lowercase : Optional[Any]=True , lowercase : int=16 , lowercase : Optional[Any]=512 , lowercase : Optional[Any]=8 , lowercase : Optional[Any]=2_048 , lowercase : List[str]=0.75 , lowercase : str=False , **lowercase : Union[str, Any] , ): """simple docstring""" super().__init__(**lowercase ) lowercase_ :Any = hidden_size lowercase_ :Optional[Any] = num_hidden_layers lowercase_ :Optional[Any] = num_attention_heads lowercase_ :int = intermediate_size lowercase_ :Optional[int] = hidden_act lowercase_ :str = hidden_dropout_prob lowercase_ :Optional[Any] = attention_probs_dropout_prob lowercase_ :str = initializer_range lowercase_ :Optional[int] = layer_norm_eps lowercase_ :str = image_size lowercase_ :Union[str, Any] = patch_size lowercase_ :Dict = num_channels lowercase_ :Any = qkv_bias lowercase_ :Optional[int] = decoder_num_attention_heads lowercase_ :Optional[Any] = decoder_hidden_size lowercase_ :Union[str, Any] = decoder_num_hidden_layers lowercase_ :List[Any] = decoder_intermediate_size lowercase_ :Optional[Any] = mask_ratio lowercase_ :Optional[Any] = norm_pix_loss
223
0
'''simple docstring''' from copy import deepcopy class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[str] , __a : list[int] | None = None , __a : int | None = None ): if arr is None and size is not None: _a = size _a = [0] * size elif arr is not None: self.init(__a ) else: raise ValueError("Either arr or size must be specified" ) def UpperCamelCase__ ( self : Optional[int] , __a : list[int] ): _a = len(__a ) _a = deepcopy(__a ) for i in range(1 , self.size ): _a = self.next_(__a ) if j < self.size: self.tree[j] += self.tree[i] def UpperCamelCase__ ( self : List[str] ): _a = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): _a = self.next_(__a ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def UpperCamelCase__ ( __a : int ): return index + (index & (-index)) @staticmethod def UpperCamelCase__ ( __a : int ): return index - (index & (-index)) def UpperCamelCase__ ( self : Tuple , __a : int , __a : int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value _a = self.next_(__a ) def UpperCamelCase__ ( self : int , __a : int , __a : int ): self.add(__a , value - self.get(__a ) ) def UpperCamelCase__ ( self : Union[str, Any] , __a : int ): if right == 0: return 0 _a = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] _a = self.prev(__a ) return result def UpperCamelCase__ ( self : List[Any] , __a : int , __a : int ): return self.prefix(__a ) - self.prefix(__a ) def UpperCamelCase__ ( self : Optional[int] , __a : int ): return self.query(__a , index + 1 ) def UpperCamelCase__ ( self : Optional[Any] , __a : int ): value -= self.tree[0] if value < 0: return -1 _a = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 _a = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
346
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =['image_processor', 'tokenizer'] __a ='LayoutLMv2ImageProcessor' __a =('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Dict , __a : int=None , __a : List[Any]=None , **__a : str ): if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __a , ) _a = kwargs.pop("feature_extractor" ) _a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__a , __a ) def __call__( self : Optional[int] , __a : Optional[Any] , __a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __a : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __a : Union[List[List[int]], List[List[List[int]]]] = None , __a : Optional[Union[List[int], List[List[int]]]] = None , __a : bool = True , __a : Union[bool, str, PaddingStrategy] = False , __a : Union[bool, str, TruncationStrategy] = None , __a : Optional[int] = None , __a : int = 0 , __a : Optional[int] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : Optional[Union[str, TensorType]] = None , **__a : Optional[Any] , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor _a = self.image_processor(images=__a , return_tensors=__a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__a , __a ): _a = [text] # add batch dimension (as the image processor always adds a batch dimension) _a = features["words"] _a = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) # add pixel values _a = features.pop("pixel_values" ) if return_overflowing_tokens is True: _a = self.get_overflowing_images(__a , encoded_inputs["overflow_to_sample_mapping"] ) _a = images return encoded_inputs def UpperCamelCase__ ( self : int , __a : List[Any] , __a : int ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image _a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__a ) != len(__a ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f' {len(__a )} and {len(__a )}' ) return images_with_overflow def UpperCamelCase__ ( self : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ): return self.tokenizer.batch_decode(*__a , **__a ) def UpperCamelCase__ ( self : Union[str, Any] , *__a : Optional[int] , **__a : Optional[Any] ): return self.tokenizer.decode(*__a , **__a ) @property def UpperCamelCase__ ( self : int ): return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCamelCase__ ( self : List[Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , ) return self.image_processor_class @property def UpperCamelCase__ ( self : int ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , ) return self.image_processor
346
1
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=7 ): snake_case_ = None if token is not None: snake_case_ = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} # The id of a workflow (not of a workflow run) snake_case_ = '''636036''' snake_case_ = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' snake_case_ = requests.get(SCREAMING_SNAKE_CASE__ , headers=SCREAMING_SNAKE_CASE__ ).json() return result["workflow_runs"] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = get_daily_ci_runs(SCREAMING_SNAKE_CASE__ ) snake_case_ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": snake_case_ = workflow_run['''id'''] break return workflow_run_id def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = get_last_daily_ci_runs(SCREAMING_SNAKE_CASE__ ) if workflow_run_id is not None: snake_case_ = get_artifacts_links(worflow_run_id=SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: snake_case_ = artifacts_links[artifact_name] download_artifact( artifact_name=SCREAMING_SNAKE_CASE__ , artifact_url=SCREAMING_SNAKE_CASE__ , output_dir=SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): get_last_daily_ci_artifacts(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = {} for artifact_name in artifact_names: snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''{artifact_name}.zip''' ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): snake_case_ = {} with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file with z.open(SCREAMING_SNAKE_CASE__ ) as f: snake_case_ = f.read().decode('''UTF-8''' ) return results
8
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = AlbertConfig.from_json_file(UpperCamelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) A__ = AlbertForPreTraining(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
221
0
