code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int=13 , UpperCamelCase__ : Union[str, Any]=30 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Optional[Any]=3 , UpperCamelCase__ : Any=True , UpperCamelCase__ : str=True , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : List[str]=37 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : int=10 , UpperCamelCase__ : List[str]=0.02 , UpperCamelCase__ : Tuple=3 , UpperCamelCase__ : List[str]=0.6 , UpperCamelCase__ : Dict=None , ) -> str: """simple docstring""" __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = mask_ratio __magic_name__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __magic_name__ = (image_size // patch_size) ** 2 __magic_name__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self : Dict ) -> Tuple: """simple docstring""" __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = self.get_config() return config, pixel_values, labels def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _lowercase ( self : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int ) -> str: """simple docstring""" __magic_name__ = TFViTMAEModel(config=UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ) -> Any: """simple docstring""" __magic_name__ = TFViTMAEForPreTraining(UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , training=UpperCamelCase__ ) # expected sequence length = num_patches __magic_name__ = (self.image_size // self.patch_size) ** 2 __magic_name__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __magic_name__ = 1 __magic_name__ = TFViTMAEForPreTraining(UpperCamelCase__ ) __magic_name__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ = model(UpperCamelCase__ , training=UpperCamelCase__ ) __magic_name__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __magic_name__ = self.prepare_config_and_inputs() ((__magic_name__) , (__magic_name__) , (__magic_name__)) = config_and_inputs __magic_name__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _A , _A , unittest.TestCase ): '''simple docstring''' a__ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () a__ = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} a__ = False a__ = False a__ = False a__ = False def _lowercase ( self : Tuple ) -> List[Any]: """simple docstring""" __magic_name__ = TFViTMAEModelTester(self ) __magic_name__ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def _lowercase ( self : Optional[int] ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def _lowercase ( self : Tuple ) -> List[Any]: """simple docstring""" pass def _lowercase ( self : Optional[int] ) -> Any: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __magic_name__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , tf.keras.layers.Layer ) ) def _lowercase ( self : List[Any] ) -> List[Any]: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ = [*signature.parameters.keys()] __magic_name__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def _lowercase ( self : List[Any] ) -> str: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self : Any ) -> Optional[int]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) def _lowercase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) __magic_name__ = copy.deepcopy(self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) __magic_name__ = model(**UpperCamelCase__ , noise=UpperCamelCase__ ) __magic_name__ = outputs_dict[0].numpy() __magic_name__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def _lowercase ( self : Dict ) -> Any: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCamelCase__ : int ): __magic_name__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCamelCase__ ): __magic_name__ = v.numpy() else: __magic_name__ = np.array(UpperCamelCase__ ) return inputs_np_dict for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = prepare_numpy_arrays(UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) __magic_name__ = model(**UpperCamelCase__ , noise=UpperCamelCase__ ) self.assert_outputs_same(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ) -> List[Any]: """simple docstring""" np.random.seed(2 ) __magic_name__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __magic_name__ = tf.constant(UpperCamelCase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __magic_name__ = tf_noise super().check_pt_tf_models(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self : List[str] ) -> Dict: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCamelCase__ ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(UpperCamelCase__ , UpperCamelCase__ ),) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCamelCase__ , """_keras_serializable""" , UpperCamelCase__ ) } __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __magic_name__ = tf.convert_to_tensor(UpperCamelCase__ ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: __magic_name__ = main_layer_class(UpperCamelCase__ ) __magic_name__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } __magic_name__ = tf.keras.Model(UpperCamelCase__ , outputs=main_layer(UpperCamelCase__ ) ) __magic_name__ = model(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = os.path.join(UpperCamelCase__ , """keras_model.h5""" ) model.save(UpperCamelCase__ ) __magic_name__ = tf.keras.models.load_model( UpperCamelCase__ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCamelCase__ , tf.keras.Model ) __magic_name__ = model(UpperCamelCase__ ) self.assert_outputs_same(UpperCamelCase__ , UpperCamelCase__ ) @slow def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) if model_class.__name__ == "TFViTMAEModel": __magic_name__ = outputs.last_hidden_state.numpy() __magic_name__ = 0 else: __magic_name__ = outputs.logits.numpy() __magic_name__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ , saved_model=UpperCamelCase__ ) __magic_name__ = model_class.from_pretrained(UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) if model_class.__name__ == "TFViTMAEModel": __magic_name__ = after_outputs["""last_hidden_state"""].numpy() __magic_name__ = 0 else: __magic_name__ = after_outputs["""logits"""].numpy() __magic_name__ = 0 __magic_name__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase__ , 1E-5 ) def _lowercase ( self : Any ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) __magic_name__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCamelCase__ ) __magic_name__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config __magic_name__ = model_class.from_config(model.config ) __magic_name__ = new_model(UpperCamelCase__ ) # Build model new_model.set_weights(model.get_weights() ) __magic_name__ = new_model(UpperCamelCase__ , noise=UpperCamelCase__ ) self.assert_outputs_same(UpperCamelCase__ , UpperCamelCase__ ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _lowercase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def _lowercase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass @slow def _lowercase ( self : Any ) -> str: """simple docstring""" __magic_name__ = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(UpperCamelCase__ ) def a__ ( ): '''simple docstring''' __magic_name__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def _lowercase ( self : Dict ) -> int: """simple docstring""" np.random.seed(2 ) __magic_name__ = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=UpperCamelCase__ , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __magic_name__ = ViTMAEConfig() __magic_name__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(1, num_patches) ) # forward pass __magic_name__ = model(**UpperCamelCase__ , noise=UpperCamelCase__ ) # verify the logits __magic_name__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) __magic_name__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1E-4 )
88
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase : List[str] = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __lowerCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
88
1
from __future__ import annotations import requests lowerCamelCase__ = set( '''approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports'''.split() ) def A(__a: str , __a: int = 1 , __a: str = "new" , __a: list | None = None ): lowerCAmelCase_ = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__a ) - valid_terms ) ): lowerCAmelCase_ = F"Invalid search term: {invalid_search_terms}" raise ValueError(__a ) lowerCAmelCase_ = requests.get( F"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}" , headers={"User-agent": "A random string"} , ) if response.status_code == 429: raise requests.HTTPError lowerCAmelCase_ = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__a )} lowerCAmelCase_ = {} for id_ in range(__a ): lowerCAmelCase_ = { item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('''learnpython''', wanted_data=['''title''', '''url''', '''selftext''']))
22
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase__ = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=a_ ) __A = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=a_ ) env_command_parser(subparsers=a_ ) launch_command_parser(subparsers=a_ ) tpu_command_parser(subparsers=a_ ) test_command_parser(subparsers=a_ ) # Let's go __A = parser.parse_args() if not hasattr(a_ , "func" ): parser.print_help() exit(1 ) # Run args.func(a_ ) if __name__ == "__main__": main()
15
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self , snake_case_ = 7_6_8 , ): """simple docstring""" super().__init__() A_ : Optional[int] = nn.Parameter(torch.zeros(1 , snake_case_ ) ) A_ : Optional[int] = nn.Parameter(torch.ones(1 , snake_case_ ) ) def lowerCamelCase_ ( self , snake_case_ = None , snake_case_ = None , ): """simple docstring""" A_ : str = nn.Parameter(self.mean.to(snake_case_ ).to(snake_case_ ) ) A_ : Optional[int] = nn.Parameter(self.std.to(snake_case_ ).to(snake_case_ ) ) return self def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : Tuple = (embeds - self.mean) * 1.0 / self.std return embeds def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : List[str] = (embeds * self.std) + self.mean return embeds
286
0
'''simple docstring''' import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : str ): def get_masked_lm_array(_lowerCamelCase : str ): A__ = F"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE" A__ = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) if "kernel" in name: A__ = array.transpose() return torch.from_numpy(_lowerCamelCase ) def get_encoder_array(_lowerCamelCase : str ): A__ = F"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE" A__ = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) if "kernel" in name: A__ = array.transpose() return torch.from_numpy(_lowerCamelCase ) def get_encoder_layer_array(_lowerCamelCase : int , _lowerCamelCase : str ): A__ = F"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE" A__ = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) if "kernel" in name: A__ = array.transpose() return torch.from_numpy(_lowerCamelCase ) def get_encoder_attention_layer_array(_lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : int ): A__ = F"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE" A__ = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) A__ = array.reshape(_lowerCamelCase ) if "kernel" in name: A__ = array.transpose() return torch.from_numpy(_lowerCamelCase ) print(F"Loading model based on config from {config_path}..." ) A__ = BertConfig.from_json_file(_lowerCamelCase ) A__ = BertForMaskedLM(_lowerCamelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): A__ = model.bert.encoder.layer[layer_index] # Self-attention A__ = layer.attention.self A__ = get_encoder_attention_layer_array( _lowerCamelCase , "_query_dense/kernel" , self_attn.query.weight.data.shape ) A__ = get_encoder_attention_layer_array( _lowerCamelCase , "_query_dense/bias" , self_attn.query.bias.data.shape ) A__ = get_encoder_attention_layer_array( _lowerCamelCase , "_key_dense/kernel" , self_attn.key.weight.data.shape ) A__ = get_encoder_attention_layer_array( _lowerCamelCase , "_key_dense/bias" , self_attn.key.bias.data.shape ) A__ = get_encoder_attention_layer_array( _lowerCamelCase , "_value_dense/kernel" , self_attn.value.weight.data.shape ) A__ = get_encoder_attention_layer_array( _lowerCamelCase , "_value_dense/bias" , self_attn.value.bias.data.shape ) # Self-attention Output A__ = layer.attention.output A__ = get_encoder_attention_layer_array( _lowerCamelCase , "_output_dense/kernel" , self_output.dense.weight.data.shape ) A__ = get_encoder_attention_layer_array( _lowerCamelCase , "_output_dense/bias" , self_output.dense.bias.data.shape ) A__ = get_encoder_layer_array(_lowerCamelCase , "_attention_layer_norm/gamma" ) A__ = get_encoder_layer_array(_lowerCamelCase , "_attention_layer_norm/beta" ) # Intermediate A__ = layer.intermediate A__ = get_encoder_layer_array(_lowerCamelCase , "_intermediate_dense/kernel" ) A__ = get_encoder_layer_array(_lowerCamelCase , "_intermediate_dense/bias" ) # Output A__ = layer.output A__ = get_encoder_layer_array(_lowerCamelCase , "_output_dense/kernel" ) A__ = get_encoder_layer_array(_lowerCamelCase , "_output_dense/bias" ) A__ = get_encoder_layer_array(_lowerCamelCase , "_output_layer_norm/gamma" ) A__ = get_encoder_layer_array(_lowerCamelCase , "_output_layer_norm/beta" ) # Embeddings A__ = get_encoder_array("_position_embedding_layer/embeddings" ) A__ = get_encoder_array("_type_embedding_layer/embeddings" ) A__ = get_encoder_array("_embedding_norm_layer/gamma" ) A__ = get_encoder_array("_embedding_norm_layer/beta" ) # LM Head A__ = model.cls.predictions.transform A__ = get_masked_lm_array("dense/kernel" ) A__ = get_masked_lm_array("dense/bias" ) A__ = get_masked_lm_array("layer_norm/gamma" ) A__ = get_masked_lm_array("layer_norm/beta" ) A__ = get_masked_lm_array("embedding_table" ) # Pooling A__ = BertPooler(config=_lowerCamelCase ) A__ = get_encoder_array("_pooler_layer/kernel" ) A__ = get_encoder_array("_pooler_layer/bias" ) # Export final model model.save_pretrained(_lowerCamelCase ) # Integration test - should load without any errors ;) A__ = BertForMaskedLM.from_pretrained(_lowerCamelCase ) print(new_model.eval() ) print("Model conversion was done sucessfully!" ) if __name__ == "__main__": __lowerCAmelCase : int =argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) __lowerCAmelCase : Optional[int] =parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
123
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) __lowerCAmelCase : Optional[int] =[ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def UpperCamelCase ( _lowerCamelCase : int ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: A__ = k.replace(_lowerCamelCase , _lowerCamelCase ) if k.startswith("encoder" ): A__ = k.replace(".attn" , ".self_attn" ) A__ = k.replace("norm1" , "self_attn_layer_norm" ) A__ = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): A__ = k.replace("norm1" , "self_attn_layer_norm" ) A__ = k.replace("norm2" , "encoder_attn_layer_norm" ) A__ = k.replace("norm3" , "final_layer_norm" ) return k def UpperCamelCase ( _lowerCamelCase : int ): A__ = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: A__ = sd.pop(_lowerCamelCase ) A__ = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd A__ = v __lowerCAmelCase : Optional[int] =["START"] @torch.no_grad() def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] ): A__ = torch.load(_lowerCamelCase , map_location="cpu" ) A__ = model["model"] A__ = BlenderbotConfig.from_json_file(_lowerCamelCase ) A__ = BlenderbotForConditionalGeneration(_lowerCamelCase ) A__ = m.model.state_dict().keys() A__ = [] A__ = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue A__ = rename_state_dict_key(_lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: A__ = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowerCamelCase ) m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) m.half() m.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __lowerCAmelCase : Union[str, Any] =parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
123
1
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def _snake_case ( _snake_case : list[list[float]] ): lowerCAmelCase : str = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_snake_case ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowerCAmelCase : int = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements lowerCAmelCase : Optional[int] = [[0.0, 0.0], [0.0, 0.0]] lowerCAmelCase, lowerCAmelCase : List[Any] = matrix[1][1], matrix[0][0] lowerCAmelCase, lowerCAmelCase : Union[str, Any] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_snake_case ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_snake_case ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCAmelCase : int = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix lowerCAmelCase : Dict = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowerCAmelCase : List[str] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowerCAmelCase : Dict = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowerCAmelCase : str = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowerCAmelCase : Any = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowerCAmelCase : Any = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowerCAmelCase : Optional[int] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowerCAmelCase : Optional[int] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowerCAmelCase : Dict = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowerCAmelCase : List[Any] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCAmelCase : str = array(_snake_case ) for i in range(3 ): for j in range(3 ): lowerCAmelCase : Optional[Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCAmelCase : Tuple = array(_snake_case ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_snake_case ) # Calculate the inverse of the matrix return [[float(d(_snake_case ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
60
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(SCREAMING_SNAKE_CASE ): A : int = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : List[str] = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self ) -> int: """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: with self.subTest(SCREAMING_SNAKE_CASE ): A : Any = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Any = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self ) -> Any: """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: A : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) A : List[str] = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE ) A : Optional[Any] = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**SCREAMING_SNAKE_CASE ): return model(**SCREAMING_SNAKE_CASE ) eval(**SCREAMING_SNAKE_CASE ).block_until_ready() @slow def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: A : List[str] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = FlaxRobertaModel.from_pretrained(SCREAMING_SNAKE_CASE ) A : int = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**SCREAMING_SNAKE_CASE ): return model(**SCREAMING_SNAKE_CASE ) eval(**SCREAMING_SNAKE_CASE ).block_until_ready() def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" with self.assertRaisesRegex( SCREAMING_SNAKE_CASE , '''bert-base is not a local folder and is not a valid model identifier''' ): A : List[Any] = FlaxAutoModel.from_pretrained('''bert-base''' ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" with self.assertRaisesRegex( SCREAMING_SNAKE_CASE , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): A : Optional[int] = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE , revision='''aaaaaa''' ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" with self.assertRaisesRegex( SCREAMING_SNAKE_CASE , '''hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack''' , ): A : List[str] = FlaxAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex(SCREAMING_SNAKE_CASE , '''Use `from_pt=True` to load this model''' ): A : Any = FlaxAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' )
3
0
"""simple docstring""" def UpperCAmelCase ( a_ = 10 ): '''simple docstring''' if not isinstance(a_, a_ ) or n < 0: raise ValueError('Invalid input' ) lowerCamelCase : Union[str, Any] = 10**n lowerCamelCase : int = 2_8433 * (pow(2, 783_0457, a_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(1_0) = }""")
205
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore _A = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" _A = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') _A = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') _A = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') _A = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') _A = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
205
1
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __lowerCamelCase = logging.getLogger(__name__) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = np.argmax(UpperCAmelCase__, axis=1 ) return np.sum(outputs == labels ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: with open(UpperCAmelCase__, encoding="""utf_8""" ) as f: A_ = csv.reader(UpperCAmelCase__ ) A_ = [] next(UpperCAmelCase__ ) # skip the first line for line in tqdm(UpperCAmelCase__ ): output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Union[str, Any]: A_ = [] for dataset in encoded_datasets: A_ = len(UpperCAmelCase__ ) A_ = np.zeros((n_batch, 2, input_len), dtype=np.intaa ) A_ = np.zeros((n_batch, 2), dtype=np.intaa ) A_ = np.full((n_batch, 2, input_len), fill_value=-1_00, dtype=np.intaa ) A_ = np.zeros((n_batch,), dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(UpperCAmelCase__ ): A_ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] A_ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] A_ = with_conta A_ = with_conta A_ = len(UpperCAmelCase__ ) - 1 A_ = len(UpperCAmelCase__ ) - 1 A_ = with_conta A_ = with_conta A_ = mc_label A_ = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(UpperCAmelCase__ ) for t in all_inputs ) ) return tensor_datasets def UpperCAmelCase__ ( ) -> int: A_ = argparse.ArgumentParser() parser.add_argument("""--model_name""", type=UpperCAmelCase__, default="""openai-gpt""", help="""pretrained model name""" ) parser.add_argument("""--do_train""", action="""store_true""", help="""Whether to run training.""" ) parser.add_argument("""--do_eval""", action="""store_true""", help="""Whether to run eval on the dev set.""" ) parser.add_argument( """--output_dir""", default=UpperCAmelCase__, type=UpperCAmelCase__, required=UpperCAmelCase__, help="""The output directory where the model predictions and checkpoints will be written.""", ) parser.add_argument("""--train_dataset""", type=UpperCAmelCase__, default="""""" ) parser.add_argument("""--eval_dataset""", type=UpperCAmelCase__, default="""""" ) parser.add_argument("""--seed""", type=UpperCAmelCase__, default=42 ) parser.add_argument("""--num_train_epochs""", type=UpperCAmelCase__, default=3 ) parser.add_argument("""--train_batch_size""", type=UpperCAmelCase__, default=8 ) parser.add_argument("""--eval_batch_size""", type=UpperCAmelCase__, default=16 ) parser.add_argument("""--adam_epsilon""", default=1e-8, type=UpperCAmelCase__, help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""", type=UpperCAmelCase__, default=1 ) parser.add_argument( """--max_steps""", default=-1, type=UpperCAmelCase__, help=( """If > 0: set total number of training steps to perform. Override num_train_epochs.""" ), ) parser.add_argument( """--gradient_accumulation_steps""", type=UpperCAmelCase__, default=1, help="""Number of updates steps to accumulate before performing a backward/update pass.""", ) parser.add_argument("""--learning_rate""", type=UpperCAmelCase__, default=6.25e-5 ) parser.add_argument("""--warmup_steps""", default=0, type=UpperCAmelCase__, help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--lr_schedule""", type=UpperCAmelCase__, default="""warmup_linear""" ) parser.add_argument("""--weight_decay""", type=UpperCAmelCase__, default=0.01 ) parser.add_argument("""--lm_coef""", type=UpperCAmelCase__, default=0.9 ) parser.add_argument("""--n_valid""", type=UpperCAmelCase__, default=3_74 ) parser.add_argument("""--server_ip""", type=UpperCAmelCase__, default="""""", help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""", type=UpperCAmelCase__, default="""""", help="""Can be used for distant debugging.""" ) A_ = parser.parse_args() print(UpperCAmelCase__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=UpperCAmelCase__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) A_ = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) A_ = torch.cuda.device_count() logger.info("""device: {}, n_gpu {}""".format(UpperCAmelCase__, UpperCAmelCase__ ) ) if not args.do_train and not args.do_eval: raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset A_ = ["""_start_""", """_delimiter_""", """_classify_"""] A_ = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(UpperCAmelCase__ ) A_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) A_ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(UpperCAmelCase__ ) ) model.to(UpperCAmelCase__ ) # Load and encode the datasets def tokenize_and_encode(UpperCAmelCase__ ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(UpperCAmelCase__ ) ) elif isinstance(UpperCAmelCase__, UpperCAmelCase__ ): return obj return [tokenize_and_encode(UpperCAmelCase__ ) for o in obj] logger.info("""Encoding dataset...""" ) A_ = load_rocstories_dataset(args.train_dataset ) A_ = load_rocstories_dataset(args.eval_dataset ) A_ = (train_dataset, eval_dataset) A_ = tokenize_and_encode(UpperCAmelCase__ ) # Compute the max input length for the Transformer A_ = model.config.n_positions // 2 - 2 A_ = max( len(story[:max_length] ) + max(len(conta[:max_length] ), len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) A_ = min(UpperCAmelCase__, model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders A_ = pre_process_datasets(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, *UpperCAmelCase__ ) A_ , A_ = tensor_datasets[0], tensor_datasets[1] A_ = TensorDataset(*UpperCAmelCase__ ) A_ = RandomSampler(UpperCAmelCase__ ) A_ = DataLoader(UpperCAmelCase__, sampler=UpperCAmelCase__, batch_size=args.train_batch_size ) A_ = TensorDataset(*UpperCAmelCase__ ) A_ = SequentialSampler(UpperCAmelCase__ ) A_ = DataLoader(UpperCAmelCase__, sampler=UpperCAmelCase__, batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: A_ = args.max_steps A_ = args.max_steps // (len(UpperCAmelCase__ ) // args.gradient_accumulation_steps) + 1 else: A_ = len(UpperCAmelCase__ ) // args.gradient_accumulation_steps * args.num_train_epochs A_ = list(model.named_parameters() ) A_ = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""] A_ = [ { """params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], """weight_decay""": args.weight_decay, }, {"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0}, ] A_ = AdamW(UpperCAmelCase__, lr=args.learning_rate, eps=args.adam_epsilon ) A_ = get_linear_schedule_with_warmup( UpperCAmelCase__, num_warmup_steps=args.warmup_steps, num_training_steps=UpperCAmelCase__ ) if args.do_train: A_ , A_ , A_ = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ), desc="""Epoch""" ): A_ = 0 A_ = 0 A_ = tqdm(UpperCAmelCase__, desc="""Training""" ) for step, batch in enumerate(UpperCAmelCase__ ): A_ = tuple(t.to(UpperCAmelCase__ ) for t in batch ) A_ , A_ , A_ , A_ = batch A_ = model(UpperCAmelCase__, mc_token_ids=UpperCAmelCase__, lm_labels=UpperCAmelCase__, mc_labels=UpperCAmelCase__ ) A_ = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() A_ = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 A_ = """Training loss: {:.2e} lr: {:.2e}""".format(UpperCAmelCase__, scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer A_ = model.module if hasattr(UpperCAmelCase__, """module""" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` A_ = os.path.join(args.output_dir, UpperCAmelCase__ ) A_ = os.path.join(args.output_dir, UpperCAmelCase__ ) torch.save(model_to_save.state_dict(), UpperCAmelCase__ ) model_to_save.config.to_json_file(UpperCAmelCase__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned A_ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) A_ = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(UpperCAmelCase__ ) if args.do_eval: model.eval() A_ , A_ = 0, 0 A_ , A_ = 0, 0 for batch in tqdm(UpperCAmelCase__, desc="""Evaluating""" ): A_ = tuple(t.to(UpperCAmelCase__ ) for t in batch ) A_ , A_ , A_ , A_ = batch with torch.no_grad(): A_ , A_ , A_ , A_ = model( UpperCAmelCase__, mc_token_ids=UpperCAmelCase__, lm_labels=UpperCAmelCase__, mc_labels=UpperCAmelCase__ ) A_ = mc_logits.detach().cpu().numpy() A_ = mc_labels.to("""cpu""" ).numpy() A_ = accuracy(UpperCAmelCase__, UpperCAmelCase__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 A_ = eval_loss / nb_eval_steps A_ = eval_accuracy / nb_eval_examples A_ = tr_loss / nb_tr_steps if args.do_train else None A_ = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss} A_ = os.path.join(args.output_dir, """eval_results.txt""" ) with open(UpperCAmelCase__, """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""", UpperCAmelCase__, str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) if __name__ == "__main__": main()
162
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=True, UpperCAmelCase__="pt" ) -> str: A_ = {"""add_prefix_space""": True} if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and not line.startswith(""" """ ) else {} A_ = padding_side return tokenizer( [line], max_length=UpperCAmelCase__, padding="""max_length""" if pad_to_max_length else None, truncation=UpperCAmelCase__, return_tensors=UpperCAmelCase__, add_special_tokens=UpperCAmelCase__, **UpperCAmelCase__, ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, ) -> List[str]: A_ = input_ids.ne(UpperCAmelCase__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__="train" , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="" , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = Path(UpperCamelCase__ ).joinpath(type_path + """.source""" ) A_ = Path(UpperCamelCase__ ).joinpath(type_path + """.target""" ) A_ = self.get_char_lens(self.src_file ) A_ = max_source_length A_ = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' A_ = tokenizer A_ = prefix if n_obs is not None: A_ = self.src_lens[:n_obs] A_ = src_lang A_ = tgt_lang def __len__( self ) -> Dict: '''simple docstring''' return len(self.src_lens ) def __getitem__( self , UpperCamelCase__ ) -> Dict[str, torch.Tensor]: '''simple docstring''' A_ = index + 1 # linecache starts at 1 A_ = self.prefix + linecache.getline(str(self.src_file ) , UpperCamelCase__ ).rstrip("""\n""" ) A_ = linecache.getline(str(self.tgt_file ) , UpperCamelCase__ ).rstrip("""\n""" ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , UpperCamelCase__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , UpperCamelCase__ ) else self.tokenizer ) A_ = self.tokenizer.generator if isinstance(self.tokenizer , UpperCamelCase__ ) else self.tokenizer A_ = encode_line(UpperCamelCase__ , UpperCamelCase__ , self.max_source_length , """right""" ) A_ = encode_line(UpperCamelCase__ , UpperCamelCase__ , self.max_target_length , """right""" ) A_ = source_inputs["""input_ids"""].squeeze() A_ = target_inputs["""input_ids"""].squeeze() A_ = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Any: '''simple docstring''' return [len(UpperCamelCase__ ) for x in Path(UpperCamelCase__ ).open().readlines()] def snake_case_ ( self , UpperCamelCase__ ) -> Dict[str, torch.Tensor]: '''simple docstring''' A_ = torch.stack([x["""input_ids"""] for x in batch] ) A_ = torch.stack([x["""attention_mask"""] for x in batch] ) A_ = torch.stack([x["""decoder_input_ids"""] for x in batch] ) A_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , UpperCamelCase__ ) else self.tokenizer.pad_token_id ) A_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , UpperCamelCase__ ) else self.tokenizer.pad_token_id ) A_ = trim_batch(UpperCamelCase__ , UpperCamelCase__ ) A_ , A_ = trim_batch(UpperCamelCase__ , UpperCamelCase__ , attention_mask=UpperCamelCase__ ) A_ = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __lowerCamelCase = getLogger(__name__) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: return list(itertools.chain.from_iterable(UpperCAmelCase__ ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: A_ = get_git_info() save_json(UpperCAmelCase__, os.path.join(UpperCAmelCase__, """git_log.json""" ) ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=4, **UpperCAmelCase__ ) -> Dict: with open(UpperCAmelCase__, """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__, indent=UpperCAmelCase__, **UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: with open(UpperCAmelCase__ ) as f: return json.load(UpperCAmelCase__ ) def UpperCAmelCase__ ( ) -> Any: A_ = git.Repo(search_parent_directories=UpperCAmelCase__ ) A_ = { """repo_id""": str(UpperCAmelCase__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List: return list(map(UpperCAmelCase__, UpperCAmelCase__ ) ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: with open(UpperCAmelCase__, """wb""" ) as f: return pickle.dump(UpperCAmelCase__, UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]: def remove_articles(UpperCAmelCase__ ): return re.sub(r"""\b(a|an|the)\b""", """ """, UpperCAmelCase__ ) def white_space_fix(UpperCAmelCase__ ): return " ".join(text.split() ) def remove_punc(UpperCAmelCase__ ): A_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCAmelCase__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCAmelCase__ ) ) ) ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: A_ = normalize_answer(UpperCAmelCase__ ).split() A_ = normalize_answer(UpperCAmelCase__ ).split() A_ = Counter(UpperCAmelCase__ ) & Counter(UpperCAmelCase__ ) A_ = sum(common.values() ) if num_same == 0: return 0 A_ = 1.0 * num_same / len(UpperCAmelCase__ ) A_ = 1.0 * num_same / len(UpperCAmelCase__ ) A_ = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[Any]: return normalize_answer(UpperCAmelCase__ ) == normalize_answer(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = 0 for hypo, pred in zip(UpperCAmelCase__, UpperCAmelCase__ ): em += exact_match_score(UpperCAmelCase__, UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: em /= len(UpperCAmelCase__ ) return {"em": em} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: return model_prefix.startswith("""rag""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[str]: A_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A_ = """dropout_rate""" for p in extra_params: if getattr(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ): if not hasattr(UpperCAmelCase__, UpperCAmelCase__ ) and not hasattr(UpperCAmelCase__, equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(UpperCAmelCase__ ) ) delattr(UpperCAmelCase__, UpperCAmelCase__ ) continue A_ = p if hasattr(UpperCAmelCase__, UpperCAmelCase__ ) else equivalent_param[p] setattr(UpperCAmelCase__, UpperCAmelCase__, getattr(UpperCAmelCase__, UpperCAmelCase__ ) ) delattr(UpperCAmelCase__, UpperCAmelCase__ ) return hparams, config
162
1
'''simple docstring''' def UpperCamelCase ( _lowerCamelCase : int ): if number > 0: raise ValueError("input must be a negative integer" ) A__ = len(bin(_lowerCamelCase )[3:] ) A__ = bin(abs(_lowerCamelCase ) - (1 << binary_number_length) )[3:] A__ = ( ( "1" + "0" * (binary_number_length - len(_lowerCamelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
364
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : List[Any] ="examples/" __lowerCAmelCase : Dict ={ "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] ={ "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : str ="README.md" def UpperCamelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] ): with open(_lowerCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: A__ = f.read() A__, A__ = REPLACE_PATTERNS[pattern] A__ = replace.replace("VERSION" , _lowerCamelCase ) A__ = re_pattern.sub(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : int ): for folder, directories, fnames in os.walk(_lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , pattern="examples" ) def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not patch: update_version_in_examples(_lowerCamelCase ) def UpperCamelCase ( ): A__ = "🤗 Transformers currently provides the following architectures" A__ = "1. Want to contribute a new model?" with open(_lowerCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: A__ = f.readlines() # Find the start of the list. A__ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 A__ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): A__ = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(_lowerCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_lowerCamelCase ) def UpperCamelCase ( ): with open(REPLACE_FILES["init"] , "r" ) as f: A__ = f.read() A__ = REPLACE_PATTERNS["init"][0].search(_lowerCamelCase ).groups()[0] return packaging.version.parse(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Dict=False ): A__ = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: A__ = default_version.base_version elif patch: A__ = F"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: A__ = F"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. A__ = input(F"Which version are you releasing? [{default_version}]" ) if len(_lowerCamelCase ) == 0: A__ = default_version print(F"Updating version to {version}." ) global_version_update(_lowerCamelCase , patch=_lowerCamelCase ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def UpperCamelCase ( ): A__ = get_version() A__ = F"{current_version.major}.{current_version.minor + 1}.0.dev0" A__ = current_version.base_version # Check with the user we got that right. A__ = input(F"Which version are we developing now? [{dev_version}]" ) if len(_lowerCamelCase ) == 0: A__ = dev_version print(F"Updating version to {version}." ) global_version_update(_lowerCamelCase ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : int =parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
123
0
"""simple docstring""" import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin A: Tuple = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): __lowerCAmelCase : str = AlbertTokenizer __lowerCAmelCase : Optional[Any] = AlbertTokenizerFast __lowerCAmelCase : List[Any] = True __lowerCAmelCase : str = True __lowerCAmelCase : Dict = True def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : List[str] = AlbertTokenizer(lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple = '''this is a test''' UpperCAmelCase : Any = '''this is a test''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : Optional[int] = '''<pad>''' UpperCAmelCase : List[str] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(lowerCAmelCase_ ) , 30000 ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase : Tuple = self.get_tokenizer() UpperCAmelCase : str = self.get_rust_tokenizer() UpperCAmelCase : Tuple = '''I was born in 92000, and this is falsé.''' UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase_ ) UpperCAmelCase : str = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase : Union[str, Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase : Dict = self.get_rust_tokenizer() UpperCAmelCase : Optional[int] = tokenizer.encode(lowerCAmelCase_ ) UpperCAmelCase : str = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] = AlbertTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) UpperCAmelCase : Tuple = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [48, 25, 21, 1289] ) UpperCAmelCase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) UpperCAmelCase : int = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) UpperCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : int = AlbertTokenizer(lowerCAmelCase_ ) UpperCAmelCase : str = tokenizer.encode("""sequence builders""" ) UpperCAmelCase : str = tokenizer.encode("""multi-sequence build""" ) UpperCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : Optional[Any] = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
109
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : List[str] = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : int = '''xlm''' __UpperCamelCase : Optional[Any] = { '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self : List[Any] , lowerCAmelCase_ : Dict=3_0_1_4_5 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : List[str]=1_2 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Tuple=5_1_2 , lowerCAmelCase_ : Tuple=2_0_4_8**-0.5 , lowerCAmelCase_ : List[str]=1e-12 , lowerCAmelCase_ : Any=0.02 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Union[str, Any]="first" , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Tuple=5 , lowerCAmelCase_ : Tuple=5 , lowerCAmelCase_ : Optional[int]=0 , lowerCAmelCase_ : Optional[Any]=0 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Dict=0 , **lowerCAmelCase_ : List[Any] , ): """simple docstring""" _A: Dict = vocab_size _A: Dict = emb_dim _A: Optional[Any] = n_layers _A: str = n_heads _A: Optional[int] = dropout _A: Union[str, Any] = attention_dropout _A: Any = gelu_activation _A: Optional[Any] = sinusoidal_embeddings _A: Any = causal _A: Optional[int] = asm _A: List[str] = n_langs _A: int = use_lang_emb _A: Any = layer_norm_eps _A: Tuple = bos_index _A: Any = eos_index _A: List[str] = pad_index _A: str = unk_index _A: str = mask_index _A: List[Any] = is_encoder _A: List[Any] = max_position_embeddings _A: str = embed_init_std _A: int = init_std _A: List[str] = summary_type _A: List[str] = summary_use_proj _A: Tuple = summary_activation _A: Dict = summary_proj_to_labels _A: Tuple = summary_first_dropout _A: str = start_n_top _A: str = end_n_top _A: Optional[Any] = mask_token_id _A: Any = lang_id if "n_words" in kwargs: _A: Union[str, Any] = kwargs['''n_words'''] super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @property def __magic_name__ ( self : List[str] ): """simple docstring""" if self.task == "multiple-choice": _A: int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _A: Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
121
0
from maths.prime_check import is_prime def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ): snake_case_ : Dict = f"""Input value of [number={number}] must be an integer""" raise TypeError(__a ) if is_prime(__a ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
88
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ ): @register_to_config def __init__( self : Optional[Any] , *, _A : int = 4 , _A : int = 768 , _A : int , _A : Tuple , ) -> Dict: """simple docstring""" super().__init__() snake_case_ : int = nn.Parameter(torch.zeros(_A ) ) # parameters for additional clip time embeddings snake_case_ : Tuple = nn.Linear(_A , _A ) snake_case_ : List[Any] = nn.Linear(_A , _A ) # parameters for encoder hidden states snake_case_ : Union[str, Any] = clip_extra_context_tokens snake_case_ : str = nn.Linear( _A , self.clip_extra_context_tokens * cross_attention_dim ) snake_case_ : Any = nn.Linear(_A , _A ) snake_case_ : Tuple = nn.LayerNorm(_A ) def UpperCAmelCase_ ( self : List[str] , *, _A : Tuple , _A : List[Any] , _A : str , _A : Optional[Any] ) -> List[Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings snake_case_ : Optional[int] = image_embeddings.shape[0] snake_case_ : Optional[Any] = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) snake_case_ : Optional[Any] = classifier_free_guidance_embeddings.expand( _A , -1 ) snake_case_ : Any = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] snake_case_ : str = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... snake_case_ : str = self.embedding_proj(_A ) snake_case_ : Dict = self.clip_image_embeddings_project_to_time_embeddings(_A ) snake_case_ : Tuple = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" snake_case_ : List[str] = self.clip_extra_context_tokens_proj(_A ) snake_case_ : Optional[Any] = clip_extra_context_tokens.reshape(_A , -1 , self.clip_extra_context_tokens ) snake_case_ : int = clip_extra_context_tokens.permute(0 , 2 , 1 ) snake_case_ : Optional[int] = self.encoder_hidden_states_proj(_A ) snake_case_ : Any = self.text_encoder_hidden_states_norm(_A ) snake_case_ : Dict = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
88
1
import numpy as np def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: __lowercase : Any = int(np.ceil((x_end - xa) / h ) ) __lowercase : Any = np.zeros((n + 1,) ) __lowercase : int = ya __lowercase : List[str] = xa for k in range(__lowerCAmelCase ): __lowercase : Union[str, Any] = f(__lowerCAmelCase , y[k] ) __lowercase : Dict = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __lowercase : Dict = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __lowercase : Optional[Any] = f(x + h , y[k] + h * ka ) __lowercase : Union[str, Any] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
156
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __lowerCAmelCase : int = logging.get_logger(__name__) class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Optional[Any] = ['''pixel_values'''] def __init__( self : Dict , _snake_case : bool = True , _snake_case : Optional[Dict[str, int]] = None , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : bool = True , _snake_case : Union[int, float] = 1 / 255 , _snake_case : bool = True , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[float, List[float]]] = None , **_snake_case : Tuple , ): super().__init__(**_snake_case ) __lowercase : List[Any] = size if size is not None else {'''shortest_edge''': 256} __lowercase : Dict = get_size_dict(_snake_case , default_to_square=_snake_case ) __lowercase : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __lowercase : Any = get_size_dict(_snake_case , param_name='''crop_size''' ) __lowercase : int = do_resize __lowercase : Union[str, Any] = size __lowercase : Optional[int] = resample __lowercase : str = do_center_crop __lowercase : str = crop_size __lowercase : Optional[int] = do_rescale __lowercase : str = rescale_factor __lowercase : List[Any] = do_normalize __lowercase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowercase : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case_ ( self : List[str] , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : PILImageResampling = PILImageResampling.BICUBIC , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Any , ): __lowercase : Union[str, Any] = get_size_dict(_snake_case , default_to_square=_snake_case ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __lowercase : Dict = get_resize_output_image_size(_snake_case , size=size['''shortest_edge'''] , default_to_square=_snake_case ) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case ) def snake_case_ ( self : Union[str, Any] , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : str , ): __lowercase : str = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_snake_case , size=(size['''height'''], size['''width''']) , data_format=_snake_case , **_snake_case ) def snake_case_ ( self : str , _snake_case : np.ndarray , _snake_case : float , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Any ): return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case ) def snake_case_ ( self : Any , _snake_case : np.ndarray , _snake_case : Union[float, List[float]] , _snake_case : Union[float, List[float]] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : str , ): return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case ) def snake_case_ ( self : Optional[Any] , _snake_case : ImageInput , _snake_case : Optional[bool] = None , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = None , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[float] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_snake_case : int , ): __lowercase : List[str] = do_resize if do_resize is not None else self.do_resize __lowercase : str = size if size is not None else self.size __lowercase : Any = get_size_dict(_snake_case , default_to_square=_snake_case ) __lowercase : str = resample if resample is not None else self.resample __lowercase : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : List[str] = crop_size if crop_size is not None else self.crop_size __lowercase : int = get_size_dict(_snake_case , param_name='''crop_size''' ) __lowercase : List[Any] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Any = do_normalize if do_normalize is not None else self.do_normalize __lowercase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean __lowercase : Dict = image_std if image_std is not None else self.image_std __lowercase : Any = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __lowercase : List[str] = [to_numpy_array(_snake_case ) for image in images] if do_resize: __lowercase : str = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) for image in images] if do_center_crop: __lowercase : Dict = [self.center_crop(image=_snake_case , size=_snake_case ) for image in images] if do_rescale: __lowercase : List[str] = [self.rescale(image=_snake_case , scale=_snake_case ) for image in images] if do_normalize: __lowercase : str = [self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case ) for image in images] __lowercase : Dict = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] __lowercase : List[str] = {'''pixel_values''': images} return BatchFeature(data=_snake_case , tensor_type=_snake_case ) def snake_case_ ( self : Optional[int] , _snake_case : str , _snake_case : List[Tuple] = None ): __lowercase : Tuple = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_snake_case ) != len(_snake_case ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_snake_case ): __lowercase : str = target_sizes.numpy() __lowercase : Union[str, Any] = [] for idx in range(len(_snake_case ) ): __lowercase : Union[str, Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_snake_case ) __lowercase : Tuple = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_snake_case ) else: __lowercase : str = logits.argmax(dim=1 ) __lowercase : List[str] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
156
1
'''simple docstring''' def A__ ( UpperCAmelCase_ ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence _UpperCamelCase : int = gray_code_sequence_string(UpperCAmelCase_ ) # # convert them to integers for i in range(len(UpperCAmelCase_ ) ): _UpperCamelCase : Any = int(sequence[i] , 2 ) return sequence def A__ ( UpperCAmelCase_ ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _UpperCamelCase : Optional[Any] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _UpperCamelCase : Union[str, Any] = gray_code_sequence_string(bit_count - 1 ) _UpperCamelCase : List[Any] = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _UpperCamelCase : Union[str, Any] = '0' + smaller_sequence[i] sequence.append(UpperCAmelCase_ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _UpperCamelCase : Dict = '1' + smaller_sequence[i] sequence.append(UpperCAmelCase_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
371
'''simple docstring''' import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): # Initialise PyTorch model _UpperCamelCase : Any = LxmertConfig.from_json_file(UpperCAmelCase_ ) print(f'Building PyTorch model from configuration: {config}' ) _UpperCamelCase : int = LxmertForPreTraining(UpperCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , UpperCAmelCase_ ) if __name__ == "__main__": snake_case_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) snake_case_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
236
0
"""simple docstring""" from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
293
def lowerCamelCase__ ( _A ): '''simple docstring''' if num <= 0: raise ValueError("Input must be a positive integer" ) snake_case_ = [True] * (num + 1) snake_case_ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , _A ): snake_case_ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowercase__ : Tuple = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
187
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self : Union[str, Any] , A : Dict , A : Tuple=7 , A : Optional[int]=3 , A : Dict=30 , A : int=4_00 , A : str=True , A : Optional[Any]=None , A : Dict=0.9 , A : Dict=None , A : Tuple=True , A : List[Any]=[0.5, 0.5, 0.5] , A : Union[str, Any]=[0.5, 0.5, 0.5] , ) -> List[str]: """simple docstring""" _UpperCAmelCase = size if size is not None else {'shortest_edge': 30} _UpperCAmelCase = crop_size if crop_size is not None else {'height': 30, 'width': 30} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize_and_center_crop _UpperCAmelCase = size _UpperCAmelCase = crop_pct _UpperCAmelCase = crop_size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def _lowerCamelCase ( self : Tuple) -> int: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowerCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): UpperCamelCase = PoolFormerImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = PoolFormerImageProcessingTester(self) @property def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : List[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize_and_center_crop')) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size')) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'crop_pct')) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize')) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean')) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std')) def _lowerCamelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'shortest_edge': 30}) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30}) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {'shortest_edge': 42}) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84}) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" pass def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _lowerCamelCase ( self : str) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _lowerCamelCase ( self : List[Any]) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
355
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
290
0
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class A_ ( lowerCamelCase__ ): def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : Dict = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(__snake_case ,'hidden_sizes')) self.parent.assertTrue(hasattr(__snake_case ,'neck_hidden_sizes')) self.parent.assertTrue(hasattr(__snake_case ,'num_attention_heads')) class A_ : def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_3 ,SCREAMING_SNAKE_CASE__ : Dict=3_2 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=3 ,SCREAMING_SNAKE_CASE__ : Any=6_4_0 ,SCREAMING_SNAKE_CASE__ : Any=4 ,SCREAMING_SNAKE_CASE__ : Optional[Any]="silu" ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 ,SCREAMING_SNAKE_CASE__ : List[str]=3_2 ,SCREAMING_SNAKE_CASE__ : int=0.1 ,SCREAMING_SNAKE_CASE__ : List[str]=0.1 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0.02 ,SCREAMING_SNAKE_CASE__ : Dict=True ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : int=1_0 ,SCREAMING_SNAKE_CASE__ : Tuple=None ,): __lowerCamelCase : Dict = parent __lowerCamelCase : Dict = batch_size __lowerCamelCase : Any = image_size __lowerCamelCase : List[str] = patch_size __lowerCamelCase : Any = num_channels __lowerCamelCase : List[Any] = last_hidden_size __lowerCamelCase : Optional[int] = num_attention_heads __lowerCamelCase : List[str] = hidden_act __lowerCamelCase : Dict = conv_kernel_size __lowerCamelCase : Union[str, Any] = output_stride __lowerCamelCase : str = hidden_dropout_prob __lowerCamelCase : Any = attention_probs_dropout_prob __lowerCamelCase : Optional[Any] = classifier_dropout_prob __lowerCamelCase : List[Any] = use_labels __lowerCamelCase : Tuple = is_training __lowerCamelCase : Optional[Any] = num_labels __lowerCamelCase : Union[str, Any] = initializer_range __lowerCamelCase : str = scope def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __lowerCamelCase : Any = None __lowerCamelCase : str = None if self.use_labels: __lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size] ,self.num_labels) __lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels) __lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : Union[str, Any]): return MobileViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_attention_heads=self.num_attention_heads ,hidden_act=self.hidden_act ,conv_kernel_size=self.conv_kernel_size ,output_stride=self.output_stride ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : Tuple = MobileViTModel(config=__snake_case) model.to(__snake_case) model.eval() __lowerCamelCase : List[str] = model(__snake_case) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Dict): __lowerCamelCase : int = self.num_labels __lowerCamelCase : Union[str, Any] = MobileViTForImageClassification(__snake_case) model.to(__snake_case) model.eval() __lowerCamelCase : List[Any] = model(__snake_case ,labels=__snake_case) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels)) def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : int = self.num_labels __lowerCamelCase : List[str] = MobileViTForSemanticSegmentation(__snake_case) model.to(__snake_case) model.eval() __lowerCamelCase : Tuple = model(__snake_case) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) __lowerCamelCase : int = model(__snake_case ,labels=__snake_case) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def lowerCAmelCase ( self : int): __lowerCamelCase : List[str] = self.prepare_config_and_inputs() __lowerCamelCase : Optional[Any] = config_and_inputs __lowerCamelCase : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A_ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): _UpperCAmelCase : List[str] = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) _UpperCAmelCase : List[Any] = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) _UpperCAmelCase : List[str] = False _UpperCAmelCase : List[str] = False _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Tuple = False def lowerCAmelCase ( self : Any): __lowerCamelCase : str = MobileViTModelTester(self) __lowerCamelCase : Any = MobileViTConfigTester(self ,config_class=__snake_case ,has_text_modality=__snake_case) def lowerCAmelCase ( self : Union[str, Any]): self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds') def lowerCAmelCase ( self : Optional[int]): pass @unittest.skip(reason='MobileViT does not support input and output embeddings') def lowerCAmelCase ( self : List[Any]): pass @unittest.skip(reason='MobileViT does not output attentions') def lowerCAmelCase ( self : Optional[int]): pass def lowerCAmelCase ( self : str): __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[Any] = model_class(__snake_case) __lowerCamelCase : List[str] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : List[Any] = [*signature.parameters.keys()] __lowerCamelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__snake_case) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def lowerCAmelCase ( self : Tuple): pass def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def lowerCAmelCase ( self : Optional[int]): def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Optional[Any]): __lowerCamelCase : Optional[Any] = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): __lowerCamelCase : List[str] = model(**self._prepare_for_class(__snake_case ,__snake_case)) __lowerCamelCase : Optional[Any] = outputs.hidden_states __lowerCamelCase : Dict = 5 self.assertEqual(len(__snake_case) ,__snake_case) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __lowerCamelCase : List[str] = 2 for i in range(len(__snake_case)): self.assertListEqual( list(hidden_states[i].shape[-2:]) ,[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] ,) divisor *= 2 self.assertEqual(self.model_tester.output_stride ,divisor // 2) __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[int] = True check_hidden_states_output(__snake_case ,__snake_case ,__snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Optional[Any] = True check_hidden_states_output(__snake_case ,__snake_case ,__snake_case) def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__snake_case) @slow def lowerCAmelCase ( self : Optional[Any]): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Tuple = MobileViTModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: __lowerCamelCase : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self : Optional[Any]): return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small') if is_vision_available() else None @slow def lowerCAmelCase ( self : List[str]): __lowerCamelCase : Dict = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small').to(__snake_case) __lowerCamelCase : Union[str, Any] = self.default_image_processor __lowerCamelCase : List[str] = prepare_img() __lowerCamelCase : Any = image_processor(images=__snake_case ,return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): __lowerCamelCase : int = model(**__snake_case) # verify the logits __lowerCamelCase : Dict = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape ,__snake_case) __lowerCamelCase : List[str] = torch.tensor([-1.9364, -1.2327, -0.4653]).to(__snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__snake_case ,atol=1E-4)) @slow def lowerCAmelCase ( self : Tuple): __lowerCamelCase : Optional[Any] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small') __lowerCamelCase : Optional[Any] = model.to(__snake_case) __lowerCamelCase : Optional[int] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small') __lowerCamelCase : int = prepare_img() __lowerCamelCase : List[str] = image_processor(images=__snake_case ,return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): __lowerCamelCase : Any = model(**__snake_case) __lowerCamelCase : List[str] = outputs.logits # verify the logits __lowerCamelCase : Optional[Any] = torch.Size((1, 2_1, 3_2, 3_2)) self.assertEqual(logits.shape ,__snake_case) __lowerCamelCase : Any = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] ,device=__snake_case ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,__snake_case ,atol=1E-4)) @slow def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : List[Any] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small') __lowerCamelCase : List[str] = model.to(__snake_case) __lowerCamelCase : Optional[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small') __lowerCamelCase : Optional[Any] = prepare_img() __lowerCamelCase : str = image_processor(images=__snake_case ,return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): __lowerCamelCase : Tuple = model(**__snake_case) __lowerCamelCase : Optional[Any] = outputs.logits.detach().cpu() __lowerCamelCase : int = image_processor.post_process_semantic_segmentation(outputs=__snake_case ,target_sizes=[(5_0, 6_0)]) __lowerCamelCase : Optional[Any] = torch.Size((5_0, 6_0)) self.assertEqual(segmentation[0].shape ,__snake_case) __lowerCamelCase : str = image_processor.post_process_semantic_segmentation(outputs=__snake_case) __lowerCamelCase : int = torch.Size((3_2, 3_2)) self.assertEqual(segmentation[0].shape ,__snake_case)
73
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class a__: def __init__( self : str , __snake_case : Union[str, Any] , __snake_case : List[str]=13 , __snake_case : Tuple=7 , __snake_case : Optional[Any]=False , __snake_case : Dict=True , __snake_case : List[Any]=False , __snake_case : Optional[int]=False , __snake_case : Optional[Any]=19 , __snake_case : Any=32 , __snake_case : Union[str, Any]=5 , __snake_case : Union[str, Any]=4 , __snake_case : int=37 , __snake_case : Union[str, Any]="gelu" , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=0.1 , __snake_case : int=5_12 , __snake_case : int=16 , __snake_case : Tuple=2 , __snake_case : str=0.02 , __snake_case : str=3 , __snake_case : Dict=4 , __snake_case : List[Any]=None , ): a : Tuple = parent a : List[str] = batch_size a : Optional[Any] = seq_length a : Tuple = is_training a : Optional[Any] = use_input_mask a : List[Any] = use_token_type_ids a : List[Any] = use_labels a : int = vocab_size a : Union[str, Any] = hidden_size a : Any = num_hidden_layers a : List[str] = num_attention_heads a : int = intermediate_size a : str = hidden_act a : Tuple = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : List[str] = max_position_embeddings a : Any = type_vocab_size a : List[str] = type_sequence_label_size a : Union[str, Any] = initializer_range a : Optional[int] = num_labels a : Optional[Any] = num_choices a : Optional[int] = scope def lowercase_ ( self : List[Any] ): a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a : Dict = None if self.use_input_mask: a : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) a : Optional[Any] = None a : Optional[int] = None a : Dict = None if self.use_labels: a : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a : List[str] = ids_tensor([self.batch_size] , self.num_choices ) a : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : List[Any] ): a : Any = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__snake_case , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , ) return config def lowercase_ ( self : Optional[Any] , __snake_case : int , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Any ): a : Tuple = EsmForProteinFolding(config=__snake_case ).float() model.to(__snake_case ) model.eval() a : Dict = model(__snake_case , attention_mask=__snake_case ) a : Union[str, Any] = model(__snake_case ) a : List[Any] = model(__snake_case ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def lowercase_ ( self : Optional[Any] ): a : Tuple = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Optional[Any] = config_and_inputs a : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a__( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = False lowercase__ = (EsmForProteinFolding,) if is_torch_available() else () lowercase__ = () lowercase__ = {} if is_torch_available() else {} lowercase__ = False def lowercase_ ( self : int ): a : Tuple = EsmFoldModelTester(self ) a : Any = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def lowercase_ ( self : List[str] ): self.config_tester.run_common_tests() def lowercase_ ( self : Union[str, Any] ): a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) @unittest.skip('Does not support attention outputs' ) def lowercase_ ( self : str ): pass @unittest.skip def lowercase_ ( self : Optional[int] ): pass @unittest.skip('Esm does not support embedding resizing' ) def lowercase_ ( self : Optional[int] ): pass @unittest.skip('Esm does not support embedding resizing' ) def lowercase_ ( self : Any ): pass @unittest.skip('ESMFold does not support passing input embeds!' ) def lowercase_ ( self : Any ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self : Union[str, Any] ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self : List[Any] ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self : List[Any] ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self : int ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self : List[Any] ): pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def lowercase_ ( self : int ): pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def lowercase_ ( self : int ): pass @unittest.skip('ESMFold only has one output format.' ) def lowercase_ ( self : Dict ): pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def lowercase_ ( self : Tuple ): pass @unittest.skip('ESMFold does not support input chunking.' ) def lowercase_ ( self : List[str] ): pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def lowercase_ ( self : List[Any] ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase_ ( self : Union[str, Any] ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase_ ( self : Any ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase_ ( self : List[str] ): pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def lowercase_ ( self : Dict ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self : Union[str, Any] ): pass @require_torch class a__( lowerCamelCase__ ): @slow def lowercase_ ( self : Optional[int] ): a : Optional[Any] = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() a : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) a : Any = model(__snake_case )['positions'] a : Dict = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __snake_case , atol=1e-4 ) )
297
0
"""simple docstring""" import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def lowerCamelCase__ ( __snake_case = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(SCREAMING_SNAKE_CASE_ ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) _UpperCamelCase = QuantumRegister(SCREAMING_SNAKE_CASE_, '''qr''' ) _UpperCamelCase = ClassicalRegister(SCREAMING_SNAKE_CASE_, '''cr''' ) _UpperCamelCase = QuantumCircuit(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) _UpperCamelCase = number_of_qubits for i in range(SCREAMING_SNAKE_CASE_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(SCREAMING_SNAKE_CASE_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j), SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(SCREAMING_SNAKE_CASE_, number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # simulate with 10000 shots _UpperCamelCase = Aer.get_backend('''qasm_simulator''' ) _UpperCamelCase = execute(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, shots=1_00_00 ) return job.result().get_counts(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print( F"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
366
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" if len(__snake_case ) <= 1 or n <= 1: return insert_next(__snake_case, n - 1 ) rec_insertion_sort(__snake_case, n - 1 ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Dict: """simple docstring""" if index >= len(__snake_case ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _UpperCamelCase , _UpperCamelCase = ( collection[index], collection[index - 1], ) insert_next(__snake_case, index + 1 ) if __name__ == "__main__": _a = input("""Enter integers separated by spaces: """) _a = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
100
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer a_ : Tuple = logging.get_logger(__name__) a_ : Any = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} a_ : List[Any] = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } a_ : List[Any] = { """roberta-base""": 512, """roberta-large""": 512, """roberta-large-mnli""": 512, """distilroberta-base""": 512, """roberta-base-openai-detector""": 512, """roberta-large-openai-detector""": 512, } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ["input_ids", "attention_mask"] _lowerCamelCase = RobertaTokenizer def __init__( self , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase="replace" , UpperCamelCase="<s>" , UpperCamelCase="</s>" , UpperCamelCase="</s>" , UpperCamelCase="<s>" , UpperCamelCase="<unk>" , UpperCamelCase="<pad>" , UpperCamelCase="<mask>" , UpperCamelCase=False , UpperCamelCase=True , **UpperCamelCase , ): """simple docstring""" super().__init__( UpperCamelCase , UpperCamelCase , tokenizer_file=UpperCamelCase , errors=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , sep_token=UpperCamelCase , cls_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , mask_token=UpperCamelCase , add_prefix_space=UpperCamelCase , trim_offsets=UpperCamelCase , **UpperCamelCase , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase ) != add_prefix_space: lowerCamelCase_ = getattr(UpperCamelCase , pre_tok_state.pop("type" ) ) lowerCamelCase_ = add_prefix_space lowerCamelCase_ = pre_tok_class(**UpperCamelCase ) lowerCamelCase_ = add_prefix_space lowerCamelCase_ = "post_processor" lowerCamelCase_ = getattr(self.backend_tokenizer , UpperCamelCase , UpperCamelCase ) if tokenizer_component_instance: lowerCamelCase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCamelCase_ = tuple(state["sep"] ) if "cls" in state: lowerCamelCase_ = tuple(state["cls"] ) lowerCamelCase_ = False if state.get("add_prefix_space" , UpperCamelCase ) != add_prefix_space: lowerCamelCase_ = add_prefix_space lowerCamelCase_ = True if state.get("trim_offsets" , UpperCamelCase ) != trim_offsets: lowerCamelCase_ = trim_offsets lowerCamelCase_ = True if changes_to_apply: lowerCamelCase_ = getattr(UpperCamelCase , state.pop("type" ) ) lowerCamelCase_ = component_class(**UpperCamelCase ) setattr(self.backend_tokenizer , UpperCamelCase , UpperCamelCase ) @property def snake_case ( self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else value lowerCamelCase_ = value def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ = kwargs.get("is_split_into_words" , UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase , **UpperCamelCase ) def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ = kwargs.get("is_split_into_words" , UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase , **UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase=None ): """simple docstring""" lowerCamelCase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
55
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = 13 lowerCamelCase_ = 7 lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = 99 lowerCamelCase_ = 32 lowerCamelCase_ = 2 lowerCamelCase_ = 4 lowerCamelCase_ = 37 lowerCamelCase_ = "gelu" lowerCamelCase_ = 0.1 lowerCamelCase_ = 0.1 lowerCamelCase_ = 512 lowerCamelCase_ = 16 lowerCamelCase_ = 2 lowerCamelCase_ = 0.02 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = None def snake_case ( self ): """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): """simple docstring""" ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = self.prepare_config_and_inputs() lowerCamelCase_ = True lowerCamelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = TFEsmModel(config=UpperCamelCase ) lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase_ = model(UpperCamelCase ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = True lowerCamelCase_ = TFEsmModel(config=UpperCamelCase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } lowerCamelCase_ = model(UpperCamelCase ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(UpperCamelCase , encoder_hidden_states=UpperCamelCase ) # Also check the case where encoder outputs are not passed lowerCamelCase_ = model(UpperCamelCase , attention_mask=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = TFEsmForMaskedLM(config=UpperCamelCase ) lowerCamelCase_ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFEsmForTokenClassification(config=UpperCamelCase ) lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class snake_case ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFEsmModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase ) @slow def snake_case ( self ): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFEsmModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @unittest.skip("Protein models do not support embedding resizing." ) def snake_case ( self ): """simple docstring""" pass @unittest.skip("Protein models do not support embedding resizing." ) def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCamelCase_ = model.get_bias() assert isinstance(UpperCamelCase , UpperCamelCase ) for k, v in name.items(): assert isinstance(UpperCamelCase , tf.Variable ) else: lowerCamelCase_ = model.get_output_embeddings() assert x is None lowerCamelCase_ = model.get_bias() assert name is None @require_tf class snake_case ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ = model(UpperCamelCase )[0] lowerCamelCase_ = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , UpperCamelCase ) # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase_ = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase_ = model(UpperCamelCase )[0] # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
55
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } UpperCamelCase , UpperCamelCase = input_paths_and_base_extractors[compression_format] if input_path is None: UpperCamelCase = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCamelCase_ ) assert base_extractor.is_extractable(UpperCamelCase_ ) UpperCamelCase = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(UpperCamelCase_ , UpperCamelCase_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCamelCase = file_path.read_text(encoding="""utf-8""" ) else: UpperCamelCase = output_path.read_text(encoding="""utf-8""" ) UpperCamelCase = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> List[str]: '''simple docstring''' UpperCamelCase = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } UpperCamelCase = input_paths[compression_format] if input_path is None: UpperCamelCase = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCamelCase_ ) UpperCamelCase = Extractor.infer_extractor_format(UpperCamelCase_ ) assert extractor_format is not None UpperCamelCase = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCamelCase = file_path.read_text(encoding="""utf-8""" ) else: UpperCamelCase = output_path.read_text(encoding="""utf-8""" ) UpperCamelCase = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: '''simple docstring''' import tarfile UpperCamelCase = tmp_path / """data_dot_dot""" directory.mkdir() UpperCamelCase = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(UpperCamelCase_ , """w""" ) as f: f.add(UpperCamelCase_ , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def lowercase( UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' import tarfile UpperCamelCase = tmp_path / """data_sym_link""" directory.mkdir() UpperCamelCase = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=UpperCamelCase_ ) with tarfile.TarFile(UpperCamelCase_ , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' UpperCamelCase = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } UpperCamelCase = insecure_tar_files[insecure_tar_file] UpperCamelCase = tmp_path / """extracted""" TarExtractor.extract(UpperCamelCase_ , UpperCamelCase_ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowercase( UpperCamelCase_ ) -> int: '''simple docstring''' # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number UpperCamelCase = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 UpperCamelCase = ( b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(UpperCamelCase_ ) assert zipfile.is_zipfile(str(UpperCamelCase_ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(UpperCamelCase_ ) # but we're right
165
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): def __init__( self : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] ): """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , lowerCamelCase_ : int = 1 , lowerCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : int = 50 , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , ): """simple docstring""" if isinstance(self.unet.config.sample_size , lowerCamelCase_ ): UpperCamelCase = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: UpperCamelCase = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCamelCase = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCamelCase = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase = self.scheduler.step( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , eta=lowerCamelCase_ , use_clipped_model_output=lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase_ )
165
1
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class __lowerCAmelCase ( _a ): lowerCamelCase_ : Union[str, Any] = ['''image_processor''', '''tokenizer'''] lowerCamelCase_ : Optional[Any] = '''BlipImageProcessor''' lowerCamelCase_ : Dict = '''AutoTokenizer''' def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' super().__init__(__magic_name__ , __magic_name__ ) # add QFormer tokenizer snake_case_ : List[Any] = qformer_tokenizer def __call__(self , __magic_name__ = None , __magic_name__ = None , __magic_name__ = True , __magic_name__ = False , __magic_name__ = None , __magic_name__ = None , __magic_name__ = 0 , __magic_name__ = None , __magic_name__ = None , __magic_name__ = False , __magic_name__ = False , __magic_name__ = False , __magic_name__ = False , __magic_name__ = False , __magic_name__ = True , __magic_name__ = None , **__magic_name__ , ) -> BatchFeature: '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) snake_case_ : int = BatchFeature() if text is not None: snake_case_ : Tuple = self.tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_token_type_ids=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) encoding.update(__magic_name__ ) snake_case_ : Optional[Any] = self.qformer_tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_token_type_ids=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) snake_case_ : List[Any] = qformer_text_encoding.pop('''input_ids''' ) snake_case_ : str = qformer_text_encoding.pop('''attention_mask''' ) if images is not None: snake_case_ : int = self.image_processor(__magic_name__ , return_tensors=__magic_name__ ) encoding.update(__magic_name__ ) return encoding def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : List[str] = self.tokenizer.model_input_names snake_case_ : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCamelCase (self , __magic_name__ , **__magic_name__ ) -> int: '''simple docstring''' if os.path.isfile(__magic_name__ ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) snake_case_ : Tuple = os.path.join(__magic_name__ , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(__magic_name__ ) return super().save_pretrained(__magic_name__ , **__magic_name__ ) @classmethod def lowerCamelCase (cls , __magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = AutoTokenizer.from_pretrained(__magic_name__ , subfolder='''qformer_tokenizer''' ) snake_case_ : List[Any] = cls._get_arguments_from_pretrained(__magic_name__ , **__magic_name__ ) args.append(__magic_name__ ) return cls(*__magic_name__ )
279
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __lowerCAmelCase ( _a ): lowerCamelCase_ : Any = '''megatron-bert''' def __init__(self , __magic_name__=2_9056 , __magic_name__=1024 , __magic_name__=24 , __magic_name__=16 , __magic_name__=4096 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=512 , __magic_name__=2 , __magic_name__=0.02 , __magic_name__=1e-12 , __magic_name__=0 , __magic_name__="absolute" , __magic_name__=True , **__magic_name__ , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=__magic_name__ , **__magic_name__ ) snake_case_ : Union[str, Any] = vocab_size snake_case_ : Dict = hidden_size snake_case_ : Dict = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : List[str] = intermediate_size snake_case_ : Dict = hidden_dropout_prob snake_case_ : str = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : Any = type_vocab_size snake_case_ : int = initializer_range snake_case_ : int = layer_norm_eps snake_case_ : List[str] = position_embedding_type snake_case_ : Dict = use_cache
279
1
'''simple docstring''' def lowercase (_A , _A ): """simple docstring""" while second != 0: _lowerCAmelCase : List[Any] = first & second first ^= second _lowerCAmelCase : str = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : List[str] = int(input("""Enter the first number: """).strip()) lowerCAmelCase : List[str] = int(input("""Enter the second number: """).strip()) print(F'''{add(first, second) = }''')
25
'''simple docstring''' from math import isqrt def lowercase (_A ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(_A ) + 1 ) ) def lowercase (_A = 1_0**6 ): """simple docstring""" _lowerCAmelCase : str = 0 _lowerCAmelCase : str = 1 _lowerCAmelCase : List[str] = 7 while prime_candidate < max_prime: primes_count += is_prime(_A ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
25
1
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ) -> Dict: lowerCamelCase : Optional[Any] = parent lowerCamelCase : List[str] = 13 lowerCamelCase : List[Any] = 7 lowerCamelCase : List[str] = True lowerCamelCase : Optional[Any] = True lowerCamelCase : Tuple = True lowerCamelCase : str = True lowerCamelCase : List[Any] = 99 lowerCamelCase : Union[str, Any] = 384 lowerCamelCase : str = 2 lowerCamelCase : Optional[Any] = 4 lowerCamelCase : Any = 37 lowerCamelCase : str = "gelu" lowerCamelCase : Optional[Any] = 0.1 lowerCamelCase : str = 0.1 lowerCamelCase : str = 512 lowerCamelCase : Optional[Any] = 16 lowerCamelCase : Dict = 2 lowerCamelCase : Optional[int] = 0.02 lowerCamelCase : List[Any] = 3 lowerCamelCase : Optional[Any] = 4 lowerCamelCase : int = 128 lowerCamelCase : Tuple = 2 lowerCamelCase : str = 9 lowerCamelCase : List[Any] = 1 lowerCamelCase : Any = None def _lowercase ( self ) -> int: lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase : str = None if self.use_input_mask: lowerCamelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase : int = None if self.use_token_type_ids: lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase : List[Any] = None lowerCamelCase : Union[str, Any] = None lowerCamelCase : Optional[Any] = None if self.use_labels: lowerCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase : str = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: lowerCamelCase : Tuple = TFConvBertModel(config=_UpperCAmelCase ) lowerCamelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCamelCase : Optional[Any] = [input_ids, input_mask] lowerCamelCase : str = model(_UpperCAmelCase ) lowerCamelCase : int = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: lowerCamelCase : int = TFConvBertForMaskedLM(config=_UpperCAmelCase ) lowerCamelCase : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase : List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: lowerCamelCase : Union[str, Any] = self.num_labels lowerCamelCase : Optional[Any] = TFConvBertForSequenceClassification(config=_UpperCAmelCase ) lowerCamelCase : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase : Optional[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: lowerCamelCase : Optional[int] = self.num_choices lowerCamelCase : List[Any] = TFConvBertForMultipleChoice(config=_UpperCAmelCase ) lowerCamelCase : Optional[int] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase : str = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase : List[str] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowerCamelCase : int = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: lowerCamelCase : List[str] = self.num_labels lowerCamelCase : Tuple = TFConvBertForTokenClassification(config=_UpperCAmelCase ) lowerCamelCase : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase : Union[str, Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: lowerCamelCase : int = TFConvBertForQuestionAnswering(config=_UpperCAmelCase ) lowerCamelCase : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase : Any = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self ) -> str: lowerCamelCase : str = self.prepare_config_and_inputs() ( lowerCamelCase ) : Any = config_and_inputs lowerCamelCase : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCamelCase__ (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : List[Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase_ : Tuple = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : Optional[Any] = False lowerCamelCase_ : int = False def _lowercase ( self ) -> Optional[int]: lowerCamelCase : Tuple = TFConvBertModelTester(self ) lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _lowercase ( self ) -> Dict: self.config_tester.run_common_tests() def _lowercase ( self ) -> Dict: lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _lowercase ( self ) -> Tuple: lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def _lowercase ( self ) -> Tuple: lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def _lowercase ( self ) -> Dict: lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def _lowercase ( self ) -> Dict: lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def _lowercase ( self ) -> Optional[int]: lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def _lowercase ( self ) -> Any: lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : str = True lowerCamelCase : int = True if hasattr(_UpperCAmelCase , "use_cache" ): lowerCamelCase : List[Any] = True lowerCamelCase : List[str] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) lowerCamelCase : Optional[Any] = getattr(self.model_tester , "key_length" , _UpperCAmelCase ) for model_class in self.all_model_classes: lowerCamelCase : Any = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase : int = model_class(_UpperCAmelCase ) lowerCamelCase : Any = len(model(_UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase ) lowerCamelCase : List[str] = os.path.join(_UpperCAmelCase , "saved_model" , "1" ) lowerCamelCase : List[str] = tf.keras.models.load_model(_UpperCAmelCase ) lowerCamelCase : Dict = model(_UpperCAmelCase ) if self.is_encoder_decoder: lowerCamelCase : Any = outputs["encoder_hidden_states"] lowerCamelCase : Tuple = outputs["encoder_attentions"] else: lowerCamelCase : Tuple = outputs["hidden_states"] lowerCamelCase : Optional[int] = outputs["attentions"] self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) lowerCamelCase : Any = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : Tuple = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(_UpperCAmelCase ) def _lowercase ( self ) -> Tuple: lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : str = True lowerCamelCase : Tuple = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) lowerCamelCase : Optional[int] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) lowerCamelCase : Any = getattr(self.model_tester , "key_length" , _UpperCAmelCase ) lowerCamelCase : List[Any] = getattr(self.model_tester , "key_length" , _UpperCAmelCase ) def check_decoder_attentions_output(UpperCamelCase__ ): lowerCamelCase : Dict = len(_UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) lowerCamelCase : List[str] = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(UpperCamelCase__ ): lowerCamelCase : Any = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowerCamelCase : Any = True lowerCamelCase : Dict = False lowerCamelCase : str = model_class(_UpperCAmelCase ) lowerCamelCase : Tuple = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowerCamelCase : List[Any] = len(_UpperCAmelCase ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) if self.is_encoder_decoder: lowerCamelCase : str = model_class(_UpperCAmelCase ) lowerCamelCase : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_decoder_attentions_output(_UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCamelCase : Optional[Any] = True lowerCamelCase : Tuple = model_class(_UpperCAmelCase ) lowerCamelCase : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) # Check attention is always last and order is fine lowerCamelCase : int = True lowerCamelCase : str = True lowerCamelCase : Optional[Any] = model_class(_UpperCAmelCase ) lowerCamelCase : Optional[int] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) @require_tf class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> str: lowerCamelCase : Dict = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) lowerCamelCase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase : Optional[int] = model(_UpperCAmelCase )[0] lowerCamelCase : Tuple = [1, 6, 768] self.assertEqual(output.shape , _UpperCAmelCase ) lowerCamelCase : Any = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 )
48
'''simple docstring''' from maths.prime_check import is_prime def __lowerCAmelCase ( snake_case__ ): if not isinstance(snake_case__ , snake_case__ ): __UpperCamelCase : Optional[int] = F"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if is_prime(snake_case__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
298
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
358
'''simple docstring''' import qiskit def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register _snake_case = qiskit.QuantumCircuit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _snake_case = qiskit.execute(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCAmelCase = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
270
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __a = logging.get_logger(__name__) def __snake_case( _lowerCAmelCase ) -> List[List[ImageInput]]: if isinstance(_lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_lowerCAmelCase ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = ["pixel_values"] def __init__( self : str , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : PILImageResampling = PILImageResampling.BILINEAR , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : bool = True , snake_case_ : Union[int, float] = 1 / 255 , snake_case_ : bool = True , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , **snake_case_ : Union[str, Any] , ): super().__init__(**snake_case_ ) snake_case__ : Dict = size if size is not None else {"""shortest_edge""": 224} snake_case__ : Optional[int] = get_size_dict(snake_case_ , default_to_square=snake_case_ ) snake_case__ : List[Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} snake_case__ : Dict = get_size_dict(snake_case_ , param_name="""crop_size""" ) snake_case__ : int = do_resize snake_case__ : int = size snake_case__ : Dict = do_center_crop snake_case__ : List[str] = crop_size snake_case__ : List[str] = resample snake_case__ : Dict = do_rescale snake_case__ : Tuple = rescale_factor snake_case__ : Union[str, Any] = do_normalize snake_case__ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case__ : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase ( self : Tuple , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : PILImageResampling = PILImageResampling.BILINEAR , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : List[str] , ): snake_case__ : Optional[int] = get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "shortest_edge" in size: snake_case__ : int = get_resize_output_image_size(snake_case_ , size["""shortest_edge"""] , default_to_square=snake_case_ ) elif "height" in size and "width" in size: snake_case__ : str = (size["""height"""], size["""width"""]) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCamelCase ( self : str , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : List[str] , ): snake_case__ : Optional[Any] = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(snake_case_ , size=(size["""height"""], size["""width"""]) , data_format=snake_case_ , **snake_case_ ) def lowerCamelCase ( self : Any , snake_case_ : np.ndarray , snake_case_ : Union[int, float] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : str , ): return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCamelCase ( self : Optional[int] , snake_case_ : np.ndarray , snake_case_ : Union[float, List[float]] , snake_case_ : Union[float, List[float]] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : List[str] , ): return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCamelCase ( self : Any , snake_case_ : ImageInput , snake_case_ : bool = None , snake_case_ : Dict[str, int] = None , snake_case_ : PILImageResampling = None , snake_case_ : bool = None , snake_case_ : Dict[str, int] = None , snake_case_ : bool = None , snake_case_ : float = None , snake_case_ : bool = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case__ : Union[str, Any] = to_numpy_array(snake_case_ ) if do_resize: snake_case__ : Any = self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) if do_center_crop: snake_case__ : Dict = self.center_crop(snake_case_ , size=snake_case_ ) if do_rescale: snake_case__ : Optional[Any] = self.rescale(image=snake_case_ , scale=snake_case_ ) if do_normalize: snake_case__ : Any = self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) snake_case__ : List[Any] = to_channel_dimension_format(snake_case_ , snake_case_ ) return image def lowerCamelCase ( self : List[str] , snake_case_ : ImageInput , snake_case_ : bool = None , snake_case_ : Dict[str, int] = None , snake_case_ : PILImageResampling = None , snake_case_ : bool = None , snake_case_ : Dict[str, int] = None , snake_case_ : bool = None , snake_case_ : float = None , snake_case_ : bool = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : ChannelDimension = ChannelDimension.FIRST , **snake_case_ : Optional[int] , ): snake_case__ : List[str] = do_resize if do_resize is not None else self.do_resize snake_case__ : str = resample if resample is not None else self.resample snake_case__ : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale snake_case__ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize snake_case__ : str = image_mean if image_mean is not None else self.image_mean snake_case__ : Union[str, Any] = image_std if image_std is not None else self.image_std snake_case__ : List[str] = size if size is not None else self.size snake_case__ : str = get_size_dict(snake_case_ , default_to_square=snake_case_ ) snake_case__ : List[str] = crop_size if crop_size is not None else self.crop_size snake_case__ : str = get_size_dict(snake_case_ , param_name="""crop_size""" ) if not valid_images(snake_case_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) snake_case__ : Tuple = make_batched(snake_case_ ) snake_case__ : int = [ [ self._preprocess_image( image=snake_case_ , do_resize=snake_case_ , size=snake_case_ , resample=snake_case_ , do_center_crop=snake_case_ , crop_size=snake_case_ , do_rescale=snake_case_ , rescale_factor=snake_case_ , do_normalize=snake_case_ , image_mean=snake_case_ , image_std=snake_case_ , data_format=snake_case_ , ) for img in video ] for video in videos ] snake_case__ : Union[str, Any] = {"""pixel_values""": videos} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
35
'''simple docstring''' from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = CustomTokenizer pass
35
1
'''simple docstring''' import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class _snake_case (nn.Module): def __init__( self ): super().__init__() UpperCAmelCase_ : Any = nn.Linear(3 ,4 ) UpperCAmelCase_ : Union[str, Any] = nn.BatchNormad(4 ) UpperCAmelCase_ : Dict = nn.Linear(4 ,5 ) def UpperCamelCase__ ( self ,_snake_case ): return self.lineara(self.batchnorm(self.lineara(_snake_case ) ) ) class _snake_case (unittest.TestCase): def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(_snake_case ,model.state_dict() ) UpperCAmelCase_ : Optional[int] = os.path.join(_snake_case ,"index.json" ) self.assertTrue(os.path.isfile(_snake_case ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: UpperCAmelCase_ : str = os.path.join(_snake_case ,f'''{key}.dat''' ) self.assertTrue(os.path.isfile(_snake_case ) ) # TODO: add tests on the fact weights are properly loaded def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: UpperCAmelCase_ : str = torch.randn(2 ,3 ,dtype=_snake_case ) with TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Tuple = offload_weight(_snake_case ,"weight" ,_snake_case ,{} ) UpperCAmelCase_ : Dict = os.path.join(_snake_case ,"weight.dat" ) self.assertTrue(os.path.isfile(_snake_case ) ) self.assertDictEqual(_snake_case ,{"weight": {"shape": [2, 3], "dtype": str(_snake_case ).split("." )[1]}} ) UpperCAmelCase_ : str = load_offloaded_weight(_snake_case ,index["weight"] ) self.assertTrue(torch.equal(_snake_case ,_snake_case ) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = ModelForTest() UpperCAmelCase_ : Optional[int] = model.state_dict() UpperCAmelCase_ : int = {k: v for k, v in state_dict.items() if "linear2" not in k} UpperCAmelCase_ : List[Any] = {k: v for k, v in state_dict.items() if "linear2" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(_snake_case ,_snake_case ) UpperCAmelCase_ : Optional[int] = OffloadedWeightsLoader(state_dict=_snake_case ,save_folder=_snake_case ) # Every key is there with the right value self.assertEqual(sorted(_snake_case ) ,sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_snake_case ,weight_map[key] ) ) UpperCAmelCase_ : Tuple = {k: v for k, v in state_dict.items() if "weight" in k} UpperCAmelCase_ : Optional[int] = {k: v for k, v in state_dict.items() if "weight" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(_snake_case ,_snake_case ) UpperCAmelCase_ : List[Any] = OffloadedWeightsLoader(state_dict=_snake_case ,save_folder=_snake_case ) # Every key is there with the right value self.assertEqual(sorted(_snake_case ) ,sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_snake_case ,weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(_snake_case ,_snake_case ) # Duplicates are removed UpperCAmelCase_ : Any = OffloadedWeightsLoader(state_dict=_snake_case ,save_folder=_snake_case ) # Every key is there with the right value self.assertEqual(sorted(_snake_case ) ,sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_snake_case ,weight_map[key] ) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = {"a.1": 0, "a.10": 1, "a.2": 2} UpperCAmelCase_ : List[str] = extract_submodules_state_dict(_snake_case ,["a.1", "a.2"] ) self.assertDictEqual(_snake_case ,{"a.1": 0, "a.2": 2} ) UpperCAmelCase_ : List[Any] = {"a.1.a": 0, "a.10.a": 1, "a.2.a": 2} UpperCAmelCase_ : str = extract_submodules_state_dict(_snake_case ,["a.1", "a.2"] ) self.assertDictEqual(_snake_case ,{"a.1.a": 0, "a.2.a": 2} )
67