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __SCREAMING_SNAKE_CASE : def __init__( self : Any , A : int , A : Tuple=1_3 , A : Tuple=7 , A : int=True , A : Optional[Any]=True , A : Dict=True , A : List[Any]=True , A : List[str]=9_9 , A : List[str]=6_4 , A : int=5 , A : Optional[int]=4 , A : Any=3_7 , A : Optional[int]="gelu" , A : Dict=0.1 , A : int=0.1 , A : str=5_1_2 , A : List[str]=1_6 , A : Optional[Any]=2 , A : Optional[Any]=0.02 , A : Tuple=3 , A : List[Any]=4 , A : int=None , ) ->Optional[Any]: lowerCamelCase__ : str = parent lowerCamelCase__ : str = batch_size lowerCamelCase__ : Optional[Any] = seq_length lowerCamelCase__ : Union[str, Any] = is_training lowerCamelCase__ : Any = use_input_mask lowerCamelCase__ : int = use_token_type_ids lowerCamelCase__ : int = use_labels lowerCamelCase__ : List[str] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Dict = hidden_act lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : List[str] = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : List[str] = type_vocab_size lowerCamelCase__ : int = type_sequence_label_size lowerCamelCase__ : Optional[Any] = initializer_range lowerCamelCase__ : int = num_labels lowerCamelCase__ : str = num_choices lowerCamelCase__ : str = scope lowerCamelCase__ : Union[str, Any] = vocab_size - 1 def __lowerCamelCase ( self : Optional[Any] ) ->Any: lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : int = None if self.use_input_mask: lowerCamelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Dict = None if self.use_labels: lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Tuple = self.get_config() return config, input_ids, input_mask, token_labels def __lowerCamelCase ( self : Optional[Any] ) ->Tuple: return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def __lowerCamelCase ( self : List[str] ) ->int: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.prepare_config_and_inputs() lowerCamelCase__ : int = True return config, input_ids, input_mask, token_labels def __lowerCamelCase ( self : Dict , A : Union[str, Any] , A : List[str] , A : Tuple ) ->List[Any]: lowerCamelCase__ : List[str] = GPTNeoXModel(config=A ) model.to(A ) model.eval() lowerCamelCase__ : Union[str, Any] = model(A , attention_mask=A ) lowerCamelCase__ : Tuple = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self : Tuple , A : Dict , A : List[str] , A : Tuple ) ->List[Any]: lowerCamelCase__ : int = True lowerCamelCase__ : Union[str, Any] = GPTNeoXModel(A ) model.to(A ) model.eval() lowerCamelCase__ : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self : List[str] , A : Optional[int] , A : int , A : Optional[Any] , A : Any ) ->str: lowerCamelCase__ : Tuple = GPTNeoXForCausalLM(config=A ) model.to(A ) model.eval() lowerCamelCase__ : List[str] = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self : Optional[int] , A : int , A : int , A : int , A : List[Any] ) ->Union[str, Any]: lowerCamelCase__ : Optional[Any] = self.num_labels lowerCamelCase__ : Tuple = GPTNeoXForQuestionAnswering(A ) model.to(A ) model.eval() lowerCamelCase__ : Any = model(A , attention_mask=A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self : Any , A : int , A : Optional[Any] , A : Dict , A : Dict ) ->int: lowerCamelCase__ : int = self.num_labels lowerCamelCase__ : Any = GPTNeoXForSequenceClassification(A ) model.to(A ) model.eval() lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Optional[Any] = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self : Optional[Any] , A : str , A : Tuple , A : Tuple , A : List[Any] ) ->Optional[Any]: lowerCamelCase__ : str = self.num_labels lowerCamelCase__ : List[Any] = GPTNeoXForTokenClassification(A ) model.to(A ) model.eval() lowerCamelCase__ : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self : int , A : List[str] , A : str , A : Tuple ) ->Union[str, Any]: lowerCamelCase__ : str = True lowerCamelCase__ : List[str] = GPTNeoXForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass lowerCamelCase__ : int = model(A , attention_mask=A , use_cache=A ) lowerCamelCase__ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase__ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCamelCase__ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase__ : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCamelCase__ : Union[str, Any] = model(A , attention_mask=A , output_hidden_states=A ) lowerCamelCase__ : List[Any] = output_from_no_past['''hidden_states'''][0] lowerCamelCase__ : Dict = model( A , attention_mask=A , past_key_values=A , output_hidden_states=A , )['''hidden_states'''][0] # select random slice lowerCamelCase__ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase__ : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def __lowerCamelCase ( self : Union[str, Any] ) ->Optional[int]: lowerCamelCase__ : Dict = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = config_and_inputs lowerCamelCase__ : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Optional[int] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase : int = (GPTNeoXForCausalLM,) if is_torch_available() else () _UpperCAmelCase : Tuple = ( { "feature-extraction": GPTNeoXModel, "question-answering": GPTNeoXForQuestionAnswering, "text-classification": GPTNeoXForSequenceClassification, "text-generation": GPTNeoXForCausalLM, "token-classification": GPTNeoXForTokenClassification, "zero-shot": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase : Any = False _UpperCAmelCase : Dict = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Optional[Any] = False def __lowerCamelCase ( self : Union[str, Any] ) ->Optional[Any]: lowerCamelCase__ : List[Any] = GPTNeoXModelTester(self ) lowerCamelCase__ : Optional[int] = ConfigTester(self , config_class=A , hidden_size=6_4 , num_attention_heads=8 ) def __lowerCamelCase ( self : Any ) ->Tuple: self.config_tester.run_common_tests() def __lowerCamelCase ( self : Optional[int] ) ->Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(A , A , A ) def __lowerCamelCase ( self : Dict ) ->Optional[Any]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(A , A , A ) def __lowerCamelCase ( self : Tuple ) ->Any: # This regression test was failing with PyTorch < 1.3 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase__ : str = None self.model_tester.create_and_check_model_as_decoder(A , A , A ) def __lowerCamelCase ( self : Union[str, Any] ) ->str: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(A , A , A ) def __lowerCamelCase ( self : Optional[int] ) ->Union[str, Any]: lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*A ) def __lowerCamelCase ( self : List[Any] ) ->Optional[int]: lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def __lowerCamelCase ( self : Union[str, Any] ) ->Optional[Any]: lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def __lowerCamelCase ( self : Dict ) ->Union[str, Any]: lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def __lowerCamelCase ( self : Tuple ) ->int: pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __lowerCamelCase ( self : Optional[Any] , A : Any ) ->Any: lowerCamelCase__ , lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : int = ids_tensor([1, 1_0] , config.vocab_size ) lowerCamelCase__ : Any = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : List[str] = GPTNeoXModel(A ) original_model.to(A ) original_model.eval() lowerCamelCase__ : Union[str, Any] = original_model(A ).last_hidden_state lowerCamelCase__ : Optional[Any] = original_model(A ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : List[Any] = {'''type''': scaling_type, '''factor''': 10.0} lowerCamelCase__ : List[str] = GPTNeoXModel(A ) scaled_model.to(A ) scaled_model.eval() lowerCamelCase__ : Optional[Any] = scaled_model(A ).last_hidden_state lowerCamelCase__ : Union[str, Any] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def __lowerCamelCase ( self : Any ) ->Optional[Any]: lowerCamelCase__ : int = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: lowerCamelCase__ : str = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(A ) lowerCamelCase__ : Union[str, Any] = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(A ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowerCamelCase__ : Any = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' lowerCamelCase__ : Optional[Any] = model.generate(**A , do_sample=A , max_new_tokens=2_0 ) lowerCamelCase__ : Optional[Any] = tokenizer.batch_decode(A )[0] self.assertEqual(A , A )