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _lowerCamelCase = logging.get_logger(__name__) class _snake_case (__SCREAMING_SNAKE_CASE): def __init__( self ,_snake_case ,_snake_case ,_snake_case ,**_snake_case ): UpperCAmelCase_ : List[Any] = feature_size UpperCAmelCase_ : Any = sampling_rate UpperCAmelCase_ : Any = padding_value UpperCAmelCase_ : Any = kwargs.pop("padding_side" ,"right" ) UpperCAmelCase_ : int = kwargs.pop("return_attention_mask" ,_snake_case ) super().__init__(**_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case = True ,_snake_case = None ,_snake_case = False ,_snake_case = None ,_snake_case = None ,_snake_case = None ,): # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(_snake_case ,(list, tuple) ) and isinstance(processed_features[0] ,(dict, BatchFeature) ): UpperCAmelCase_ : Dict = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" f''' to this method that includes {self.model_input_names[0]}, but you provided''' f''' {list(processed_features.keys() )}''' ) UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]] UpperCAmelCase_ : Dict = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(_snake_case ) == 0: if return_attention_mask: UpperCAmelCase_ : List[str] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCAmelCase_ : Tuple = required_input[0] if isinstance(_snake_case ,(list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCAmelCase_ : int = 0 while len(required_input[index] ) == 0: index += 1 if index < len(_snake_case ): UpperCAmelCase_ : str = required_input[index][0] if return_tensors is None: if is_tf_tensor(_snake_case ): UpperCAmelCase_ : Any = "tf" elif is_torch_tensor(_snake_case ): UpperCAmelCase_ : Optional[int] = "pt" elif isinstance(_snake_case ,(int, float, list, tuple, np.ndarray) ): UpperCAmelCase_ : Any = "np" else: raise ValueError( f'''type of {first_element} unknown: {type(_snake_case )}. ''' "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] ,(int, float) ): UpperCAmelCase_ : Optional[Any] = to_numpy(_snake_case ) else: UpperCAmelCase_ : Any = [to_numpy(_snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCAmelCase_ : List[Any] = self._get_padding_strategies(padding=_snake_case ,max_length=_snake_case ) UpperCAmelCase_ : Dict = processed_features[self.model_input_names[0]] UpperCAmelCase_ : str = len(_snake_case ) if not all(len(_snake_case ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) UpperCAmelCase_ : Dict = [] for i in range(_snake_case ): UpperCAmelCase_ : List[Any] = {k: v[i] for k, v in processed_features.items()} # truncation UpperCAmelCase_ : Dict = self._truncate( _snake_case ,max_length=_snake_case ,pad_to_multiple_of=_snake_case ,truncation=_snake_case ,) truncated_inputs.append(_snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCAmelCase_ : List[Any] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCAmelCase_ : str = PaddingStrategy.MAX_LENGTH UpperCAmelCase_ : Dict = {} for i in range(_snake_case ): # padding UpperCAmelCase_ : Dict = self._pad( truncated_inputs[i] ,max_length=_snake_case ,padding_strategy=_snake_case ,pad_to_multiple_of=_snake_case ,return_attention_mask=_snake_case ,) for key, value in outputs.items(): if key not in batch_outputs: UpperCAmelCase_ : Optional[Any] = [] if value.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : str = value.astype(np.floataa ) batch_outputs[key].append(_snake_case ) return BatchFeature(_snake_case ,tensor_type=_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ,_snake_case = PaddingStrategy.DO_NOT_PAD ,_snake_case = None ,_snake_case = None ,): UpperCAmelCase_ : Any = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCAmelCase_ : Any = len(_snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Optional[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : str = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(_snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCAmelCase_ : List[str] = np.ones(len(_snake_case ) ,dtype=np.intaa ) if needs_to_be_padded: UpperCAmelCase_ : Union[str, Any] = max_length - len(_snake_case ) if self.padding_side == "right": if return_attention_mask: UpperCAmelCase_ : str = np.pad( processed_features["attention_mask"] ,(0, difference) ) UpperCAmelCase_ : str = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCAmelCase_ : int = np.pad( _snake_case ,_snake_case ,"constant" ,constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCAmelCase_ : List[Any] = np.pad( processed_features["attention_mask"] ,(difference, 0) ) UpperCAmelCase_ : List[Any] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCAmelCase_ : Union[str, Any] = np.pad( _snake_case ,_snake_case ,"constant" ,constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ,_snake_case = None ,_snake_case = None ,): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) UpperCAmelCase_ : List[Any] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : int = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Dict = len(_snake_case ) > max_length if needs_to_be_truncated: UpperCAmelCase_ : Any = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCAmelCase_ : str = processed_features["attention_mask"][:max_length] return processed_features def UpperCamelCase__ ( self ,_snake_case=False ,_snake_case=None ): # Get padding strategy if padding is not False: if padding is True: UpperCAmelCase_ : Optional[Any] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(_snake_case ,_snake_case ): UpperCAmelCase_ : str = PaddingStrategy(_snake_case ) elif isinstance(_snake_case ,_snake_case ): UpperCAmelCase_ : List[Any] = padding else: UpperCAmelCase_ : List[str] = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
67
1
"""simple docstring""" from __future__ import annotations def snake_case__ ( __lowerCamelCase : Any ): """simple docstring""" if len(A_ ) == 0: return [] lowerCamelCase__ : List[str] =min(A_ ), max(A_ ) lowerCamelCase__ : Any =int(max_value - min_value ) + 1 lowerCamelCase__ : list[list] =[[] for _ in range(A_ )] for i in my_list: buckets[int(i - min_value )].append(A_ ) return [v for bucket in buckets for v in sorted(A_ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
238
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def lowerCAmelCase_ ( A_ ,A_ ,A_ ,A_ ,A_): UpperCamelCase__: List[str] = cva.getAffineTransform(A_ ,A_) return cva.warpAffine(A_ ,A_ ,(rows, cols)) if __name__ == "__main__": # read original image A__: Union[str, Any] = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value A__: Tuple = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape A__ , A__: List[Any] = gray_img.shape # set different points to rotate image A__: Tuple = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) A__: Dict = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) A__: Any = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) A__: Union[str, Any] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list A__: str = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations A__: Optional[int] = plt.figure(1) A__: List[str] = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
149
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case = StableDiffusionInpaintPipeline __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __snake_case = frozenset([] ) def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A__ : List[Any] =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__snake_case , ) A__ : Dict =PNDMScheduler(skip_prk_steps=__snake_case ) torch.manual_seed(0 ) A__ : List[Any] =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) A__ : int =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) A__ : List[Any] =CLIPTextModel(__snake_case ) A__ : List[Any] =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A__ : Optional[Any] ={ """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int=0 ) -> List[Any]: '''simple docstring''' # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched A__ : Optional[int] =floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) A__ : Any =image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ : Dict =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((64, 64) ) A__ : Dict =Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(__snake_case ).startswith("""mps""" ): A__ : Dict =torch.manual_seed(__snake_case ) else: A__ : Dict =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) A__ : List[Any] ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[Any] ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : Optional[int] =self.get_dummy_components() A__ : List[Any] =StableDiffusionInpaintPipeline(**__snake_case ) A__ : List[str] =sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) A__ : Union[str, Any] =self.get_dummy_inputs(__snake_case ) A__ : List[str] =sd_pipe(**__snake_case ).images A__ : Any =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ : Optional[int] =np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : List[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : Optional[int] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) A__ : str ="""stabilityai/stable-diffusion-2-inpainting""" A__ : Any =StableDiffusionInpaintPipeline.from_pretrained(__snake_case , safety_checker=__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() A__ : Dict ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Tuple =torch.manual_seed(0 ) A__ : Tuple =pipe( prompt=__snake_case , image=__snake_case , mask_image=__snake_case , generator=__snake_case , output_type="""np""" , ) A__ : Optional[Any] =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9e-3 def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' A__ : List[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : List[str] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : Optional[Any] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) A__ : Optional[int] ="""stabilityai/stable-diffusion-2-inpainting""" A__ : Tuple =StableDiffusionInpaintPipeline.from_pretrained( __snake_case , torch_dtype=torch.floataa , safety_checker=__snake_case , ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() A__ : List[str] ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Optional[Any] =torch.manual_seed(0 ) A__ : Dict =pipe( prompt=__snake_case , image=__snake_case , mask_image=__snake_case , generator=__snake_case , output_type="""np""" , ) A__ : Optional[Any] =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ : Tuple =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : Optional[int] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : Dict ="""stabilityai/stable-diffusion-2-inpainting""" A__ : Any =PNDMScheduler.from_pretrained(__snake_case , subfolder="""scheduler""" ) A__ : int =StableDiffusionInpaintPipeline.from_pretrained( __snake_case , safety_checker=__snake_case , scheduler=__snake_case , torch_dtype=torch.floataa , ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A__ : Any ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Tuple =torch.manual_seed(0 ) A__ : str =pipe( prompt=__snake_case , image=__snake_case , mask_image=__snake_case , generator=__snake_case , num_inference_steps=2 , output_type="""np""" , ) A__ : str =torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
371
'''simple docstring''' import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = ['image_processor', 'tokenizer'] __snake_case = 'FlavaImageProcessor' __snake_case = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : Optional[int] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : Optional[Any] ) -> List[str]: '''simple docstring''' A__ : Any =None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCAmelCase_ , ) A__ : Optional[Any] =kwargs.pop("""feature_extractor""" ) A__ : List[Any] =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : int =self.image_processor def __call__( self : Union[str, Any] , lowerCAmelCase_ : Optional[ImageInput] = None , lowerCAmelCase_ : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = False , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Optional[int] , ) -> str: '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: A__ : int =self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) if images is not None: A__ : List[str] =self.image_processor( lowerCAmelCase_ , return_image_mask=lowerCAmelCase_ , return_codebook_pixels=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) if text is not None and images is not None: encoding.update(lowerCAmelCase_ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def lowercase__ ( self : Any , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Optional[int] ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : List[Any] , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Any ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ : Any =self.tokenizer.model_input_names A__ : Optional[Any] =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCAmelCase_ , ) return self.image_processor_class @property def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCAmelCase_ , ) return self.image_processor
136
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _A = {"""configuration_beit""": ["""BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BeitConfig""", """BeitOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""BeitFeatureExtractor"""] _A = ["""BeitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """BEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BeitForImageClassification""", """BeitForMaskedImageModeling""", """BeitForSemanticSegmentation""", """BeitModel""", """BeitPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """FlaxBeitForImageClassification""", """FlaxBeitForMaskedImageModeling""", """FlaxBeitModel""", """FlaxBeitPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
242
"""simple docstring""" def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: def count_of_possible_combinations(__UpperCAmelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__UpperCAmelCase ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: def count_of_possible_combinations_with_dp_array( __UpperCAmelCase , __UpperCAmelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowerCAmelCase__ : str = sum( count_of_possible_combinations_with_dp_array(target - item , __UpperCAmelCase ) for item in array ) lowerCAmelCase__ : List[str] = answer return answer lowerCAmelCase__ : Dict = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__UpperCAmelCase , __UpperCAmelCase ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: lowerCAmelCase__ : int = [0] * (target + 1) lowerCAmelCase__ : int = 1 for i in range(1 , target + 1 ): for j in range(__UpperCAmelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _A = 3 _A = 5 _A = [1, 2, 5] print(combination_sum_iv(n, array, target))
242
1
'''simple docstring''' def __lowerCamelCase ( A__ , A__ ) -> float: """simple docstring""" if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
249
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class SCREAMING_SNAKE_CASE : """simple docstring""" _SCREAMING_SNAKE_CASE = XGLMConfig _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = """gelu""" def __init__( self : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any]=1_4 , UpperCamelCase__ : int=7 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : str=True , UpperCamelCase__ : List[str]=9_9 , UpperCamelCase__ : str=3_2 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : str=3_7 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Union[str, Any]=5_1_2 , UpperCamelCase__ : Optional[Any]=0.0_2 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = d_model UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = ffn_dim UpperCamelCase = activation_function UpperCamelCase = activation_dropout UpperCamelCase = attention_dropout UpperCamelCase = max_position_embeddings UpperCamelCase = initializer_range UpperCamelCase = None UpperCamelCase = 0 UpperCamelCase = 2 UpperCamelCase = 1 def A ( self : Union[str, Any] ): """simple docstring""" return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = self.get_config() UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def A ( self : Union[str, Any] ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCamelCase__ , ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _SCREAMING_SNAKE_CASE = (TFXGLMForCausalLM,) if is_tf_available() else () _SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def A ( self : Dict ): """simple docstring""" UpperCamelCase = TFXGLMModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=UpperCamelCase__ , n_embd=3_7 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() @slow def A ( self : List[str] ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = TFXGLMModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def A ( self : Dict ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def A ( self : Optional[int] , UpperCamelCase__ : Tuple=True ): """simple docstring""" UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) UpperCamelCase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCamelCase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on UpperCamelCase = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , UpperCamelCase__ ) @slow def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) UpperCamelCase = tokenizer('Today is a nice day and' , return_tensors='tf' ) UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): UpperCamelCase = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ , seed=[7, 0] ) UpperCamelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCamelCase__ ) UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def A ( self : Dict ): """simple docstring""" UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) UpperCamelCase = 'left' # use different length sentences to test batching UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] UpperCamelCase = tokenizer(UpperCamelCase__ , return_tensors='tf' , padding=UpperCamelCase__ ) UpperCamelCase = inputs['input_ids'] UpperCamelCase = model.generate(input_ids=UpperCamelCase__ , attention_mask=inputs['attention_mask'] , max_new_tokens=1_2 ) UpperCamelCase = tokenizer(sentences[0] , return_tensors='tf' ).input_ids UpperCamelCase = model.generate(input_ids=UpperCamelCase__ , max_new_tokens=1_2 ) UpperCamelCase = tokenizer(sentences[1] , return_tensors='tf' ).input_ids UpperCamelCase = model.generate(input_ids=UpperCamelCase__ , max_new_tokens=1_2 ) UpperCamelCase = tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) UpperCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCamelCase__ ) UpperCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCamelCase__ ) UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , [non_padded_sentence, padded_sentence] )
249
1
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _SCREAMING_SNAKE_CASE = ["""text""", """image""", """audio"""] def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Optional[Any] = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((5_12, 5_12) ) ) elif input_type == "audio": inputs.append(torch.ones(30_00 ) ) elif isinstance(__a , __a ): inputs.append(create_inputs(__a ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : int = [] for output in outputs: if isinstance(__a , (str, AgentText) ): output_types.append('text' ) elif isinstance(__a , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(__a , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class SCREAMING_SNAKE_CASE_ : def UpperCAmelCase_ ( self : Optional[Any] ) -> int: """simple docstring""" self.assertTrue(hasattr(self.tool , 'inputs' ) ) self.assertTrue(hasattr(self.tool , 'outputs' ) ) snake_case_ : Any = self.tool.inputs for _input in inputs: if isinstance(_input , _A ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) snake_case_ : Optional[int] = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase_ ( self : Optional[int] ) -> str: """simple docstring""" snake_case_ : Optional[Any] = create_inputs(self.tool.inputs ) snake_case_ : int = self.tool(*_A ) # There is a single output if len(self.tool.outputs ) == 1: snake_case_ : Tuple = [outputs] self.assertListEqual(output_types(_A ) , self.tool.outputs ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: """simple docstring""" self.assertTrue(hasattr(self.tool , 'description' ) ) self.assertTrue(hasattr(self.tool , 'default_checkpoint' ) ) self.assertTrue(self.tool.description.startswith('This is a tool that' ) ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: """simple docstring""" snake_case_ : Any = create_inputs(self.tool.inputs ) snake_case_ : Tuple = self.tool(*_A ) if not isinstance(_A , _A ): snake_case_ : List[str] = [outputs] self.assertEqual(len(_A ) , len(self.tool.outputs ) ) for output, output_type in zip(_A , self.tool.outputs ): snake_case_ : List[Any] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_A , _A ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" snake_case_ : int = create_inputs(self.tool.inputs ) snake_case_ : Any = [] for _input, input_type in zip(_A , self.tool.inputs ): if isinstance(_A , _A ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error snake_case_ : List[Any] = self.tool(*_A ) if not isinstance(_A , _A ): snake_case_ : Union[str, Any] = [outputs] self.assertEqual(len(_A ) , len(self.tool.outputs ) )
327
def SCREAMING_SNAKE_CASE__ ( __a , __a ): if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
327
1
from ....configuration_utils import PretrainedConfig from ....utils import logging lowercase__ :Union[str, Any] = logging.get_logger(__name__) lowercase__ :Tuple = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : Dict ='''trajectory_transformer''' lowercase_ : Union[str, Any] =['''past_key_values'''] lowercase_ : Tuple ={ '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self ,A__=1_0_0 ,A__=5 ,A__=1 ,A__=1 ,A__=2_4_9 ,A__=6 ,A__=1_7 ,A__=2_5 ,A__=4 ,A__=4 ,A__=1_2_8 ,A__=0.1 ,A__=0.1 ,A__=0.1 ,A__=0.0006 ,A__=5_1_2 ,A__=0.02 ,A__=1E-12 ,A__=1 ,A__=True ,A__=1 ,A__=5_0_2_5_6 ,A__=5_0_2_5_6 ,**A__ ,): lowercase = vocab_size lowercase = action_weight lowercase = reward_weight lowercase = value_weight lowercase = max_position_embeddings lowercase = block_size lowercase = action_dim lowercase = observation_dim lowercase = transition_dim lowercase = learning_rate lowercase = n_layer lowercase = n_head lowercase = n_embd lowercase = embd_pdrop lowercase = attn_pdrop lowercase = resid_pdrop lowercase = initializer_range lowercase = layer_norm_eps lowercase = kaiming_initializer_range lowercase = use_cache super().__init__(pad_token_id=A__ ,bos_token_id=A__ ,eos_token_id=A__ ,**A__)
364
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase : def __init__( self ,A__ ,A__=9_9 ,A__=1_3 ,A__=1_6 ,A__=7 ,A__=True ,A__=True ,A__=True ,A__=False ,A__=True ,A__=2 ,A__=3_2 ,A__=4 ,A__=4 ,A__=3_0 ,A__=0 ,A__=1 ,A__=2 ,A__=None ,): lowercase = parent lowercase = batch_size lowercase = decoder_seq_length # For common tests lowercase = self.decoder_seq_length lowercase = is_training lowercase = use_attention_mask lowercase = use_labels lowercase = vocab_size lowercase = d_model lowercase = d_model lowercase = decoder_layers lowercase = decoder_layers lowercase = decoder_ffn_dim lowercase = decoder_attention_heads lowercase = decoder_attention_heads lowercase = eos_token_id lowercase = bos_token_id lowercase = pad_token_id lowercase = decoder_start_token_id lowercase = use_cache lowercase = max_position_embeddings lowercase = None lowercase = decoder_seq_length lowercase = 2 lowercase = 1 def A__ ( self): lowercase = ids_tensor([self.batch_size, self.decoder_seq_length] ,self.vocab_size) lowercase = None if self.use_attention_mask: lowercase = ids_tensor([self.batch_size, self.decoder_seq_length] ,vocab_size=2) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size, self.decoder_seq_length] ,self.vocab_size) lowercase = TrOCRConfig( vocab_size=self.vocab_size ,d_model=self.d_model ,decoder_layers=self.decoder_layers ,decoder_ffn_dim=self.decoder_ffn_dim ,decoder_attention_heads=self.decoder_attention_heads ,eos_token_id=self.eos_token_id ,bos_token_id=self.bos_token_id ,use_cache=self.use_cache ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.decoder_start_token_id ,max_position_embeddings=self.max_position_embeddings ,) return (config, input_ids, attention_mask, lm_labels) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,): lowercase = True lowercase = TrOCRDecoder(config=A__).to(A__).eval() lowercase = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowercase = model(A__ ,use_cache=A__) lowercase = model(A__) lowercase = model(A__ ,use_cache=A__) self.parent.assertTrue(len(A__) == len(A__)) self.parent.assertTrue(len(A__) == len(A__) + 1) lowercase = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids lowercase = ids_tensor((2, 1) ,config.vocab_size - 1) + 1 # append to next input_ids and lowercase = torch.cat([input_ids, next_tokens] ,dim=-1) lowercase = model(A__)['''last_hidden_state'''] lowercase = model(A__ ,past_key_values=A__)['''last_hidden_state'''] # select random slice lowercase = ids_tensor((1,) ,output_from_past.shape[-1]).item() lowercase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowercase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(A__ ,A__ ,atol=1E-3) def A__ ( self): lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase = config_and_inputs lowercase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Any =(TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowercase_ : Dict =(TrOCRForCausalLM,) if is_torch_available() else () lowercase_ : int ={'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowercase_ : List[Any] =True lowercase_ : int =False def A__ ( self): lowercase = TrOCRStandaloneDecoderModelTester(self ,is_training=A__) lowercase = ConfigTester(self ,config_class=A__) def A__ ( self): pass def A__ ( self): pass def A__ ( self): pass def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*A__) def A__ ( self): return @unittest.skip('''The model doesn\'t support left padding''') # and it's not used enough to be worth fixing :) def A__ ( self): pass
97
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) snake_case : Dict = logging.get_logger(__name__) snake_case : Union[str, Any] = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) snake_case : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: a :List[str] = model_type_to_module_name(__lowerCAmelCase ) a :List[Any] = importlib.import_module(F'''.{module_name}''' , '''transformers.models''' ) try: return getattr(__lowerCAmelCase , __lowerCAmelCase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(__lowerCAmelCase , '''__name__''' , __lowerCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a :List[str] = importlib.import_module('''transformers''' ) if hasattr(__lowerCAmelCase , __lowerCAmelCase ): return getattr(__lowerCAmelCase , __lowerCAmelCase ) return None def __lowerCamelCase ( UpperCAmelCase_ : Union[str, os.PathLike] , UpperCAmelCase_ : Optional[Union[str, os.PathLike]] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[Dict[str, str]] = None , UpperCAmelCase_ : Optional[Union[bool, str]] = None , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : bool = False , **UpperCAmelCase_ : Dict , ): """simple docstring""" a :List[str] = get_file_from_repo( __lowerCAmelCase , __lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , resume_download=__lowerCAmelCase , proxies=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , revision=__lowerCAmelCase , local_files_only=__lowerCAmelCase , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(__lowerCAmelCase , encoding='''utf-8''' ) as reader: return json.load(__lowerCAmelCase ) class _snake_case : def __init__( self ): raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( cls , _lowerCamelCase , **_lowerCamelCase ): a :Tuple = kwargs.pop('''config''' , _UpperCamelCase ) a :Any = kwargs.pop('''trust_remote_code''' , _UpperCamelCase ) a :Dict = True a , a :Optional[int] = FeatureExtractionMixin.get_feature_extractor_dict(_UpperCamelCase , **_UpperCamelCase ) a :Optional[Any] = config_dict.get('''feature_extractor_type''' , _UpperCamelCase ) a :Optional[int] = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): a :List[str] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_UpperCamelCase , _UpperCamelCase ): a :Optional[Any] = AutoConfig.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) # It could be in `config.feature_extractor_type`` a :Optional[int] = getattr(_UpperCamelCase , '''feature_extractor_type''' , _UpperCamelCase ) if hasattr(_UpperCamelCase , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: a :Optional[int] = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: a :Any = feature_extractor_class_from_name(_UpperCamelCase ) a :int = feature_extractor_auto_map is not None a :Optional[int] = feature_extractor_class is not None or type(_UpperCamelCase ) in FEATURE_EXTRACTOR_MAPPING a :Optional[int] = resolve_trust_remote_code( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if has_remote_code and trust_remote_code: a :str = get_class_from_dynamic_module( _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) a :Optional[int] = kwargs.pop('''code_revision''' , _UpperCamelCase ) if os.path.isdir(_UpperCamelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_UpperCamelCase , **_UpperCamelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_UpperCamelCase , **_UpperCamelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_UpperCamelCase ) in FEATURE_EXTRACTOR_MAPPING: a :List[str] = FEATURE_EXTRACTOR_MAPPING[type(_UpperCamelCase )] return feature_extractor_class.from_dict(_UpperCamelCase , **_UpperCamelCase ) raise ValueError( F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def SCREAMING_SNAKE_CASE__ ( _lowerCamelCase , _lowerCamelCase ): FEATURE_EXTRACTOR_MAPPING.register(_UpperCamelCase , _UpperCamelCase )
94
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def __a ( *_UpperCamelCase , **_UpperCamelCase ) -> str: pass @is_pipeline_test @require_vision @require_timm @require_torch class _lowerCAmelCase ( unittest.TestCase ): _lowercase =MODEL_FOR_OBJECT_DETECTION_MAPPING def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: lowerCAmelCase_ = ObjectDetectionPipeline(model=_UpperCamelCase , image_processor=_UpperCamelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __a ( self , _UpperCamelCase , _UpperCamelCase ) -> Any: lowerCAmelCase_ = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(_UpperCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( _UpperCamelCase , { "score": ANY(_UpperCamelCase ), "label": ANY(_UpperCamelCase ), "box": {"xmin": ANY(_UpperCamelCase ), "ymin": ANY(_UpperCamelCase ), "xmax": ANY(_UpperCamelCase ), "ymax": ANY(_UpperCamelCase )}, } , ) import datasets lowerCAmelCase_ = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) lowerCAmelCase_ = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] lowerCAmelCase_ = object_detector(_UpperCamelCase , threshold=0.0 ) self.assertEqual(len(_UpperCamelCase ) , len(_UpperCamelCase ) ) for outputs in batch_outputs: self.assertGreater(len(_UpperCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( _UpperCamelCase , { "score": ANY(_UpperCamelCase ), "label": ANY(_UpperCamelCase ), "box": {"xmin": ANY(_UpperCamelCase ), "ymin": ANY(_UpperCamelCase ), "xmax": ANY(_UpperCamelCase ), "ymax": ANY(_UpperCamelCase )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __a ( self ) -> Optional[int]: pass @require_torch def __a ( self ) -> str: lowerCAmelCase_ = "hf-internal-testing/tiny-detr-mobilenetsv3" lowerCAmelCase_ = AutoModelForObjectDetection.from_pretrained(_UpperCamelCase ) lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(_UpperCamelCase ) lowerCAmelCase_ = ObjectDetectionPipeline(model=_UpperCamelCase , feature_extractor=_UpperCamelCase ) lowerCAmelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) lowerCAmelCase_ = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = "facebook/detr-resnet-50" lowerCAmelCase_ = AutoModelForObjectDetection.from_pretrained(_UpperCamelCase ) lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(_UpperCamelCase ) lowerCAmelCase_ = ObjectDetectionPipeline(model=_UpperCamelCase , feature_extractor=_UpperCamelCase ) lowerCAmelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) lowerCAmelCase_ = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __a ( self ) -> str: lowerCAmelCase_ = "facebook/detr-resnet-50" lowerCAmelCase_ = pipeline("object-detection" , model=_UpperCamelCase ) lowerCAmelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) lowerCAmelCase_ = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = 0.9985 lowerCAmelCase_ = "facebook/detr-resnet-50" lowerCAmelCase_ = pipeline("object-detection" , model=_UpperCamelCase ) lowerCAmelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=_UpperCamelCase ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __a ( self ) -> List[str]: lowerCAmelCase_ = "Narsil/layoutlmv3-finetuned-funsd" lowerCAmelCase_ = 0.9993 lowerCAmelCase_ = pipeline("object-detection" , model=_UpperCamelCase , threshold=_UpperCamelCase ) lowerCAmelCase_ = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
231
0
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return [sentence[i : i + ngram_size] for i in range(len(__UpperCAmelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
352
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(lowercase): a__: Optional[Any] = AutoConfig.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__: Any = FlaxAutoModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) @slow def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(lowercase): a__: str = AutoConfig.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__: Any = FlaxAutoModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) @slow def lowerCamelCase_ ( self) -> str: '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: a__: Dict = AutoTokenizer.from_pretrained(lowercase) a__: Union[str, Any] = FlaxBertModel.from_pretrained(lowercase) a__: List[str] = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX) @jax.jit def eval(**lowercase): return model(**lowercase) eval(**lowercase).block_until_ready() @slow def lowerCamelCase_ ( self) -> str: '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: a__: Optional[Any] = AutoTokenizer.from_pretrained(lowercase) a__: Any = FlaxRobertaModel.from_pretrained(lowercase) a__: int = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX) @jax.jit def eval(**lowercase): return model(**lowercase) eval(**lowercase).block_until_ready() def lowerCamelCase_ ( self) -> Any: '''simple docstring''' with self.assertRaisesRegex( lowercase , 'bert-base is not a local folder and is not a valid model identifier'): a__: str = FlaxAutoModel.from_pretrained('bert-base') def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( lowercase , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): a__: List[str] = FlaxAutoModel.from_pretrained(lowercase , revision='aaaaaa') def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' with self.assertRaisesRegex( lowercase , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): a__: List[str] = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model') def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' with self.assertRaisesRegex(lowercase , 'Use `from_pt=True` to load this model'): a__: List[str] = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only')
203
0
'''simple docstring''' from torch import nn class lowercase ( nn.Module ): """simple docstring""" def __init__( self ,a_ ,a_ ) -> List[Any]: super().__init__() _UpperCAmelCase : Dict = class_size _UpperCAmelCase : Union[str, Any] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) _UpperCAmelCase : List[Any] = nn.Linear(a_ ,a_ ) def _snake_case ( self ,a_ ) -> Tuple: # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) _UpperCAmelCase : Optional[int] = self.mlp(a_ ) return logits
215
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ : Optional[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict = DPTConfig() if "large" in checkpoint_url: _UpperCAmelCase : List[Any] = 1024 _UpperCAmelCase : Optional[int] = 4096 _UpperCAmelCase : Tuple = 24 _UpperCAmelCase : List[str] = 16 _UpperCAmelCase : str = [5, 11, 17, 23] _UpperCAmelCase : Tuple = [256, 512, 1024, 1024] _UpperCAmelCase : List[str] = (1, 384, 384) if "ade" in checkpoint_url: _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = 150 _UpperCAmelCase : Tuple = """huggingface/label-files""" _UpperCAmelCase : int = """ade20k-id2label.json""" _UpperCAmelCase : List[str] = json.load(open(cached_download(hf_hub_url(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) ) , """r""" ) ) _UpperCAmelCase : List[Any] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _UpperCAmelCase : Tuple = idalabel _UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} _UpperCAmelCase : Optional[int] = [1, 150, 480, 480] return config, expected_shape def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Tuple = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _UpperCAmelCase : int = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: _UpperCAmelCase : str = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: _UpperCAmelCase : Optional[Any] = name.replace("""patch_embed""" , """patch_embeddings""" ) if "pos_embed" in name: _UpperCAmelCase : int = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: _UpperCAmelCase : Dict = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: _UpperCAmelCase : List[str] = name.replace("""proj""" , """projection""" ) if "blocks" in name: _UpperCAmelCase : Dict = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: _UpperCAmelCase : Optional[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _UpperCAmelCase : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name: _UpperCAmelCase : List[str] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _UpperCAmelCase : Dict = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: _UpperCAmelCase : Dict = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: _UpperCAmelCase : Optional[Any] = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: _UpperCAmelCase : List[Any] = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: _UpperCAmelCase : Optional[int] = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: _UpperCAmelCase : List[str] = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: _UpperCAmelCase : str = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: _UpperCAmelCase : Union[str, Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _UpperCAmelCase : Tuple = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: _UpperCAmelCase : List[Any] = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: _UpperCAmelCase : Tuple = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: _UpperCAmelCase : Union[str, Any] = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: _UpperCAmelCase : int = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: _UpperCAmelCase : List[str] = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _UpperCAmelCase : Optional[Any] = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: _UpperCAmelCase : List[str] = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: _UpperCAmelCase : Tuple = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: _UpperCAmelCase : List[Any] = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: _UpperCAmelCase : List[str] = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: _UpperCAmelCase : Optional[int] = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: _UpperCAmelCase : int = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: _UpperCAmelCase : Optional[Any] = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: _UpperCAmelCase : str = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: _UpperCAmelCase : Optional[Any] = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: _UpperCAmelCase : Optional[Any] = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: _UpperCAmelCase : Any = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: _UpperCAmelCase : Tuple = name.replace("""bn""" , """batch_norm""" ) if "head" in name: _UpperCAmelCase : Dict = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: _UpperCAmelCase : List[Any] = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: _UpperCAmelCase : List[Any] = name.replace("""auxlayer""" , """auxiliary_head.head""" ) return name def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : Any = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = in_proj_weight[: config.hidden_size, :] _UpperCAmelCase : Optional[Any] = in_proj_bias[: config.hidden_size] _UpperCAmelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : Tuple = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase : Dict = in_proj_bias[-config.hidden_size :] def snake_case_ ( )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase : List[str] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase : List[str] = get_dpt_config(lowerCAmelCase_ ) # load original state_dict from URL _UpperCAmelCase : Any = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(lowerCAmelCase_ ) # rename keys for key in state_dict.copy().keys(): _UpperCAmelCase : List[Any] = state_dict.pop(lowerCAmelCase_ ) _UpperCAmelCase : Dict = val # read in qkv matrices read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ ) # load HuggingFace model _UpperCAmelCase : Optional[int] = DPTForSemanticSegmentation(lowerCAmelCase_ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) model.eval() # Check outputs on an image _UpperCAmelCase : Tuple = 480 if """ade""" in checkpoint_url else 384 _UpperCAmelCase : List[str] = DPTImageProcessor(size=lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = prepare_img() _UpperCAmelCase : Dict = image_processor(lowerCAmelCase_ , return_tensors="""pt""" ) # forward pass _UpperCAmelCase : Optional[Any] = model(**lowerCAmelCase_ ).logits if """ade""" in checkpoint_url else model(**lowerCAmelCase_ ).predicted_depth # Assert logits _UpperCAmelCase : Optional[int] = torch.tensor([[6.3_1_9_9, 6.3_6_2_9, 6.4_1_4_8], [6.3_8_5_0, 6.3_6_1_5, 6.4_1_6_6], [6.3_5_1_9, 6.3_1_7_6, 6.3_5_7_5]] ) if "ade" in checkpoint_url: _UpperCAmelCase : str = torch.tensor([[4.0_4_8_0, 4.2_4_2_0, 4.4_3_6_0], [4.3_1_2_4, 4.5_6_9_3, 4.8_2_6_1], [4.5_7_6_8, 4.8_9_6_5, 5.2_1_6_3]] ) assert outputs.shape == torch.Size(lowerCAmelCase_ ) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCAmelCase_ ) ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) A_ : List[Any] = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
215
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase_ : Optional[Any] = { """configuration_transfo_xl""": ["""TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TransfoXLConfig"""], """tokenization_transfo_xl""": ["""TransfoXLCorpus""", """TransfoXLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """AdaptiveEmbedding""", """TransfoXLForSequenceClassification""", """TransfoXLLMHeadModel""", """TransfoXLModel""", """TransfoXLPreTrainedModel""", """load_tf_weights_in_transfo_xl""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAdaptiveEmbedding""", """TFTransfoXLForSequenceClassification""", """TFTransfoXLLMHeadModel""", """TFTransfoXLMainLayer""", """TFTransfoXLModel""", """TFTransfoXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
215
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCamelCase_ : str = ["""bert-base-uncased""", """bert-base-cased"""] lowerCamelCase_ : List[str] = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class __A ( tf.keras.Model ): """simple docstring""" def __init__( self , __A ) -> Dict: super().__init__() a =tokenizer a =AutoConfig.from_pretrained(__A ) a =TFAutoModel.from_config(__A ) def SCREAMING_SNAKE_CASE ( self , __A ) -> int: a =self.tokenizer(__A ) a =self.bert(**__A ) return out["pooler_output"] @require_tf @require_tensorflow_text class __A ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ) -> str: super().setUp() a =[ BertTokenizer.from_pretrained(__A ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false a =[TFBertTokenizer.from_pretrained(__A ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__A , use_fast_bert_tokenizer=__A ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) a =[ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] a =list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): a =tokenizer(__A , return_tensors='''tf''' , padding='''longest''' ) a =tf_tokenizer(__A ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> str: for tf_tokenizer in self.tf_tokenizers: a =tf_tokenizer(self.paired_sentences ) a =tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: a =tf.function(__A ) for test_inputs in (self.test_sentences, self.paired_sentences): a =tf.constant(__A ) a =compiled_tokenizer(__A ) a =tf_tokenizer(__A ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Tuple: for tf_tokenizer in self.tf_tokenizers: a =ModelToSave(tokenizer=__A ) a =tf.convert_to_tensor(self.test_sentences ) a =model(__A ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: a =Path(__A ) / '''saved.model''' model.save(__A ) a =tf.keras.models.load_model(__A ) a =loaded_model(__A ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
215
1
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __lowerCamelCase = ( """https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py""" ) __lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase ( ): snake_case : Optional[Any] = "https://pypi.org/pypi/diffusers/json" snake_case : List[str] = json.loads(request.urlopen(__lowerCamelCase ).read() )["releases"].keys() return sorted(__lowerCamelCase , key=lambda __lowerCamelCase : version.Version(__lowerCamelCase ) ) def UpperCamelCase ( ): # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) snake_case : int = Path(__lowerCamelCase ) / "__init__.py" if not init_path.exists(): init_path.touch() def UpperCamelCase ( __lowerCamelCase : Union[str, os.PathLike] ): init_hf_modules() snake_case : Union[str, Any] = Path(__lowerCamelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) snake_case : Dict = dynamic_module_path / "__init__.py" if not init_path.exists(): init_path.touch() def UpperCamelCase ( __lowerCamelCase : Union[str, Any] ): with open(__lowerCamelCase , "r" , encoding="utf-8" ) as f: snake_case : Tuple = f.read() # Imports of the form `import .xxx` snake_case : Any = re.findall("^\s*import\s+\.(\S+)\s*$" , __lowerCamelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import" , __lowerCamelCase , flags=re.MULTILINE ) # Unique-ify return list(set(__lowerCamelCase ) ) def UpperCamelCase ( __lowerCamelCase : int ): snake_case : Union[str, Any] = False snake_case : str = [module_file] snake_case : str = [] # Let's recurse through all relative imports while not no_change: snake_case : int = [] for f in files_to_check: new_imports.extend(get_relative_imports(__lowerCamelCase ) ) snake_case : Any = Path(__lowerCamelCase ).parent snake_case : str = [str(module_path / m ) for m in new_imports] snake_case : Tuple = [f for f in new_import_files if f not in all_relative_imports] snake_case : Optional[int] = [f"""{f}.py""" for f in new_import_files] snake_case : Optional[Any] = len(__lowerCamelCase ) == 0 all_relative_imports.extend(__lowerCamelCase ) return all_relative_imports def UpperCamelCase ( __lowerCamelCase : Union[str, Any] ): with open(__lowerCamelCase , "r" , encoding="utf-8" ) as f: snake_case : int = f.read() # Imports of the form `import xxx` snake_case : Union[str, Any] = re.findall("^\s*import\s+(\S+)\s*$" , __lowerCamelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("^\s*from\s+(\S+)\s+import" , __lowerCamelCase , flags=re.MULTILINE ) # Only keep the top-level module snake_case : Dict = [imp.split("." )[0] for imp in imports if not imp.startswith("." )] # Unique-ify and test we got them all snake_case : Optional[Any] = list(set(__lowerCamelCase ) ) snake_case : Union[str, Any] = [] for imp in imports: try: importlib.import_module(__lowerCamelCase ) except ImportError: missing_packages.append(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: raise ImportError( "This modeling file requires the following packages that were not found in your environment: " f"""{', '.join(__lowerCamelCase )}. Run `pip install {' '.join(__lowerCamelCase )}`""" ) return get_relative_imports(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Any ): snake_case : List[str] = module_path.replace(os.path.sep , "." ) snake_case : List[Any] = importlib.import_module(__lowerCamelCase ) if class_name is None: return find_pipeline_class(__lowerCamelCase ) return getattr(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : List[str] ): from ..pipelines import DiffusionPipeline snake_case : List[str] = dict(inspect.getmembers(__lowerCamelCase , inspect.isclass ) ) snake_case : str = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __lowerCamelCase ) and cls.__module__.split("." )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" f""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" f""" {loaded_module}.""" ) snake_case : Dict = cls return pipeline_class def UpperCamelCase ( __lowerCamelCase : Union[str, os.PathLike] , __lowerCamelCase : str , __lowerCamelCase : Optional[Union[str, os.PathLike]] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[Dict[str, str]] = None , __lowerCamelCase : Optional[Union[bool, str]] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : bool = False , ): snake_case : List[str] = str(__lowerCamelCase ) snake_case : Optional[Any] = os.path.join(__lowerCamelCase , __lowerCamelCase ) if os.path.isfile(__lowerCamelCase ): snake_case : Optional[int] = module_file_or_url snake_case : List[str] = "local" elif pretrained_model_name_or_path.count("/" ) == 0: snake_case : Optional[Any] = get_diffusers_versions() # cut ".dev0" snake_case : str = "v" + ".".join(__version__.split("." )[:3] ) # retrieve github version that matches if revision is None: snake_case : Dict = latest_version if latest_version[1:] in available_versions else "main" logger.info(f"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: snake_case : Dict = f"""v{revision}""" elif revision == "main": snake_case : str = revision else: raise ValueError( f"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" f""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub snake_case : Any = COMMUNITY_PIPELINES_URL.format(revision=__lowerCamelCase , pipeline=__lowerCamelCase ) try: snake_case : List[Any] = cached_download( __lowerCamelCase , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , proxies=__lowerCamelCase , resume_download=__lowerCamelCase , local_files_only=__lowerCamelCase , use_auth_token=__lowerCamelCase , ) snake_case : Tuple = "git" snake_case : Optional[int] = pretrained_model_name_or_path + ".py" except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached snake_case : List[Any] = hf_hub_download( __lowerCamelCase , __lowerCamelCase , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , proxies=__lowerCamelCase , resume_download=__lowerCamelCase , local_files_only=__lowerCamelCase , use_auth_token=__lowerCamelCase , ) snake_case : Union[str, Any] = os.path.join("local" , "--".join(pretrained_model_name_or_path.split("/" ) ) ) except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment snake_case : List[str] = check_imports(__lowerCamelCase ) # Now we move the module inside our cached dynamic modules. snake_case : Tuple = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__lowerCamelCase ) snake_case : Union[str, Any] = Path(__lowerCamelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__lowerCamelCase , submodule_path / module_file ) for module_needed in modules_needed: snake_case : str = f"""{module_needed}.py""" shutil.copy(os.path.join(__lowerCamelCase , __lowerCamelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__lowerCamelCase , __lowerCamelCase ): snake_case : Any = use_auth_token elif use_auth_token is True: snake_case : Dict = HfFolder.get_token() else: snake_case : Optional[Any] = None snake_case : Optional[Any] = model_info(__lowerCamelCase , revision=__lowerCamelCase , token=__lowerCamelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. snake_case : Any = submodule_path / commit_hash snake_case : List[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(__lowerCamelCase ) if not (submodule_path / module_file).exists(): shutil.copy(__lowerCamelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __lowerCamelCase , f"""{module_needed}.py""" , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , resume_download=__lowerCamelCase , proxies=__lowerCamelCase , use_auth_token=__lowerCamelCase , revision=__lowerCamelCase , local_files_only=__lowerCamelCase , ) return os.path.join(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Union[str, os.PathLike] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[Union[str, os.PathLike]] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[Dict[str, str]] = None , __lowerCamelCase : Optional[Union[bool, str]] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : bool = False , **__lowerCamelCase : Tuple , ): snake_case : int = get_cached_module_file( __lowerCamelCase , __lowerCamelCase , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , resume_download=__lowerCamelCase , proxies=__lowerCamelCase , use_auth_token=__lowerCamelCase , revision=__lowerCamelCase , local_files_only=__lowerCamelCase , ) return get_class_in_module(__lowerCamelCase , final_module.replace(".py" , "" ) )