265
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _a ( *UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase=True , UpperCAmelCase=2 ) -> str: """simple docstring""" from .. import __version__ lowerCamelCase__ : Optional[Any] = take_from lowerCamelCase__ : Any = () if not isinstance(args[0] , UpperCAmelCase ): lowerCamelCase__ : Optional[int] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(UpperCAmelCase ).base_version ) >= version.parse(UpperCAmelCase ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) lowerCamelCase__ : List[Any] = None if isinstance(UpperCAmelCase , UpperCAmelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(UpperCAmelCase ),) lowerCamelCase__ : Tuple = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(UpperCAmelCase , UpperCAmelCase ): values += (getattr(UpperCAmelCase , UpperCAmelCase ),) lowerCamelCase__ : Union[str, Any] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: lowerCamelCase__ : int = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: lowerCamelCase__ : int = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , UpperCAmelCase , stacklevel=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) > 0: lowerCamelCase__ : Tuple = inspect.getouterframes(inspect.currentframe() )[1] lowerCamelCase__ : Optional[Any] = call_frame.filename lowerCamelCase__ : List[Any] = call_frame.lineno lowerCamelCase__ : Optional[Any] = call_frame.function lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(UpperCAmelCase ) == 0: return elif len(UpperCAmelCase ) == 1: return values[0] return values
265
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable UpperCamelCase = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''DPTFeatureExtractor'''] UpperCamelCase = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
87
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _lowerCAmelCase ( __a ): _lowercase ='''megatron-bert''' def __init__( self , _UpperCamelCase=29_056 , _UpperCamelCase=1_024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4_096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-1_2 , _UpperCamelCase=0 , _UpperCamelCase="absolute" , _UpperCamelCase=True , **_UpperCamelCase , ) -> int: super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = hidden_act lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = position_embedding_type lowerCAmelCase_ = use_cache
231
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = '▁' lowerCamelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCamelCase_ = { 'vocab_file': { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model' ), } } lowerCamelCase_ = { 'xlm-roberta-base': 5_12, 'xlm-roberta-large': 5_12, 'xlm-roberta-large-finetuned-conll02-dutch': 5_12, 'xlm-roberta-large-finetuned-conll02-spanish': 5_12, 'xlm-roberta-large-finetuned-conll03-english': 5_12, 'xlm-roberta-large-finetuned-conll03-german': 5_12, } class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : str , __lowerCamelCase : int , __lowerCamelCase : Optional[int]="<s>" , __lowerCamelCase : Optional[int]="</s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : str="<s>" , __lowerCamelCase : int="<unk>" , __lowerCamelCase : Dict="<pad>" , __lowerCamelCase : Tuple="<mask>" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Optional[Any] , ): """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it _SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token _SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _SCREAMING_SNAKE_CASE = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = len(self.sp_model ) + self.fairseq_offset _SCREAMING_SNAKE_CASE = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.__dict__.copy() _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() return state def __setstate__( self : str , __lowerCamelCase : List[str] ): """simple docstring""" _SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCAmelCase_ ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] _SCREAMING_SNAKE_CASE = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase_ ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def lowerCAmelCase_ ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase_ ( self : List[str] , __lowerCamelCase : str ): """simple docstring""" return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def lowerCAmelCase_ ( self : Any , __lowerCamelCase : str ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _SCREAMING_SNAKE_CASE = self.sp_model.PieceToId(__lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCAmelCase_ ( self : Tuple , __lowerCamelCase : Union[str, Any] ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCamelCase : List[str] ): """simple docstring""" _SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ).replace(__lowerCamelCase , " " ).strip() return out_string def lowerCAmelCase_ ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: _SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
111
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset lowerCamelCase_ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowercase_ ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : int ): """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE = torchvision.models.resnetaaa(pretrained=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = list(model.children() )[:-2] _SCREAMING_SNAKE_CASE = nn.Sequential(*__lowerCamelCase ) _SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCamelCase : Optional[Any] ): """simple docstring""" # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 _SCREAMING_SNAKE_CASE = self.pool(self.model(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = torch.flatten(__lowerCamelCase , start_dim=2 ) _SCREAMING_SNAKE_CASE = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowercase_ ( A ): """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = [json.loads(__lowerCamelCase ) for l in open(__lowerCamelCase )] _SCREAMING_SNAKE_CASE = os.path.dirname(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer _SCREAMING_SNAKE_CASE = labels _SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = max_seq_length _SCREAMING_SNAKE_CASE = transforms def __len__( self : int ): """simple docstring""" return len(self.data ) def __getitem__( self : str , __lowerCamelCase : Any ): """simple docstring""" _SCREAMING_SNAKE_CASE = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = sentence[0], sentence[1:-1], sentence[-1] _SCREAMING_SNAKE_CASE = sentence[: self.max_seq_length] _SCREAMING_SNAKE_CASE = torch.zeros(self.n_classes ) _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = Image.open(os.path.join(self.data_dir , self.data[index]["img"] ) ).convert("RGB" ) _SCREAMING_SNAKE_CASE = self.transforms(__lowerCamelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _SCREAMING_SNAKE_CASE = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def SCREAMING_SNAKE_CASE_ ( __A : Optional[Any] ) -> Dict: _SCREAMING_SNAKE_CASE = [len(row["sentence"] ) for row in batch] _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = len(__A ), max(__A ) _SCREAMING_SNAKE_CASE = torch.zeros(__A , __A , dtype=torch.long ) _SCREAMING_SNAKE_CASE = torch.zeros(__A , __A , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__A , __A ) ): _SCREAMING_SNAKE_CASE = input_row["sentence"] _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = torch.stack([row["image"] for row in batch] ) _SCREAMING_SNAKE_CASE = torch.stack([row["label"] for row in batch] ) _SCREAMING_SNAKE_CASE = torch.stack([row["image_start_token"] for row in batch] ) _SCREAMING_SNAKE_CASE = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: return transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4_6_7_7_7_0_4_4, 0.4_4_5_3_1_4_2_9, 0.4_0_6_6_1_0_1_7] , std=[0.1_2_2_2_1_9_9_4, 0.1_2_1_4_5_8_3_5, 0.1_4_3_8_0_4_6_9] , ), ] )