59
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
84
0
'''simple docstring''' from collections.abc import Sequence def a__ ( lowercase : Sequence[int] | None = None ) -> Optional[int]: """simple docstring""" if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) _UpperCamelCase = nums[0] for i in range(1, len(A__ ) ): _UpperCamelCase = nums[i] _UpperCamelCase = max(A__, ans + num, A__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowercase__ : List[str] = int(input('Enter number of elements : ').strip()) lowercase__ : Tuple = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
357
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : str = 16 lowercase__ : int = 32 def a__ ( lowercase : Accelerator, lowercase : int = 16 ) -> List[str]: """simple docstring""" _UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _UpperCamelCase = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(lowercase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) _UpperCamelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowercase, max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCamelCase = datasets.map( lowercase, batched=lowercase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCamelCase = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(lowercase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCamelCase = 16 elif accelerator.mixed_precision != "no": _UpperCamelCase = 8 else: _UpperCamelCase = None return tokenizer.pad( lowercase, padding='''longest''', max_length=lowercase, pad_to_multiple_of=lowercase, return_tensors='''pt''', ) # Instantiate dataloaders. _UpperCamelCase = DataLoader( tokenized_datasets['''train'''], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase ) _UpperCamelCase = DataLoader( tokenized_datasets['''validation'''], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : str = mocked_dataloaders # noqa: F811 def a__ ( lowercase : List[Any], lowercase : List[str] ) -> Any: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''', lowercase ) == "1": _UpperCamelCase = 2 # Initialize accelerator _UpperCamelCase = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCamelCase = config['''lr'''] _UpperCamelCase = int(config['''num_epochs'''] ) _UpperCamelCase = int(config['''seed'''] ) _UpperCamelCase = int(config['''batch_size'''] ) _UpperCamelCase = evaluate.load('''glue''', '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowercase ) def inner_training_loop(lowercase : List[Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer _UpperCamelCase = AdamW(params=model.parameters(), lr=lowercase ) _UpperCamelCase , _UpperCamelCase = get_dataloaders(lowercase, lowercase ) # Instantiate scheduler _UpperCamelCase = get_linear_schedule_with_warmup( optimizer=lowercase, num_warmup_steps=100, num_training_steps=(len(lowercase ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = accelerator.prepare( lowercase, lowercase, lowercase, lowercase, lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCamelCase = model(**lowercase ) _UpperCamelCase = outputs.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCamelCase = model(**lowercase ) _UpperCamelCase = outputs.logits.argmax(dim=-1 ) _UpperCamelCase , _UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowercase, references=lowercase, ) _UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""", lowercase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a__ ( ) -> str: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=lowercase, default=lowercase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowercase, lowercase ) if __name__ == "__main__": main()
287
0
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = """token-classification""" def __init__( self :List[str] , lowerCamelCase :Tuple ) -> Optional[int]: if type(lowerCamelCase ) == dict: UpperCAmelCase__ = Namespace(**lowerCamelCase ) UpperCAmelCase__ = import_module("tasks" ) try: UpperCAmelCase__ = getattr(lowerCamelCase , hparams.task_type ) UpperCAmelCase__ = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase__ = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase__ = CrossEntropyLoss().ignore_index super().__init__(lowerCamelCase , len(self.labels ) , self.mode ) def UpperCAmelCase_ ( self :List[str] , **lowerCamelCase :Optional[Any] ) -> Tuple: return self.model(**lowerCamelCase ) def UpperCAmelCase_ ( self :Tuple , lowerCamelCase :Tuple , lowerCamelCase :Tuple ) -> str: UpperCAmelCase__ = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase__ = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase__ = self(**lowerCamelCase ) UpperCAmelCase__ = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def UpperCAmelCase_ ( self :Dict ) -> str: UpperCAmelCase__ = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase__ = self._feature_file(lowerCamelCase ) if os.path.exists(lowerCamelCase ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowerCamelCase ) UpperCAmelCase__ = torch.load(lowerCamelCase ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) UpperCAmelCase__ = self.token_classification_task.read_examples_from_file(args.data_dir , lowerCamelCase ) UpperCAmelCase__ = self.token_classification_task.convert_examples_to_features( lowerCamelCase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowerCamelCase , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , lowerCamelCase ) torch.save(lowerCamelCase , lowerCamelCase ) def UpperCAmelCase_ ( self :int , lowerCamelCase :int , lowerCamelCase :int , lowerCamelCase :bool = False ) -> DataLoader: UpperCAmelCase__ = self._feature_file(lowerCamelCase ) logger.info("Loading features from cached file %s" , lowerCamelCase ) UpperCAmelCase__ = torch.load(lowerCamelCase ) UpperCAmelCase__ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase__ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase__ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase__ = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase__ = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) , batch_size=lowerCamelCase ) def UpperCAmelCase_ ( self :Dict , lowerCamelCase :int , lowerCamelCase :Union[str, Any] ) -> Optional[Any]: """Compute validation""" "" UpperCAmelCase__ = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase__ = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase__ = self(**lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ = outputs[:2] UpperCAmelCase__ = logits.detach().cpu().numpy() UpperCAmelCase__ = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCAmelCase_ ( self :List[Any] , lowerCamelCase :int ) -> Optional[Any]: UpperCAmelCase__ = torch.stack([x["val_loss"] for x in outputs] ).mean() UpperCAmelCase__ = np.concatenate([x["pred"] for x in outputs] , axis=0 ) UpperCAmelCase__ = np.argmax(lowerCamelCase , axis=2 ) UpperCAmelCase__ = np.concatenate([x["target"] for x in outputs] , axis=0 ) UpperCAmelCase__ = dict(enumerate(self.labels ) ) UpperCAmelCase__ = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase__ = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase__ = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(lowerCamelCase , lowerCamelCase ), "precision": precision_score(lowerCamelCase , lowerCamelCase ), "recall": recall_score(lowerCamelCase , lowerCamelCase ), "f1": fa_score(lowerCamelCase , lowerCamelCase ), } UpperCAmelCase__ = dict(results.items() ) UpperCAmelCase__ = results return ret, preds_list, out_label_list def UpperCAmelCase_ ( self :Tuple , lowerCamelCase :Dict ) -> str: # when stable UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._eval_end(lowerCamelCase ) UpperCAmelCase__ = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCAmelCase_ ( self :Union[str, Any] , lowerCamelCase :List[str] ) -> List[str]: # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._eval_end(lowerCamelCase ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase__ = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCAmelCase_ ( lowerCamelCase :Tuple , lowerCamelCase :List[Any] ) -> Dict: # Add NER specific options BaseTransformer.add_model_specific_args(lowerCamelCase , lowerCamelCase ) parser.add_argument( "--task_type" , default="NER" , type=lowerCamelCase , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=128 , type=lowerCamelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=lowerCamelCase , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=lowerCamelCase , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) _lowerCAmelCase : List[str] = NERTransformer.add_model_specific_args(parser, os.getcwd()) _lowerCAmelCase : List[str] = parser.parse_args() _lowerCAmelCase : Tuple = NERTransformer(args) _lowerCAmelCase : List[Any] = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 _lowerCAmelCase : Any = sorted(glob.glob(os.path.join(args.output_dir, "checkpoint-epoch=*.ckpt"), recursive=True)) _lowerCAmelCase : Union[str, Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
169
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCAmelCase : List[str] = 1_6 _lowerCAmelCase : List[Any] = 3_2 def lowerCAmelCase ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int = 16 ): """simple docstring""" UpperCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCAmelCase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(_lowerCAmelCase : List[Any] ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase__ = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase__ = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase__ = 8 else: UpperCAmelCase__ = None return tokenizer.pad( _lowerCAmelCase , padding="longest" , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. UpperCAmelCase__ = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) UpperCAmelCase__ = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCAmelCase : int = mocked_dataloaders # noqa: F811 def lowerCAmelCase ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCAmelCase ) == "1": UpperCAmelCase__ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: UpperCAmelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ = config["lr"] UpperCAmelCase__ = int(config["num_epochs"] ) UpperCAmelCase__ = int(config["seed"] ) UpperCAmelCase__ = int(config["batch_size"] ) set_seed(_lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation UpperCAmelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase__ = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase__ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ = AdamW(params=model.parameters() , lr=_lowerCAmelCase ) # Instantiate scheduler UpperCAmelCase__ = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase__ = os.path.split(_lowerCAmelCase )[-1].split("." )[0] accelerator.init_trackers(_lowerCAmelCase , _lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase__ = 0 for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase__ = model(**_lowerCAmelCase ) UpperCAmelCase__ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ = model(**_lowerCAmelCase ) UpperCAmelCase__ = outputs.logits.argmax(dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowerCAmelCase , references=_lowerCAmelCase , ) UpperCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _lowerCAmelCase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(_lowerCAmelCase ), "epoch": epoch, } , step=_lowerCAmelCase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCAmelCase ( ): """simple docstring""" UpperCAmelCase__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=_lowerCAmelCase , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
169
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase: str = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: Tuple = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCAmelCase: str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
368
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase: Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = XLNetTokenizer SCREAMING_SNAKE_CASE_ : Dict = XLNetTokenizerFast SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = True def lowerCamelCase__ ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = """<s>""" _lowercase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) ,UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""<eod>""" ) self.assertEqual(len(UpperCAmelCase_ ) ,10_06 ) def lowerCamelCase__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,10_00 ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase_ ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) ,[2_85, 46, 10, 1_70, 3_82] ) _lowercase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) _lowercase : List[Any] = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,[8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) _lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""▁he""", """ll""", """o"""] ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) @slow def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) _lowercase : int = tokenizer.encode("""sequence builders""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) _lowercase : Dict = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ,UpperCAmelCase_ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowerCamelCase__ ( self ): # fmt: off _lowercase : Union[str, Any] = {"""input_ids""": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ ,model_name="""xlnet-base-cased""" ,revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" ,)
336
0
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def _lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =OmegaConf.load(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =torch.load(_UpperCamelCase , map_location='cpu' )['model'] _SCREAMING_SNAKE_CASE =list(state_dict.keys() ) # extract state_dict for VQVAE _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE ='first_stage_model.' for key in keys: if key.startswith(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =state_dict[key] # extract state_dict for UNetLDM _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE ='model.diffusion_model.' for key in keys: if key.startswith(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =state_dict[key] _SCREAMING_SNAKE_CASE =config.model.params.first_stage_config.params _SCREAMING_SNAKE_CASE =config.model.params.unet_config.params _SCREAMING_SNAKE_CASE =VQModel(**_UpperCamelCase ).eval() vqvae.load_state_dict(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =UNetLDMModel(**_UpperCamelCase ).eval() unet.load_state_dict(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=_UpperCamelCase , ) _SCREAMING_SNAKE_CASE =LDMPipeline(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) pipeline.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", type=str, required=True) parser.add_argument("--config_path", type=str, required=True) parser.add_argument("--output_path", type=str, required=True) lowerCamelCase : str = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
47
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : List[Any] = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class A__ ( A__ ): A__ = 'deta' A__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Tuple , _a : Optional[int]=None , _a : int=900 , _a : Optional[Any]=2048 , _a : int=6 , _a : Tuple=2048 , _a : Optional[int]=8 , _a : Any=6 , _a : str=1024 , _a : int=8 , _a : int=0.0 , _a : Optional[Any]=True , _a : Tuple="relu" , _a : Union[str, Any]=256 , _a : Tuple=0.1 , _a : str=0.0 , _a : Dict=0.0 , _a : Tuple=0.02 , _a : Union[str, Any]=1.0 , _a : Any=True , _a : Tuple=False , _a : List[Any]="sine" , _a : str=5 , _a : List[Any]=4 , _a : str=4 , _a : Union[str, Any]=True , _a : Optional[int]=300 , _a : Dict=True , _a : List[Any]=True , _a : List[Any]=1 , _a : List[str]=5 , _a : int=2 , _a : Dict=1 , _a : str=1 , _a : Optional[Any]=5 , _a : Union[str, Any]=2 , _a : List[str]=0.1 , _a : List[Any]=0.25 , **_a : Union[str, Any] , ) -> List[str]: '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _SCREAMING_SNAKE_CASE =CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4'] ) else: if isinstance(_a , _a ): _SCREAMING_SNAKE_CASE =backbone_config.pop('model_type' ) _SCREAMING_SNAKE_CASE =CONFIG_MAPPING[backbone_model_type] _SCREAMING_SNAKE_CASE =config_class.from_dict(_a ) _SCREAMING_SNAKE_CASE =backbone_config _SCREAMING_SNAKE_CASE =num_queries _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =d_model _SCREAMING_SNAKE_CASE =encoder_ffn_dim _SCREAMING_SNAKE_CASE =encoder_layers _SCREAMING_SNAKE_CASE =encoder_attention_heads _SCREAMING_SNAKE_CASE =decoder_ffn_dim _SCREAMING_SNAKE_CASE =decoder_layers _SCREAMING_SNAKE_CASE =decoder_attention_heads _SCREAMING_SNAKE_CASE =dropout _SCREAMING_SNAKE_CASE =attention_dropout _SCREAMING_SNAKE_CASE =activation_dropout _SCREAMING_SNAKE_CASE =activation_function _SCREAMING_SNAKE_CASE =init_std _SCREAMING_SNAKE_CASE =init_xavier_std _SCREAMING_SNAKE_CASE =encoder_layerdrop _SCREAMING_SNAKE_CASE =auxiliary_loss _SCREAMING_SNAKE_CASE =position_embedding_type # deformable attributes _SCREAMING_SNAKE_CASE =num_feature_levels _SCREAMING_SNAKE_CASE =encoder_n_points _SCREAMING_SNAKE_CASE =decoder_n_points _SCREAMING_SNAKE_CASE =two_stage _SCREAMING_SNAKE_CASE =two_stage_num_proposals _SCREAMING_SNAKE_CASE =with_box_refine _SCREAMING_SNAKE_CASE =assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher _SCREAMING_SNAKE_CASE =class_cost _SCREAMING_SNAKE_CASE =bbox_cost _SCREAMING_SNAKE_CASE =giou_cost # Loss coefficients _SCREAMING_SNAKE_CASE =mask_loss_coefficient _SCREAMING_SNAKE_CASE =dice_loss_coefficient _SCREAMING_SNAKE_CASE =bbox_loss_coefficient _SCREAMING_SNAKE_CASE =giou_loss_coefficient _SCREAMING_SNAKE_CASE =eos_coefficient _SCREAMING_SNAKE_CASE =focal_alpha super().__init__(is_encoder_decoder=_a , **_a ) @property def A ( self : Dict ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def A ( self : List[Any] ) -> int: '''simple docstring''' return self.d_model def A ( self : Optional[int] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) _SCREAMING_SNAKE_CASE =self.backbone_config.to_dict() _SCREAMING_SNAKE_CASE =self.__class__.model_type return output
47
1
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''', datefmt='''%Y-%m-%d %H:%M:%S''', level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(), stream=sys.stdout, ) lowerCamelCase : List[str] = logging.getLogger(__name__) lowerCamelCase : str = {'''facebook/bart-base''': BartForConditionalGeneration} lowerCamelCase : Optional[Any] = {'''facebook/bart-base''': BartTokenizer} def snake_case_ ( ): __lowercase : List[Any] = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" ) parser.add_argument( """--validation_file""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""A csv or a json file containing the validation data.""" ) parser.add_argument( """--max_length""" , type=lowerCAmelCase_ , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=lowerCAmelCase_ , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCAmelCase_ , ) parser.add_argument( """--config_name""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=lowerCAmelCase_ , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""Where to store the final ONNX file.""" ) __lowercase : Optional[int] = parser.parse_args() return args def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any]="cpu" ): __lowercase : List[Any] = model_dict[model_name].from_pretrained(lowerCAmelCase_ ).to(lowerCAmelCase_ ) __lowercase : List[Any] = tokenizer_dict[model_name].from_pretrained(lowerCAmelCase_ ) if model_name in ["facebook/bart-base"]: __lowercase : str = 0 __lowercase : Dict = None __lowercase : List[str] = 0 return huggingface_model, tokenizer def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] ): model.eval() __lowercase : Dict = None __lowercase : List[str] = torch.jit.script(BARTBeamSearchGenerator(lowerCAmelCase_ ) ) with torch.no_grad(): __lowercase : Optional[Any] = """My friends are cool but they eat too many carbs.""" __lowercase : Tuple = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="""pt""" ).to(model.device ) __lowercase : Tuple = model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=lowerCAmelCase_ , max_length=lowerCAmelCase_ , early_stopping=lowerCAmelCase_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( lowerCAmelCase_ , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , lowerCAmelCase_ , opset_version=14 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=lowerCAmelCase_ , ) logger.info("""Model exported to {}""".format(lowerCAmelCase_ ) ) __lowercase : Tuple = remove_dup_initializers(os.path.abspath(lowerCAmelCase_ ) ) logger.info("""Deduplicated and optimized model written to {}""".format(lowerCAmelCase_ ) ) __lowercase : int = onnxruntime.InferenceSession(lowerCAmelCase_ ) __lowercase : str = ort_sess.run( lowerCAmelCase_ , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(lowerCAmelCase_ ), """max_length""": np.array(lowerCAmelCase_ ), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("""Model outputs from torch and ONNX Runtime are similar.""" ) logger.info("""Success.""" ) def snake_case_ ( ): __lowercase : int = parse_args() __lowercase : int = 5 __lowercase : List[str] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() __lowercase : Any = torch.device(args.device ) __lowercase : Tuple = load_model_tokenizer(args.model_name_or_path , lowerCAmelCase_ ) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" ) model.to(lowerCAmelCase_ ) if args.max_length: __lowercase : Optional[Any] = args.max_length if args.num_beams: __lowercase : Optional[Any] = args.num_beams if args.output_file_path: __lowercase : List[Any] = args.output_file_path else: __lowercase : str = """BART.onnx""" logger.info("""Exporting model to ONNX""" ) export_and_validate_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
364
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
306
0
'''simple docstring''' import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def lowercase__ ( __lowercase : str ) -> Any: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def lowercase__ ( __lowercase : List[str] ) -> int: """simple docstring""" __UpperCamelCase = create_tensor(_lowerCAmelCase ) __UpperCamelCase = gather(_lowerCAmelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def lowercase__ ( __lowercase : Optional[int] ) -> Dict: """simple docstring""" __UpperCamelCase = [state.process_index] __UpperCamelCase = gather_object(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == state.num_processes, F'''{gathered_obj}, {len(_lowerCAmelCase )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), F'''{gathered_obj} != {list(range(state.num_processes ) )}''' def lowercase__ ( __lowercase : List[Any] ) -> str: """simple docstring""" __UpperCamelCase = create_tensor(_lowerCAmelCase ) __UpperCamelCase = broadcast(_lowerCAmelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def lowercase__ ( __lowercase : Optional[int] ) -> Tuple: """simple docstring""" if state.is_main_process: __UpperCamelCase = torch.arange(state.num_processes + 1 ).to(state.device ) else: __UpperCamelCase = torch.arange(state.num_processes ).to(state.device ) __UpperCamelCase = pad_across_processes(_lowerCAmelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def lowercase__ ( __lowercase : Any ) -> str: """simple docstring""" if state.num_processes != 2: return __UpperCamelCase = create_tensor(_lowerCAmelCase ) __UpperCamelCase = reduce(_lowerCAmelCase , 'sum' ) __UpperCamelCase = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase ), F'''{reduced_tensor} != {truth_tensor}''' def lowercase__ ( __lowercase : Union[str, Any] ) -> List[str]: """simple docstring""" if state.num_processes != 2: return __UpperCamelCase = create_tensor(_lowerCAmelCase ) __UpperCamelCase = reduce(_lowerCAmelCase , 'mean' ) __UpperCamelCase = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase ), F'''{reduced_tensor} != {truth_tensor}''' def lowercase__ ( __lowercase : Optional[int] ) -> List[str]: """simple docstring""" main() def lowercase__ ( ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = PartialState() state.print(F'''State: {state}''' ) state.print('testing gather' ) test_gather(_lowerCAmelCase ) state.print('testing gather_object' ) test_gather_object(_lowerCAmelCase ) state.print('testing broadcast' ) test_broadcast(_lowerCAmelCase ) state.print('testing pad_across_processes' ) test_pad_across_processes(_lowerCAmelCase ) state.print('testing reduce_sum' ) test_reduce_sum(_lowerCAmelCase ) state.print('testing reduce_mean' ) test_reduce_mean(_lowerCAmelCase ) if __name__ == "__main__": main()
53
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : int = 3, _lowerCAmelCase : int = 7, _lowerCAmelCase : int = 1000000 ) -> int: _UpperCAmelCase : Dict = 0 _UpperCAmelCase : int = 1 for current_denominator in range(1, limit + 1 ): _UpperCAmelCase : Union[str, Any] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: _UpperCAmelCase : Optional[Any] = current_numerator _UpperCAmelCase : str = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_00_00_00))
246
0
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __snake_case (ctypes.Structure ): # _fields is a specific attr expected by ctypes lowerCAmelCase__ = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def _UpperCAmelCase (): '''simple docstring''' if os.name == "nt": _lowerCAmelCase : Tuple = CursorInfo() _lowerCAmelCase : Any = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCamelCase_ , ctypes.byref(UpperCamelCase_ ) ) _lowerCAmelCase : Tuple = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCamelCase_ , ctypes.byref(UpperCamelCase_ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def _UpperCAmelCase (): '''simple docstring''' if os.name == "nt": _lowerCAmelCase : Any = CursorInfo() _lowerCAmelCase : str = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCamelCase_ , ctypes.byref(UpperCamelCase_ ) ) _lowerCAmelCase : List[Any] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCamelCase_ , ctypes.byref(UpperCamelCase_ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def _UpperCAmelCase (): '''simple docstring''' try: hide_cursor() yield finally: show_cursor()
159
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _UpperCAmelCase (UpperCamelCase_ : Sequence[float] , UpperCamelCase_ : int , UpperCamelCase_ : int ): '''simple docstring''' if not arr: return None, None, 0 if low == high: return low, high, arr[low] _lowerCAmelCase : List[str] = (low + high) // 2 _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = max_subarray(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = max_subarray(UpperCamelCase_ , mid + 1 , UpperCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = max_cross_sum(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _UpperCAmelCase (UpperCamelCase_ : Sequence[float] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[int] = float("""-inf""" ), -1 _lowerCAmelCase , _lowerCAmelCase : str = float("""-inf""" ), -1 _lowerCAmelCase : int | float = 0 for i in range(UpperCamelCase_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: _lowerCAmelCase : Any = summ _lowerCAmelCase : Tuple = i _lowerCAmelCase : int = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: _lowerCAmelCase : List[Any] = summ _lowerCAmelCase : str = i return max_left, max_right, (left_sum + right_sum) def _UpperCAmelCase (UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase : str = [randint(1 , UpperCamelCase_ ) for _ in range(UpperCamelCase_ )] _lowerCAmelCase : str = time.time() max_subarray(UpperCamelCase_ , 0 , input_size - 1 ) _lowerCAmelCase : Any = time.time() return end - start def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Any = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000] _lowerCAmelCase : Any = [time_max_subarray(UpperCamelCase_ ) for input_size in input_sizes] print("""No of Inputs\t\tTime Taken""" ) for input_size, runtime in zip(UpperCamelCase_ , UpperCamelCase_ ): print(UpperCamelCase_ , """\t\t""" , UpperCamelCase_ ) plt.plot(UpperCamelCase_ , UpperCamelCase_ ) plt.xlabel("""Number of Inputs""" ) plt.ylabel("""Time taken in seconds""" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
159
1
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore SCREAMING_SNAKE_CASE__ = namedtuple("covid_data", "cases deaths recovered") def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus/" ): '''simple docstring''' lowerCAmelCase = """//div[@class = \"maincounter-number\"]/span/text()""" return covid_data(*html.fromstring(requests.get(SCREAMING_SNAKE_CASE ).content ).xpath(SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE__ = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
46
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a : List[str] = logging.get_logger(__name__) a : List[Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} a : str = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } a : Tuple = {'''allegro/herbert-base-cased''': 514} a : Optional[int] = {} class __UpperCamelCase ( a__ ): lowerCamelCase : str =VOCAB_FILES_NAMES lowerCamelCase : Dict =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Dict =PRETRAINED_INIT_CONFIGURATION lowerCamelCase : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] =HerbertTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__="</s>" , **lowerCAmelCase__ , ) -> Optional[int]: super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: a : Optional[Any] = [self.cls_token_id] a : Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: a : Dict = [self.sep_token_id] a : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: a : List[str] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
105
0
'''simple docstring''' def __a ( UpperCAmelCase = 100 ) ->int: """simple docstring""" A = (n * (n + 1) // 2) ** 2 A = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"{solution() = }")
337
'''simple docstring''' _lowerCamelCase : List[Any] = 'Input must be a string of 8 numbers plus letter' _lowerCamelCase : str = 'TRWAGMYFPDXBNJZSQVHLCKE' def __a ( UpperCAmelCase ) ->bool: """simple docstring""" if not isinstance(UpperCAmelCase , UpperCAmelCase ): A = f"""Expected string as input, found {type(UpperCAmelCase ).__name__}""" raise TypeError(UpperCAmelCase ) A = spanish_id.replace("""-""" , """""" ).upper() if len(UpperCAmelCase ) != 9: raise ValueError(UpperCAmelCase ) try: A = int(spanish_id_clean[0:8] ) A = spanish_id_clean[8] except ValueError as ex: raise ValueError(UpperCAmelCase ) from ex if letter.isdigit(): raise ValueError(UpperCAmelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
337
1
"""simple docstring""" from __future__ import annotations a__ : List[str] = tuple[int, int, int] a__ : Dict = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase a__ : str = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' # -------------------------- default selection -------------------------- # rotors -------------------------- a__ : str = '''EGZWVONAHDCLFQMSIPJBYUKXTR''' a__ : List[str] = '''FOBHMDKEXQNRAULPGSJVTYICZW''' a__ : Any = '''ZJXESIUQLHAVRMDOYGTNFWPBKC''' # reflector -------------------------- a__ : Optional[int] = { '''A''': '''N''', '''N''': '''A''', '''B''': '''O''', '''O''': '''B''', '''C''': '''P''', '''P''': '''C''', '''D''': '''Q''', '''Q''': '''D''', '''E''': '''R''', '''R''': '''E''', '''F''': '''S''', '''S''': '''F''', '''G''': '''T''', '''T''': '''G''', '''H''': '''U''', '''U''': '''H''', '''I''': '''V''', '''V''': '''I''', '''J''': '''W''', '''W''': '''J''', '''K''': '''X''', '''X''': '''K''', '''L''': '''Y''', '''Y''': '''L''', '''M''': '''Z''', '''Z''': '''M''', } # -------------------------- extra rotors -------------------------- a__ : Tuple = '''RMDJXFUWGISLHVTCQNKYPBEZOA''' a__ : str = '''SGLCPQWZHKXAREONTFBVIYJUDM''' a__ : Optional[Any] = '''HVSICLTYKQUBXDWAJZOMFGPREN''' a__ : List[Any] = '''RZWQHFMVDBKICJLNTUXAGYPSOE''' a__ : Optional[int] = '''LFKIJODBEGAMQPXVUHYSTCZRWN''' a__ : List[Any] = '''KOAEGVDHXPQZMLFTYWJNBRCIUS''' def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if (unique_rotsel := len(set(lowerCAmelCase_ ) )) < 3: __SCREAMING_SNAKE_CASE = f"""Please use 3 unique rotors (not {unique_rotsel})""" raise Exception(lowerCAmelCase_ ) # Checks if rotor positions are valid __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rotpos if not 0 < rotorposa <= len(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = f"""First rotor position is not within range of 1..26 ({rotorposa}""" raise ValueError(lowerCAmelCase_ ) if not 0 < rotorposa <= len(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = f"""Second rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(lowerCAmelCase_ ) if not 0 < rotorposa <= len(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = f"""Third rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(lowerCAmelCase_ ) # Validates string and returns dict __SCREAMING_SNAKE_CASE = _plugboard(lowerCAmelCase_ ) return rotpos, rotsel, pbdict def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = f"""Plugboard setting isn't type string ({type(lowerCAmelCase_ )})""" raise TypeError(lowerCAmelCase_ ) elif len(lowerCAmelCase_ ) % 2 != 0: __SCREAMING_SNAKE_CASE = f"""Odd number of symbols ({len(lowerCAmelCase_ )})""" raise Exception(lowerCAmelCase_ ) elif pbstring == "": return {} pbstring.replace(" " , "" ) # Checks if all characters are unique __SCREAMING_SNAKE_CASE = set() for i in pbstring: if i not in abc: __SCREAMING_SNAKE_CASE = f"""'{i}' not in list of symbols""" raise Exception(lowerCAmelCase_ ) elif i in tmppbl: __SCREAMING_SNAKE_CASE = f"""Duplicate symbol ({i})""" raise Exception(lowerCAmelCase_ ) else: tmppbl.add(lowerCAmelCase_ ) del tmppbl # Created the dictionary __SCREAMING_SNAKE_CASE = {} for j in range(0 , len(lowerCAmelCase_ ) - 1 , 2 ): __SCREAMING_SNAKE_CASE = pbstring[j + 1] __SCREAMING_SNAKE_CASE = pbstring[j] return pb def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = (rotora, rotora, rotora) , lowerCAmelCase_ = "" , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = text.upper() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = _validator( lowerCAmelCase_ , lowerCAmelCase_ , plugb.upper() ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rotor_position __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 __SCREAMING_SNAKE_CASE = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: __SCREAMING_SNAKE_CASE = plugboard[symbol] # rotor ra -------------------------- __SCREAMING_SNAKE_CASE = abc.index(lowerCAmelCase_ ) + rotorposa __SCREAMING_SNAKE_CASE = rotora[index % len(lowerCAmelCase_ )] # rotor rb -------------------------- __SCREAMING_SNAKE_CASE = abc.index(lowerCAmelCase_ ) + rotorposa __SCREAMING_SNAKE_CASE = rotora[index % len(lowerCAmelCase_ )] # rotor rc -------------------------- __SCREAMING_SNAKE_CASE = abc.index(lowerCAmelCase_ ) + rotorposa __SCREAMING_SNAKE_CASE = rotora[index % len(lowerCAmelCase_ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher __SCREAMING_SNAKE_CASE = reflector[symbol] # 2nd rotors __SCREAMING_SNAKE_CASE = abc[rotora.index(lowerCAmelCase_ ) - rotorposa] __SCREAMING_SNAKE_CASE = abc[rotora.index(lowerCAmelCase_ ) - rotorposa] __SCREAMING_SNAKE_CASE = abc[rotora.index(lowerCAmelCase_ ) - rotorposa] # 2nd plugboard if symbol in plugboard: __SCREAMING_SNAKE_CASE = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = 0 rotorposa += 1 if rotorposa >= len(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = 0 rotorposa += 1 if rotorposa >= len(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) if __name__ == "__main__": a__ : Union[str, Any] = '''This is my Python script that emulates the Enigma machine from WWII.''' a__ : Any = (1, 1, 1) a__ : Optional[int] = '''pictures''' a__ : Union[str, Any] = (rotora, rotora, rotora) a__ : Tuple = enigma(message, rotor_pos, rotor_sel, pb) print('''Encrypted message:''', en) print('''Decrypted message:''', enigma(en, rotor_pos, rotor_sel, pb))
54
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a__ : List[str] = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class UpperCamelCase_ : """simple docstring""" snake_case__ : Dict = PegasusConfig snake_case__ : Union[str, Any] = {} snake_case__ : Any = "gelu" def __init__( self : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int=1_3 , UpperCAmelCase__ : Optional[int]=7 , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : List[Any]=9_9 , UpperCAmelCase__ : int=3_2 , UpperCAmelCase__ : Dict=5 , UpperCAmelCase__ : Optional[int]=4 , UpperCAmelCase__ : List[Any]=3_7 , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : List[Any]=2_0 , UpperCAmelCase__ : int=2 , UpperCAmelCase__ : List[Any]=1 , UpperCAmelCase__ : Optional[Any]=0 , ) -> Any: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id def UpperCAmelCase_ ( self : Dict ) -> Dict: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __SCREAMING_SNAKE_CASE = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __SCREAMING_SNAKE_CASE = np.concatenate([input_ids, eos_tensor] , axis=1 ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __SCREAMING_SNAKE_CASE = prepare_pegasus_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return config, inputs_dict def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] ) -> str: __SCREAMING_SNAKE_CASE = 2_0 __SCREAMING_SNAKE_CASE = model_class_name(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.encode(inputs_dict["input_ids"] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) __SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = model.decode(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = 2_0 __SCREAMING_SNAKE_CASE = model_class_name(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.encode(inputs_dict["input_ids"] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __SCREAMING_SNAKE_CASE = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = model.decode(UpperCAmelCase__ , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , ): '''simple docstring''' if attention_mask is None: __SCREAMING_SNAKE_CASE = np.not_equal(lowerCAmelCase_ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Tuple = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) snake_case__ : Union[str, Any] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () snake_case__ : Tuple = True snake_case__ : Union[str, Any] = False snake_case__ : int = False snake_case__ : List[Any] = False def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = FlaxPegasusModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ ) @jax.jit def encode_jitted(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=None , **UpperCAmelCase__ : int ): return model.encode(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __SCREAMING_SNAKE_CASE = encode_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = encode_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase_ ( self : Tuple ) -> Any: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) __SCREAMING_SNAKE_CASE = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] ): return model.decode( decoder_input_ids=UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , encoder_outputs=UpperCAmelCase__ , ) with self.subTest("JIT Enabled" ): __SCREAMING_SNAKE_CASE = decode_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = decode_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase_ ( self : Dict ) -> Tuple: for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("google/pegasus-large" , from_pt=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = np.ones((1, 1) ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: __SCREAMING_SNAKE_CASE = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) __SCREAMING_SNAKE_CASE = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) __SCREAMING_SNAKE_CASE = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] __SCREAMING_SNAKE_CASE = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] __SCREAMING_SNAKE_CASE = tokenizer(UpperCAmelCase__ , return_tensors="np" , truncation=UpperCAmelCase__ , max_length=5_1_2 , padding=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.generate(**UpperCAmelCase__ , num_beams=2 ).sequences __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) assert tgt_text == decoded
54
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __A : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : str , ) ->str: """simple docstring""" snake_case_ = parent snake_case_ = 13 snake_case_ = 7 snake_case_ = True snake_case_ = True snake_case_ = True snake_case_ = True snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = 2 snake_case_ = 99 snake_case_ = 0 snake_case_ = 32 snake_case_ = 2 snake_case_ = 4 snake_case_ = 0.1 snake_case_ = 0.1 snake_case_ = 512 snake_case_ = 16 snake_case_ = 2 snake_case_ = 0.02 snake_case_ = 3 snake_case_ = 4 snake_case_ = """last""" snake_case_ = True snake_case_ = None snake_case_ = 0 def lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) snake_case_ = None if self.use_input_lengths: snake_case_ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , ) ->List[Any]: """simple docstring""" snake_case_ = TFFlaubertModel(config=UpperCAmelCase_ ) snake_case_ = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} snake_case_ = model(UpperCAmelCase_ ) snake_case_ = [input_ids, input_mask] snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , ) ->Any: """simple docstring""" snake_case_ = TFFlaubertWithLMHeadModel(UpperCAmelCase_ ) snake_case_ = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , ) ->Optional[Any]: """simple docstring""" snake_case_ = TFFlaubertForQuestionAnsweringSimple(UpperCAmelCase_ ) snake_case_ = {"""input_ids""": input_ids, """lengths""": input_lengths} snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , ) ->Dict: """simple docstring""" snake_case_ = TFFlaubertForSequenceClassification(UpperCAmelCase_ ) snake_case_ = {"""input_ids""": input_ids, """lengths""": input_lengths} snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , ) ->Dict: """simple docstring""" snake_case_ = self.num_labels snake_case_ = TFFlaubertForTokenClassification(config=UpperCAmelCase_ ) snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int , ) ->Any: """simple docstring""" snake_case_ = self.num_choices snake_case_ = TFFlaubertForMultipleChoice(config=UpperCAmelCase_ ) snake_case_ = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) snake_case_ = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) snake_case_ = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) snake_case_ = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : Any ) ->Optional[Any]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Union[str, Any] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) __lowercase: str = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __lowercase: Any = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) __lowercase: Any = False __lowercase: Any = False def lowerCAmelCase ( self : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] ) ->str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" snake_case_ = TFFlaubertModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , emb_dim=37 ) def lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*UpperCAmelCase_ ) def lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Any ) ->Optional[int]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Dict ) ->List[str]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*UpperCAmelCase_ ) @slow def lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = TFFlaubertModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf @require_sentencepiece @require_tokenizers class __A (unittest.TestCase): '''simple docstring''' @slow def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) snake_case_ = tf.convert_to_tensor( [[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" snake_case_ = model(UpperCAmelCase_ )[0] snake_case_ = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , UpperCAmelCase_ ) # compare the actual values for a slice. snake_case_ = tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
233
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 ) -> list: snake_case_ = length or len(_SCREAMING_SNAKE_CASE ) snake_case_ = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: snake_case_ , snake_case_ = list_data[i + 1], list_data[i] snake_case_ = True return list_data if not swapped else bubble_sort(_SCREAMING_SNAKE_CASE , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
233
1
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Union[str, Any] = GPTaTokenizer A_ : List[Any] = GPTaTokenizerFast A_ : Dict = True A_ : List[str] = {'add_prefix_space': True} A_ : List[str] = False def a (self : Any ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] __snake_case = dict(zip(a__ , range(len(a__ ) ) ) ) __snake_case = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __snake_case = {'''unk_token''': '''<unk>'''} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(a__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(a__ ) ) def a (self : List[str] , **a__ : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **a__ ) def a (self : Dict , **a__ : Union[str, Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def a (self : int , a__ : Optional[int] ): """simple docstring""" __snake_case = '''lower newer''' __snake_case = '''lower newer''' return input_text, output_text def a (self : Optional[int] ): """simple docstring""" __snake_case = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __snake_case = '''lower newer''' __snake_case = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __snake_case = tokenizer.tokenize(a__ , add_prefix_space=a__ ) self.assertListEqual(a__ , a__ ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def a (self : int ): """simple docstring""" if not self.test_rust_tokenizer: return __snake_case = self.get_tokenizer() __snake_case = self.get_rust_tokenizer(add_prefix_space=a__ ) __snake_case = '''lower newer''' # Testing tokenization __snake_case = tokenizer.tokenize(a__ , add_prefix_space=a__ ) __snake_case = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens __snake_case = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) __snake_case = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens __snake_case = self.get_rust_tokenizer(add_prefix_space=a__ ) __snake_case = tokenizer.encode(a__ , add_prefix_space=a__ ) __snake_case = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # Testing the unknown token __snake_case = tokens + [rust_tokenizer.unk_token] __snake_case = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def a (self : Tuple , *a__ : Optional[int] , **a__ : Optional[Any] ): """simple docstring""" pass def a (self : List[str] , a__ : Any=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __snake_case = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input __snake_case = '''This is a simple input''' __snake_case = ['''This is a simple input 1''', '''This is a simple input 2'''] __snake_case = ('''This is a simple input''', '''This is a pair''') __snake_case = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding='''max_length''' ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding='''max_length''' ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding='''max_length''' , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding='''max_length''' ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding='''max_length''' ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding='''max_length''' , ) def a (self : List[str] ): """simple docstring""" __snake_case = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input __snake_case = '''This is a simple input''' __snake_case = ['''This is a simple input looooooooong''', '''This is a simple input'''] __snake_case = ('''This is a simple input''', '''This is a pair''') __snake_case = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] __snake_case = tokenizer.pad_token_id __snake_case = tokenizer(a__ , padding='''max_length''' , max_length=30 , return_tensors='''np''' ) __snake_case = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors='''np''' ) __snake_case = tokenizer(*a__ , padding='''max_length''' , max_length=60 , return_tensors='''np''' ) __snake_case = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = '''$$$''' __snake_case = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ ) __snake_case = '''This is a simple input''' __snake_case = ['''This is a simple input 1''', '''This is a simple input 2'''] __snake_case = tokenizer.bos_token_id __snake_case = tokenizer(a__ ) __snake_case = tokenizer(a__ ) self.assertEqual(out_s.input_ids[0] , a__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __snake_case = tokenizer.decode(out_s.input_ids ) __snake_case = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def a (self : List[Any] ): """simple docstring""" pass def a (self : Dict ): """simple docstring""" __snake_case = [self.get_tokenizer(do_lower_case=a__ , add_bos_token=a__ )] for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __snake_case = '''Encode this.''' __snake_case = '''This one too please.''' __snake_case = tokenizer.encode(a__ , add_special_tokens=a__ ) encoded_sequence += tokenizer.encode(a__ , add_special_tokens=a__ ) __snake_case = tokenizer.encode_plus( a__ , a__ , add_special_tokens=a__ , return_special_tokens_mask=a__ , ) __snake_case = encoded_sequence_dict['''input_ids'''] __snake_case = encoded_sequence_dict['''special_tokens_mask'''] self.assertEqual(len(a__ ) , len(a__ ) ) __snake_case = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(a__ ) ] __snake_case = [x for x in filtered_sequence if x is not None] self.assertEqual(a__ , a__ ) @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Optional[int] ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=a__ ) __snake_case = '''A photo of a cat''' __snake_case = tokenizer.encode( a__ , ) self.assertEqual(a__ , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('''test_opt''' ) __snake_case = AutoTokenizer.from_pretrained('''./test_opt''' ) __snake_case = tokenizer.encode( a__ , ) self.assertEqual(a__ , [2, 250, 1345, 9, 10, 4758] ) def a (self : List[str] ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , use_slow=a__ ) __snake_case = '''A photo of a cat''' __snake_case = tokenizer.encode( a__ , ) # Same as above self.assertEqual(a__ , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip('''This test is failing because of a bug in the fast tokenizer''' ) def a (self : Tuple ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=a__ ) __snake_case = '''bos''' __snake_case = tokenizer.get_vocab()['''bos'''] __snake_case = '''A photo of a cat''' __snake_case = tokenizer.encode( a__ , ) # We changed the bos token self.assertEqual(a__ , [3_1957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('''./tok''' ) __snake_case = AutoTokenizer.from_pretrained('''./tok''' ) self.assertTrue(tokenizer.is_fast ) __snake_case = tokenizer.encode( a__ , ) self.assertEqual(a__ , [3_1957, 250, 1345, 9, 10, 4758] )
24
def lowerCamelCase__ ( ) -> int: return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(snake_case_ , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
24
1
import argparse import json import subprocess def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] =[] UpperCAmelCase : Union[str, Any] =( f'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) UpperCAmelCase : Dict =subprocess.run(__lowerCAmelCase , shell=__lowerCAmelCase , stdout=subprocess.PIPE ) UpperCAmelCase : Tuple =output.stdout.decode('''utf-8''' ) UpperCAmelCase : List[Any] =json.loads(__lowerCAmelCase ) UpperCAmelCase : int =status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__lowerCAmelCase ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) ) if len(__lowerCAmelCase ) > 0: UpperCAmelCase : str ='''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(f'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' return values.split(''',''' ) __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) __snake_case = parser.parse_args() get_runner_status(args.target_runners, args.token)
78
class __snake_case : def __init__( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Tuple =n UpperCAmelCase : Any =[None] * self.n UpperCAmelCase : Tuple =0 # index of the first element UpperCAmelCase : Union[str, Any] =0 UpperCAmelCase : str =0 def __len__( self ) -> int: '''simple docstring''' return self.size def UpperCAmelCase__ ( self ) -> bool: '''simple docstring''' return self.size == 0 def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def UpperCAmelCase__ ( self , snake_case__ ) -> Dict: '''simple docstring''' if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) UpperCAmelCase : Tuple =data UpperCAmelCase : Optional[Any] =(self.rear + 1) % self.n self.size += 1 return self def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.size == 0: raise Exception('''UNDERFLOW''' ) UpperCAmelCase : int =self.array[self.front] UpperCAmelCase : Any =None UpperCAmelCase : Tuple =(self.front + 1) % self.n self.size -= 1 return temp
78
1
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCamelCase ( __lowerCamelCase : Dict[str, torch.Tensor] ): snake_case : List[str] = [] snake_case : Optional[int] = [] snake_case : Any = [] for rt in rc.restypes: snake_case : List[Any] = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) snake_case : str = {name: i for i, name in enumerate(__lowerCamelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) snake_case : Optional[Any] = torch.tensor( __lowerCamelCase , dtype=torch.intaa , device=protein["aatype"].device , ) snake_case : List[Any] = torch.tensor( __lowerCamelCase , dtype=torch.intaa , device=protein["aatype"].device , ) snake_case : int = torch.tensor( __lowerCamelCase , dtype=torch.floataa , device=protein["aatype"].device , ) snake_case : int = protein["aatype"].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein snake_case : List[Any] = restype_atomaa_to_atomaa[protein_aatype] snake_case : str = restype_atomaa_mask[protein_aatype] snake_case : str = residx_atomaa_mask snake_case : Any = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back snake_case : List[str] = restype_atomaa_to_atomaa[protein_aatype] snake_case : List[Any] = residx_atomaa_to_atomaa.long() # create the corresponding mask snake_case : Union[str, Any] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["aatype"].device ) for restype, restype_letter in enumerate(rc.restypes ): snake_case : Optional[int] = rc.restype_atoa[restype_letter] snake_case : Any = rc.residue_atoms[restype_name] for atom_name in atom_names: snake_case : List[Any] = rc.atom_order[atom_name] snake_case : Optional[Any] = 1 snake_case : List[Any] = restype_atomaa_mask[protein_aatype] snake_case : int = residx_atomaa_mask return protein def UpperCamelCase ( __lowerCamelCase : Dict[str, torch.Tensor] ): snake_case : Dict = tree_map(lambda __lowerCamelCase : torch.tensor(__lowerCamelCase , device=batch["aatype"].device ) , __lowerCamelCase , np.ndarray ) snake_case : List[str] = tensor_tree_map(lambda __lowerCamelCase : np.array(__lowerCamelCase ) , make_atomaa_masks(__lowerCamelCase ) ) return out
59
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''gpt_neox''' def __init__( self : List[Any] , __UpperCAmelCase : List[Any]=50432 , __UpperCAmelCase : Any=6144 , __UpperCAmelCase : List[str]=44 , __UpperCAmelCase : List[Any]=64 , __UpperCAmelCase : List[str]=24576 , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : Tuple=0.25 , __UpperCAmelCase : Optional[Any]=10000 , __UpperCAmelCase : int=0.0 , __UpperCAmelCase : str=0.0 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Tuple=2048 , __UpperCAmelCase : Optional[int]=0.02 , __UpperCAmelCase : Union[str, Any]=1E-5 , __UpperCAmelCase : str=True , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : str=True , __UpperCAmelCase : Dict=None , **__UpperCAmelCase : Tuple , ): '''simple docstring''' super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) _A = vocab_size _A = max_position_embeddings _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = rotary_pct _A = rotary_emb_base _A = attention_dropout _A = hidden_dropout _A = classifier_dropout _A = initializer_range _A = layer_norm_eps _A = use_cache _A = tie_word_embeddings _A = use_parallel_residual _A = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f'''got {self.rope_scaling}''' ) _A = self.rope_scaling.get("type" , __UpperCAmelCase ) _A = self.rope_scaling.get("factor" , __UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
79
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING _snake_case = logging.get_logger(__name__) @add_end_docstrings(a) class UpperCAmelCase_ ( a): def __init__( self, **__a): '''simple docstring''' super().__init__(**__a) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch.") requires_backends(self, "vision") self.check_model_type(__a) def __call__( self, __a, __a = None, **__a, ): '''simple docstring''' if "text_queries" in kwargs: _lowerCAmelCase : str = kwargs.pop("text_queries") if isinstance(__a, (str, Image.Image)): _lowerCAmelCase : int = {"image": image, "candidate_labels": candidate_labels} else: _lowerCAmelCase : Optional[Any] = image _lowerCAmelCase : Tuple = super().__call__(__a, **__a) return results def snake_case__ ( self, **__a): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} if "threshold" in kwargs: _lowerCAmelCase : Dict = kwargs["threshold"] if "top_k" in kwargs: _lowerCAmelCase : str = kwargs["top_k"] return {}, {}, postprocess_params def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = load_image(inputs["image"]) _lowerCAmelCase : Optional[Any] = inputs["candidate_labels"] if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = candidate_labels.split(",") _lowerCAmelCase : Optional[int] = torch.tensor([[image.height, image.width]], dtype=torch.intaa) for i, candidate_label in enumerate(__a): _lowerCAmelCase : Any = self.tokenizer(__a, return_tensors=self.framework) _lowerCAmelCase : Optional[Any] = self.image_processor(__a, return_tensors=self.framework) yield { "is_last": i == len(__a) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = model_inputs.pop("target_size") _lowerCAmelCase : str = model_inputs.pop("candidate_label") _lowerCAmelCase : str = model_inputs.pop("is_last") _lowerCAmelCase : Optional[int] = self.model(**__a) _lowerCAmelCase : Dict = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def snake_case__ ( self, __a, __a=0.1, __a=None): '''simple docstring''' _lowerCAmelCase : Dict = [] for model_output in model_outputs: _lowerCAmelCase : Any = model_output["candidate_label"] _lowerCAmelCase : Union[str, Any] = BaseModelOutput(__a) _lowerCAmelCase : str = self.image_processor.post_process_object_detection( outputs=__a, threshold=__a, target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): _lowerCAmelCase : int = outputs["scores"][index].item() _lowerCAmelCase : Optional[Any] = self._get_bounding_box(outputs["boxes"][index][0]) _lowerCAmelCase : Optional[int] = {"score": score, "label": label, "box": box} results.append(__a) _lowerCAmelCase : Optional[Any] = sorted(__a, key=lambda __a: x["score"], reverse=__a) if top_k: _lowerCAmelCase : Union[str, Any] = results[:top_k] return results def snake_case__ ( self, __a): '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") _lowerCAmelCase : Any = box.int().tolist() _lowerCAmelCase : int = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
366
from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self, __a, __a, __a = 0): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = row, column _lowerCAmelCase : str = [[default_value for c in range(__a)] for r in range(__a)] def __str__( self): '''simple docstring''' _lowerCAmelCase : Tuple = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _lowerCAmelCase : str = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase : List[str] = max(__a, len(str(__a))) _lowerCAmelCase : Union[str, Any] = f"%{max_element_length}s" # Make string and return def single_line(__a) -> str: nonlocal string_format_identifier _lowerCAmelCase : Dict = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(__a) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def snake_case__ ( self, __a): '''simple docstring''' if not (isinstance(__a, (list, tuple)) and len(__a) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, __a): '''simple docstring''' assert self.validate_indicies(__a) return self.array[loc[0]][loc[1]] def __setitem__( self, __a, __a): '''simple docstring''' assert self.validate_indicies(__a) _lowerCAmelCase : Union[str, Any] = value def __add__( self, __a): '''simple docstring''' assert isinstance(__a, __a) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase : Any = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' _lowerCAmelCase : List[str] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : str = -self[r, c] return result def __sub__( self, __a): '''simple docstring''' return self + (-another) def __mul__( self, __a): '''simple docstring''' if isinstance(__a, (int, float)): # Scalar multiplication _lowerCAmelCase : Dict = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] * another return result elif isinstance(__a, __a): # Matrix multiplication assert self.column == another.row _lowerCAmelCase : List[str] = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase : Optional[Any] = f"Unsupported type given for another ({type(__a)})" raise TypeError(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] return result def snake_case__ ( self, __a, __a): '''simple docstring''' assert isinstance(__a, __a) and isinstance(__a, __a) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase : int = v.transpose() _lowerCAmelCase : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase : Union[str, Any] = 1 print(F"a^(-1) is {ainv}" ) # u, v _lowerCAmelCase : Any = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 1, 2, -3 _lowerCAmelCase : List[Any] = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}" ) def A ( ): '''simple docstring''' import doctest doctest.testmod() testa()
300
0
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowercase__ = logging.get_logger(__name__) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): def constraint_to_multiple_of(lowercase__ , lowercase__ , lowercase__=0 , lowercase__=None ): _lowerCamelCase : List[Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowerCamelCase : Optional[int] = math.floor(val / multiple ) * multiple if x < min_val: _lowerCamelCase : List[str] = math.ceil(val / multiple ) * multiple return x _lowerCamelCase : Optional[int] = (output_size, output_size) if isinstance(lowercase__ , lowercase__ ) else output_size _lowerCamelCase, _lowerCamelCase : List[str] = get_image_size(lowercase__ ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = output_size # determine new height and width _lowerCamelCase : Dict = output_height / input_height _lowerCamelCase : Any = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowerCamelCase : Tuple = scale_width else: # fit height _lowerCamelCase : Any = scale_height _lowerCamelCase : Optional[int] = constraint_to_multiple_of(scale_height * input_height , multiple=lowercase__ ) _lowerCamelCase : Any = constraint_to_multiple_of(scale_width * input_width , multiple=lowercase__ ) return (new_height, new_width) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = None , lowercase = PILImageResampling.BILINEAR , lowercase = False , lowercase = 1 , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = None , lowercase = None , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[int] = size if size is not None else {'height': 384, 'width': 384} _lowerCamelCase : Union[str, Any] = get_size_dict(lowercase ) _lowerCamelCase : Optional[Any] = do_resize _lowerCamelCase : List[Any] = size _lowerCamelCase : Tuple = keep_aspect_ratio _lowerCamelCase : List[Any] = ensure_multiple_of _lowerCamelCase : str = resample _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : int = do_normalize _lowerCamelCase : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCamelCase : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def A_ ( self , lowercase , lowercase , lowercase = False , lowercase = 1 , lowercase = PILImageResampling.BICUBIC , lowercase = None , **lowercase , ): _lowerCamelCase : str = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) _lowerCamelCase : Optional[Any] = get_resize_output_image_size( lowercase , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowercase , multiple=lowercase , ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase , ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ): return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_resize if do_resize is not None else self.do_resize _lowerCamelCase : List[str] = size if size is not None else self.size _lowerCamelCase : Tuple = get_size_dict(lowercase ) _lowerCamelCase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowerCamelCase : int = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowerCamelCase : int = resample if resample is not None else self.resample _lowerCamelCase : int = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : Dict = image_mean if image_mean is not None else self.image_mean _lowerCamelCase : Tuple = image_std if image_std is not None else self.image_std _lowerCamelCase : List[Any] = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Tuple = [to_numpy_array(lowercase ) for image in images] if do_resize: _lowerCamelCase : List[Any] = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_rescale: _lowerCamelCase : List[Any] = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: _lowerCamelCase : List[str] = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] _lowerCamelCase : Optional[Any] = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Dict = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase ) def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : int = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase ) != len(lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(lowercase ): _lowerCamelCase : Union[str, Any] = target_sizes.numpy() _lowerCamelCase : Union[str, Any] = [] for idx in range(len(lowercase ) ): _lowerCamelCase : Tuple = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase ) _lowerCamelCase : Dict = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase ) else: _lowerCamelCase : Dict = logits.argmax(dim=1 ) _lowerCamelCase : int = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
96
def __A ( __lowerCamelCase ) -> int: a = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) a = hex_num[0] == """-""" if is_negative: a = hex_num[1:] try: a = int(__lowerCamelCase , 16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) a = """""" while int_num > 0: a = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
228
0
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowercase : Tuple = False lowercase : str = logging.get_logger(__name__) lowercase : List[str] = "ybelkada/fonts" def SCREAMING_SNAKE_CASE__ ( ) -> Any: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ' 'Pix2StructImageProcessor. Please upgrade torch.' ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Optional[int]: requires_backends(__A , ['torch'] ) _check_torch_version() _snake_case = image_tensor.unsqueeze(0 ) _snake_case = torch.nn.functional.unfold(__A , (patch_height, patch_width) , stride=(patch_height, patch_width) ) _snake_case = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , __A , __A , -1 ) _snake_case = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def SCREAMING_SNAKE_CASE__ ( __A , __A = 36 , __A = "black" , __A = "white" , __A = 5 , __A = 5 , __A = 5 , __A = 5 , __A = None , __A = None , ) -> Image.Image: requires_backends(__A , 'vision' ) # Add new lines so that each line is no more than 80 characters. _snake_case = textwrap.TextWrapper(width=80 ) _snake_case = wrapper.wrap(text=__A ) _snake_case = '\n'.join(__A ) if font_bytes is not None and font_path is None: _snake_case = io.BytesIO(__A ) elif font_path is not None: _snake_case = font_path else: _snake_case = hf_hub_download(__A , 'Arial.TTF' ) _snake_case = ImageFont.truetype(__A , encoding='UTF-8' , size=__A ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. _snake_case = ImageDraw.Draw(Image.new('RGB' , (1, 1) , __A ) ) _snake_case , _snake_case , _snake_case , _snake_case = temp_draw.textbbox((0, 0) , __A , __A ) # Create the actual image with a bit of padding around the text. _snake_case = text_width + left_padding + right_padding _snake_case = text_height + top_padding + bottom_padding _snake_case = Image.new('RGB' , (image_width, image_height) , __A ) _snake_case = ImageDraw.Draw(__A ) draw.text(xy=(left_padding, top_padding) , text=__A , fill=__A , font=__A ) return image def SCREAMING_SNAKE_CASE__ ( __A , __A , **__A ) -> Dict: requires_backends(__A , 'vision' ) # Convert to PIL image if necessary _snake_case = to_pil_image(__A ) _snake_case = render_text(__A , **__A ) _snake_case = max(header_image.width , image.width ) _snake_case = int(image.height * (new_width / image.width) ) _snake_case = int(header_image.height * (new_width / header_image.width) ) _snake_case = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary _snake_case = to_numpy_array(__A ) if infer_channel_dimension_format(__A ) == ChannelDimension.LAST: _snake_case = to_channel_dimension_format(__A , ChannelDimension.LAST ) return new_image class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = ["""flattened_patches"""] def __init__( self , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = 20_48 , lowerCAmelCase_ = False , **lowerCAmelCase_ , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _snake_case = patch_size if patch_size is not None else {'height': 16, 'width': 16} _snake_case = do_normalize _snake_case = do_convert_rgb _snake_case = max_patches _snake_case = is_vqa def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" requires_backends(self.extract_flattened_patches , 'torch' ) _check_torch_version() # convert to torch _snake_case = to_channel_dimension_format(lowerCAmelCase_ , ChannelDimension.FIRST ) _snake_case = torch.from_numpy(lowerCAmelCase_ ) _snake_case , _snake_case = patch_size['height'], patch_size['width'] _snake_case , _snake_case = get_image_size(lowerCAmelCase_ ) # maximize scale s.t. _snake_case = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) _snake_case = max(min(math.floor(scale * image_height / patch_height ) , lowerCAmelCase_ ) , 1 ) _snake_case = max(min(math.floor(scale * image_width / patch_width ) , lowerCAmelCase_ ) , 1 ) _snake_case = max(num_feasible_rows * patch_height , 1 ) _snake_case = max(num_feasible_cols * patch_width , 1 ) _snake_case = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode='bilinear' , align_corners=lowerCAmelCase_ , antialias=lowerCAmelCase_ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] _snake_case = torch_extract_patches(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = patches.shape _snake_case = patches_shape[1] _snake_case = patches_shape[2] _snake_case = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] _snake_case = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] _snake_case = torch.arange(lowerCAmelCase_ ).reshape([rows, 1] ).repeat(1 , lowerCAmelCase_ ).reshape([rows * columns, 1] ) _snake_case = torch.arange(lowerCAmelCase_ ).reshape([1, columns] ).repeat(lowerCAmelCase_ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] _snake_case = row_ids.to(torch.floataa ) _snake_case = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] _snake_case = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] _snake_case = torch.nn.functional.pad(lowerCAmelCase_ , [0, 0, 0, max_patches - (rows * columns)] ).float() _snake_case = to_numpy_array(lowerCAmelCase_ ) return result def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ ): """simple docstring""" if image.dtype == np.uinta: _snake_case = image.astype(np.floataa ) # take mean across the whole `image` _snake_case = np.mean(lowerCAmelCase_ ) _snake_case = np.std(lowerCAmelCase_ ) _snake_case = max(lowerCAmelCase_ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _snake_case = patch_size if patch_size is not None else self.patch_size _snake_case = max_patches if max_patches is not None else self.max_patches _snake_case = self.is_vqa if kwargs.get('data_format' , lowerCAmelCase_ ) is not None: raise ValueError('data_format is not an accepted input as the outputs are ' ) _snake_case = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _snake_case = [convert_to_rgb(lowerCAmelCase_ ) for image in images] # All transformations expect numpy arrays. _snake_case = [to_numpy_array(lowerCAmelCase_ ) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.' ) _snake_case = kwargs.pop('font_bytes' , lowerCAmelCase_ ) _snake_case = kwargs.pop('font_path' , lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = [header_text] * len(lowerCAmelCase_ ) _snake_case = [ render_header(lowerCAmelCase_ , header_text[i] , font_bytes=lowerCAmelCase_ , font_path=lowerCAmelCase_ ) for i, image in enumerate(lowerCAmelCase_ ) ] if do_normalize: _snake_case = [self.normalize(image=lowerCAmelCase_ ) for image in images] # convert to torch tensor and permute _snake_case = [ self.extract_flattened_patches(image=lowerCAmelCase_ , max_patches=lowerCAmelCase_ , patch_size=lowerCAmelCase_ ) for image in images ] # create attention mask in numpy _snake_case = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] _snake_case = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks} , tensor_type=lowerCAmelCase_ ) return encoded_outputs
160
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __UpperCAmelCase : @staticmethod def lowerCamelCase ( *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( __A ) -> str: _snake_case = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def SCREAMING_SNAKE_CASE__ ( __A ) -> Dict: _snake_case = np.array(__A ) _snake_case = npimg.shape return {"hash": hashimage(__A ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __UpperCAmelCase ( unittest.TestCase ): __lowercase = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __lowercase = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = MaskGenerationPipeline(model=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def lowerCamelCase ( self ): """simple docstring""" pass @slow @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = pipeline('mask-generation' , model='facebook/sam-vit-huge' ) _snake_case = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=2_56 ) # Shortening by hashing _snake_case = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(lowerCAmelCase_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (4_80, 6_40)}, 'scores': 1.0444}, {'mask': {'hash': '6affa964c6', 'shape': (4_80, 6_40)}, 'scores': 1.021}, {'mask': {'hash': 'dfe28a0388', 'shape': (4_80, 6_40)}, 'scores': 1.0167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (4_80, 6_40)}, 'scores': 1.0132}, {'mask': {'hash': 'fe8065c197', 'shape': (4_80, 6_40)}, 'scores': 1.0053}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (4_80, 6_40)}, 'scores': 0.9967}, {'mask': {'hash': '453c7844bd', 'shape': (4_80, 6_40)}, 'scores': 0.993}, {'mask': {'hash': '3d44f2926d', 'shape': (4_80, 6_40)}, 'scores': 0.9909}, {'mask': {'hash': '64033ddc3f', 'shape': (4_80, 6_40)}, 'scores': 0.9879}, {'mask': {'hash': '801064ff79', 'shape': (4_80, 6_40)}, 'scores': 0.9834}, {'mask': {'hash': '6172f276ef', 'shape': (4_80, 6_40)}, 'scores': 0.9716}, {'mask': {'hash': 'b49e60e084', 'shape': (4_80, 6_40)}, 'scores': 0.9612}, {'mask': {'hash': 'a811e775fd', 'shape': (4_80, 6_40)}, 'scores': 0.9599}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (4_80, 6_40)}, 'scores': 0.9552}, {'mask': {'hash': '9d8257e080', 'shape': (4_80, 6_40)}, 'scores': 0.9532}, {'mask': {'hash': '32de6454a8', 'shape': (4_80, 6_40)}, 'scores': 0.9516}, {'mask': {'hash': 'af3d4af2c8', 'shape': (4_80, 6_40)}, 'scores': 0.9499}, {'mask': {'hash': '3c6db475fb', 'shape': (4_80, 6_40)}, 'scores': 0.9483}, {'mask': {'hash': 'c290813fb9', 'shape': (4_80, 6_40)}, 'scores': 0.9464}, {'mask': {'hash': 'b6f0b8f606', 'shape': (4_80, 6_40)}, 'scores': 0.943}, {'mask': {'hash': '92ce16bfdf', 'shape': (4_80, 6_40)}, 'scores': 0.943}, {'mask': {'hash': 'c749b25868', 'shape': (4_80, 6_40)}, 'scores': 0.9408}, {'mask': {'hash': 'efb6cab859', 'shape': (4_80, 6_40)}, 'scores': 0.9335}, {'mask': {'hash': '1ff2eafb30', 'shape': (4_80, 6_40)}, 'scores': 0.9326}, {'mask': {'hash': '788b798e24', 'shape': (4_80, 6_40)}, 'scores': 0.9262}, {'mask': {'hash': 'abea804f0e', 'shape': (4_80, 6_40)}, 'scores': 0.8999}, {'mask': {'hash': '7b9e8ddb73', 'shape': (4_80, 6_40)}, 'scores': 0.8986}, {'mask': {'hash': 'cd24047c8a', 'shape': (4_80, 6_40)}, 'scores': 0.8984}, {'mask': {'hash': '6943e6bcbd', 'shape': (4_80, 6_40)}, 'scores': 0.8873}, {'mask': {'hash': 'b5f47c9191', 'shape': (4_80, 6_40)}, 'scores': 0.8871} ] , ) # fmt: on @require_torch @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'facebook/sam-vit-huge' _snake_case = pipeline('mask-generation' , model=lowerCAmelCase_ ) _snake_case = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=2_56 ) # Shortening by hashing _snake_case = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(lowerCAmelCase_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (4_80, 6_40)}, 'scores': 1.0444}, {'mask': {'hash': '6affa964c6', 'shape': (4_80, 6_40)}, 'scores': 1.0210}, {'mask': {'hash': 'dfe28a0388', 'shape': (4_80, 6_40)}, 'scores': 1.0167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (4_80, 6_40)}, 'scores': 1.0132}, {'mask': {'hash': 'fe8065c197', 'shape': (4_80, 6_40)}, 'scores': 1.0053}, ] , )
160
1
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( __UpperCAmelCase ): def a ( self : List[str] ): __UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase__ , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(UpperCamelCase__ , '''num_heads''' ) ) class _UpperCAmelCase : def __init__( self : Optional[int] , _lowercase : int , _lowercase : List[str]=13 , _lowercase : Tuple=64 , _lowercase : str=3 , _lowercase : int=[16, 48, 96] , _lowercase : List[Any]=[1, 3, 6] , _lowercase : Tuple=[1, 2, 10] , _lowercase : str=[7, 3, 3] , _lowercase : List[Any]=[4, 2, 2] , _lowercase : Any=[2, 1, 1] , _lowercase : Tuple=[2, 2, 2] , _lowercase : int=[False, False, True] , _lowercase : Union[str, Any]=[0.0, 0.0, 0.0] , _lowercase : Union[str, Any]=0.02 , _lowercase : Union[str, Any]=1E-12 , _lowercase : Optional[int]=True , _lowercase : Union[str, Any]=True , _lowercase : Tuple=2 , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = image_size __UpperCAmelCase = patch_sizes __UpperCAmelCase = patch_stride __UpperCAmelCase = patch_padding __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = num_labels __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = num_heads __UpperCAmelCase = stride_kv __UpperCAmelCase = depth __UpperCAmelCase = cls_token __UpperCAmelCase = attention_drop_rate __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps def a ( self : Optional[int] ): __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def a ( self : Union[str, Any] ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def a ( self : Tuple , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : str ): __UpperCAmelCase = CvtModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCAmelCase = model(UpperCamelCase__ ) __UpperCAmelCase = (self.image_size, self.image_size) __UpperCAmelCase , __UpperCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): __UpperCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __UpperCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def a ( self : Union[str, Any] , _lowercase : Dict , _lowercase : Dict , _lowercase : Optional[int] ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = CvtForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCAmelCase = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self : Dict ): __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = config_and_inputs __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): a__ : List[str] = (CvtModel, CvtForImageClassification) if is_torch_available() else () a__ : Optional[Any] = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) a__ : Union[str, Any] = False a__ : Tuple = False a__ : Optional[int] = False a__ : List[str] = False a__ : Dict = False def a ( self : Any ): __UpperCAmelCase = CvtModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def a ( self : Any ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a ( self : Optional[int] ): return @unittest.skip(reason='''Cvt does not output attentions''' ) def a ( self : Union[str, Any] ): pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def a ( self : Optional[int] ): pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def a ( self : str ): pass def a ( self : List[str] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(UpperCamelCase__ ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def a ( self : Optional[Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def a ( self : int ): def check_hidden_states_output(_lowercase : Dict , _lowercase : Union[str, Any] , _lowercase : Optional[int] ): __UpperCAmelCase = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def a ( self : List[str] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a ( self : Any ): pass @slow def a ( self : str ): for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = CvtModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def lowercase__ ( ): __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def a ( self : str ): return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def a ( self : Optional[Any] ): __UpperCAmelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCamelCase__ ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**UpperCamelCase__ ) # verify the logits __UpperCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) __UpperCAmelCase = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) )
332
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def __UpperCamelCase ( _A = 3 ): if isinstance(_A , _A ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(_A ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) lowerCAmelCase_ = QuantumRegister(_A , '''qr''' ) lowerCAmelCase_ = ClassicalRegister(_A , '''cr''' ) lowerCAmelCase_ = QuantumCircuit(_A , _A ) lowerCAmelCase_ = number_of_qubits for i in range(_A ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_A ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _A , _A ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_A , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_A , _A ) # simulate with 10000 shots lowerCAmelCase_ = Aer.get_backend('''qasm_simulator''' ) lowerCAmelCase_ = execute(_A , _A , shots=10000 ) return job.result().get_counts(_A ) if __name__ == "__main__": print( f"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
278
0
import numpy as np def lowerCAmelCase_ (lowerCAmelCase__: np.array ): """simple docstring""" return 1 / (1 + np.exp(-vector )) def lowerCAmelCase_ (lowerCAmelCase__: np.array ): """simple docstring""" return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
82
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=[10, 20, 30, 40], SCREAMING_SNAKE_CASE_=[2, 2, 3, 2], SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=0.0_2, SCREAMING_SNAKE_CASE_=["stage2", "stage3", "stage4"], SCREAMING_SNAKE_CASE_=[2, 3, 4], SCREAMING_SNAKE_CASE_=None, ) -> int: UpperCAmelCase_: Dict = parent UpperCAmelCase_: Any = batch_size UpperCAmelCase_: Union[str, Any] = image_size UpperCAmelCase_: List[Any] = num_channels UpperCAmelCase_: Union[str, Any] = num_stages UpperCAmelCase_: Tuple = hidden_sizes UpperCAmelCase_: int = depths UpperCAmelCase_: Union[str, Any] = is_training UpperCAmelCase_: List[Any] = use_labels UpperCAmelCase_: Optional[Any] = intermediate_size UpperCAmelCase_: Optional[int] = hidden_act UpperCAmelCase_: List[Any] = num_labels UpperCAmelCase_: Union[str, Any] = initializer_range UpperCAmelCase_: Dict = out_features UpperCAmelCase_: List[str] = out_indices UpperCAmelCase_: str = scope def __snake_case (self ) -> str: UpperCAmelCase_: Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_: List[Any] = None if self.use_labels: UpperCAmelCase_: List[Any] = ids_tensor([self.batch_size], self.num_labels ) UpperCAmelCase_: int = self.get_config() return config, pixel_values, labels def __snake_case (self ) -> List[str]: return ConvNextConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=SCREAMING_SNAKE_CASE_, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCAmelCase_: Tuple = ConvNextModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: List[str] = model(SCREAMING_SNAKE_CASE_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCAmelCase_: List[Any] = ConvNextForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Dict = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int: UpperCAmelCase_: Union[str, Any] = ConvNextBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase_: Any = None UpperCAmelCase_: str = ConvNextBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Dict = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: int = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Dict = config_and_inputs UpperCAmelCase_: int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): A = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) A = ( {'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification} if is_torch_available() else {} ) A = True A = False A = False A = False A = False def __snake_case (self ) -> int: UpperCAmelCase_: Any = ConvNextModelTester(self ) UpperCAmelCase_: Union[str, Any] = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def __snake_case (self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case (self ) -> Optional[int]: return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def __snake_case (self ) -> Optional[int]: pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def __snake_case (self ) -> Any: pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def __snake_case (self ) -> Dict: pass def __snake_case (self ) -> Tuple: UpperCAmelCase_ , UpperCAmelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_: List[str] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_: Dict = [*signature.parameters.keys()] UpperCAmelCase_: Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[str]: UpperCAmelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> str: UpperCAmelCase_: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Optional[Any]: def check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCAmelCase_: Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCAmelCase_: Dict = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_: Dict = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) UpperCAmelCase_ , UpperCAmelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_: str = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_: List[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def __snake_case (self ) -> Tuple: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_: int = ConvNextModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _a ( unittest.TestCase ): @cached_property def __snake_case (self ) -> List[str]: return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def __snake_case (self ) -> Tuple: UpperCAmelCase_: List[Any] = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = self.default_image_processor UpperCAmelCase_: Any = prepare_img() UpperCAmelCase_: Any = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCAmelCase_: Tuple = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCAmelCase_: Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1E-4 ) ) @require_torch class _a ( unittest.TestCase , _lowerCAmelCase ): A = (ConvNextBackbone,) if is_torch_available() else () A = ConvNextConfig A = False def __snake_case (self ) -> List[str]: UpperCAmelCase_: Any = ConvNextModelTester(self )
82
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "yolos" def __init__( self , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.02 , A_=1E-12 , A_=[512, 864] , A_=16 , A_=3 , A_=True , A_=100 , A_=True , A_=False , A_=1 , A_=5 , A_=2 , A_=5 , A_=2 , A_=0.1 , **A_ , ) -> Any: super().__init__(**A_ ) __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =num_channels __UpperCamelCase =qkv_bias __UpperCamelCase =num_detection_tokens __UpperCamelCase =use_mid_position_embeddings __UpperCamelCase =auxiliary_loss # Hungarian matcher __UpperCamelCase =class_cost __UpperCamelCase =bbox_cost __UpperCamelCase =giou_cost # Loss coefficients __UpperCamelCase =bbox_loss_coefficient __UpperCamelCase =giou_loss_coefficient __UpperCamelCase =eos_coefficient class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : str = version.parse("1.11" ) @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _a ( self ) -> float: return 1E-4 @property def _a ( self ) -> int: return 12
62
0
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets A_ : Union[str, Any] = datasets.logging.get_logger(__name__) A_ : List[Any] = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n' A_ : Union[str, Any] = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n' A_ : int = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n' A_ : List[Any] = { 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip', 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip', 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip', 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip', 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip', 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip', 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip', 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip', 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip', 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a (datasets.Metric ): '''simple docstring''' def __A ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/google-research/bleurt""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/bleurt"""] , reference_urls=["""https://github.com/google-research/bleurt""", """https://arxiv.org/abs/2004.04696"""] , ) def __A ( self , A__ ): # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( """Using default BLEURT-Base checkpoint for sequence maximum length 128. """ """You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').""" ) A__ : Optional[Any] = """bleurt-base-128""" if self.config_name.lower() in CHECKPOINT_URLS: A__ : Tuple = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: A__ : List[str] = self.config_name.upper() else: raise KeyError( F"""{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}""" ) # download the model checkpoint specified by self.config_name and set up the scorer A__ : int = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) A__ : Union[str, Any] = score.BleurtScorer(os.path.join(A__ , A__ ) ) def __A ( self , A__ , A__ ): A__ : int = self.scorer.score(references=A__ , candidates=A__ ) return {"scores": scores}
141
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _a : '''simple docstring''' def __init__( self , A__ , ): A__ : Any = parent A__ : Any = 13 A__ : Optional[Any] = 7 A__ : Union[str, Any] = 30 A__ : str = self.seq_length + self.mem_len A__ : Dict = 15 A__ : int = True A__ : Tuple = True A__ : Union[str, Any] = 99 A__ : Optional[Any] = [10, 50, 80] A__ : str = 32 A__ : Tuple = 32 A__ : Union[str, Any] = 4 A__ : Optional[Any] = 8 A__ : int = 128 A__ : List[Any] = 2 A__ : List[str] = 2 A__ : int = None A__ : List[str] = 1 A__ : Union[str, Any] = 0 A__ : List[str] = 3 A__ : int = self.vocab_size - 1 A__ : Optional[Any] = 0.0_1 def __A ( self ): A__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Optional[Any] = None if self.use_labels: A__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Any = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , A__ , A__ , A__ , A__ ): A__ : Dict = TFTransfoXLModel(A__ ) A__ , A__ : Tuple = model(A__ ).to_tuple() A__ : List[str] = {"""input_ids""": input_ids_a, """mems""": mems_a} A__ , A__ : str = model(A__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , A__ , A__ , A__ , A__ ): A__ : Optional[int] = TFTransfoXLLMHeadModel(A__ ) A__ , A__ : int = model(A__ ).to_tuple() A__ : int = {"""input_ids""": input_ids_a, """labels""": lm_labels} A__ , A__ : Optional[Any] = model(A__ ).to_tuple() A__ , A__ : Union[str, Any] = model([input_ids_a, mems_a] ).to_tuple() A__ : Any = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} A__ , A__ : Tuple = model(A__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , A__ , A__ , A__ , A__ ): A__ : Any = TFTransfoXLForSequenceClassification(A__ ) A__ : Optional[Any] = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): A__ : Optional[Any] = self.prepare_config_and_inputs() ((A__) , (A__) , (A__) , (A__)) : List[Any] = config_and_inputs A__ : int = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class _a (__magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: List[Any] = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) UpperCAmelCase__: Optional[Any] = () if is_tf_available() else () UpperCAmelCase__: int = ( { '''feature-extraction''': TFTransfoXLModel, '''text-classification''': TFTransfoXLForSequenceClassification, '''text-generation''': TFTransfoXLLMHeadModel, '''zero-shot''': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented UpperCAmelCase__: Optional[int] = False UpperCAmelCase__: Optional[int] = False UpperCAmelCase__: Tuple = False UpperCAmelCase__: List[str] = False def __A ( self , A__ , A__ , A__ , A__ , A__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): A__ : Tuple = TFTransfoXLModelTester(self ) A__ : List[Any] = ConfigTester(self , config_class=A__ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*A__ ) def __A ( self ): self.model_tester.set_seed() A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*A__ ) def __A ( self ): A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*A__ ) def __A ( self ): A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() A__ : Union[str, Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: A__ : Any = model_class(A__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: A__ : Optional[Any] = model.get_output_embeddings() assert isinstance(A__ , tf.keras.layers.Layer ) A__ : Tuple = model.get_bias() assert name is None else: A__ : Dict = model.get_output_embeddings() assert x is None A__ : int = model.get_bias() assert name is None def __A ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : List[Any] = TFTransfoXLModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class _a (unittest.TestCase ): '''simple docstring''' @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): A__ : List[Any] = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off A__ : Tuple = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off A__ : Dict = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> A__ : Any = model.generate(A__ , max_length=200 , do_sample=A__ ) self.assertListEqual(output_ids[0].numpy().tolist() , A__ )
141
1
def snake_case_ ( lowerCAmelCase_ : List[str] ): __lowercase : Optional[int] = len(lowerCAmelCase_ ) for i in range(length - 1 ): __lowercase : Optional[Any] = i for k in range(i + 1 , lowerCAmelCase_ ): if collection[k] < collection[least]: __lowercase : Dict = k if least != i: __lowercase , __lowercase : Union[str, Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": lowerCamelCase : Tuple = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase : Optional[Any] = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
233
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __lowercase : Optional[int] = TapasConfig.from_json_file(lowerCAmelCase_ ) # set absolute/relative position embeddings parameter __lowercase : Optional[Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowercase : Union[str, Any] = TapasForQuestionAnswering(config=lowerCAmelCase_ ) elif task == "WTQ": # run_task_main.py hparams __lowercase : List[Any] = 4 __lowercase : Union[str, Any] = True # hparam_utils.py hparams __lowercase : Any = 0.664_694 __lowercase : Tuple = 0.207_951 __lowercase : Dict = 0.121_194 __lowercase : List[str] = True __lowercase : str = True __lowercase : Dict = False __lowercase : Tuple = 0.0_352_513 __lowercase : List[Any] = TapasForQuestionAnswering(config=lowerCAmelCase_ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowercase : Optional[int] = 4 __lowercase : int = False # hparam_utils.py hparams __lowercase : Tuple = 36.4_519 __lowercase : str = 0.903_421 __lowercase : List[Any] = 222.088 __lowercase : Union[str, Any] = True __lowercase : Tuple = True __lowercase : Union[str, Any] = True __lowercase : Optional[Any] = 0.763_141 __lowercase : str = TapasForQuestionAnswering(config=lowerCAmelCase_ ) elif task == "TABFACT": __lowercase : List[Any] = TapasForSequenceClassification(config=lowerCAmelCase_ ) elif task == "MLM": __lowercase : Optional[int] = TapasForMaskedLM(config=lowerCAmelCase_ ) elif task == "INTERMEDIATE_PRETRAINING": __lowercase : Dict = TapasModel(config=lowerCAmelCase_ ) else: raise ValueError(F"Task {task} not supported." ) print(F"Building PyTorch model from configuration: {config}" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save pytorch-model (weights and configuration) print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(lowerCAmelCase_ ) # Save tokenizer files print(F"Save tokenizer files to {pytorch_dump_path}" ) __lowercase : Any = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 ) tokenizer.save_pretrained(lowerCAmelCase_ ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''SQA''', type=str, help='''Model task for which to convert a checkpoint. Defaults to SQA.''' ) parser.add_argument( '''--reset_position_index_per_cell''', default=False, action='''store_true''', help='''Whether to use relative position embeddings or not. Defaults to True.''', ) parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--tapas_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained TAPAS model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
233
1
import math from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : Optional[int] = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class A__ ( __snake_case ): _UpperCAmelCase :Optional[int] = 'data2vec-audio' def __init__( self , A_=32 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0 , A_=0.1 , A_=0.1 , A_=0.02 , A_=1e-5 , A_="gelu" , A_=(512, 512, 512, 512, 512, 512, 512) , A_=(5, 2, 2, 2, 2, 2, 2) , A_=(10, 3, 3, 3, 3, 2, 2) , A_=False , A_=16 , A_=19 , A_=5 , A_=0.05 , A_=10 , A_=2 , A_=0.0 , A_=10 , A_=0 , A_="sum" , A_=False , A_=False , A_=256 , A_=(512, 512, 512, 512, 1500) , A_=(5, 3, 3, 1, 1) , A_=(1, 2, 3, 1, 1) , A_=512 , A_=0 , A_=1 , A_=2 , A_=False , A_=3 , A_=2 , A_=3 , A_=None , **A_ , ): '''simple docstring''' super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) UpperCamelCase : Union[str, Any] = hidden_size UpperCamelCase : Union[str, Any] = feat_extract_activation UpperCamelCase : str = list(A_ ) UpperCamelCase : Union[str, Any] = list(A_ ) UpperCamelCase : Optional[int] = list(A_ ) UpperCamelCase : int = conv_bias UpperCamelCase : Optional[int] = num_conv_pos_embeddings UpperCamelCase : Optional[Any] = num_conv_pos_embedding_groups UpperCamelCase : List[Any] = conv_pos_kernel_size UpperCamelCase : str = len(self.conv_dim ) UpperCamelCase : Optional[Any] = num_hidden_layers UpperCamelCase : List[Any] = intermediate_size UpperCamelCase : Any = hidden_act UpperCamelCase : List[Any] = num_attention_heads UpperCamelCase : List[Any] = hidden_dropout UpperCamelCase : List[Any] = attention_dropout UpperCamelCase : Optional[int] = activation_dropout UpperCamelCase : Optional[int] = feat_proj_dropout UpperCamelCase : Tuple = final_dropout UpperCamelCase : List[str] = layerdrop UpperCamelCase : Any = layer_norm_eps UpperCamelCase : Tuple = initializer_range UpperCamelCase : Dict = vocab_size UpperCamelCase : List[Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase : str = mask_time_prob UpperCamelCase : Dict = mask_time_length UpperCamelCase : Dict = mask_time_min_masks UpperCamelCase : Optional[Any] = mask_feature_prob UpperCamelCase : Union[str, Any] = mask_feature_length UpperCamelCase : Optional[int] = mask_feature_min_masks # ctc loss UpperCamelCase : Any = ctc_loss_reduction UpperCamelCase : Optional[Any] = ctc_zero_infinity # adapter UpperCamelCase : Tuple = add_adapter UpperCamelCase : Tuple = adapter_kernel_size UpperCamelCase : List[Any] = adapter_stride UpperCamelCase : List[str] = num_adapter_layers UpperCamelCase : Optional[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase : int = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase : Tuple = list(A_ ) UpperCamelCase : Tuple = list(A_ ) UpperCamelCase : Dict = list(A_ ) UpperCamelCase : Union[str, Any] = xvector_output_dim @property def __UpperCamelCase( self ): '''simple docstring''' return math.prod(self.conv_stride )