111
1
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowercase : def __init__( self: List[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Any=13 , UpperCamelCase__: Optional[Any]=30 , UpperCamelCase__: Dict=2 , UpperCamelCase__: Tuple=3 , UpperCamelCase__: Optional[Any]=True , UpperCamelCase__: Optional[Any]=True , UpperCamelCase__: Optional[Any]=32 , UpperCamelCase__: Optional[int]=5 , UpperCamelCase__: Dict=4 , UpperCamelCase__: Optional[Any]=37 , UpperCamelCase__: List[str]="gelu" , UpperCamelCase__: str=0.1 , UpperCamelCase__: Dict=0.1 , UpperCamelCase__: Dict=10 , UpperCamelCase__: Tuple=0.02 , UpperCamelCase__: Optional[int]=None , UpperCamelCase__: int=2 , ): lowerCamelCase__ : Any = parent lowerCamelCase__ : List[str] = batch_size lowerCamelCase__ : int = image_size lowerCamelCase__ : str = patch_size lowerCamelCase__ : Optional[Any] = num_channels lowerCamelCase__ : int = is_training lowerCamelCase__ : Union[str, Any] = use_labels lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : int = intermediate_size lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : Optional[Any] = hidden_dropout_prob lowerCamelCase__ : List[Any] = attention_probs_dropout_prob lowerCamelCase__ : Tuple = type_sequence_label_size lowerCamelCase__ : Any = initializer_range lowerCamelCase__ : int = scope lowerCamelCase__ : Optional[int] = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase__ : List[str] = (image_size // patch_size) ** 2 lowerCamelCase__ : Dict = num_patches + 1 def lowerCamelCase_ ( self: str ): lowerCamelCase__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : List[str] = None if self.use_labels: lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Tuple = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: List[str] ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCamelCase_ ( self: Dict , UpperCamelCase__: int , UpperCamelCase__: List[Any] , UpperCamelCase__: Any ): lowerCamelCase__ : Union[str, Any] = ViTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Dict = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Any , UpperCamelCase__: Tuple , UpperCamelCase__: str , UpperCamelCase__: Any ): lowerCamelCase__ : Union[str, Any] = ViTForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : List[str] = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase__ : Dict = 1 lowerCamelCase__ : Optional[int] = ViTForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: Any , UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] ): lowerCamelCase__ : List[Any] = self.type_sequence_label_size lowerCamelCase__ : Tuple = ViTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Optional[int] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : Dict = 1 lowerCamelCase__ : Optional[Any] = ViTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : str = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : int = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : str = config_and_inputs lowerCamelCase__ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowercase ( _lowercase , _lowercase , unittest.TestCase ): a = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) a = ( {"""feature-extraction""": ViTModel, """image-classification""": ViTForImageClassification} if is_torch_available() else {} ) a = True a = False a = False a = False def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Any = ViTModelTester(self ) lowerCamelCase__ : Optional[int] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def lowerCamelCase_ ( self: Any ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def lowerCamelCase_ ( self: int ): pass def lowerCamelCase_ ( self: str ): lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[Any] = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Union[str, Any] = model_class(UpperCamelCase__ ) lowerCamelCase__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Tuple = [*signature.parameters.keys()] lowerCamelCase__ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def lowerCamelCase_ ( self: Union[str, Any] ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : List[str] = ViTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ () -> Optional[int]: lowerCamelCase__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Dict ): return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self: int ): lowerCamelCase__ : List[str] = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = self.default_image_processor lowerCamelCase__ : Any = prepare_img() lowerCamelCase__ : str = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase__ : Optional[int] = model(**UpperCamelCase__ ) # verify the logits lowerCamelCase__ : Union[str, Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowerCamelCase__ : Any = torch.tensor([-0.2_744, 0.8_215, -0.0_836] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def lowerCamelCase_ ( self: Dict ): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. lowerCamelCase__ : List[Any] = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(UpperCamelCase__ ) lowerCamelCase__ : List[str] = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" , size=480 ) lowerCamelCase__ : Optional[int] = prepare_img() lowerCamelCase__ : str = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ) lowerCamelCase__ : Optional[int] = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase__ : int = model(UpperCamelCase__ , interpolate_pos_encoding=UpperCamelCase__ ) # verify the logits lowerCamelCase__ : Optional[Any] = torch.Size((1, 3_601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCamelCase__ ) lowerCamelCase__ : int = torch.tensor( [[4.2_340, 4.3_906, -6.6_692], [4.5_463, 1.8_928, -6.7_257], [4.4_429, 0.8_496, -5.8_585]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def lowerCamelCase_ ( self: int ): lowerCamelCase__ : str = ViTModel.from_pretrained("""facebook/dino-vits8""" , torch_dtype=torch.floataa , device_map="""auto""" ) lowerCamelCase__ : int = self.default_image_processor lowerCamelCase__ : str = prepare_img() lowerCamelCase__ : Dict = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ) lowerCamelCase__ : Dict = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowerCamelCase__ : Any = model(UpperCamelCase__ )
41
'''simple docstring''' lowerCamelCase : Any = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCamelCase : int = [{"type": "code", "content": INSTALL_CONTENT}] lowerCamelCase : str = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
47
0