140
class A__ : # Public class to implement a graph def __init__( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[int] = row UpperCamelCase : Any = col UpperCamelCase : Optional[Any] = graph def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Any = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCamelCase : Dict = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCamelCase : Any = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , A_ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , A_ ) def __UpperCamelCase( self ): # And finally, count all islands. '''simple docstring''' UpperCamelCase : str = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCamelCase : int = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(A_ , A_ , A_ ) count += 1 return count
140
1
'''simple docstring''' import cva import numpy as np class lowerCAmelCase__ : def __init__( self : Tuple , lowerCamelCase__ : float , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' if k in (0.0_4, 0.0_6): _UpperCAmelCase : Dict = k _UpperCAmelCase : Optional[int] = window_size else: raise ValueError("invalid k value" ) def __str__( self : Union[str, Any] ) ->str: '''simple docstring''' return str(self.k ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : str ) ->tuple[cva.Mat, list[list[int]]]: '''simple docstring''' _UpperCAmelCase : Tuple = cva.imread(lowerCamelCase__ , 0 ) _UpperCAmelCase , _UpperCAmelCase : Tuple = img.shape _UpperCAmelCase : list[list[int]] = [] _UpperCAmelCase : Optional[Any] = img.copy() _UpperCAmelCase : Optional[int] = cva.cvtColor(lowerCamelCase__ , cva.COLOR_GRAY2RGB ) _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = np.gradient(lowerCamelCase__ ) _UpperCAmelCase : Tuple = dx**2 _UpperCAmelCase : str = dy**2 _UpperCAmelCase : int = dx * dy _UpperCAmelCase : Dict = 0.0_4 _UpperCAmelCase : str = self.window_size // 2 for y in range(lowerCamelCase__ , h - offset ): for x in range(lowerCamelCase__ , w - offset ): _UpperCAmelCase : List[str] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _UpperCAmelCase : List[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _UpperCAmelCase : Tuple = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _UpperCAmelCase : Optional[Any] = (wxx * wyy) - (wxy**2) _UpperCAmelCase : Optional[Any] = wxx + wyy _UpperCAmelCase : List[Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase__ = HarrisCorner(0.04, 3) lowerCamelCase__ ,lowerCamelCase__ = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
234
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCamelCase__ = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' lowerCamelCase__ = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' lowerCamelCase__ = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : int ) ->MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : List[List[List[str]]] , lowerCamelCase__ : List[List[str]] , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 4 , ) ->Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCamelCase__ , hypotheses=lowerCamelCase__ , min_len=lowerCamelCase__ , max_len=lowerCamelCase__ ) }
234
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_efficientformer""": [ """EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientFormerConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""EfficientFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientFormerForImageClassification""", """EfficientFormerForImageClassificationWithTeacher""", """EfficientFormerModel""", """EfficientFormerPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFEfficientFormerForImageClassification""", """TFEfficientFormerForImageClassificationWithTeacher""", """TFEfficientFormerModel""", """TFEfficientFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A__ ( __magic_name__ ): lowercase = 'unispeech' def __init__( self : Any , a : List[Any]=32 , a : List[Any]=768 , a : Any=12 , a : List[str]=12 , a : List[Any]=3_072 , a : Any="gelu" , a : Dict=0.1 , a : List[str]=0.1 , a : List[str]=0.1 , a : Union[str, Any]=0.0 , a : str=0.0 , a : int=0.1 , a : List[str]=0.1 , a : List[Any]=0.0_2 , a : Optional[int]=1E-5 , a : Optional[int]="group" , a : Optional[Any]="gelu" , a : List[Any]=(512, 512, 512, 512, 512, 512, 512) , a : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , a : List[str]=(10, 3, 3, 3, 3, 2, 2) , a : Union[str, Any]=False , a : Union[str, Any]=128 , a : Tuple=16 , a : Dict=False , a : str=True , a : str=0.0_5 , a : Union[str, Any]=10 , a : Tuple=2 , a : int=0.0 , a : Optional[Any]=10 , a : List[str]=0 , a : str=320 , a : List[str]=2 , a : Optional[Any]=0.1 , a : Any=100 , a : Dict=256 , a : Any=256 , a : Dict=0.1 , a : List[Any]="mean" , a : Dict=False , a : str=False , a : Optional[int]=256 , a : Any=80 , a : List[Any]=0 , a : Optional[int]=1 , a : int=2 , a : List[Any]=0.5 , **a : int , ): '''simple docstring''' super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : List[str] = feat_extract_norm lowerCAmelCase__ : Optional[Any] = feat_extract_activation lowerCAmelCase__ : str = list(a ) lowerCAmelCase__ : List[str] = list(a ) lowerCAmelCase__ : Tuple = list(a ) lowerCAmelCase__ : Dict = conv_bias lowerCAmelCase__ : Optional[int] = num_conv_pos_embeddings lowerCAmelCase__ : Any = num_conv_pos_embedding_groups lowerCAmelCase__ : str = len(self.conv_dim ) lowerCAmelCase__ : Any = num_hidden_layers lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : Union[str, Any] = hidden_dropout lowerCAmelCase__ : Tuple = attention_dropout lowerCAmelCase__ : str = activation_dropout lowerCAmelCase__ : Any = feat_proj_dropout lowerCAmelCase__ : List[Any] = final_dropout lowerCAmelCase__ : Tuple = layerdrop lowerCAmelCase__ : Any = layer_norm_eps lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Optional[Any] = num_ctc_classes lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Dict = do_stable_layer_norm lowerCAmelCase__ : List[Any] = use_weighted_layer_sum lowerCAmelCase__ : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase__ : Union[str, Any] = apply_spec_augment lowerCAmelCase__ : Any = mask_time_prob lowerCAmelCase__ : Dict = mask_time_length lowerCAmelCase__ : Tuple = mask_time_min_masks lowerCAmelCase__ : Optional[int] = mask_feature_prob lowerCAmelCase__ : Optional[Any] = mask_feature_length lowerCAmelCase__ : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase__ : int = num_codevectors_per_group lowerCAmelCase__ : Any = num_codevector_groups lowerCAmelCase__ : Any = contrastive_logits_temperature lowerCAmelCase__ : int = feat_quantizer_dropout lowerCAmelCase__ : List[Any] = num_negatives lowerCAmelCase__ : List[str] = codevector_dim lowerCAmelCase__ : Optional[int] = proj_codevector_dim lowerCAmelCase__ : Dict = diversity_loss_weight # ctc loss lowerCAmelCase__ : Any = ctc_loss_reduction lowerCAmelCase__ : Any = ctc_zero_infinity # pretraining loss lowerCAmelCase__ : Union[str, Any] = replace_prob @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
307
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Optional[int] = logging.get_logger(__name__) _lowercase : Tuple = { "BridgeTower/bridgetower-base": "https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json", "BridgeTower/bridgetower-base-itm-mlm": ( "https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json" ), } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = "bridgetower_vision_model" def __init__( self : Union[str, Any], lowerCamelCase : List[str]=768, lowerCamelCase : str=12, lowerCamelCase : List[Any]=3, lowerCamelCase : Union[str, Any]=16, lowerCamelCase : Dict=288, lowerCamelCase : List[Any]=1, lowerCamelCase : Optional[int]=1E-05, lowerCamelCase : Tuple=False, lowerCamelCase : List[Any]=True, lowerCamelCase : Dict=False, **lowerCamelCase : Optional[int], )-> Tuple: super().__init__(**lowerCamelCase ) lowerCamelCase__ : Dict =hidden_size lowerCamelCase__ : Dict =num_hidden_layers lowerCamelCase__ : Tuple =num_channels lowerCamelCase__ : Union[str, Any] =patch_size lowerCamelCase__ : Dict =image_size lowerCamelCase__ : str =initializer_factor lowerCamelCase__ : Optional[int] =layer_norm_eps lowerCamelCase__ : Optional[int] =stop_gradient lowerCamelCase__ : List[Any] =share_layernorm lowerCamelCase__ : Optional[int] =remove_last_layer @classmethod def snake_case ( cls : str, lowerCamelCase : Union[str, os.PathLike], **lowerCamelCase : Dict )-> "PretrainedConfig": lowerCamelCase__ : Tuple =cls.get_config_dict(lowerCamelCase, **lowerCamelCase ) if config_dict.get('''model_type''' ) == "bridgetower": lowerCamelCase__ : Union[str, Any] =config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls, '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase, **lowerCamelCase ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = "bridgetower_text_model" def __init__( self : Optional[Any], lowerCamelCase : List[Any]=5_0265, lowerCamelCase : Union[str, Any]=768, lowerCamelCase : Union[str, Any]=12, lowerCamelCase : Tuple=12, lowerCamelCase : Union[str, Any]=1, lowerCamelCase : Tuple=3072, lowerCamelCase : List[Any]="gelu", lowerCamelCase : Dict=0.1, lowerCamelCase : List[Any]=0.1, lowerCamelCase : Tuple=514, lowerCamelCase : List[str]=1, lowerCamelCase : Tuple=1E-05, lowerCamelCase : Tuple=1, lowerCamelCase : List[Any]=0, lowerCamelCase : int=2, lowerCamelCase : Any="absolute", lowerCamelCase : Union[str, Any]=True, **lowerCamelCase : Tuple, )-> Optional[Any]: super().__init__(**lowerCamelCase ) lowerCamelCase__ : Optional[Any] =vocab_size lowerCamelCase__ : Tuple =hidden_size lowerCamelCase__ : List[str] =num_hidden_layers lowerCamelCase__ : int =num_attention_heads lowerCamelCase__ : Optional[Any] =hidden_act lowerCamelCase__ : Optional[Any] =initializer_factor lowerCamelCase__ : Optional[int] =intermediate_size lowerCamelCase__ : Optional[int] =hidden_dropout_prob lowerCamelCase__ : Optional[Any] =attention_probs_dropout_prob lowerCamelCase__ : Any =max_position_embeddings lowerCamelCase__ : Union[str, Any] =type_vocab_size lowerCamelCase__ : Tuple =layer_norm_eps lowerCamelCase__ : Union[str, Any] =position_embedding_type lowerCamelCase__ : int =use_cache lowerCamelCase__ : Tuple =pad_token_id lowerCamelCase__ : Union[str, Any] =bos_token_id lowerCamelCase__ : Union[str, Any] =eos_token_id @classmethod def snake_case ( cls : List[Any], lowerCamelCase : Union[str, os.PathLike], **lowerCamelCase : List[str] )-> "PretrainedConfig": lowerCamelCase__ : Any =cls.get_config_dict(lowerCamelCase, **lowerCamelCase ) if config_dict.get('''model_type''' ) == "bridgetower": lowerCamelCase__ : Union[str, Any] =config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls, '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase, **lowerCamelCase ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = "bridgetower" def __init__( self : Any, lowerCamelCase : Optional[Any]=True, lowerCamelCase : Union[str, Any]="gelu", lowerCamelCase : Dict=768, lowerCamelCase : int=1, lowerCamelCase : Optional[int]=1E-05, lowerCamelCase : Dict=False, lowerCamelCase : Tuple="add", lowerCamelCase : int=12, lowerCamelCase : Tuple=6, lowerCamelCase : int=False, lowerCamelCase : Dict=False, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Tuple=None, **lowerCamelCase : str, )-> Optional[Any]: lowerCamelCase__ : Any =kwargs.pop('''text_config_dict''', lowerCamelCase ) lowerCamelCase__ : Tuple =kwargs.pop('''vision_config_dict''', lowerCamelCase ) super().__init__(**lowerCamelCase ) lowerCamelCase__ : Any =share_cross_modal_transformer_layers lowerCamelCase__ : int =hidden_act lowerCamelCase__ : Optional[int] =hidden_size lowerCamelCase__ : Optional[int] =initializer_factor lowerCamelCase__ : List[Any] =layer_norm_eps lowerCamelCase__ : Optional[int] =share_link_tower_layers lowerCamelCase__ : Tuple =link_tower_type lowerCamelCase__ : List[str] =num_attention_heads lowerCamelCase__ : List[str] =num_hidden_layers lowerCamelCase__ : List[str] =tie_word_embeddings lowerCamelCase__ : Optional[Any] =init_layernorm_from_vision_encoder if text_config is None: lowerCamelCase__ : Optional[Any] ={} logger.info('''`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.''' ) if vision_config is None: lowerCamelCase__ : Union[str, Any] ={} logger.info('''`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.''' ) lowerCamelCase__ : List[str] =BridgeTowerTextConfig(**lowerCamelCase ) lowerCamelCase__ : Tuple =BridgeTowerVisionConfig(**lowerCamelCase ) @classmethod def snake_case ( cls : List[str], lowerCamelCase : BridgeTowerTextConfig, lowerCamelCase : BridgeTowerVisionConfig, **lowerCamelCase : Optional[Any] )-> Any: return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **lowerCamelCase ) def snake_case ( self : int )-> Tuple: lowerCamelCase__ : Optional[Any] =copy.deepcopy(self.__dict__ ) lowerCamelCase__ : Dict =self.text_config.to_dict() lowerCamelCase__ : Any =self.vision_config.to_dict() lowerCamelCase__ : List[Any] =self.__class__.model_type return output
238
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Any = logging.get_logger(__name__) snake_case_ : Dict = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class __a (lowerCamelCase ): __a : Tuple = "roc_bert" def __init__( self : Union[str, Any] , __magic_name__ : List[str]=3_05_22 , __magic_name__ : Tuple=7_68 , __magic_name__ : Any=12 , __magic_name__ : Optional[Any]=12 , __magic_name__ : Union[str, Any]=30_72 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Tuple=0.1 , __magic_name__ : Any=5_12 , __magic_name__ : str=2 , __magic_name__ : Any=0.0_2 , __magic_name__ : Dict=1E-12 , __magic_name__ : int=True , __magic_name__ : Optional[int]=0 , __magic_name__ : str="absolute" , __magic_name__ : Tuple=None , __magic_name__ : Any=True , __magic_name__ : Optional[Any]=True , __magic_name__ : List[str]=7_68 , __magic_name__ : List[Any]=9_10 , __magic_name__ : Tuple=5_12 , __magic_name__ : Dict=2_48_58 , __magic_name__ : Any=True , **__magic_name__ : Union[str, Any] , ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : Dict = initializer_range UpperCAmelCase_ : Optional[Any] = type_vocab_size UpperCAmelCase_ : str = layer_norm_eps UpperCAmelCase_ : Tuple = use_cache UpperCAmelCase_ : Optional[int] = enable_pronunciation UpperCAmelCase_ : Union[str, Any] = enable_shape UpperCAmelCase_ : List[str] = pronunciation_embed_dim UpperCAmelCase_ : List[str] = pronunciation_vocab_size UpperCAmelCase_ : int = shape_embed_dim UpperCAmelCase_ : Optional[int] = shape_vocab_size UpperCAmelCase_ : Optional[Any] = concat_input UpperCAmelCase_ : Dict = position_embedding_type UpperCAmelCase_ : Union[str, Any] = classifier_dropout super().__init__(pad_token_id=__magic_name__ , **__magic_name__ )
125
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowerCamelCase :List[Any] = None lowerCamelCase :Tuple = logging.get_logger(__name__) lowerCamelCase :Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase :int = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowerCamelCase :List[Any] = { '''camembert-base''': 5_1_2, } lowerCamelCase :List[str] = '''▁''' class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Dict = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : List[Any] = CamembertTokenizer def __init__(self , lowercase=None , lowercase=None , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=["<s>NOTUSED", "</s>NOTUSED"] , **lowercase , ): # Mask token behave like a normal word, i.e. include the space before it A_ : str = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token super().__init__( lowercase , tokenizer_file=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , additional_special_tokens=lowercase , **lowercase , ) A_ : Any = vocab_file A_ : Union[str, Any] = False if not self.vocab_file else True def _a (self , lowercase , lowercase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A_ : List[Any] = [self.cls_token_id] A_ : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _a (self , lowercase , lowercase = None ): A_ : int = [self.sep_token_id] A_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a (self , lowercase , lowercase = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A_ : Optional[int] = os.path.join( lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ): copyfile(self.vocab_file , lowercase ) return (out_vocab_file,)
135
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _lowerCAmelCase : @property def _a (self ): return self.get_dummy_input() @property def _a (self ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F'\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.' ) def _a (self , lowercase=True , lowercase=False , lowercase=False , lowercase=False , ): A_ : List[str] = 4 A_ : int = 32 A_ : Optional[int] = (32, 32) A_ : Optional[Any] = torch.manual_seed(0 ) A_ : int = torch.device(lowercase ) A_ : int = (batch_size, num_channels) + sizes A_ : Optional[int] = randn_tensor(lowercase , generator=lowercase , device=lowercase ) A_ : Union[str, Any] = {"""hidden_states""": hidden_states} if include_temb: A_ : str = 128 A_ : List[Any] = randn_tensor((batch_size, temb_channels) , generator=lowercase , device=lowercase ) if include_res_hidden_states_tuple: A_ : List[str] = torch.manual_seed(1 ) A_ : int = (randn_tensor(lowercase , generator=lowercase , device=lowercase ),) if include_encoder_hidden_states: A_ : List[str] = floats_tensor((batch_size, 32, 32) ).to(lowercase ) if include_skip_sample: A_ : Dict = randn_tensor(((batch_size, 3) + sizes) , generator=lowercase , device=lowercase ) return dummy_input def _a (self ): A_ : Tuple = { """in_channels""": 32, """out_channels""": 32, """temb_channels""": 128, } if self.block_type == "up": A_ : Any = 32 if self.block_type == "mid": init_dict.pop("""out_channels""" ) A_ : Optional[int] = self.dummy_input return init_dict, inputs_dict def _a (self , lowercase ): A_, A_ : Optional[Any] = self.prepare_init_args_and_inputs_for_common() A_ : int = self.block_class(**lowercase ) unet_block.to(lowercase ) unet_block.eval() with torch.no_grad(): A_ : List[str] = unet_block(**lowercase ) if isinstance(lowercase , lowercase ): A_ : Union[str, Any] = output[0] self.assertEqual(output.shape , self.output_shape ) A_ : int = output[0, -1, -3:, -3:] A_ : List[Any] = torch.tensor(lowercase ).to(lowercase ) assert torch_all_close(output_slice.flatten() , lowercase , atol=5E-3 ) @unittest.skipIf(torch_device == """mps""" , """Training is not supported in mps""" ) def _a (self ): A_, A_ : Tuple = self.prepare_init_args_and_inputs_for_common() A_ : List[str] = self.block_class(**lowercase ) model.to(lowercase ) model.train() A_ : Any = model(**lowercase ) if isinstance(lowercase , lowercase ): A_ : str = output[0] A_ : Union[str, Any] = torch.device(lowercase ) A_ : Tuple = randn_tensor(output.shape , device=lowercase ) A_ : List[str] = torch.nn.functional.mse_loss(lowercase , lowercase ) loss.backward()
135
1
'''simple docstring''' import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _lowerCamelCase : '''simple docstring''' def __lowerCAmelCase ( self : Union[str, Any] , _A : Optional[Any] , _A : Union[str, Any] , _A : str ) -> Any: return None class _lowerCamelCase : '''simple docstring''' def __lowerCAmelCase ( self : List[Any] , _A : Optional[Any] , _A : Tuple , _A : Optional[Any] , _A : List[Any] ) -> Dict: return None class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : List[str] = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def __lowerCAmelCase ( self : Dict ) -> List[str]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_A , 'tf' , 12 , **_A ) @require_torch @slow def __lowerCAmelCase ( self : Any ) -> Any: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_A , 'pt' , 12 , **_A ) @require_torch @slow def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: from transformers import BertModel __magic_name__ : Tuple = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(_A ) ) vocab_file.flush() __magic_name__ : int = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: __magic_name__ : Tuple = BertModel(BertConfig(vocab_size=len(_A ) ) ) model.save_pretrained(_A ) self._test_export(_A , 'pt' , 12 , _A ) @require_tf @slow def __lowerCAmelCase ( self : Optional[int] ) -> Any: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __magic_name__ : Tuple = self._test_export(_A , 'tf' , 12 , **_A ) __magic_name__ : Union[str, Any] = quantize(Path(_A ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_A ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def __lowerCAmelCase ( self : List[str] ) -> List[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __magic_name__ : Union[str, Any] = self._test_export(_A , 'pt' , 12 , **_A ) __magic_name__ : List[Any] = quantize(_A ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_A ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : str , _A : Tuple , _A : str=None , **_A : Optional[int] ) -> Union[str, Any]: try: # Compute path with TemporaryDirectory() as tempdir: __magic_name__ : int = Path(_A ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(_A , _A , _A , _A , _A , **_A ) return path except Exception as e: self.fail(_A ) @require_torch @require_tokenizers @slow def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: from transformers import BertModel __magic_name__ : str = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) __magic_name__ : int = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(_A , _A , 'pt' ) @require_tf @require_tokenizers @slow def __lowerCAmelCase ( self : List[Any] ) -> Tuple: from transformers import TFBertModel __magic_name__ : int = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) __magic_name__ : Optional[Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(_A , _A , 'tf' ) def __lowerCAmelCase ( self : Union[str, Any] , _A : int , _A : str , _A : Optional[int] ) -> Union[str, Any]: __magic_name__ : List[Any] = FeatureExtractionPipeline(_A , _A ) __magic_name__ : str = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[str] = infer_shapes(_A , _A ) # Assert all variables are present self.assertEqual(len(_A ) , len(_A ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , _A ) self.assertSequenceEqual(variable_names[3:] , _A ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def __lowerCAmelCase ( self : str ) -> int: __magic_name__ : Union[str, Any] = ['input_ids', 'attention_mask', 'token_type_ids'] __magic_name__ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} __magic_name__ , __magic_name__ : Optional[Any] = ensure_valid_input(FuncContiguousArgs() , _A , _A ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(_A ) , 3 ) # Should have exactly the same input names self.assertEqual(set(_A ) , set(_A ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(_A , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) __magic_name__ , __magic_name__ : Any = ensure_valid_input(FuncNonContiguousArgs() , _A , _A ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(_A ) , 1 ) self.assertEqual(len(_A ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def __lowerCAmelCase ( self : int ) -> Any: __magic_name__ : List[str] = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
331
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase :Tuple = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> Any: super().__init__(*_A , **_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def __lowerCAmelCase ( self : str , _A : Any=None , _A : Union[str, Any]=None , _A : Union[str, Any]=None ) -> List[str]: __magic_name__ : Union[str, Any] = {} __magic_name__ : Optional[Any] = {} if prompt is not None: __magic_name__ : Union[str, Any] = prompt if generate_kwargs is not None: __magic_name__ : str = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __magic_name__ : Union[str, Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) __magic_name__ : Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , _A : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_A : List[Any] ) -> int: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : Optional[int]=None ) -> Dict: __magic_name__ : List[Any] = load_image(_A ) if prompt is not None: if not isinstance(_A , _A ): raise ValueError( F'Received an invalid text input, got - {type(_A )} - but expected a single string. ' 'Note also that one single text can be provided for conditional image to text generation.' ) __magic_name__ : Any = self.model.config.model_type if model_type == "git": __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(text=_A , add_special_tokens=_A ).input_ids __magic_name__ : str = [self.tokenizer.cls_token_id] + input_ids __magic_name__ : List[Any] = torch.tensor(_A ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": __magic_name__ : Dict = self.image_processor(images=_A , header_text=_A , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(_A , return_tensors=self.framework ) model_inputs.update(_A ) else: raise ValueError(F'Model type {model_type} does not support conditional text generation' ) else: __magic_name__ : Optional[Any] = self.image_processor(images=_A , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __magic_name__ : int = None return model_inputs def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : List[str]=None ) -> Any: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _A ) and all(x is None for x in model_inputs['input_ids'] ) ): __magic_name__ : str = None if generate_kwargs is None: __magic_name__ : Optional[int] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __magic_name__ : Optional[Any] = model_inputs.pop(self.model.main_input_name ) __magic_name__ : Union[str, Any] = self.model.generate(_A , **_A , **_A ) return model_outputs def __lowerCAmelCase ( self : List[str] , _A : Tuple ) -> Optional[Any]: __magic_name__ : Optional[Any] = [] for output_ids in model_outputs: __magic_name__ : Union[str, Any] = { 'generated_text': self.tokenizer.decode( _A , skip_special_tokens=_A , ) } records.append(_A ) return records
331
1
from ..utils import DummyObject, requires_backends class lowercase_ ( metaclass=lowercase ): '''simple docstring''' __snake_case = ['''note_seq'''] def __init__( self : int , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Union[str, Any] ) ->Optional[Any]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[int] , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Optional[int] ) ->List[Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def __lowerCAmelCase ( cls : int , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : Dict ) ->List[str]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
369
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _a ( a :str ) -> Any: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: a = model_type_to_module_name(a ) a = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(a , a ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(a , '''__name__''' , a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a = importlib.import_module('''transformers''' ) if hasattr(a , a ): return getattr(a , a ) return None def _a ( a :Union[str, os.PathLike] , a :Optional[Union[str, os.PathLike]] = None , a :bool = False , a :bool = False , a :Optional[Dict[str, str]] = None , a :Optional[Union[bool, str]] = None , a :Optional[str] = None , a :bool = False , **a :int , ) -> Tuple: a = get_file_from_repo( a , a , cache_dir=a , force_download=a , resume_download=a , proxies=a , use_auth_token=a , revision=a , local_files_only=a , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(a , encoding='''utf-8''' ) as reader: return json.load(a ) class lowercase_ : '''simple docstring''' def __init__( self : Tuple ) ->int: """simple docstring""" raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__UpperCAmelCase ) def __lowerCAmelCase ( cls : int , __UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Dict ) ->List[Any]: """simple docstring""" a = kwargs.pop('''config''' , __UpperCAmelCase ) a = kwargs.pop('''trust_remote_code''' , __UpperCAmelCase ) a = True a , a = FeatureExtractionMixin.get_feature_extractor_dict(__UpperCAmelCase , **__UpperCAmelCase ) a = config_dict.get('''feature_extractor_type''' , __UpperCAmelCase ) a = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): a = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): a = AutoConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # It could be in `config.feature_extractor_type`` a = getattr(__UpperCAmelCase , '''feature_extractor_type''' , __UpperCAmelCase ) if hasattr(__UpperCAmelCase , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: a = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: a = feature_extractor_class_from_name(__UpperCAmelCase ) a = feature_extractor_auto_map is not None a = feature_extractor_class is not None or type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING a = resolve_trust_remote_code( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if has_remote_code and trust_remote_code: a = get_class_from_dynamic_module( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) a = kwargs.pop('''code_revision''' , __UpperCAmelCase ) if os.path.isdir(__UpperCAmelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING: a = FEATURE_EXTRACTOR_MAPPING[type(__UpperCAmelCase )] return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple ) ->Optional[int]: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(__UpperCAmelCase , __UpperCAmelCase )
26
0
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _lowerCamelCase : Union[str, Any] = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( _UpperCAmelCase = "mumbai" ): """simple docstring""" A_ : Union[str, Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): A_ : Dict = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() A_ : Dict = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'Job {i:>2} is {job[0]} at {job[1]}')
167
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : str = {'vocab_file': 'spiece.model'} _lowerCamelCase : Optional[int] = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } _lowerCamelCase : str = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) _lowerCamelCase : List[Any] = 0 _lowerCamelCase : Tuple = 1 _lowerCamelCase : int = 2 _lowerCamelCase : Dict = 3 _lowerCamelCase : Union[str, Any] = 4 class lowercase ( __UpperCAmelCase): __lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Any = """left""" def __init__( self : Dict , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int]=False , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : str=False , _lowerCamelCase : Optional[Any]="<s>" , _lowerCamelCase : List[str]="</s>" , _lowerCamelCase : Union[str, Any]="<unk>" , _lowerCamelCase : List[Any]="<sep>" , _lowerCamelCase : str="<pad>" , _lowerCamelCase : Dict="<cls>" , _lowerCamelCase : str="<mask>" , _lowerCamelCase : Optional[int]=["<eop>", "<eod>"] , _lowerCamelCase : Optional[Dict[str, Any]] = None , **_lowerCamelCase : Union[str, Any] , ): """simple docstring""" A_ : Optional[int] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token A_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) A_ : str = 3 A_ : Union[str, Any] = do_lower_case A_ : Tuple = remove_space A_ : int = keep_accents A_ : Optional[Any] = vocab_file A_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def a_ ( self : int ): """simple docstring""" return len(self.sp_model ) def a_ ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): """simple docstring""" A_ : str = self.__dict__.copy() A_ : Tuple = None return state def __setstate__( self : Tuple , _lowerCamelCase : int ): """simple docstring""" A_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : List[Any] = {} A_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a_ ( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" if self.remove_space: A_ : str = ''' '''.join(inputs.strip().split() ) else: A_ : Any = inputs A_ : List[str] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: A_ : Any = unicodedata.normalize('''NFKD''' , _lowerCamelCase ) A_ : List[str] = ''''''.join([c for c in outputs if not unicodedata.combining(_lowerCamelCase )] ) if self.do_lower_case: A_ : str = outputs.lower() return outputs def a_ ( self : List[str] , _lowerCamelCase : str ): """simple docstring""" A_ : str = self.preprocess_text(_lowerCamelCase ) A_ : int = self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) A_ : List[Any] = [] for piece in pieces: if len(_lowerCamelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): A_ : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCamelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A_ : Tuple = cur_pieces[1:] else: A_ : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowerCamelCase ) else: new_pieces.append(_lowerCamelCase ) return new_pieces def a_ ( self : Any , _lowerCamelCase : List[Any] ): """simple docstring""" return self.sp_model.PieceToId(_lowerCamelCase ) def a_ ( self : Any , _lowerCamelCase : List[Any] ): """simple docstring""" return self.sp_model.IdToPiece(_lowerCamelCase ) def a_ ( self : List[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Any = ''''''.join(_lowerCamelCase ).replace(_lowerCamelCase , ''' ''' ).strip() return out_string def a_ ( self : List[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : bool = False , _lowerCamelCase : bool = None , _lowerCamelCase : bool = True , **_lowerCamelCase : int , ): """simple docstring""" A_ : int = kwargs.pop('''use_source_tokenizer''' , _lowerCamelCase ) A_ : List[str] = self.convert_ids_to_tokens(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A_ : Any = [] A_ : List[Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) A_ : int = [] sub_texts.append(_lowerCamelCase ) else: current_sub_text.append(_lowerCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens A_ : Optional[int] = ''''''.join(_lowerCamelCase ) A_ : Any = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A_ : Dict = self.clean_up_tokenization(_lowerCamelCase ) return clean_text else: return text def a_ ( self : List[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" A_ : Optional[int] = [self.sep_token_id] A_ : List[str] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def a_ ( self : List[str] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is not None: return ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1, 1] return ([0] * len(_lowerCamelCase )) + [1, 1] def a_ ( self : int , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" A_ : List[Any] = [self.sep_token_id] A_ : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def a_ ( self : int , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A_ : List[str] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: A_ : str = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
167
1
'''simple docstring''' from __future__ import annotations from random import random from typing import Generic, TypeVar lowerCAmelCase_ = TypeVar("KT") lowerCAmelCase_ = TypeVar("VT") class lowerCamelCase ( Generic[KT, VT] ): def __init__( self, lowercase_ = "root", lowercase_ = None ) -> Optional[int]: snake_case = key snake_case = value snake_case = [] def __repr__( self ) -> str: return F'''Node({self.key}: {self.value})''' @property def _lowerCamelCase ( self ) -> int: return len(self.forward ) class lowerCamelCase ( Generic[KT, VT] ): def __init__( self, lowercase_ = 0.5, lowercase_ = 16 ) -> Any: snake_case = Node[KT, VT]() snake_case = 0 snake_case = p snake_case = max_level def __str__( self ) -> str: snake_case = list(self ) if len(lowercase_ ) == 0: return F'''SkipList(level={self.level})''' snake_case = max((len(str(lowercase_ ) ) for item in items), default=4 ) snake_case = max(lowercase_, 4 ) + 4 snake_case = self.head snake_case = [] snake_case = node.forward.copy() lines.append(F'''[{node.key}]'''.ljust(lowercase_, '-' ) + '* ' * len(lowercase_ ) ) lines.append(' ' * label_size + '| ' * len(lowercase_ ) ) while len(node.forward ) != 0: snake_case = node.forward[0] lines.append( F'''[{node.key}]'''.ljust(lowercase_, '-' ) + ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) ) lines.append(' ' * label_size + '| ' * len(lowercase_ ) ) snake_case = node.forward lines.append('None'.ljust(lowercase_ ) + '* ' * len(lowercase_ ) ) return F'''SkipList(level={self.level})\n''' + "\n".join(lowercase_ ) def __iter__( self ) -> Optional[int]: snake_case = self.head while len(node.forward ) != 0: yield node.forward[0].key snake_case = node.forward[0] def _lowerCamelCase ( self ) -> int: snake_case = 1 while random() < self.p and level < self.max_level: level += 1 return level def _lowerCamelCase ( self, lowercase_ ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: snake_case = [] snake_case = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: snake_case = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(lowercase_ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def _lowerCamelCase ( self, lowercase_ ) -> Optional[int]: snake_case , snake_case = self._locate_node(lowercase_ ) if node is not None: for i, update_node in enumerate(lowercase_ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: snake_case = node.forward[i] else: snake_case = update_node.forward[:i] def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> Union[str, Any]: snake_case , snake_case = self._locate_node(lowercase_ ) if node is not None: snake_case = value else: snake_case = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1, lowercase_ ): update_vector.append(self.head ) snake_case = level snake_case = Node(lowercase_, lowercase_ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(lowercase_ ) else: snake_case = new_node def _lowerCamelCase ( self, lowercase_ ) -> VT | None: snake_case , snake_case = self._locate_node(lowercase_ ) if node is not None: return node.value return None def __magic_name__ ( ) -> str: snake_case = SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 1_2 ) skip_list.insert('Key3' , 4_1 ) skip_list.insert('Key4' , -1_9 ) snake_case = skip_list.head snake_case = {} while node.level != 0: snake_case = node.forward[0] snake_case = node.value assert len(A ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 1_2 assert all_values["Key3"] == 4_1 assert all_values["Key4"] == -1_9 def __magic_name__ ( ) -> Optional[int]: snake_case = SkipList() skip_list.insert('Key1' , 1_0 ) skip_list.insert('Key1' , 1_2 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 1_0 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 1_0 ) snake_case = skip_list.head snake_case = {} while node.level != 0: snake_case = node.forward[0] snake_case = node.value if len(A ) != 4: print() assert len(A ) == 4 assert all_values["Key1"] == 1_2 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 1_0 def __magic_name__ ( ) -> Dict: snake_case = SkipList() assert skip_list.find('Some key' ) is None def __magic_name__ ( ) -> int: snake_case = SkipList() skip_list.insert('Key2' , 2_0 ) assert skip_list.find('Key2' ) == 2_0 skip_list.insert('Some Key' , 1_0 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 1_3 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 1_0 assert skip_list.find('V' ) == 1_3 def __magic_name__ ( ) -> Dict: snake_case = SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def __magic_name__ ( ) -> List[str]: snake_case = SkipList() skip_list.insert('Key1' , 1_2 ) skip_list.insert('V' , 1_3 ) skip_list.insert('X' , 1_4 ) skip_list.insert('Key2' , 1_5 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def __magic_name__ ( ) -> Optional[Any]: snake_case = SkipList() skip_list.insert('Key1' , 1_2 ) skip_list.insert('V' , 1_3 ) skip_list.insert('X' , 1_4 ) skip_list.insert('Key2' , 1_5 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 1_4 assert skip_list.find('Key1' ) == 1_2 assert skip_list.find('Key2' ) == 1_5 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 1_2 assert skip_list.find('Key2' ) == 1_5 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 1_5 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def __magic_name__ ( ) -> Optional[Any]: snake_case = SkipList() skip_list.insert('Key1' , 1_2 ) skip_list.insert('V' , 1_3 ) skip_list.insert('X' , 1_4_2 ) skip_list.insert('Key2' , 1_5 ) skip_list.delete('X' ) def traverse_keys(A ): yield node.key for forward_node in node.forward: yield from traverse_keys(A ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def __magic_name__ ( ) -> Optional[Any]: def is_sorted(A ): return all(next_item >= item for item, next_item in zip(A , lst[1:] ) ) snake_case = SkipList() for i in range(1_0 ): skip_list.insert(A , A ) assert is_sorted(list(A ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(A ) ) skip_list.insert(-1_2 , -1_2 ) skip_list.insert(7_7 , 7_7 ) assert is_sorted(list(A ) ) def __magic_name__ ( ) -> Dict: for _ in range(1_0_0 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def __magic_name__ ( ) -> Dict: snake_case = SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(A ) if __name__ == "__main__": import doctest doctest.testmod() main()
332
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCAmelCase_ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def __magic_name__ ( A , A ) -> Union[str, Any]: inspect_dataset(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def __magic_name__ ( A , A ) -> int: inspect_metric(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_config_info(A , config_name=A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> Any: with pytest.raises(A ): get_dataset_config_info(A , config_name=A ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def __magic_name__ ( A , A ) -> Dict: snake_case = get_dataset_config_names(A ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_infos(A ) assert list(infos.keys() ) == expected_configs snake_case = expected_configs[0] assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> Any: snake_case = get_dataset_infos(A ) assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> int: with pytest.raises(A ): get_dataset_split_names(A , config_name=A )
332
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : int = logging.get_logger(__name__) __A : str = '▁' __A : str = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } __A : Optional[int] = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } __A : Optional[Any] = { 'facebook/s2t-small-librispeech-asr': 10_24, } __A : Optional[Any] = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] __A : Optional[Any] = {'mustc': MUSTC_LANGS} class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase): _UpperCamelCase:List[Any] = VOCAB_FILES_NAMES _UpperCamelCase:Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase:Tuple = MAX_MODEL_INPUT_SIZES _UpperCamelCase:Optional[int] = ["input_ids", "attention_mask"] _UpperCamelCase:Optional[Any] = [] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )-> None: lowerCamelCase_ ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , do_upper_case=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , tgt_lang=SCREAMING_SNAKE_CASE_ , lang_codes=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) lowerCamelCase_ =do_upper_case lowerCamelCase_ =do_lower_case lowerCamelCase_ =load_json(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ ={v: k for k, v in self.encoder.items()} lowerCamelCase_ =spm_file lowerCamelCase_ =load_spm(SCREAMING_SNAKE_CASE_ , self.sp_model_kwargs ) if lang_codes is not None: lowerCamelCase_ =lang_codes lowerCamelCase_ =LANGUAGES[lang_codes] lowerCamelCase_ =[f'<lang:{lang}>' for lang in self.langs] lowerCamelCase_ ={lang: self.sp_model.PieceToId(f'<lang:{lang}>' ) for lang in self.langs} lowerCamelCase_ =self.lang_tokens lowerCamelCase_ =tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: lowerCamelCase_ ={} @property def _snake_case ( self )-> int: return len(self.encoder ) @property def _snake_case ( self )-> str: return self._tgt_lang @tgt_lang.setter def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> None: lowerCamelCase_ =new_tgt_lang self.set_tgt_lang_special_tokens(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> None: lowerCamelCase_ =self.lang_code_to_id[tgt_lang] lowerCamelCase_ =[lang_code_id] def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Union[str, Any]: return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder[self.unk_token] ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> str: return self.decoder.get(SCREAMING_SNAKE_CASE_ , self.unk_token ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> str: lowerCamelCase_ =[] lowerCamelCase_ ="""""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: lowerCamelCase_ =self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " lowerCamelCase_ =[] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None )-> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =[1] * len(self.prefix_tokens ) lowerCamelCase_ =[1] if token_ids_a is None: return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE_ )) + suffix_ones return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE_ )) + ([0] * len(SCREAMING_SNAKE_CASE_ )) + suffix_ones def _snake_case ( self )-> Dict: lowerCamelCase_ =self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self )-> Dict: lowerCamelCase_ =self.__dict__.copy() lowerCamelCase_ =None return state def __setstate__( self , _SCREAMING_SNAKE_CASE )-> None: lowerCamelCase_ =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCamelCase_ ={} lowerCamelCase_ =load_spm(self.spm_file , self.sp_model_kwargs ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )-> Tuple[str]: lowerCamelCase_ =Path(SCREAMING_SNAKE_CASE_ ) assert save_dir.is_dir(), f'{save_directory} should be a directory' lowerCamelCase_ =save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) lowerCamelCase_ =save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , SCREAMING_SNAKE_CASE_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.spm_file ): with open(SCREAMING_SNAKE_CASE_ , """wb""" ) as fi: lowerCamelCase_ =self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (str(SCREAMING_SNAKE_CASE_ ), str(SCREAMING_SNAKE_CASE_ )) def __UpperCamelCase ( _A : str , _A : Dict[str, Any] ) ->Any: """simple docstring""" lowerCamelCase_ =sentencepiece.SentencePieceProcessor(**lowerCAmelCase__ ) spm.Load(str(lowerCAmelCase__ ) ) return spm def __UpperCamelCase ( _A : str ) ->int: """simple docstring""" with open(lowerCAmelCase__ , """r""" ) as f: return json.load(lowerCAmelCase__ ) def __UpperCamelCase ( _A : Dict , _A : str ) ->Optional[int]: """simple docstring""" with open(lowerCAmelCase__ , """w""" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ , indent=2 )
154
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class _a : def __init__(self, SCREAMING_SNAKE_CASE_, ) -> Optional[Any]: UpperCAmelCase_: Optional[int] = parent UpperCAmelCase_: List[Any] = 13 UpperCAmelCase_: Union[str, Any] = 7 UpperCAmelCase_: Optional[Any] = True UpperCAmelCase_: Tuple = True UpperCAmelCase_: Dict = True UpperCAmelCase_: str = 99 UpperCAmelCase_: Tuple = 32 UpperCAmelCase_: Optional[int] = 2 UpperCAmelCase_: Union[str, Any] = 4 UpperCAmelCase_: List[Any] = 37 UpperCAmelCase_: str = """gelu""" UpperCAmelCase_: Dict = 0.1 UpperCAmelCase_: Optional[Any] = 0.1 UpperCAmelCase_: Optional[Any] = 512 UpperCAmelCase_: List[str] = 16 UpperCAmelCase_: Any = 2 UpperCAmelCase_: Union[str, Any] = 0.0_2 UpperCAmelCase_: List[str] = 3 UpperCAmelCase_: Tuple = 4 UpperCAmelCase_: Any = None def __snake_case (self ) -> str: UpperCAmelCase_: List[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase_: Optional[int] = None if self.use_input_mask: UpperCAmelCase_: Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_: List[Any] = None UpperCAmelCase_: Optional[int] = None UpperCAmelCase_: Tuple = None if self.use_labels: UpperCAmelCase_: List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase_: int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCAmelCase_: List[Any] = ids_tensor([self.batch_size], self.num_choices ) UpperCAmelCase_: List[str] = EsmConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, pad_token_id=1, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case (self ) -> Optional[int]: ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ): Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase_: Dict = True UpperCAmelCase_: Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_: Dict = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCAmelCase_: Optional[int] = TFEsmModel(config=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = {"""input_ids""": input_ids, """attention_mask""": input_mask} UpperCAmelCase_: Dict = model(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = [input_ids, input_mask] UpperCAmelCase_: Dict = model(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> List[str]: UpperCAmelCase_: Tuple = True UpperCAmelCase_: List[Any] = TFEsmModel(config=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } UpperCAmelCase_: Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = [input_ids, input_mask] UpperCAmelCase_: List[Any] = model(SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_ ) # Also check the case where encoder outputs are not passed UpperCAmelCase_: Tuple = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCAmelCase_: List[Any] = TFEsmForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCAmelCase_: int = self.num_labels UpperCAmelCase_: Dict = TFEsmForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} UpperCAmelCase_: Tuple = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case (self ) -> Any: UpperCAmelCase_: Dict = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ): str = config_and_inputs UpperCAmelCase_: int = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): A = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) A = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) A = False A = False def __snake_case (self ) -> Tuple: UpperCAmelCase_: List[Any] = TFEsmModelTester(self ) UpperCAmelCase_: Union[str, Any] = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def __snake_case (self ) -> Any: self.config_tester.run_common_tests() def __snake_case (self ) -> List[str]: UpperCAmelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[Any]: UpperCAmelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Tuple: UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[str]: UpperCAmelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def __snake_case (self ) -> str: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_: Dict = TFEsmModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def __snake_case (self ) -> Tuple: pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def __snake_case (self ) -> Optional[Any]: pass def __snake_case (self ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_: List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer UpperCAmelCase_: Any = model.get_bias() assert isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for k, v in name.items(): assert isinstance(SCREAMING_SNAKE_CASE_, tf.Variable ) else: UpperCAmelCase_: Union[str, Any] = model.get_output_embeddings() assert x is None UpperCAmelCase_: Optional[int] = model.get_bias() assert name is None @require_tf class _a ( unittest.TestCase ): @slow def __snake_case (self ) -> str: UpperCAmelCase_: str = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) UpperCAmelCase_: Tuple = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase_: int = model(SCREAMING_SNAKE_CASE_ )[0] UpperCAmelCase_: Optional[int] = [1, 6, 33] self.assertEqual(list(output.numpy().shape ), SCREAMING_SNAKE_CASE_ ) # compare the actual values for a slice. UpperCAmelCase_: List[str] = tf.constant( [ [ [8.9_2_1_5_1_8, -1_0.5_8_9_8_1_4, -6.4_6_7_1_3_0_7], [-6.3_9_6_7_1_5_6, -1_3.9_1_1_3_7_7, -1.1_2_1_1_9_1_5], [-7.7_8_1_2_4_7, -1_3.9_5_1_5_5_7, -3.7_4_0_5_9_2], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1E-2 ) ) @slow def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: List[Any] = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) UpperCAmelCase_: Any = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCAmelCase_: Optional[int] = model(SCREAMING_SNAKE_CASE_ )[0] # compare the actual values for a slice. UpperCAmelCase_: str = tf.constant( [ [ [0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9], [0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2], [0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1E-4 ) )
147
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class lowerCAmelCase__ ( A_ ): __a = """microsoft/speecht5_tts""" __a = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) __a = """text_reader""" __a = SpeechTaProcessor __a = SpeechTaForTextToSpeech __a = SpeechTaHifiGan __a = ["""text"""] __a = ["""audio"""] def lowercase ( self : List[Any] ): if self.post_processor is None: _snake_case = '''microsoft/speecht5_hifigan''' super().setup() def lowercase ( self : str , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str]=None ): _snake_case = self.pre_processor(text=_lowerCamelCase , return_tensors='''pt''' , truncation=_lowerCamelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) _snake_case = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) _snake_case = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def lowercase ( self : Dict , _lowerCamelCase : int ): with torch.no_grad(): return self.model.generate_speech(**_lowerCamelCase ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : Any ): with torch.no_grad(): return self.post_processor(_lowerCamelCase ).cpu().detach()
40
"""simple docstring""" import re from filelock import FileLock try: import nltk UpperCAmelCase__ = True except (ImportError, ModuleNotFoundError): UpperCAmelCase__ = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def _UpperCAmelCase ( __lowerCamelCase : str ) -> str: re.sub('''<n>''' , '''''' , __lowerCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__lowerCamelCase ) )
40
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str]=False ) -> Optional[int]: '''simple docstring''' try: A__ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A__ = default else: # KEY is set, convert it to True or False. try: A__ = strtobool(SCREAMING_SNAKE_CASE__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value lowercase_ = parse_flag_from_env("RUN_SLOW", default=False) def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple: '''simple docstring''' return unittest.skip('Test was skipped' )(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Dict: '''simple docstring''' return unittest.skipUnless(_run_slow_tests , 'test is slow' )(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Dict: '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] ) -> List[Any]: '''simple docstring''' return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Dict: '''simple docstring''' return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] ) -> str: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> List[str]: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> int: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: '''simple docstring''' return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ) -> List[str]: '''simple docstring''' if test_case is None: return partial(SCREAMING_SNAKE_CASE__ , version=SCREAMING_SNAKE_CASE__ ) return unittest.skipUnless(is_torch_version('>=' , SCREAMING_SNAKE_CASE__ ) , f'test requires torch version >= {version}' )(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> Any: '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: '''simple docstring''' return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(SCREAMING_SNAKE_CASE__ ) lowercase_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def _snake_case( SCREAMING_SNAKE_CASE__ : str ) -> int: '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(SCREAMING_SNAKE_CASE__ ) class A ( unittest.TestCase ): """simple docstring""" lowerCamelCase = True @classmethod def snake_case__ ( cls : List[str] )-> List[str]: '''simple docstring''' A__ = tempfile.mkdtemp() @classmethod def snake_case__ ( cls : int )-> str: '''simple docstring''' if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' if self.clear_on_setup: for path in Path(self.tmpdir ).glob('**/*' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase_ ) class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : str )-> Optional[int]: '''simple docstring''' super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Dict,lowercase_ : Union[mock.Mock, List[mock.Mock]] )-> str: '''simple docstring''' A__ = mocks if isinstance(lowercase_,(tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: '''simple docstring''' A__ = AcceleratorState() A__ = tensor[None].clone().to(state.device ) A__ = gather(SCREAMING_SNAKE_CASE__ ).cpu() A__ = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , SCREAMING_SNAKE_CASE__ ): return False return True class A : """simple docstring""" def __init__( self : Tuple,lowercase_ : Tuple,lowercase_ : Dict,lowercase_ : str )-> str: '''simple docstring''' A__ = returncode A__ = stdout A__ = stderr async def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]: '''simple docstring''' while True: A__ = await stream.readline() if line: callback(SCREAMING_SNAKE_CASE__ ) else: break async def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False ) -> _RunOutput: '''simple docstring''' if echo: print('\nRunning: ' , ' '.join(SCREAMING_SNAKE_CASE__ ) ) A__ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=SCREAMING_SNAKE_CASE__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=SCREAMING_SNAKE_CASE__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A__ = [] A__ = [] def tee(SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict="" ): A__ = line.decode('utf-8' ).rstrip() sink.append(SCREAMING_SNAKE_CASE__ ) if not quiet: print(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , file=SCREAMING_SNAKE_CASE__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda SCREAMING_SNAKE_CASE__ : tee(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda SCREAMING_SNAKE_CASE__ : tee(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , sys.stderr , label='stderr:' ) ) ), ] , timeout=SCREAMING_SNAKE_CASE__ , ) return _RunOutput(await p.wait() , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : List[str]=180 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : List[Any]=True ) -> _RunOutput: '''simple docstring''' A__ = asyncio.get_event_loop() A__ = loop.run_until_complete( _stream_subprocess(SCREAMING_SNAKE_CASE__ , env=SCREAMING_SNAKE_CASE__ , stdin=SCREAMING_SNAKE_CASE__ , timeout=SCREAMING_SNAKE_CASE__ , quiet=SCREAMING_SNAKE_CASE__ , echo=SCREAMING_SNAKE_CASE__ ) ) A__ = ' '.join(SCREAMING_SNAKE_CASE__ ) if result.returncode > 0: A__ = '\n'.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) return result class A ( _UpperCAmelCase ): """simple docstring""" pass def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int=False ) -> List[str]: '''simple docstring''' try: A__ = subprocess.check_output(SCREAMING_SNAKE_CASE__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(SCREAMING_SNAKE_CASE__ , 'decode' ): A__ = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'Command `{" ".join(SCREAMING_SNAKE_CASE__ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
7
from typing import Dict from .base import GenericTensor, Pipeline class A ( _UpperCAmelCase ): """simple docstring""" def snake_case__ ( self : int,lowercase_ : Dict=None,lowercase_ : Tuple=None,lowercase_ : List[Any]=None,**lowercase_ : Any )-> Optional[Any]: '''simple docstring''' if tokenize_kwargs is None: A__ = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) A__ = truncation A__ = tokenize_kwargs A__ = {} if return_tensors is not None: A__ = return_tensors return preprocess_params, {}, postprocess_params def snake_case__ ( self : Dict,lowercase_ : List[Any],**lowercase_ : Tuple )-> Dict[str, GenericTensor]: '''simple docstring''' A__ = self.framework A__ = self.tokenizer(lowercase_,return_tensors=lowercase_,**lowercase_ ) return model_inputs def snake_case__ ( self : Tuple,lowercase_ : int )-> Optional[Any]: '''simple docstring''' A__ = self.model(**lowercase_ ) return model_outputs def snake_case__ ( self : Tuple,lowercase_ : Tuple,lowercase_ : List[str]=False )-> Any: '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[Any],*lowercase_ : int,**lowercase_ : Optional[Any] )-> int: '''simple docstring''' return super().__call__(*lowercase_,**lowercase_ )
7
1
'''simple docstring''' import heapq import sys import numpy as np __SCREAMING_SNAKE_CASE :Optional[int] = tuple[int, int] class A_ : def __init__( self : List[str] ): _UpperCAmelCase = [] _UpperCAmelCase = set() def lowercase ( self : Union[str, Any] ): if not self.empty(): return self.elements[0][0] else: return float("inf" ) def lowercase ( self : str ): return len(self.elements ) == 0 def lowercase ( self : Optional[int] , snake_case_ : List[Any] , snake_case_ : List[str] ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(UpperCamelCase__ ) else: # update # print("update", item) _UpperCAmelCase = [] ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def lowercase ( self : Any , snake_case_ : int ): if item in self.set: self.set.remove(UpperCamelCase__ ) _UpperCAmelCase = [] ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def lowercase ( self : List[str] ): return self.elements[0][1] def lowercase ( self : Dict ): ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(UpperCamelCase__ ) return (priority, item) def UpperCAmelCase_ ( __lowercase : TPos , __lowercase : TPos ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = np.array(__UpperCamelCase ) _UpperCAmelCase = np.array(__UpperCamelCase ) return np.linalg.norm(a - b ) def UpperCAmelCase_ ( __lowercase : TPos , __lowercase : TPos ) -> Tuple: '''simple docstring''' return consistent_heuristic(__UpperCamelCase , __UpperCamelCase ) // t def UpperCAmelCase_ ( __lowercase : TPos , __lowercase : TPos ) -> Union[str, Any]: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def UpperCAmelCase_ ( __lowercase : TPos , __lowercase : int , __lowercase : TPos , __lowercase : dict[TPos, float] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = g_function[start] + Wa * heuristics[i](__UpperCamelCase , __UpperCamelCase ) return ans def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : List[Any] , __lowercase : int ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = np.chararray((n, n) ) for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): _UpperCAmelCase = "*" for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): if (j, (n - 1) - i) in blocks: _UpperCAmelCase = "#" _UpperCAmelCase = "-" _UpperCAmelCase = back_pointer[goal] while x != start: ((_UpperCAmelCase) , (_UpperCAmelCase)) = x # print(x) _UpperCAmelCase = "-" _UpperCAmelCase = back_pointer[x] _UpperCAmelCase = "-" for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=" " ) print("<-- End position" , end=" " ) else: print(grid[i][j] , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) print("PATH TAKEN BY THE ALGORITHM IS:-" ) _UpperCAmelCase = back_pointer[goal] while x != start: print(__UpperCamelCase , end=" " ) _UpperCAmelCase = back_pointer[x] print(__UpperCamelCase ) sys.exit() def UpperCAmelCase_ ( __lowercase : TPos ) -> List[str]: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def UpperCAmelCase_ ( __lowercase : str , __lowercase : Dict , __lowercase : List[Any] , __lowercase : str , __lowercase : Optional[Any] , __lowercase : List[Any] , __lowercase : Union[str, Any] , __lowercase : str , ) -> Dict: '''simple docstring''' for itera in range(__UpperCamelCase ): open_list[itera].remove_element(__UpperCamelCase ) # print("s", s) # print("j", j) ((_UpperCAmelCase) , (_UpperCAmelCase)) = s _UpperCAmelCase = (x - 1, y) _UpperCAmelCase = (x + 1, y) _UpperCAmelCase = (x, y + 1) _UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(__UpperCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(__UpperCamelCase ) _UpperCAmelCase = -1 _UpperCAmelCase = float("inf" ) if valid(__UpperCamelCase ) and g_function[neighbours] > g_function[s] + 1: _UpperCAmelCase = g_function[s] + 1 _UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(__UpperCamelCase , key(__UpperCamelCase , 0 , __UpperCamelCase , __UpperCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , __UpperCamelCase ): if key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) <= Wa * key( __UpperCamelCase , 0 , __UpperCamelCase , __UpperCamelCase ): open_list[j].put( __UpperCamelCase , key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ) def UpperCAmelCase_ ( ) -> int: '''simple docstring''' _UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __SCREAMING_SNAKE_CASE :List[str] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __SCREAMING_SNAKE_CASE :Any = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __SCREAMING_SNAKE_CASE :List[Any] = make_common_ground() __SCREAMING_SNAKE_CASE :Dict = blocks_blk # hyper parameters __SCREAMING_SNAKE_CASE :Any = 1 __SCREAMING_SNAKE_CASE :Optional[Any] = 1 __SCREAMING_SNAKE_CASE :Dict = 20 __SCREAMING_SNAKE_CASE :int = 3 # one consistent and two other inconsistent # start and end destination __SCREAMING_SNAKE_CASE :int = (0, 0) __SCREAMING_SNAKE_CASE :List[Any] = (n - 1, n - 1) __SCREAMING_SNAKE_CASE :Optional[Any] = 1 def UpperCAmelCase_ ( __lowercase : TPos , __lowercase : TPos , __lowercase : int ) -> int: '''simple docstring''' _UpperCAmelCase = {start: 0, goal: float("inf" )} _UpperCAmelCase = {start: -1, goal: -1} _UpperCAmelCase = [] _UpperCAmelCase = set() for i in range(__UpperCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(__UpperCamelCase , key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ) _UpperCAmelCase = [] _UpperCAmelCase = [] while open_list[0].minkey() < float("inf" ): for i in range(1 , __UpperCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("inf" ): do_something(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: _UpperCAmelCase , _UpperCAmelCase = open_list[i].top_show() visited.add(__UpperCamelCase ) expand_state( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) close_list_inad.append(__UpperCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("inf" ): do_something(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: _UpperCAmelCase = open_list[0].top_show() visited.add(__UpperCamelCase ) expand_state( __UpperCamelCase , 0 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) close_list_anchor.append(__UpperCamelCase ) print("No path found to goal" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(__UpperCamelCase ): if (j, i) in blocks: print("#" , end=" " ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("*" , end=" " ) else: print("-" , end=" " ) else: print("*" , end=" " ) if (j, i) == (n - 1, n - 1): print("<-- End position" , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
369
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) # pylint: disable=invalid-name __SCREAMING_SNAKE_CASE :List[str] = ''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Union[PIL.Image.Image, np.ndarray] class A_ ( lowerCAmelCase_ ): def __init__( self : Any , snake_case_ : PriorTransformer , snake_case_ : CLIPVisionModel , snake_case_ : CLIPImageProcessor , snake_case_ : HeunDiscreteScheduler , snake_case_ : ShapERenderer , ): super().__init__() self.register_modules( prior=snake_case_ , image_encoder=snake_case_ , image_processor=snake_case_ , scheduler=snake_case_ , renderer=snake_case_ , ) def lowercase ( self : List[Any] , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] ): if latents is None: _UpperCAmelCase = randn_tensor(snake_case_ , generator=snake_case_ , device=snake_case_ , dtype=snake_case_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _UpperCAmelCase = latents.to(snake_case_ ) _UpperCAmelCase = latents * scheduler.init_noise_sigma return latents def lowercase ( self : Optional[Any] , snake_case_ : Union[str, Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _UpperCAmelCase = torch.device(f'cuda:{gpu_id}' ) _UpperCAmelCase = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case_ , snake_case_ ) @property def lowercase ( self : List[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(snake_case_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowercase ( self : Optional[Any] , snake_case_ : Any , snake_case_ : List[str] , snake_case_ : int , snake_case_ : List[str] , ): if isinstance(snake_case_ , snake_case_ ) and isinstance(image[0] , torch.Tensor ): _UpperCAmelCase = torch.cat(snake_case_ , axis=0 ) if image[0].ndim == 4 else torch.stack(snake_case_ , axis=0 ) if not isinstance(snake_case_ , torch.Tensor ): _UpperCAmelCase = self.image_processor(snake_case_ , return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _UpperCAmelCase = image.to(dtype=self.image_encoder.dtype , device=snake_case_ ) _UpperCAmelCase = self.image_encoder(snake_case_ )["last_hidden_state"] _UpperCAmelCase = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _UpperCAmelCase = image_embeds.repeat_interleave(snake_case_ , dim=0 ) if do_classifier_free_guidance: _UpperCAmelCase = torch.zeros_like(snake_case_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCAmelCase = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(snake_case_ ) def __call__( self : str , snake_case_ : Union[PIL.Image.Image, List[PIL.Image.Image]] , snake_case_ : int = 1 , snake_case_ : int = 2_5 , snake_case_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case_ : Optional[torch.FloatTensor] = None , snake_case_ : float = 4.0 , snake_case_ : int = 6_4 , snake_case_ : Optional[str] = "pil" , snake_case_ : bool = True , ): if isinstance(snake_case_ , PIL.Image.Image ): _UpperCAmelCase = 1 elif isinstance(snake_case_ , torch.Tensor ): _UpperCAmelCase = image.shape[0] elif isinstance(snake_case_ , snake_case_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _UpperCAmelCase = len(snake_case_ ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(snake_case_ )}' ) _UpperCAmelCase = self._execution_device _UpperCAmelCase = batch_size * num_images_per_prompt _UpperCAmelCase = guidance_scale > 1.0 _UpperCAmelCase = self._encode_image(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # prior self.scheduler.set_timesteps(snake_case_ , device=snake_case_ ) _UpperCAmelCase = self.scheduler.timesteps _UpperCAmelCase = self.prior.config.num_embeddings _UpperCAmelCase = self.prior.config.embedding_dim _UpperCAmelCase = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , snake_case_ , snake_case_ , snake_case_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _UpperCAmelCase = latents.reshape(latents.shape[0] , snake_case_ , snake_case_ ) for i, t in enumerate(self.progress_bar(snake_case_ ) ): # expand the latents if we are doing classifier free guidance _UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCAmelCase = self.scheduler.scale_model_input(snake_case_ , snake_case_ ) _UpperCAmelCase = self.prior( snake_case_ , timestep=snake_case_ , proj_embedding=snake_case_ , ).predicted_image_embedding # remove the variance _UpperCAmelCase , _UpperCAmelCase = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _UpperCAmelCase , _UpperCAmelCase = noise_pred.chunk(2 ) _UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _UpperCAmelCase = self.scheduler.step( snake_case_ , timestep=snake_case_ , sample=snake_case_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=snake_case_ ) _UpperCAmelCase = [] for i, latent in enumerate(snake_case_ ): print() _UpperCAmelCase = self.renderer.decode( latent[None, :] , snake_case_ , size=snake_case_ , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(snake_case_ ) _UpperCAmelCase = torch.stack(snake_case_ ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _UpperCAmelCase = images.cpu().numpy() if output_type == "pil": _UpperCAmelCase = [self.numpy_to_pil(snake_case_ ) for image in images] # Offload last model to CPU if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=snake_case_ )
156
0
"""simple docstring""" import torch from torch import nn class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any]=1 , lowerCAmelCase_ : Optional[int]=False): """simple docstring""" super().__init__() lowercase_ = n_token lowercase_ = d_embed lowercase_ = d_proj lowercase_ = cutoffs + [n_token] lowercase_ = [0] + self.cutoffs lowercase_ = div_val lowercase_ = self.cutoffs[0] lowercase_ = len(self.cutoffs) - 1 lowercase_ = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowercase_ = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) lowercase_ = nn.Parameter(torch.zeros(self.n_clusters)) lowercase_ = nn.ModuleList() lowercase_ = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase_ , lowerCAmelCase_))) else: self.out_projs.append(lowerCAmelCase_) self.out_layers.append(nn.Linear(lowerCAmelCase_ , lowerCAmelCase_)) else: for i in range(len(self.cutoffs)): lowercase_ , lowercase_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase_ = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase_ , lowerCAmelCase_))) self.out_layers.append(nn.Linear(lowerCAmelCase_ , r_idx - l_idx)) lowercase_ = keep_order def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" if proj is None: lowercase_ = nn.functional.linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowercase_ = nn.functional.linear(lowerCAmelCase_ , proj.t().contiguous()) lowercase_ = nn.functional.linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Tuple=False): """simple docstring""" if labels is not None: # Shift so that tokens < n predict n lowercase_ = hidden[..., :-1, :].contiguous() lowercase_ = labels[..., 1:].contiguous() lowercase_ = hidden.view(-1 , hidden.size(-1)) lowercase_ = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: lowercase_ = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: lowercase_ = self._compute_logit(lowerCAmelCase_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: lowercase_ = labels != -1_0_0 lowercase_ = torch.zeros_like(lowerCAmelCase_ , dtype=hidden.dtype , device=hidden.device) lowercase_ = ( -nn.functional.log_softmax(lowerCAmelCase_ , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: lowercase_ = nn.functional.log_softmax(lowerCAmelCase_ , dim=-1) else: # construct weights and biases lowercase_ , lowercase_ = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: lowercase_ , lowercase_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase_ = self.out_layers[0].weight[l_idx:r_idx] lowercase_ = self.out_layers[0].bias[l_idx:r_idx] else: lowercase_ = self.out_layers[i].weight lowercase_ = self.out_layers[i].bias if i == 0: lowercase_ = torch.cat([weight_i, self.cluster_weight] , dim=0) lowercase_ = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase_) biases.append(lowerCAmelCase_) lowercase_ , lowercase_ , lowercase_ = weights[0], biases[0], self.out_projs[0] lowercase_ = self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = nn.functional.log_softmax(lowerCAmelCase_ , dim=1) if labels is None: lowercase_ = hidden.new_empty((head_logit.size(0), self.n_token)) else: lowercase_ = torch.zeros_like(lowerCAmelCase_ , dtype=hidden.dtype , device=hidden.device) lowercase_ = 0 lowercase_ = [0] + self.cutoffs for i in range(len(lowerCAmelCase_) - 1): lowercase_ , lowercase_ = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowercase_ = (labels >= l_idx) & (labels < r_idx) lowercase_ = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowercase_ = labels.index_select(0 , lowerCAmelCase_) - l_idx lowercase_ = head_logprob.index_select(0 , lowerCAmelCase_) lowercase_ = hidden.index_select(0 , lowerCAmelCase_) else: lowercase_ = hidden if i == 0: if labels is not None: lowercase_ = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: lowercase_ = head_logprob[:, : self.cutoffs[0]] else: lowercase_ , lowercase_ , lowercase_ = weights[i], biases[i], self.out_projs[i] lowercase_ = self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = nn.functional.log_softmax(lowerCAmelCase_ , dim=1) lowercase_ = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowercase_ = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: lowercase_ = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowercase_ = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase_ , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Dict): """simple docstring""" if self.n_clusters == 0: lowercase_ = self._compute_logit(lowerCAmelCase_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase_ , dim=-1) else: # construct weights and biases lowercase_ , lowercase_ = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: lowercase_ , lowercase_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase_ = self.out_layers[0].weight[l_idx:r_idx] lowercase_ = self.out_layers[0].bias[l_idx:r_idx] else: lowercase_ = self.out_layers[i].weight lowercase_ = self.out_layers[i].bias if i == 0: lowercase_ = torch.cat([weight_i, self.cluster_weight] , dim=0) lowercase_ = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase_) biases.append(lowerCAmelCase_) lowercase_ , lowercase_ , lowercase_ = weights[0], biases[0], self.out_projs[0] lowercase_ = self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = hidden.new_empty((head_logit.size(0), self.n_token)) lowercase_ = nn.functional.log_softmax(lowerCAmelCase_ , dim=1) lowercase_ = [0] + self.cutoffs for i in range(len(lowerCAmelCase_) - 1): lowercase_ , lowercase_ = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowercase_ = head_logprob[:, : self.cutoffs[0]] else: lowercase_ , lowercase_ , lowercase_ = weights[i], biases[i], self.out_projs[i] lowercase_ = self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = nn.functional.log_softmax(lowerCAmelCase_ , dim=1) lowercase_ = head_logprob[:, -i] + tail_logprob_i lowercase_ = logprob_i return out
136
"""simple docstring""" from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : Optional[Any] = "T5Config" class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "mt5" lowercase__ = MTaConfig class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "mt5" lowercase__ = MTaConfig class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "mt5" lowercase__ = MTaConfig
136
1
"""simple docstring""" lowerCamelCase__ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowerCamelCase__ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowerCamelCase__ = { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): assert len(str(_UpperCamelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __lowerCAmelCase : Optional[int] = year // 100 __lowerCAmelCase : int = (5 * (century % 4) + 2) % 7 __lowerCAmelCase : Optional[int] = year % 100 __lowerCAmelCase : Any = centurian % 12 __lowerCAmelCase : Any = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __lowerCAmelCase : List[Any] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) __lowerCAmelCase : Dict = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
182
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCamelCase__ = getLogger(__name__) lowerCamelCase__ = """cuda""" if torch.cuda.is_available() else """cpu""" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 8 , _UpperCamelCase = DEFAULT_DEVICE , _UpperCamelCase=False , _UpperCamelCase="summarization" , _UpperCamelCase=None , **_UpperCamelCase , ): __lowerCAmelCase : str = Path(_UpperCamelCase ).open('w' , encoding='utf-8' ) __lowerCAmelCase : Union[str, Any] = str(_UpperCamelCase ) __lowerCAmelCase : List[str] = AutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ).to(_UpperCamelCase ) if fpaa: __lowerCAmelCase : Optional[Any] = model.half() __lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(_UpperCamelCase ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowerCAmelCase : List[Any] = time.time() # update config with task specific params use_task_specific_params(_UpperCamelCase , _UpperCamelCase ) if prefix is None: __lowerCAmelCase : Optional[int] = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(_UpperCamelCase , _UpperCamelCase ) ) ): __lowerCAmelCase : List[str] = [prefix + text for text in examples_chunk] __lowerCAmelCase : List[str] = tokenizer(_UpperCamelCase , return_tensors='pt' , truncation=_UpperCamelCase , padding='longest' ).to(_UpperCamelCase ) __lowerCAmelCase : str = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_UpperCamelCase , ) __lowerCAmelCase : str = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() __lowerCAmelCase : Optional[int] = int(time.time() - start_time ) # seconds __lowerCAmelCase : List[Any] = len(_UpperCamelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def __lowerCAmelCase (): return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def __lowerCAmelCase (_UpperCamelCase=True ): __lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('model_name' , type=_UpperCamelCase , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=_UpperCamelCase , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=_UpperCamelCase , help='where to save summaries' ) parser.add_argument('--reference_path' , type=_UpperCamelCase , required=_UpperCamelCase , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=_UpperCamelCase , required=_UpperCamelCase , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=_UpperCamelCase , required=_UpperCamelCase , default=_UpperCamelCase , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=_UpperCamelCase , required=_UpperCamelCase , default=_UpperCamelCase , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=_UpperCamelCase , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=_UpperCamelCase , default=8 , required=_UpperCamelCase , help='batch size' ) parser.add_argument( '--n_obs' , type=_UpperCamelCase , default=-1 , required=_UpperCamelCase , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=_UpperCamelCase , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowerCAmelCase , __lowerCAmelCase : Optional[int] = parser.parse_known_args() __lowerCAmelCase : Optional[int] = parse_numeric_n_bool_cl_kwargs(_UpperCamelCase ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowerCAmelCase : Dict = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowerCAmelCase : int = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_UpperCamelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) __lowerCAmelCase : Optional[Any] = generate_summaries_or_translations( _UpperCamelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_UpperCamelCase , ) if args.reference_path is None: return {} # Compute scores __lowerCAmelCase : str = calculate_bleu if 'translation' in args.task else calculate_rouge __lowerCAmelCase : Dict = [x.rstrip() for x in open(args.save_path ).readlines()] __lowerCAmelCase : Dict = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_UpperCamelCase )] __lowerCAmelCase : dict = score_fn(_UpperCamelCase , _UpperCamelCase ) scores.update(_UpperCamelCase ) if args.dump_args: scores.update(_UpperCamelCase ) if args.info: __lowerCAmelCase : Optional[Any] = args.info if verbose: print(_UpperCamelCase ) if args.score_path is not None: json.dump(_UpperCamelCase , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
182
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case ={ 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case =[ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __snake_case =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
4
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __lowerCAmelCase : Optional[int] = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class UpperCAmelCase_ ( _A ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any=None , UpperCamelCase__ : Union[str, Any]=1 ) -> str: """simple docstring""" __magic_name__ = tokenizer __magic_name__ = dataset __magic_name__ = len(UpperCamelCase__ ) if n_tasks is None else n_tasks __magic_name__ = n_copies def __iter__( self : List[Any] ) -> List[str]: """simple docstring""" __magic_name__ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["""prompt"""].strip() ) __magic_name__ = self.tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors="""pt""" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class UpperCAmelCase_ ( _A ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : str ) -> List[str]: """simple docstring""" __magic_name__ = start_length __magic_name__ = eof_strings __magic_name__ = tokenizer def __call__( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Optional[int] ) -> List[str]: """simple docstring""" __magic_name__ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) __magic_name__ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCamelCase__ ) def a__ ( A_ ): '''simple docstring''' __magic_name__ = re.split("""(%s)""" % """|""".join(A_ ), A_ ) # last string should be "" return "".join(string_list[:-2] ) def a__ ( A_, A_, A_, A_, A_, A_=20, **A_ ): '''simple docstring''' __magic_name__ = defaultdict(A_ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(A_ ) ): with torch.no_grad(): __magic_name__ = batch["""ids"""].shape[-1] __magic_name__ = accelerator.unwrap_model(A_ ).generate( input_ids=batch["""ids"""][:, : batch["""input_len"""]], num_return_sequences=A_, **A_ ) # each task is generated batch_size times __magic_name__ = batch["""task_id"""].repeat(A_ ) __magic_name__ = accelerator.pad_across_processes( A_, dim=1, pad_index=tokenizer.pad_token_id ) __magic_name__ , __magic_name__ = accelerator.gather((generated_tokens, generated_tasks) ) __magic_name__ = generated_tokens.cpu().numpy() __magic_name__ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(A_, A_ ): gen_token_dict[task].append(A_ ) __magic_name__ = [[] for _ in range(A_ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: __magic_name__ = tokenizer.decode(A_, skip_special_tokens=A_, clean_up_tokenization_spaces=A_ ) code_gens[task].append(remove_last_block(A_ ) ) return code_gens def a__ ( ): '''simple docstring''' __magic_name__ = HfArgumentParser(A_ ) __magic_name__ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric __magic_name__ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing __magic_name__ = """false""" if args.num_workers is None: __magic_name__ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate __magic_name__ = Accelerator() set_seed(args.seed, device_specific=A_ ) # Load model and tokenizer __magic_name__ = AutoTokenizer.from_pretrained(args.model_ckpt ) __magic_name__ = tokenizer.eos_token __magic_name__ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings __magic_name__ = { """do_sample""": args.do_sample, """temperature""": args.temperature, """max_new_tokens""": args.max_new_tokens, """top_p""": args.top_p, """top_k""": args.top_k, """stopping_criteria""": StoppingCriteriaList([EndOfFunctionCriteria(0, A_, A_ )] ), } # Load evaluation dataset and metric __magic_name__ = load_dataset("""openai_humaneval""" ) __magic_name__ = load_metric("""code_eval""" ) __magic_name__ = args.num_tasks if args.num_tasks is not None else len(human_eval["""test"""] ) __magic_name__ = args.n_samples // args.batch_size __magic_name__ = TokenizedDataset(A_, human_eval["""test"""], n_copies=A_, n_tasks=A_ ) # do not confuse args.batch_size, which is actually the num_return_sequences __magic_name__ = DataLoader(A_, batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: __magic_name__ = code_eval_metric.compute(references=[""""""], predictions=[[""""""]] ) except ValueError as exception: print( """Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`""" """ flag to enable code evaluation.""" ) raise exception __magic_name__ , __magic_name__ = accelerator.prepare(A_, A_ ) __magic_name__ = complete_code( A_, A_, A_, A_, n_tasks=A_, batch_size=args.batch_size, **A_, ) if accelerator.is_main_process: __magic_name__ = [] for task in tqdm(range(A_ ) ): __magic_name__ = human_eval["""test"""][task]["""test"""] __magic_name__ = f'''check({human_eval['test'][task]['entry_point']})''' references.append("""\n""" + test_func + """\n""" + entry_point ) # Evaluate completions with "code_eval" metric __magic_name__ , __magic_name__ = code_eval_metric.compute( references=A_, predictions=A_, num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file, """w""" ) as fp: json.dump(A_, A_ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
88
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class UpperCamelCase_ (__A ): __magic_name__ = 42 __magic_name__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.26.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('''>=''', '''0.0.12''') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class UpperCamelCase_ (__A ): __magic_name__ = 42 __magic_name__ = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
253
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch lowerCamelCase_ = logging.get_logger(__name__) class UpperCamelCase_ (__A ): __magic_name__ = ['''pixel_values'''] def __init__( self : List[Any] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 255 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) UpperCAmelCase_ : Any = size if size is not None else {"shortest_edge": 256} UpperCAmelCase_ : List[str] = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) UpperCAmelCase_ : Any = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ : Union[str, Any] = get_size_dict(lowerCAmelCase_ , param_name="crop_size" ) UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : int = size UpperCAmelCase_ : Optional[int] = resample UpperCAmelCase_ : Tuple = do_center_crop UpperCAmelCase_ : Any = crop_size UpperCAmelCase_ : List[str] = do_rescale UpperCAmelCase_ : Dict = rescale_factor UpperCAmelCase_ : str = do_normalize UpperCAmelCase_ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Any , ) -> np.ndarray: UpperCAmelCase_ : Any = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase_ : List[Any] = get_resize_output_image_size(lowerCAmelCase_ , size=size["shortest_edge"] , default_to_square=lowerCAmelCase_ ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Dict , ) -> np.ndarray: UpperCAmelCase_ : List[str] = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size["height"], size["width"]) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[Any] ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[Any] , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : Tuple , ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : List[str] = size if size is not None else self.size UpperCAmelCase_ : Optional[int] = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = resample if resample is not None else self.resample UpperCAmelCase_ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : List[Any] = get_size_dict(lowerCAmelCase_ , param_name="crop_size" ) UpperCAmelCase_ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Dict = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : Optional[int] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : List[str] = image_std if image_std is not None else self.image_std UpperCAmelCase_ : Optional[Any] = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ : Optional[Any] = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: UpperCAmelCase_ : Union[str, Any] = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_center_crop: UpperCAmelCase_ : Tuple = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] if do_rescale: UpperCAmelCase_ : Union[str, Any] = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: UpperCAmelCase_ : Any = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] UpperCAmelCase_ : Any = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] UpperCAmelCase_ : int = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Tuple] = None ) -> Optional[int]: UpperCAmelCase_ : Dict = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(lowerCAmelCase_ ): UpperCAmelCase_ : Optional[int] = target_sizes.numpy() UpperCAmelCase_ : Dict = [] for idx in range(len(lowerCAmelCase_ ) ): UpperCAmelCase_ : List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=lowerCAmelCase_ ) UpperCAmelCase_ : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase_ ) else: UpperCAmelCase_ : Tuple = logits.argmax(dim=1 ) UpperCAmelCase_ : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
253
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
68
'''simple docstring''' from __future__ import annotations def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) == 0: return [] _snake_case, _snake_case = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _snake_case = int(max_value - min_value ) + 1 _snake_case = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
341
0
'''simple docstring''' import argparse import datetime def _a( UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int ={ '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } SCREAMING_SNAKE_CASE__ : Union[str, Any] ={0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(UpperCamelCase__ ) < 1_1: raise ValueError('''Must be 10 characters long''' ) # Get month SCREAMING_SNAKE_CASE__ : int =int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 1_3: raise ValueError('''Month must be between 1 - 12''' ) SCREAMING_SNAKE_CASE__ : str =date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get day SCREAMING_SNAKE_CASE__ : int =int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 3_2: raise ValueError('''Date must be between 1 - 31''' ) # Get second separator SCREAMING_SNAKE_CASE__ : str =date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get year SCREAMING_SNAKE_CASE__ : int =int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''' ) # Get datetime obj for validation SCREAMING_SNAKE_CASE__ : Any =datetime.date(int(UpperCamelCase__ ), int(UpperCamelCase__ ), int(UpperCamelCase__ ) ) # Start math if m <= 2: SCREAMING_SNAKE_CASE__ : List[Any] =y - 1 SCREAMING_SNAKE_CASE__ : List[Any] =m + 1_2 # maths var SCREAMING_SNAKE_CASE__ : int =int(str(UpperCamelCase__ )[:2] ) SCREAMING_SNAKE_CASE__ : int =int(str(UpperCamelCase__ )[2:] ) SCREAMING_SNAKE_CASE__ : int =int(2.6 * m - 5.3_9 ) SCREAMING_SNAKE_CASE__ : int =int(c / 4 ) SCREAMING_SNAKE_CASE__ : int =int(k / 4 ) SCREAMING_SNAKE_CASE__ : int =int(d + k ) SCREAMING_SNAKE_CASE__ : int =int(t + u + v + x ) SCREAMING_SNAKE_CASE__ : int =int(z - (2 * c) ) SCREAMING_SNAKE_CASE__ : int =round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' ) # Response SCREAMING_SNAKE_CASE__ : str =f"Your date {date_input}, is a {days[str(UpperCamelCase__ )]}!" return response if __name__ == "__main__": import doctest doctest.testmod() a_ = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) a_ = parser.parse_args() zeller(args.date_input)
363
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """facebook/bart-large-mnli""" snake_case_ = ( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) snake_case_ = """text_classifier""" snake_case_ = AutoTokenizer snake_case_ = AutoModelForSequenceClassification snake_case_ = ["""text""", ["""text"""]] snake_case_ = ["""text"""] def __magic_name__ ( self : Any ) -> Any: super().setup() SCREAMING_SNAKE_CASE__ : int =self.model.config SCREAMING_SNAKE_CASE__ : int =-1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): SCREAMING_SNAKE_CASE__ : Any =int(__lowercase ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def __magic_name__ ( self : str , __lowercase : Any , __lowercase : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Dict =labels return self.pre_processor( [text] * len(__lowercase ) , [F"This example is {label}" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def __magic_name__ ( self : List[Any] , __lowercase : str ) -> List[Any]: SCREAMING_SNAKE_CASE__ : int =outputs.logits SCREAMING_SNAKE_CASE__ : Any =torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
222
0
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowercase__ : List[str] = yaml.safe_load( "\\nname: \"\"\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: \"Dataset Card for X\" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: \"Table of Contents\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Dataset Description\"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: \"Dataset Summary\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Supported Tasks and Leaderboards\"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n" ) lowercase__ : List[Any] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowercase__ : Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowercase__ : List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowercase__ : Tuple = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowercase__ : Optional[Any] = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowercase__ : Optional[int] = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) lowercase__ : Tuple = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowercase__ : Union[str, Any] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) lowercase__ : Dict = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowercase__ : Dict = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' lowercase__ : Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowercase__ : int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' lowercase__ : int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' lowercase__ : List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' lowercase__ : List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' lowercase__ : List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' lowercase__ : int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' lowercase__ : Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' lowercase__ : Tuple = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowercase__ : Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' lowercase__ : Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' lowercase__ : Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' lowercase__ : Tuple = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowercase__ : str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' lowercase__ : Any = '''''' lowercase__ : Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' lowercase__ : List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowercase__ : str = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' assert ReadMe.from_string(_A , _A ).to_dict() == expected_dict @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' with pytest.raises(_A , match=re.escape(expected_error.format(path="root" ) ) ): snake_case_ = ReadMe.from_string(_A , _A ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' with pytest.raises(_A , match=re.escape(expected_error.format(path="root" ) ) ): ReadMe.from_string(_A , _A ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase__ ( _A ): '''simple docstring''' ReadMe.from_string(_A , _A , suppress_parsing_errors=_A ) @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = Path(_A ) / 'README.md' with open(_A , "w+" ) as readme_file: readme_file.write(_A ) snake_case_ = ReadMe.from_readme(_A , _A ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = Path(_A ) / 'README.md' with open(_A , "w+" ) as readme_file: readme_file.write(_A ) snake_case_ = expected_error.format(path=_A ) with pytest.raises(_A , match=re.escape(_A ) ): snake_case_ = ReadMe.from_readme(_A , _A ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = Path(_A ) / 'README.md' with open(_A , "w+" ) as readme_file: readme_file.write(_A ) snake_case_ = expected_error.format(path=_A ) with pytest.raises(_A , match=re.escape(_A ) ): ReadMe.from_readme(_A , _A ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase__ ( _A ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = Path(_A ) / 'README.md' with open(_A , "w+" ) as readme_file: readme_file.write(_A ) ReadMe.from_readme(_A , _A , suppress_parsing_errors=_A )
187
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase :Any = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , **_A : Union[str, Any] ) -> Tuple: super().__init__(**_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] , _A : Union[str, List[str], "Image", List["Image"]] , **_A : Dict ) -> Dict: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> Optional[int]: __magic_name__ : str = {} if "candidate_labels" in kwargs: __magic_name__ : str = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __magic_name__ : Tuple = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __lowerCAmelCase ( self : str , _A : Dict , _A : Optional[Any]=None , _A : int="This is a photo of {}." ) -> int: __magic_name__ : Dict = load_image(_A ) __magic_name__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) __magic_name__ : Optional[Any] = candidate_labels __magic_name__ : List[Any] = [hypothesis_template.format(_A ) for x in candidate_labels] __magic_name__ : str = self.tokenizer(_A , return_tensors=self.framework , padding=_A ) __magic_name__ : Optional[Any] = [text_inputs] return inputs def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple ) -> str: __magic_name__ : str = model_inputs.pop('candidate_labels' ) __magic_name__ : str = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _A ): __magic_name__ : Dict = text_inputs[0] else: # Batching case. __magic_name__ : Optional[Any] = text_inputs[0][0] __magic_name__ : List[Any] = self.model(**_A , **_A ) __magic_name__ : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __lowerCAmelCase ( self : Optional[int] , _A : Optional[Any] ) -> Optional[int]: __magic_name__ : Tuple = model_outputs.pop('candidate_labels' ) __magic_name__ : Union[str, Any] = model_outputs['logits'][0] if self.framework == "pt": __magic_name__ : Tuple = logits.softmax(dim=-1 ).squeeze(-1 ) __magic_name__ : Tuple = probs.tolist() if not isinstance(_A , _A ): __magic_name__ : Any = [scores] elif self.framework == "tf": __magic_name__ : Any = stable_softmax(_A , axis=-1 ) __magic_name__ : Dict = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) __magic_name__ : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