from sklearn.metrics import matthews_corrcoef import datasets SCREAMING_SNAKE_CASE :Optional[int] = """ Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] """ SCREAMING_SNAKE_CASE :str = """ Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results['matthews_correlation'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results['matthews_correlation'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results['matthews_correlation'], 2)) -0.25 """ SCREAMING_SNAKE_CASE :Optional[int] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def UpperCAmelCase_ ( self )-> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html" ] , ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase=None )-> str: return { "matthews_correlation": float(matthews_corrcoef(_lowercase , _lowercase , sample_weight=_lowercase ) ), }
360
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> list: """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) <= 1: return lst UpperCamelCase_ = 1 while i < len(SCREAMING_SNAKE_CASE_ ): if lst[i - 1] <= lst[i]: i += 1 else: UpperCamelCase_ , UpperCamelCase_ = lst[i], lst[i - 1] i -= 1 if i == 0: UpperCamelCase_ = 1 return lst if __name__ == "__main__": SCREAMING_SNAKE_CASE :Union[str, Any] = input("""Enter numbers separated by a comma:\n""").strip() SCREAMING_SNAKE_CASE :Optional[int] = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
60
0
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def a__ ( SCREAMING_SNAKE_CASE : dict ): '''simple docstring''' return (data["data"], data["target"]) def a__ ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = XGBRegressor(verbosity=0 , random_state=4_2 ) xgb.fit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Predict target for test data lowerCAmelCase : str = xgb.predict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = predictions.reshape(len(SCREAMING_SNAKE_CASE ) , 1 ) return predictions def a__ ( ): '''simple docstring''' lowerCAmelCase : Any = fetch_california_housing() lowerCAmelCase , lowerCAmelCase : List[str] = data_handling(SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = train_test_split( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , test_size=0.25 , random_state=1 ) lowerCAmelCase : str = xgboost(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}""" ) print(f"""Mean Square Error : {mean_squared_error(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
108
UpperCAmelCase_ = 'Input must be a string of 8 numbers plus letter' UpperCAmelCase_ = 'TRWAGMYFPDXBNJZSQVHLCKE' def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> bool: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCamelCase__ : Any = f"Expected string as input, found {type(__UpperCAmelCase ).__name__}" raise TypeError(__UpperCAmelCase ) UpperCamelCase__ : int = spanish_id.replace('''-''' , '''''' ).upper() if len(__UpperCAmelCase ) != 9: raise ValueError(__UpperCAmelCase ) try: UpperCamelCase__ : List[str] = int(spanish_id_clean[0:8] ) UpperCamelCase__ : Optional[int] = spanish_id_clean[8] except ValueError as ex: raise ValueError(__UpperCAmelCase ) from ex if letter.isdigit(): raise ValueError(__UpperCAmelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
201
0
import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) lowerCamelCase_ : str = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Tuple = """data2vec-audio""" def __init__( self : Union[str, Any] , snake_case_ : Any=32 , snake_case_ : Optional[Any]=768 , snake_case_ : List[str]=12 , snake_case_ : Optional[Any]=12 , snake_case_ : Optional[Any]=3072 , snake_case_ : List[Any]="gelu" , snake_case_ : Optional[Any]=0.1 , snake_case_ : Any=0.1 , snake_case_ : Any=0.1 , snake_case_ : Dict=0.0 , snake_case_ : Tuple=0.1 , snake_case_ : Any=0.1 , snake_case_ : str=0.02 , snake_case_ : Dict=1e-5 , snake_case_ : Optional[int]="gelu" , snake_case_ : List[str]=(512, 512, 512, 512, 512, 512, 512) , snake_case_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , snake_case_ : Dict=(10, 3, 3, 3, 3, 2, 2) , snake_case_ : Tuple=False , snake_case_ : Dict=16 , snake_case_ : Optional[int]=19 , snake_case_ : str=5 , snake_case_ : Optional[Any]=0.05 , snake_case_ : str=10 , snake_case_ : str=2 , snake_case_ : str=0.0 , snake_case_ : str=10 , snake_case_ : int=0 , snake_case_ : Any="sum" , snake_case_ : List[Any]=False , snake_case_ : Optional[int]=False , snake_case_ : Tuple=256 , snake_case_ : Optional[int]=(512, 512, 512, 512, 1500) , snake_case_ : str=(5, 3, 3, 1, 1) , snake_case_ : Optional[Any]=(1, 2, 3, 1, 1) , snake_case_ : List[str]=512 , snake_case_ : Optional[int]=0 , snake_case_ : int=1 , snake_case_ : List[Any]=2 , snake_case_ : Tuple=False , snake_case_ : int=3 , snake_case_ : List[str]=2 , snake_case_ : Any=3 , snake_case_ : Optional[Any]=None , **snake_case_ : List[str] , ): super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) UpperCamelCase_: str = hidden_size UpperCamelCase_: Any = feat_extract_activation UpperCamelCase_: Any = list(snake_case_ ) UpperCamelCase_: Union[str, Any] = list(snake_case_ ) UpperCamelCase_: List[str] = list(snake_case_ ) UpperCamelCase_: List[Any] = conv_bias UpperCamelCase_: List[str] = num_conv_pos_embeddings UpperCamelCase_: Tuple = num_conv_pos_embedding_groups UpperCamelCase_: Any = conv_pos_kernel_size UpperCamelCase_: Any = len(self.conv_dim ) UpperCamelCase_: Optional[Any] = num_hidden_layers UpperCamelCase_: List[Any] = intermediate_size UpperCamelCase_: Dict = hidden_act UpperCamelCase_: Dict = num_attention_heads UpperCamelCase_: Optional[Any] = hidden_dropout UpperCamelCase_: Union[str, Any] = attention_dropout UpperCamelCase_: List[Any] = activation_dropout UpperCamelCase_: Optional[Any] = feat_proj_dropout UpperCamelCase_: List[Any] = final_dropout UpperCamelCase_: str = layerdrop UpperCamelCase_: List[str] = layer_norm_eps UpperCamelCase_: List[Any] = initializer_range UpperCamelCase_: List[str] = vocab_size UpperCamelCase_: List[Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase_: Optional[int] = mask_time_prob UpperCamelCase_: str = mask_time_length UpperCamelCase_: List[Any] = mask_time_min_masks UpperCamelCase_: Optional[Any] = mask_feature_prob UpperCamelCase_: Union[str, Any] = mask_feature_length UpperCamelCase_: Union[str, Any] = mask_feature_min_masks # ctc loss UpperCamelCase_: Union[str, Any] = ctc_loss_reduction UpperCamelCase_: Any = ctc_zero_infinity # adapter UpperCamelCase_: List[str] = add_adapter UpperCamelCase_: Optional[Any] = adapter_kernel_size UpperCamelCase_: int = adapter_stride UpperCamelCase_: str = num_adapter_layers UpperCamelCase_: Any = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase_: List[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase_: str = list(snake_case_ ) UpperCamelCase_: int = list(snake_case_ ) UpperCamelCase_: int = list(snake_case_ ) UpperCamelCase_: str = xvector_output_dim @property def lowerCAmelCase__ ( self : Optional[Any] ): return math.prod(self.conv_stride )
355
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) set_seed(7_70) lowerCamelCase_ : str = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } lowerCamelCase_ : Any = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } lowerCamelCase_ : str = os.path.dirname(os.path.abspath(__file__)) lowerCamelCase_ : Any = os.path.join(os.path.expanduser("""~"""), """.cache""") lowerCamelCase_ : Dict = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def A__ ( lowerCamelCase , lowerCamelCase=False ) -> int: UpperCamelCase_: Union[str, Any] = model_type if use_small: key += "_small" return os.path.join(lowerCamelCase , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def A__ ( lowerCamelCase , lowerCamelCase ) -> Tuple: os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) hf_hub_download(repo_id=lowerCamelCase , filename=lowerCamelCase , local_dir=lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=False , lowerCamelCase="text" ) -> Optional[int]: if model_type == "text": UpperCamelCase_: str = BarkSemanticModel UpperCamelCase_: Dict = BarkSemanticConfig UpperCamelCase_: int = BarkSemanticGenerationConfig elif model_type == "coarse": UpperCamelCase_: str = BarkCoarseModel UpperCamelCase_: int = BarkCoarseConfig UpperCamelCase_: Any = BarkCoarseGenerationConfig elif model_type == "fine": UpperCamelCase_: Optional[Any] = BarkFineModel UpperCamelCase_: int = BarkFineConfig UpperCamelCase_: Dict = BarkFineGenerationConfig else: raise NotImplementedError() UpperCamelCase_: str = F'''{model_type}_small''' if use_small else model_type UpperCamelCase_: List[Any] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowerCamelCase ): logger.info(F'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) UpperCamelCase_: int = torch.load(lowerCamelCase , map_location=lowerCamelCase ) # this is a hack UpperCamelCase_: Tuple = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: UpperCamelCase_: int = model_args["""vocab_size"""] UpperCamelCase_: Optional[int] = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments UpperCamelCase_: Tuple = model_args.pop("""n_head""" ) UpperCamelCase_: Dict = model_args.pop("""n_embd""" ) UpperCamelCase_: List[str] = model_args.pop("""n_layer""" ) UpperCamelCase_: Optional[Any] = ConfigClass(**checkpoint["""model_args"""] ) UpperCamelCase_: Optional[Any] = ModelClass(config=lowerCamelCase ) UpperCamelCase_: List[Any] = GenerationConfigClass() UpperCamelCase_: Optional[Any] = model_generation_config UpperCamelCase_: Optional[int] = checkpoint["""model"""] # fixup checkpoint UpperCamelCase_: Dict = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(lowerCamelCase ): # replace part of the key with corresponding layer name in HF implementation UpperCamelCase_: Optional[int] = k[len(lowerCamelCase ) :] for old_layer_name in new_layer_name_dict: UpperCamelCase_: Dict = new_k.replace(lowerCamelCase , new_layer_name_dict[old_layer_name] ) UpperCamelCase_: List[str] = state_dict.pop(lowerCamelCase ) UpperCamelCase_: Optional[int] = set(state_dict.keys() ) - set(model.state_dict().keys() ) UpperCamelCase_: Dict = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} UpperCamelCase_: Optional[Any] = set(model.state_dict().keys() ) - set(state_dict.keys() ) UpperCamelCase_: Union[str, Any] = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(lowerCamelCase ) != 0: raise ValueError(F'''extra keys found: {extra_keys}''' ) if len(lowerCamelCase ) != 0: raise ValueError(F'''missing keys: {missing_keys}''' ) model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) UpperCamelCase_: str = model.num_parameters(exclude_embeddings=lowerCamelCase ) UpperCamelCase_: int = checkpoint["""best_val_loss"""].item() logger.info(F'''model loaded: {round(n_params/1E6 , 1 )}M params, {round(lowerCamelCase , 3 )} loss''' ) model.eval() model.to(lowerCamelCase ) del checkpoint, state_dict return model def A__ ( lowerCamelCase , lowerCamelCase=False , lowerCamelCase="text" ) -> Any: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() UpperCamelCase_: Union[str, Any] = """cpu""" # do conversion on cpu UpperCamelCase_: int = _get_ckpt_path(lowerCamelCase , use_small=lowerCamelCase ) UpperCamelCase_: Dict = _load_model(lowerCamelCase , lowerCamelCase , model_type=lowerCamelCase , use_small=lowerCamelCase ) # load bark initial model UpperCamelCase_: List[Any] = _bark_load_model(lowerCamelCase , """cpu""" , model_type=lowerCamelCase , use_small=lowerCamelCase ) if model_type == "text": UpperCamelCase_: Tuple = bark_model["""model"""] if model.num_parameters(exclude_embeddings=lowerCamelCase ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model UpperCamelCase_: Optional[Any] = 5 UpperCamelCase_: List[str] = 10 if model_type in ["text", "coarse"]: UpperCamelCase_: int = torch.randint(2_56 , (batch_size, sequence_length) , dtype=torch.int ) UpperCamelCase_: Tuple = bark_model(lowerCamelCase )[0] UpperCamelCase_: Optional[Any] = model(lowerCamelCase ) # take last logits UpperCamelCase_: Union[str, Any] = output_new_model_total.logits[:, [-1], :] else: UpperCamelCase_: Tuple = 3 UpperCamelCase_: List[Any] = 8 UpperCamelCase_: List[str] = torch.randint(2_56 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) UpperCamelCase_: int = model(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Any = bark_model(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[int] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("""initial and new outputs are not equal""" ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> str: UpperCamelCase_: List[str] = os.path.join(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[int] = BarkSemanticConfig.from_pretrained(os.path.join(lowerCamelCase , """config.json""" ) ) UpperCamelCase_: List[Any] = BarkCoarseConfig.from_pretrained(os.path.join(lowerCamelCase , """config.json""" ) ) UpperCamelCase_: Optional[int] = BarkFineConfig.from_pretrained(os.path.join(lowerCamelCase , """config.json""" ) ) UpperCamelCase_: Any = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) UpperCamelCase_: Optional[Any] = BarkSemanticModel.from_pretrained(lowerCamelCase ) UpperCamelCase_: Tuple = BarkCoarseModel.from_pretrained(lowerCamelCase ) UpperCamelCase_: List[str] = BarkFineModel.from_pretrained(lowerCamelCase ) UpperCamelCase_: Tuple = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) UpperCamelCase_: int = BarkConfig.from_sub_model_configs( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[int] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) UpperCamelCase_: Optional[Any] = BarkModel(lowerCamelCase ) UpperCamelCase_: int = semantic UpperCamelCase_: Tuple = coarseAcoustic UpperCamelCase_: Optional[int] = fineAcoustic UpperCamelCase_: Any = codec UpperCamelCase_: Dict = bark_generation_config Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) bark.save_pretrained(lowerCamelCase , repo_id=lowerCamelCase , push_to_hub=lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") lowerCamelCase_ : Dict = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
223
0
import os from datetime import datetime as dt from github import Github A : Dict = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : List[Any] = Github(os.environ["GITHUB_TOKEN"] ) lowerCamelCase__ : int = g.get_repo("huggingface/diffusers" ) lowerCamelCase__ : str = repo.get_issues(state="open" ) for issue in open_issues: lowerCamelCase__ : str = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_SCREAMING_SNAKE_CASE ) lowerCamelCase__ : Dict = comments[0] if len(_SCREAMING_SNAKE_CASE ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
184
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "deberta-v2" def __init__(self , UpperCAmelCase=128100 , UpperCAmelCase=1536 , UpperCAmelCase=24 , UpperCAmelCase=24 , UpperCAmelCase=6144 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-7 , UpperCAmelCase=False , UpperCAmelCase=-1 , UpperCAmelCase=0 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=0 , UpperCAmelCase="gelu" , **UpperCAmelCase , ) -> List[str]: super().__init__(**UpperCAmelCase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = relative_attention _snake_case = max_relative_positions _snake_case = pad_token_id _snake_case = position_biased_input # Backwards compatibility if type(UpperCAmelCase ) == str: _snake_case = [x.strip() for x in pos_att_type.lower().split("""|""" )] _snake_case = pos_att_type _snake_case = vocab_size _snake_case = layer_norm_eps _snake_case = kwargs.get("""pooler_hidden_size""" , UpperCAmelCase ) _snake_case = pooler_dropout _snake_case = pooler_hidden_act class _lowerCAmelCase ( __snake_case ): '''simple docstring''' @property def lowercase (self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _snake_case = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def lowercase (self ) -> int: return 12 def lowercase (self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 3 , UpperCAmelCase = 40 , UpperCAmelCase = 40 , UpperCAmelCase = None , ) -> Mapping[str, Any]: _snake_case = super().generate_dummy_inputs(preprocessor=UpperCAmelCase , framework=UpperCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
341
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=__lowerCAmelCase ): snake_case_ = ['''note_seq'''] def __init__( self, *lowercase_, **lowercase_ ) -> str: requires_backends(self, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: requires_backends(cls, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: requires_backends(cls, ['note_seq'] )
358
'''simple docstring''' import pytest lowerCAmelCase_ = "__dummy_dataset1__" lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def __magic_name__ ( ) -> List[Any]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __magic_name__ ( ) -> Union[str, Any]: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __magic_name__ ( A , A , A ) -> Optional[int]: snake_case = dataset_loading_script_name snake_case = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=A ) snake_case = script_dir / F'''{script_name}.py''' with open(A , 'w' ) as f: f.write(A ) return str(A )
332
0
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) def lowerCamelCase__ ( _lowerCamelCase : np.ndarray , _lowerCamelCase : Union[int, Iterable[int]] , _lowerCamelCase : bool , _lowerCamelCase : int ) -> Tuple[int, int]: def constraint_to_multiple_of(_lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int]=0 , _lowerCamelCase : Optional[Any]=None ): lowerCamelCase_ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCamelCase_ = math.floor(val / multiple ) * multiple if x < min_val: lowerCamelCase_ = math.ceil(val / multiple ) * multiple return x lowerCamelCase_ = (output_size, output_size) if isinstance(_lowerCamelCase , _lowerCamelCase ) else output_size lowerCamelCase_ , lowerCamelCase_ = get_image_size(_lowerCamelCase ) lowerCamelCase_ , lowerCamelCase_ = output_size # determine new height and width lowerCamelCase_ = output_height / input_height lowerCamelCase_ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCamelCase_ = scale_width else: # fit height lowerCamelCase_ = scale_height lowerCamelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=_lowerCamelCase ) lowerCamelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=_lowerCamelCase ) return (new_height, new_width) class a ( __snake_case ): SCREAMING_SNAKE_CASE : Tuple = ["""pixel_values"""] def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 255 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , **__SCREAMING_SNAKE_CASE : List[str] , ) -> None: super().__init__(**__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = size if size is not None else {'height': 384, 'width': 384} lowerCamelCase_ = get_size_dict(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = keep_aspect_ratio lowerCamelCase_ = ensure_multiple_of lowerCamelCase_ = resample lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Dict , ) -> np.ndarray: lowerCamelCase_ = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowerCamelCase_ = get_resize_output_image_size( __SCREAMING_SNAKE_CASE , output_size=(size['height'], size['width']) , keep_aspect_ratio=__SCREAMING_SNAKE_CASE , multiple=__SCREAMING_SNAKE_CASE , ) return resize(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[int, float] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> List[Any]: return rescale(__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> np.ndarray: return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : ImageInput , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : int = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : int = None , __SCREAMING_SNAKE_CASE : PILImageResampling = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : float = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : ChannelDimension = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> PIL.Image.Image: lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCamelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(image=__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] lowerCamelCase_ = {'pixel_values': images} return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Tuple] = None ) -> Optional[int]: lowerCamelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(__SCREAMING_SNAKE_CASE ): lowerCamelCase_ = target_sizes.numpy() lowerCamelCase_ = [] for idx in range(len(__SCREAMING_SNAKE_CASE ) ): lowerCamelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__SCREAMING_SNAKE_CASE ) else: lowerCamelCase_ = logits.argmax(dim=1 ) lowerCamelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
183
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar _SCREAMING_SNAKE_CASE : Optional[Any] = TypeVar('''T''') class a ( Generic[T] ): def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : T ) -> None: lowerCamelCase_ = data lowerCamelCase_ = self lowerCamelCase_ = 0 class a ( Generic[T] ): def __init__( self : Any ) -> None: # map from node name to the node object lowerCamelCase_ = {} def UpperCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : T ) -> None: # create a new set with x as its member lowerCamelCase_ = DisjointSetTreeNode(__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : T ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) lowerCamelCase_ = self.map[data] if elem_ref != elem_ref.parent: lowerCamelCase_ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def UpperCamelCase ( self : str , __SCREAMING_SNAKE_CASE : DisjointSetTreeNode[T] , __SCREAMING_SNAKE_CASE : DisjointSetTreeNode[T] ) -> None: # helper function for union operation if nodea.rank > nodea.rank: lowerCamelCase_ = nodea else: lowerCamelCase_ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def UpperCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : T ) -> None: # merge 2 disjoint sets self.link(self.find_set(__SCREAMING_SNAKE_CASE ) , self.find_set(__SCREAMING_SNAKE_CASE ) ) class a ( Generic[T] ): def __init__( self : Optional[int] ) -> None: # connections: map from the node to the neighbouring nodes (with weights) lowerCamelCase_ = {} def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : T ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: lowerCamelCase_ = {} def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: # add an edge with the given weight self.add_node(__SCREAMING_SNAKE_CASE ) self.add_node(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = weight lowerCamelCase_ = weight def UpperCamelCase ( self : List[Any] ) -> GraphUndirectedWeighted[T]: lowerCamelCase_ = [] lowerCamelCase_ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __SCREAMING_SNAKE_CASE : x[2] ) # creating the disjoint set lowerCamelCase_ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__SCREAMING_SNAKE_CASE ) # MST generation lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edges[index] index += 1 lowerCamelCase_ = disjoint_set.find_set(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = disjoint_set.find_set(__SCREAMING_SNAKE_CASE ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) disjoint_set.union(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return graph
183
1
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case__ (__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :int = StableUnCLIPPipeline __lowerCAmelCase :Optional[int] = TEXT_TO_IMAGE_PARAMS __lowerCAmelCase :List[str] = TEXT_TO_IMAGE_BATCH_PARAMS __lowerCAmelCase :Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS __lowerCAmelCase :Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __lowerCAmelCase :Union[str, Any] = False def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Tuple = 3_2 a__ : int = embedder_hidden_size # prior components torch.manual_seed(0 ) a__ : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) a__ : Union[str, Any] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowercase , projection_dim=__lowercase , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) a__ : Any = PriorTransformer( num_attention_heads=2 , attention_head_dim=1_2 , embedding_dim=__lowercase , num_layers=1 , ) torch.manual_seed(0 ) a__ : Any = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1_0_0_0 , clip_sample=__lowercase , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) a__ : List[Any] = StableUnCLIPImageNormalizer(embedding_dim=__lowercase ) a__ : int = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) a__ : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) a__ : int = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowercase , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) a__ : Optional[int] = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__lowercase , layers_per_block=1 , upcast_attention=__lowercase , use_linear_projection=__lowercase , ) torch.manual_seed(0 ) a__ : Dict = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type="""v_prediction""" , set_alpha_to_one=__lowercase , steps_offset=1 , ) torch.manual_seed(0 ) a__ : Optional[Any] = AutoencoderKL() a__ : Union[str, Any] = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=0 ) -> Tuple: """simple docstring""" if str(__lowercase ).startswith("""mps""" ): a__ : List[Any] = torch.manual_seed(__lowercase ) else: a__ : List[Any] = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) a__ : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" a__ : List[str] = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" a__ : str = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=__lowercase ) @slow @require_torch_gpu class snake_case__ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) a__ : Tuple = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a__ : Dict = torch.Generator(device="""cpu""" ).manual_seed(0 ) a__ : Optional[Any] = pipe("""anime turle""" , generator=__lowercase , output_type="""np""" ) a__ : Union[str, Any] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() a__ : List[str] = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) a__ : Dict = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a__ : Dict = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) a__ : Dict = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
350
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class snake_case__ (ctypes.Structure ): """simple docstring""" __lowerCAmelCase :Dict = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" if os.name == "nt": a__ : int = CursorInfo() a__ : Union[str, Any] = ctypes.windll.kernelaa.GetStdHandle(-11) ctypes.windll.kernelaa.GetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase)) a__ : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase)) elif os.name == "posix": sys.stdout.write("""\033[?25l""") sys.stdout.flush() def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" if os.name == "nt": a__ : List[Any] = CursorInfo() a__ : Optional[int] = ctypes.windll.kernelaa.GetStdHandle(-11) ctypes.windll.kernelaa.GetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase)) a__ : Dict = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase)) elif os.name == "posix": sys.stdout.write("""\033[?25h""") sys.stdout.flush() @contextmanager def lowerCAmelCase_ ( ) -> Any: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
266
0
'''simple docstring''' import math def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> int: if ( not isinstance(SCREAMING_SNAKE_CASE__, (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple: if ( not isinstance(SCREAMING_SNAKE_CASE__, (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
125
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __a: List[str] = logging.get_logger(__name__) class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "encoder-decoder" SCREAMING_SNAKE_CASE = True def __init__( self , **__lowerCAmelCase ) -> int: super().__init__(**__lowerCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowercase__ : Optional[int] = kwargs.pop('''encoder''' ) lowercase__ : Union[str, Any] = encoder_config.pop('''model_type''' ) lowercase__ : Any = kwargs.pop('''decoder''' ) lowercase__ : Any = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase__ : Union[str, Any] = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) lowercase__ : Optional[Any] = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) lowercase__ : Tuple = True @classmethod def _lowerCAmelCase( cls , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) -> PretrainedConfig: logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) lowercase__ : Union[str, Any] = True lowercase__ : Any = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Any: lowercase__ : Any = copy.deepcopy(self.__dict__ ) lowercase__ : Optional[Any] = self.encoder.to_dict() lowercase__ : Tuple = self.decoder.to_dict() lowercase__ : Dict = self.__class__.model_type return output
198
0
def A (__A : Tuple , __A : str ) -> Tuple: """simple docstring""" UpperCAmelCase_ = 0 UpperCAmelCase_ = len(__A ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase_ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__A ): return None UpperCAmelCase_ = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCAmelCase_ = left UpperCAmelCase_ = point elif point > right: UpperCAmelCase_ = right UpperCAmelCase_ = point else: if item < current_item: UpperCAmelCase_ = point - 1 else: UpperCAmelCase_ = point + 1 return None def A (__A : str , __A : str , __A : List[Any] , __A : str ) -> Union[str, Any]: """simple docstring""" if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase_ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__A ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(__A , __A , __A , __A ) elif point > right: return interpolation_search_by_recursion(__A , __A , __A , __A ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( __A , __A , __A , point - 1 ) else: return interpolation_search_by_recursion( __A , __A , point + 1 , __A ) def A (__A : Optional[Any] ) -> List[Any]: """simple docstring""" if collection != sorted(__A ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys snake_case_ : Any = 0 if debug == 1: snake_case_ : Dict = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") snake_case_ : Dict = 67 snake_case_ : Dict = interpolation_search(collection, target) if result is not None: print(f"{target} found at positions: {result}") else: print("Not found")
7
from maths.prime_factors import prime_factors def A (__A : int ) -> int: """simple docstring""" if not isinstance(__A , __A ): UpperCAmelCase_ = F"""Input value of [number={number}] must be an integer""" raise TypeError(__A ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(__A ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
7
1