331
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowercase_ ( A__ ) -> Tuple: """simple docstring""" snake_case = filter(lambda A__ : p.requires_grad , model.parameters() ) snake_case = sum([np.prod(p.size() ) for p in model_parameters] ) return params _A = logging.getLogger(__name__) def lowercase_ ( A__ , A__ ) -> Any: """simple docstring""" if metric == "rouge2": snake_case = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": snake_case = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": snake_case = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) snake_case = ModelCheckpoint( dirpath=A__ , filename=A__ , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowercase_ ( A__ , A__ ) -> Union[str, Any]: """simple docstring""" return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=A__ , verbose=A__ , ) class lowerCamelCase ( pl.Callback ): def UpperCAmelCase(self : Dict , _A : Optional[Any] , _A : Dict ) -> Dict: snake_case = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def UpperCAmelCase(self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : str=True ) -> None: logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) snake_case = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results snake_case = Path(pl_module.hparams.output_dir ) if type_path == "test": snake_case = od / "test_results.txt" snake_case = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. snake_case = od / f'{type_path}_results/{trainer.global_step:05d}.txt' snake_case = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , "a+" ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue snake_case = metrics[key] if isinstance(_A , torch.Tensor ): snake_case = val.item() snake_case = f'{key}: {val:.6f}\n' writer.write(_A ) if not save_generations: return if "preds" in metrics: snake_case = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(_A ) @rank_zero_only def UpperCAmelCase(self : int , _A : str , _A : Union[str, Any] ) -> Union[str, Any]: try: snake_case = pl_module.model.model.num_parameters() except AttributeError: snake_case = pl_module.model.num_parameters() snake_case = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} ) @rank_zero_only def UpperCAmelCase(self : List[Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[str]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , "test" ) @rank_zero_only def UpperCAmelCase(self : Any , _A : pl.Trainer , _A : Union[str, Any] ) -> Dict: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
137
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _A = logging.getLogger(__name__) _A = "pytorch_model.bin" @dataclasses.dataclass class lowerCamelCase : UpperCAmelCase__ : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default=A_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class lowerCamelCase : UpperCAmelCase__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) UpperCAmelCase__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default=A_ , metadata={"help": "A csv or a json file containing the validation data."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default=A_ , metadata={"help": "The name of the task to train on."} , ) UpperCAmelCase__ : Optional[List[str]] = dataclasses.field( default=A_ , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class lowerCamelCase : UpperCAmelCase__ : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) UpperCAmelCase__ : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) UpperCAmelCase__ : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) UpperCAmelCase__ : Optional[bool] = dataclasses.field( default=A_ , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) UpperCAmelCase__ : Optional[bool] = dataclasses.field( default=A_ , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) UpperCAmelCase__ : Optional[bool] = dataclasses.field( default=A_ , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) UpperCAmelCase__ : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) UpperCAmelCase__ : Optional[int] = dataclasses.field( default=1_00 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) UpperCAmelCase__ : Optional[int] = dataclasses.field( default=A_ , metadata={"help": "Random seed for initialization."} , ) def lowercase_ ( A__ , A__ , A__ , A__ , A__ , A__ ) -> Union[str, Any]: """simple docstring""" snake_case = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case = dataset.filter(lambda A__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case = int(eval_result * len(A__ ) ) print(A__ ) snake_case = dataset.sort("probability" , reverse=A__ ) snake_case = dataset.select(range(A__ ) ) snake_case = dataset.remove_columns(["label", "probability"] ) snake_case = dataset.rename_column("prediction" , "label" ) snake_case = dataset.map(lambda A__ : {"label": idalabel[example["label"]]} ) snake_case = dataset.shuffle(seed=args.seed ) snake_case = os.path.join(A__ , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(A__ , index=A__ ) else: dataset.to_json(A__ ) def lowercase_ ( A__ , A__ , A__ , A__ , **A__ ) -> List[Any]: """simple docstring""" snake_case = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case = STModelArguments(model_name_or_path=A__ ) snake_case = STDataArguments(train_file=A__ , infer_file=A__ ) snake_case = STTrainingArguments(output_dir=A__ ) snake_case = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(A__ ).items(): setattr(A__ , A__ , A__ ) for key, value in kwargs.items(): if hasattr(A__ , A__ ): setattr(A__ , A__ , A__ ) # Sanity checks snake_case = {} snake_case = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case = args.train_file snake_case = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case = args.eval_file for key in data_files: snake_case = data_files[key].split("." )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: snake_case = extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) snake_case = F'{args.output_dir}/self-train_iter-{{}}'.format snake_case = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=A__ ) os.makedirs(A__ , exist_ok=A__ ) accelerator.wait_for_everyone() snake_case = None snake_case = None snake_case = 0 snake_case = False # Show the progress bar snake_case = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case = data_dir_format(A__ ) assert os.path.exists(A__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case = os.path.join(A__ , "stage-1" ) snake_case = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(A__ , A__ ): arguments_dict.update({key: value} ) snake_case = os.path.join(A__ , "best-checkpoint" , A__ ) if os.path.exists(A__ ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , A__ , A__ , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , A__ ) finetune(**A__ ) accelerator.wait_for_everyone() assert os.path.exists(A__ ) logger.info("Self-training job completed: iteration: %d, stage: 1." , A__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case = os.path.join(A__ , "best-checkpoint" ) snake_case = os.path.join(A__ , "stage-2" ) # Update arguments_dict snake_case = model_path snake_case = data_files["train"] snake_case = current_output_dir snake_case = os.path.join(A__ , "best-checkpoint" , A__ ) if os.path.exists(A__ ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , A__ , A__ , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , A__ ) finetune(**A__ ) accelerator.wait_for_everyone() assert os.path.exists(A__ ) logger.info("Self-training job completed: iteration: %d, stage: 2." , A__ ) snake_case = iteration snake_case = data_dir_format(iteration + 1 ) snake_case = AutoConfig.from_pretrained(os.path.join(A__ , "best-checkpoint" ) ) snake_case = config.idalabel snake_case = os.path.join(A__ , "eval_results_best-checkpoint.json" ) snake_case = os.path.join(A__ , "test_results_best-checkpoint.json" ) assert os.path.exists(A__ ) with open(A__ , "r" ) as f: snake_case = float(json.load(A__ )[args.eval_metric] ) snake_case = os.path.join(A__ , "infer_output_best-checkpoint.csv" ) assert os.path.exists(A__ ) # Loading the dataset from local csv or json files. snake_case = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] snake_case = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(A__ , exist_ok=A__ ) shutil.copy(A__ , os.path.join(A__ , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(A__ ): shutil.copy(A__ , os.path.join(A__ , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(A__ , A__ , A__ , A__ , A__ , A__ ) accelerator.wait_for_everyone() snake_case = os.path.join(A__ , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case = eval_result if best_iteration is None: snake_case = new_iteration snake_case = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case = new_iteration snake_case = new_eval_result snake_case = 0 else: if new_eval_result == best_eval_result: snake_case = new_iteration snake_case = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , A__ ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(A__ , F'eval_results_iter-{iteration}.json' ) , os.path.join(A__ , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(A__ , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(A__ , "eval_results_best-iteration.json" ) , )
137
1
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> list[list[int]]: _a : list[list[int]] = [] _a : list[int] = [] _a : List[str] = 0 _a : List[str] = sum(lowerCAmelCase_ ) create_state_space_tree(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return result def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> None: if sum(lowerCAmelCase_ ) > max_sum or (remaining_nums_sum + sum(lowerCAmelCase_ )) < max_sum: return if sum(lowerCAmelCase_ ) == max_sum: result.append(lowerCAmelCase_ ) return for index in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): create_state_space_tree( lowerCAmelCase_ , lowerCAmelCase_ , index + 1 , [*path, nums[index]] , lowerCAmelCase_ , remaining_nums_sum - nums[index] , ) __lowerCAmelCase = [3, 34, 4, 12, 5, 2] __lowerCAmelCase = 9 __lowerCAmelCase = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
89
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ = { 'configuration_efficientformer': [ 'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientFormerConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['EfficientFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientFormerForImageClassification', 'EfficientFormerForImageClassificationWithTeacher', 'EfficientFormerModel', 'EfficientFormerPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFEfficientFormerForImageClassification', 'TFEfficientFormerForImageClassificationWithTeacher', 'TFEfficientFormerModel', 'TFEfficientFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
175
0
_lowerCamelCase : dict[tuple[int, int, int], int] = {} def a__ ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on UpperCAmelCase : str = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one UpperCAmelCase : Dict = _calculate(days - 1 , UpperCAmelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 UpperCAmelCase : str = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter UpperCAmelCase : Any = _calculate(days - 1 , UpperCAmelCase , 0 ) UpperCAmelCase : Dict = state_late + state_absent + state_ontime UpperCAmelCase : Any = prizestrings return prizestrings def a__ ( UpperCAmelCase : int = 30 ) -> int: return _calculate(UpperCAmelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
99
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Dict, __A : Any, __A : Optional[int]=1_3, __A : Any=7, __A : Tuple=True, __A : int=True, __A : Dict=True, __A : Union[str, Any]=True, __A : Optional[int]=9_9, __A : Optional[int]=3_2, __A : Union[str, Any]=5, __A : Optional[int]=4, __A : str=3_7, __A : Union[str, Any]="gelu", __A : Optional[int]=0.1, __A : Optional[Any]=0.1, __A : Any=5_1_2, __A : List[str]=1_6, __A : Optional[int]=2, __A : Union[str, Any]=0.0_2, __A : Optional[int]=False, __A : List[str]=True, __A : int="None", __A : List[str]=3, __A : Any=4, __A : Dict=None, ): UpperCAmelCase : str = parent UpperCAmelCase : int = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : Dict = use_input_mask UpperCAmelCase : Optional[Any] = use_token_type_ids UpperCAmelCase : str = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : int = type_vocab_size UpperCAmelCase : str = type_sequence_label_size UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Dict = num_labels UpperCAmelCase : Optional[Any] = num_choices UpperCAmelCase : str = relative_attention UpperCAmelCase : Any = position_biased_input UpperCAmelCase : str = pos_att_type UpperCAmelCase : Union[str, Any] = scope def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase : int = None if self.use_input_mask: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) UpperCAmelCase : Dict = None if self.use_token_type_ids: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCAmelCase : List[str] = None UpperCAmelCase : str = None UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size], self.num_choices ) UpperCAmelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : Any ): return DebertaVaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, pos_att_type=self.pos_att_type, ) def __magic_name__ ( self : Dict, __A : str ): self.parent.assertListEqual(list(result.loss.size() ), [] ) def __magic_name__ ( self : List[str], __A : Dict, __A : int, __A : str, __A : List[str], __A : Dict, __A : str, __A : int ): UpperCAmelCase : Optional[int] = DebertaVaModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[int] = model(__A, attention_mask=__A, token_type_ids=__A )[0] UpperCAmelCase : Optional[int] = model(__A, token_type_ids=__A )[0] UpperCAmelCase : int = model(__A )[0] self.parent.assertListEqual(list(sequence_output.size() ), [self.batch_size, self.seq_length, self.hidden_size] ) def __magic_name__ ( self : Dict, __A : Union[str, Any], __A : Optional[Any], __A : Tuple, __A : Optional[int], __A : List[Any], __A : List[Any], __A : Optional[int] ): UpperCAmelCase : int = DebertaVaForMaskedLM(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : int = model(__A, attention_mask=__A, token_type_ids=__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : List[str], __A : str, __A : Optional[Any], __A : List[str], __A : Optional[int], __A : List[Any], __A : int, __A : Optional[int] ): UpperCAmelCase : int = self.num_labels UpperCAmelCase : Union[str, Any] = DebertaVaForSequenceClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : int = model(__A, attention_mask=__A, token_type_ids=__A, labels=__A ) self.parent.assertListEqual(list(result.logits.size() ), [self.batch_size, self.num_labels] ) self.check_loss_output(__A ) def __magic_name__ ( self : Any, __A : Tuple, __A : Any, __A : str, __A : List[Any], __A : Dict, __A : Optional[Any], __A : List[str] ): UpperCAmelCase : Dict = self.num_labels UpperCAmelCase : int = DebertaVaForTokenClassification(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Tuple = model(__A, attention_mask=__A, token_type_ids=__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : Tuple, __A : List[str], __A : Tuple, __A : Tuple, __A : int, __A : Optional[Any], __A : Tuple, __A : Any ): UpperCAmelCase : Union[str, Any] = DebertaVaForQuestionAnswering(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Any = model( __A, attention_mask=__A, token_type_ids=__A, start_positions=__A, end_positions=__A, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def __magic_name__ ( self : Dict, __A : Optional[int], __A : str, __A : List[str], __A : Dict, __A : Optional[Any], __A : Union[str, Any], __A : int ): UpperCAmelCase : Union[str, Any] = DebertaVaForMultipleChoice(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase : int = model( __A, attention_mask=__A, token_type_ids=__A, labels=__A, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[str] = config_and_inputs UpperCAmelCase : int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : str = DebertaVaModelTester(self ) UpperCAmelCase : Dict = ConfigTester(self, config_class=__A, hidden_size=3_7 ) def __magic_name__ ( self : Any ): self.config_tester.run_common_tests() def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__A ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__A ) def __magic_name__ ( self : Tuple ): UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__A ) def __magic_name__ ( self : Any ): UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__A ) @slow def __magic_name__ ( self : Dict ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : str = DebertaVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''' ) def __magic_name__ ( self : str ): pass @slow def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : str = DebertaVaModel.from_pretrained('''microsoft/deberta-v2-xlarge''' ) UpperCAmelCase : Union[str, Any] = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) UpperCAmelCase : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase : List[str] = model(__A, attention_mask=__A )[0] # compare the actual values for a slice. UpperCAmelCase : List[str] = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], __A, atol=1E-4 ), F'''{output[:, 1:4, 1:4]}''' )
99
1
def A_ ( a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : list[list[str]] = [[] for _ in range(SCREAMING_SNAKE_CASE__ )] SCREAMING_SNAKE_CASE_ : int = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1 or len(SCREAMING_SNAKE_CASE__ ) <= key: return input_string for position, character in enumerate(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE_ : Tuple = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE_ : Any = min(SCREAMING_SNAKE_CASE__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [''''''.join(SCREAMING_SNAKE_CASE__ ) for row in temp_grid] SCREAMING_SNAKE_CASE_ : Optional[Any] = ''''''.join(SCREAMING_SNAKE_CASE__ ) return output_string def A_ ( a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : Union[str, Any] = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1: return input_string SCREAMING_SNAKE_CASE_ : list[list[str]] = [[] for _ in range(SCREAMING_SNAKE_CASE__ )] # generates template for position in range(len(SCREAMING_SNAKE_CASE__ ) ): SCREAMING_SNAKE_CASE_ : Optional[int] = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE_ : Tuple = min(SCREAMING_SNAKE_CASE__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('*' ) SCREAMING_SNAKE_CASE_ : List[Any] = 0 for row in temp_grid: # fills in the characters SCREAMING_SNAKE_CASE_ : Dict = input_string[counter : counter + len(SCREAMING_SNAKE_CASE__ )] grid.append(list(SCREAMING_SNAKE_CASE__ ) ) counter += len(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = '''''' # reads as zigzag for position in range(len(SCREAMING_SNAKE_CASE__ ) ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE_ : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = {} for key_guess in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # tries every key SCREAMING_SNAKE_CASE_ : int = decrypt(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return results if __name__ == "__main__": import doctest doctest.testmod()
253
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _A ( SCREAMING_SNAKE_CASE__ : str = "isbn/0140328726" ): UpperCamelCase :Optional[int] = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: UpperCamelCase :str = F'''{olid} is not a valid Open Library olid''' raise ValueError(SCREAMING_SNAKE_CASE__ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def _A ( SCREAMING_SNAKE_CASE__ : dict ): UpperCamelCase :str = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } UpperCamelCase :Optional[Any] = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} UpperCamelCase :List[str] = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] UpperCamelCase :int = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCamelCase :List[str] = ''', '''.join(SCREAMING_SNAKE_CASE__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: __snake_case = input("""\nEnter the ISBN code to search (or 'quit' to stop): """).strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: __snake_case = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print("""\n""".join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
259
0
def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] ) -> Tuple: """simple docstring""" a_ : List[str] = len(__A ) for i in range(length - 1 ): a_ : str = i for k in range(i + 1 , __A ): if collection[k] < collection[least]: a_ : List[str] = k if least != i: a_ : List[str] = (collection[i], collection[least]) return collection if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Tuple = [int(item) for item in user_input.split(',')] print(selection_sort(unsorted))
365
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow UpperCAmelCase_ : str = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) UpperCAmelCase_ : Optional[int] = logging.getLogger() def SCREAMING_SNAKE_CASE_ ( ) -> Any: """simple docstring""" a_ : Optional[int] = argparse.ArgumentParser() parser.add_argument('-f' ) a_ : Optional[Any] = parser.parse_args() return args.f def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : List[Any]="eval" ) -> Optional[int]: """simple docstring""" a_ : List[Any] = os.path.join(__A , F"""{split}_results.json""" ) if os.path.exists(__A ): with open(__A , 'r' ) as f: return json.load(__A ) raise ValueError(F"""can't find {path}""" ) UpperCAmelCase_ : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: a_ : Optional[Any] = self.get_auto_remove_tmp_dir() a_ : List[str] = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(SCREAMING_SNAKE_CASE__ , 'argv' , SCREAMING_SNAKE_CASE__ ): run_flax_glue.main() a_ : str = get_results(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> str: a_ : List[str] = self.get_auto_remove_tmp_dir() a_ : Union[str, Any] = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(SCREAMING_SNAKE_CASE__ , 'argv' , SCREAMING_SNAKE_CASE__ ): run_clm_flax.main() a_ : List[Any] = get_results(SCREAMING_SNAKE_CASE__ ) self.assertLess(result['eval_perplexity'] , 1_0_0 ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: a_ : Tuple = self.get_auto_remove_tmp_dir() a_ : Dict = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(SCREAMING_SNAKE_CASE__ , 'argv' , SCREAMING_SNAKE_CASE__ ): run_summarization_flax.main() a_ : List[str] = get_results(SCREAMING_SNAKE_CASE__ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 1_0 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: a_ : int = self.get_auto_remove_tmp_dir() a_ : Dict = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(SCREAMING_SNAKE_CASE__ , 'argv' , SCREAMING_SNAKE_CASE__ ): run_mlm_flax.main() a_ : List[Any] = get_results(SCREAMING_SNAKE_CASE__ ) self.assertLess(result['eval_perplexity'] , 4_2 ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: a_ : str = self.get_auto_remove_tmp_dir() a_ : List[str] = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(SCREAMING_SNAKE_CASE__ , 'argv' , SCREAMING_SNAKE_CASE__ ): run_ta_mlm_flax.main() a_ : Dict = get_results(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu a_ : int = 7 if get_gpu_count() > 1 else 2 a_ : Dict = self.get_auto_remove_tmp_dir() a_ : Tuple = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(SCREAMING_SNAKE_CASE__ , 'argv' , SCREAMING_SNAKE_CASE__ ): run_flax_ner.main() a_ : List[str] = get_results(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: a_ : List[str] = self.get_auto_remove_tmp_dir() a_ : int = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(SCREAMING_SNAKE_CASE__ , 'argv' , SCREAMING_SNAKE_CASE__ ): run_qa.main() a_ : str = get_results(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(result['eval_f1'] , 3_0 ) self.assertGreaterEqual(result['eval_exact'] , 3_0 )
120
0
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class a_ ( a__ ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCamelCase , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(_lowerCamelCase , '''num_attention_heads''' ) ) class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=64 , _lowerCamelCase=3 , _lowerCamelCase=3 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=16 , _lowerCamelCase=[128, 256, 384] , _lowerCamelCase=[4, 6, 8] , _lowerCamelCase=[2, 3, 4] , _lowerCamelCase=[16, 16, 16] , _lowerCamelCase=0 , _lowerCamelCase=[2, 2, 2] , _lowerCamelCase=[2, 2, 2] , _lowerCamelCase=0.0_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=2 , ) ->List[Any]: SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : Optional[int] = batch_size SCREAMING_SNAKE_CASE : Tuple = image_size SCREAMING_SNAKE_CASE : List[Any] = num_channels SCREAMING_SNAKE_CASE : Optional[int] = kernel_size SCREAMING_SNAKE_CASE : Union[str, Any] = stride SCREAMING_SNAKE_CASE : int = padding SCREAMING_SNAKE_CASE : Optional[int] = hidden_sizes SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : str = depths SCREAMING_SNAKE_CASE : int = key_dim SCREAMING_SNAKE_CASE : Any = drop_path_rate SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size SCREAMING_SNAKE_CASE : Dict = attention_ratio SCREAMING_SNAKE_CASE : int = mlp_ratio SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE : Union[str, Any] = is_training SCREAMING_SNAKE_CASE : Any = use_labels SCREAMING_SNAKE_CASE : Optional[Any] = num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE : str = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->Tuple: return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = LevitModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE : Optional[int] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) SCREAMING_SNAKE_CASE : str = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : Tuple = self.num_labels SCREAMING_SNAKE_CASE : Tuple = LevitForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : str = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ( { 'feature-extraction': LevitModel, 'image-classification': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : int = LevitModelTester(self ) SCREAMING_SNAKE_CASE : Any = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->Any: return @unittest.skip(reason='''Levit does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->str: pass @unittest.skip(reason='''Levit does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) ->List[Any]: pass @unittest.skip(reason='''Levit does not output attentions''' ) def __lowerCAmelCase ( self ) ->Tuple: pass def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Dict = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Optional[int] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states SCREAMING_SNAKE_CASE : Optional[int] = len(self.model_tester.depths ) + 1 self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE : Tuple = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->Tuple: pass def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->str: if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : int = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_lowerCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase ).loss loss.backward() def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Dict = True for model_class in self.all_model_classes: if model_class in get_values(_lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE : Tuple = model_class(_lowerCamelCase ) model.gradient_checkpointing_enable() model.to(_lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(**_lowerCamelCase ).loss loss.backward() def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : int = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_lowerCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type["title"]}""" ): SCREAMING_SNAKE_CASE : Union[str, Any] = problem_type['''title'''] SCREAMING_SNAKE_CASE : Optional[Any] = problem_type['''num_labels'''] SCREAMING_SNAKE_CASE : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE : List[Any] = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) SCREAMING_SNAKE_CASE : Optional[int] = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_lowerCamelCase ) as warning_list: SCREAMING_SNAKE_CASE : Any = model(**_lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def __lowerCAmelCase ( self ) ->Dict: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[int] = LevitModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ) ->List[str]: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.default_image_processor SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(**_lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : int = torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) )
313
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType a__ : Any = logging.get_logger(__name__) a__ : Dict = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = 'imagegpt' __SCREAMING_SNAKE_CASE : Optional[Any] = ['past_key_values'] __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowerCamelCase=512 + 1 , _lowerCamelCase=32 * 32 , _lowerCamelCase=512 , _lowerCamelCase=24 , _lowerCamelCase=8 , _lowerCamelCase=None , _lowerCamelCase="quick_gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=1e-5 , _lowerCamelCase=0.0_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , **_lowerCamelCase , ) ->str: SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = n_positions SCREAMING_SNAKE_CASE : Optional[int] = n_embd SCREAMING_SNAKE_CASE : List[Any] = n_layer SCREAMING_SNAKE_CASE : List[Any] = n_head SCREAMING_SNAKE_CASE : int = n_inner SCREAMING_SNAKE_CASE : Dict = activation_function SCREAMING_SNAKE_CASE : Union[str, Any] = resid_pdrop SCREAMING_SNAKE_CASE : Dict = embd_pdrop SCREAMING_SNAKE_CASE : List[str] = attn_pdrop SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_epsilon SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : int = scale_attn_weights SCREAMING_SNAKE_CASE : Optional[int] = use_cache SCREAMING_SNAKE_CASE : Optional[Any] = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE : str = reorder_and_upcast_attn SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings super().__init__(tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase ) class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = 3 , _lowerCamelCase = 32 , _lowerCamelCase = 32 , ) ->Mapping[str, Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_images(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = dict(preprocessor(images=_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return inputs
313
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : Optional[Any] = logging.get_logger(__name__) def _A ( lowercase ): """simple docstring""" a =YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: a =1_92 a =7_68 a =12 a =3 a =[8_00, 13_33] a =False elif yolos_name == "yolos_s_dWr": a =3_30 a =14 a =6 a =13_20 elif "yolos_s" in yolos_name: a =3_84 a =15_36 a =12 a =6 elif "yolos_b" in yolos_name: a =[8_00, 13_44] a =91 a ="huggingface/label-files" a ="coco-detection-id2label.json" a =json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) a ={int(__snake_case ): v for k, v in idalabel.items()} a =idalabel a ={v: k for k, v in idalabel.items()} return config def _A ( lowercase , lowercase , lowercase = False ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a =state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) a =state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a =in_proj_weight[: config.hidden_size, :] a =in_proj_bias[: config.hidden_size] a =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a =in_proj_weight[-config.hidden_size :, :] a =in_proj_bias[-config.hidden_size :] def _A ( lowercase ): """simple docstring""" if "backbone" in name: a =name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: a =name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: a =name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: a =name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: a =name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: a =name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: a =name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: a =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: a =name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: a =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: a =name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: a =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: a =name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: a =name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: a =name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: a =name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def _A ( lowercase , lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): a =orig_state_dict.pop(__snake_case ) if "qkv" in key: a =key.split('''.''' ) a =int(key_split[2] ) a =model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: a =val[:dim, :] a =val[ dim : dim * 2, : ] a =val[-dim:, :] else: a =val[:dim] a =val[dim : dim * 2] a =val[-dim:] else: a =val return orig_state_dict def _A ( ): """simple docstring""" a ="http://images.cocodataset.org/val2017/000000039769.jpg" a =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def _A ( lowercase , lowercase , lowercase , lowercase = False ): """simple docstring""" a =get_yolos_config(__snake_case ) # load original state_dict a =torch.load(__snake_case , map_location='''cpu''' )["model"] # load 🤗 model a =YolosForObjectDetection(__snake_case ) model.eval() a =convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by YolosImageProcessor a =8_00 if yolos_name != "yolos_ti" else 5_12 a =YolosImageProcessor(format='''coco_detection''' , size=__snake_case ) a =image_processor(images=prepare_img() , return_tensors='''pt''' ) a =model(**__snake_case ) a =outputs.logits, outputs.pred_boxes a =None, None if yolos_name == "yolos_ti": a =torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) a =torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": a =torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) a =torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": a =torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) a =torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": a =torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) a =torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": a =torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) a =torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] , __snake_case , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __snake_case , atol=1E-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) if push_to_hub: a ={ "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print('''Pushing to the hub...''' ) a =model_mapping[yolos_name] image_processor.push_to_hub(__snake_case , organization='''hustvl''' ) model.push_to_hub(__snake_case , organization='''hustvl''' ) if __name__ == "__main__": lowerCamelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--yolos_name""", default="""yolos_s_200_pre""", type=str, help=( """Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',""" """ \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.""" ), ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original state dict (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase_ : Dict = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
364
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : int = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowerCamelCase_ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
215
0
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex a__: Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ : def __init__( self ): A__ = False def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): if not self.initialized: A__ = RagRetriever( __lowerCamelCase,question_encoder_tokenizer=__lowerCamelCase,generator_tokenizer=__lowerCamelCase,index=__lowerCamelCase,init_retrieval=__lowerCamelCase,) A__ = True def UpperCamelCase ( self ): self.retriever.index.init_index() def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ , A__ = self.retriever._main_retrieve(__lowerCamelCase,__lowerCamelCase ) return doc_ids, retrieved_doc_embeds class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def __init__( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase=None ): if index is not None and index.is_initialized() and len(__lowerCamelCase ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( __lowerCamelCase,question_encoder_tokenizer=__lowerCamelCase,generator_tokenizer=__lowerCamelCase,index=__lowerCamelCase,init_retrieval=__lowerCamelCase,) A__ = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) for worker in self.retrieval_workers ] ) def UpperCamelCase ( self ): logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. A__ = self.retrieval_workers[random.randint(0,len(self.retrieval_workers ) - 1 )] A__ , A__ = ray.get(random_worker.retrieve.remote(__lowerCamelCase,__lowerCamelCase ) ) else: A__ , A__ = self._main_retrieve(__lowerCamelCase,__lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCamelCase ) @classmethod def UpperCamelCase ( cls,__lowerCamelCase,__lowerCamelCase=None,**__lowerCamelCase ): return super(__lowerCamelCase,cls ).get_tokenizers(__lowerCamelCase,__lowerCamelCase,**__lowerCamelCase ) @classmethod def UpperCamelCase ( cls,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase=None,**__lowerCamelCase ): A__ = kwargs.pop('''config''',__lowerCamelCase ) or RagConfig.from_pretrained(__lowerCamelCase,**__lowerCamelCase ) A__ = RagTokenizer.from_pretrained(__lowerCamelCase,config=__lowerCamelCase ) A__ = rag_tokenizer.question_encoder A__ = rag_tokenizer.generator if indexed_dataset is not None: A__ = '''custom''' A__ = CustomHFIndex(config.retrieval_vector_size,__lowerCamelCase ) else: A__ = cls._build_index(__lowerCamelCase ) return cls( __lowerCamelCase,question_encoder_tokenizer=__lowerCamelCase,generator_tokenizer=__lowerCamelCase,retrieval_workers=__lowerCamelCase,index=__lowerCamelCase,)
193
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def UpperCamelCase ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__lowerCamelCase ): A__ = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase,__lowerCamelCase ) A__ = FlaxAutoModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase,__lowerCamelCase ) @slow def UpperCamelCase ( self ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__lowerCamelCase ): A__ = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase,__lowerCamelCase ) A__ = FlaxAutoModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase,__lowerCamelCase ) @slow def UpperCamelCase ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: A__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) A__ = FlaxBertModel.from_pretrained(__lowerCamelCase ) A__ = tokenizer('''Do you support jax jitted function?''',return_tensors=TensorType.JAX ) @jax.jit def eval(**__lowerCamelCase ): return model(**__lowerCamelCase ) eval(**__lowerCamelCase ).block_until_ready() @slow def UpperCamelCase ( self ): for model_name in ["roberta-base", "roberta-large"]: A__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) A__ = FlaxRobertaModel.from_pretrained(__lowerCamelCase ) A__ = tokenizer('''Do you support jax jitted function?''',return_tensors=TensorType.JAX ) @jax.jit def eval(**__lowerCamelCase ): return model(**__lowerCamelCase ) eval(**__lowerCamelCase ).block_until_ready() def UpperCamelCase ( self ): with self.assertRaisesRegex( __lowerCamelCase,'''bert-base is not a local folder and is not a valid model identifier''' ): A__ = FlaxAutoModel.from_pretrained('''bert-base''' ) def UpperCamelCase ( self ): with self.assertRaisesRegex( __lowerCamelCase,r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): A__ = FlaxAutoModel.from_pretrained(__lowerCamelCase,revision='''aaaaaa''' ) def UpperCamelCase ( self ): with self.assertRaisesRegex( __lowerCamelCase,'''hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack''',): A__ = FlaxAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def UpperCamelCase ( self ): with self.assertRaisesRegex(__lowerCamelCase,'''Use `from_pt=True` to load this model''' ): A__ = FlaxAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' )
193
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """yolos""" def __init__( self : List[str] , lowercase_ : Union[str, Any]=768 , lowercase_ : str=12 , lowercase_ : List[str]=12 , lowercase_ : List[str]=3_072 , lowercase_ : Any="gelu" , lowercase_ : Optional[Any]=0.0 , lowercase_ : str=0.0 , lowercase_ : Dict=0.02 , lowercase_ : List[Any]=1E-12 , lowercase_ : Dict=[512, 864] , lowercase_ : List[Any]=16 , lowercase_ : str=3 , lowercase_ : Optional[int]=True , lowercase_ : Any=100 , lowercase_ : Optional[int]=True , lowercase_ : Union[str, Any]=False , lowercase_ : int=1 , lowercase_ : Dict=5 , lowercase_ : Tuple=2 , lowercase_ : str=5 , lowercase_ : Tuple=2 , lowercase_ : List[Any]=0.1 , **lowercase_ : List[str] , ) -> List[str]: super().__init__(**lowercase_ ) UpperCAmelCase : str = hidden_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : Optional[Any] = hidden_dropout_prob UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : List[Any] = layer_norm_eps UpperCAmelCase : int = image_size UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : Union[str, Any] = num_channels UpperCAmelCase : Union[str, Any] = qkv_bias UpperCAmelCase : Tuple = num_detection_tokens UpperCAmelCase : Dict = use_mid_position_embeddings UpperCAmelCase : str = auxiliary_loss # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Any = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : Any = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : List[Any] = eos_coefficient class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = version.parse("""1.11""" ) @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-4 @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: return 12
280
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = len(UpperCAmelCase_ ) UpperCAmelCase : int = len(UpperCAmelCase_ ) UpperCAmelCase : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) UpperCAmelCase : list = [] for char_count in range(UpperCAmelCase_ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(UpperCAmelCase_ ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
280
1
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor _A = logging.get_logger(__name__) class A ( __UpperCamelCase ): def __init__( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''', a_, ) super().__init__(*a_, **a_ )
278
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def a ( *_UpperCAmelCase : List[str] ): '''simple docstring''' with open(_UpperCAmelCase , '''r''' ) as fh: fcntl.flock(_UpperCAmelCase , fcntl.LOCK_EX ) try: print(*_UpperCAmelCase ) finally: fcntl.flock(_UpperCAmelCase , fcntl.LOCK_UN ) __A =int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __A =torch.device("cuda", local_rank) __A =socket.gethostname() __A =f'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __A =dist.get_rank() __A =dist.get_world_size() printflock(f'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(f'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(f'''{gpu} is broken''') raise
226
0
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCamelCase_ = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 4_80_00, 'sample_size': 6_55_36, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 4_80_00, 'sample_size': 6_55_36, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 4_80_00, 'sample_size': 13_10_72, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 1_60_00, 'sample_size': 6_55_36, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 1_60_00, 'sample_size': 6_55_36, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 1_60_00, 'sample_size': 6_55_36, }, } def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : List[Any] ) -> Tuple: return torch.atana(__A , __A ) / math.pi * 2 def SCREAMING_SNAKE_CASE_ ( __A : str ) -> Tuple: _SCREAMING_SNAKE_CASE = torch.sin(t * math.pi / 2 ) ** 2 _SCREAMING_SNAKE_CASE = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(__A , __A ) class lowercase_ ( A ): """simple docstring""" pass class lowercase_ ( nn.Module ): """simple docstring""" def __init__( self : int , __lowerCamelCase : Dict ): """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE = DiffusionAttnUnetaD(__lowerCamelCase , n_attn_layers=4 ) _SCREAMING_SNAKE_CASE = deepcopy(self.diffusion ) _SCREAMING_SNAKE_CASE = torch.quasirandom.SobolEngine(1 , scramble=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __A : Any ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]["url"] os.system(f"""wget {url} ./""" ) return f"""./{model_name}.ckpt""" lowerCamelCase_ = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } lowerCamelCase_ = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } lowerCamelCase_ = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } lowerCamelCase_ = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } lowerCamelCase_ = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } lowerCamelCase_ = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] ) -> Dict: if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(f"""ResConvBlock error with {name}""" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] ) -> Union[str, Any]: for key, value in ATTN_MAP.items(): if name.startswith(__A ) and not isinstance(__A , __A ): return name.replace(__A , __A ) elif name.startswith(__A ): return [name.replace(__A , __A ) for v in value] raise ValueError(f"""Attn error with {name}""" ) def SCREAMING_SNAKE_CASE_ ( __A : Dict , __A : List[Any]=13 ) -> List[Any]: _SCREAMING_SNAKE_CASE = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) _SCREAMING_SNAKE_CASE = 0 if string.startswith("net.3." ): depth += 1 _SCREAMING_SNAKE_CASE = string[6:] elif string.startswith("net." ): _SCREAMING_SNAKE_CASE = string[4:] while string.startswith("main.7." ): depth += 1 _SCREAMING_SNAKE_CASE = string[7:] if string.startswith("main." ): _SCREAMING_SNAKE_CASE = string[5:] # mid block if string[:2].isdigit(): _SCREAMING_SNAKE_CASE = string[:2] _SCREAMING_SNAKE_CASE = string[2:] else: _SCREAMING_SNAKE_CASE = string[0] _SCREAMING_SNAKE_CASE = string[1:] if depth == max_depth: _SCREAMING_SNAKE_CASE = MID_NUM_TO_LAYER[layer_num] _SCREAMING_SNAKE_CASE = "mid_block" elif depth > 0 and int(__A ) < 7: _SCREAMING_SNAKE_CASE = DOWN_NUM_TO_LAYER[layer_num] _SCREAMING_SNAKE_CASE = f"""down_blocks.{depth}""" elif depth > 0 and int(__A ) > 7: _SCREAMING_SNAKE_CASE = UP_NUM_TO_LAYER[layer_num] _SCREAMING_SNAKE_CASE = f"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: _SCREAMING_SNAKE_CASE = DEPTH_0_TO_LAYER[layer_num] _SCREAMING_SNAKE_CASE = f"""up_blocks.{max_depth - 1}""" if int(__A ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(f"""Naming error with {input_string} and string_left: {string_left}.""" ) _SCREAMING_SNAKE_CASE = string_left[1:] if "resnets" in new_layer: _SCREAMING_SNAKE_CASE = convert_resconv_naming(__A ) elif "attentions" in new_layer: _SCREAMING_SNAKE_CASE = convert_attn_naming(__A ) _SCREAMING_SNAKE_CASE = new_string_left if not isinstance(__A , __A ): _SCREAMING_SNAKE_CASE = prefix + "." + new_layer + "." + string_left else: _SCREAMING_SNAKE_CASE = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def SCREAMING_SNAKE_CASE_ ( __A : List[Any] ) -> int: _SCREAMING_SNAKE_CASE = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue _SCREAMING_SNAKE_CASE = rename(__A ) # check if we need to transform from Conv => Linear for attention if isinstance(__A , __A ): _SCREAMING_SNAKE_CASE = transform_conv_attns(__A , __A , __A ) else: _SCREAMING_SNAKE_CASE = v return new_state_dict def SCREAMING_SNAKE_CASE_ ( __A : Tuple , __A : Dict , __A : Tuple ) -> Optional[int]: if len(__A ) == 1: if len(v.shape ) == 3: # weight _SCREAMING_SNAKE_CASE = v[:, :, 0] else: # bias _SCREAMING_SNAKE_CASE = v else: # qkv matrices _SCREAMING_SNAKE_CASE = v.shape[0] _SCREAMING_SNAKE_CASE = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: _SCREAMING_SNAKE_CASE = v[i * single_shape : (i + 1) * single_shape, :, 0] else: _SCREAMING_SNAKE_CASE = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def SCREAMING_SNAKE_CASE_ ( __A : str ) -> Optional[int]: _SCREAMING_SNAKE_CASE = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) _SCREAMING_SNAKE_CASE = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" _SCREAMING_SNAKE_CASE = download(__A ) _SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]["sample_rate"] _SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]["sample_size"] _SCREAMING_SNAKE_CASE = Object() _SCREAMING_SNAKE_CASE = sample_size _SCREAMING_SNAKE_CASE = sample_rate _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = UNetaDModel(sample_size=__A , sample_rate=__A ) _SCREAMING_SNAKE_CASE = diffusers_model.state_dict() _SCREAMING_SNAKE_CASE = DiffusionUncond(__A ) orig_model.load_state_dict(torch.load(args.model_path , map_location=__A )["state_dict"] ) _SCREAMING_SNAKE_CASE = orig_model.diffusion_ema.eval() _SCREAMING_SNAKE_CASE = orig_model.state_dict() _SCREAMING_SNAKE_CASE = rename_orig_weights(__A ) _SCREAMING_SNAKE_CASE = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) _SCREAMING_SNAKE_CASE = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(__A ) == 0, f"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith("kernel" ) for k in list(__A ) ), f"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": _SCREAMING_SNAKE_CASE = value.squeeze() _SCREAMING_SNAKE_CASE = value diffusers_model.load_state_dict(__A ) _SCREAMING_SNAKE_CASE = 1_00 _SCREAMING_SNAKE_CASE = 33 _SCREAMING_SNAKE_CASE = IPNDMScheduler(num_train_timesteps=__A ) _SCREAMING_SNAKE_CASE = torch.manual_seed(__A ) _SCREAMING_SNAKE_CASE = torch.randn([1, 2, config.sample_size] , generator=__A ).to(__A ) _SCREAMING_SNAKE_CASE = torch.linspace(1 , 0 , steps + 1 , device=__A )[:-1] _SCREAMING_SNAKE_CASE = get_crash_schedule(__A ) _SCREAMING_SNAKE_CASE = DanceDiffusionPipeline(unet=__A , scheduler=__A ) _SCREAMING_SNAKE_CASE = torch.manual_seed(33 ) _SCREAMING_SNAKE_CASE = pipe(num_inference_steps=__A , generator=__A ).audios _SCREAMING_SNAKE_CASE = sampling.iplms_sample(__A , __A , __A , {} ) _SCREAMING_SNAKE_CASE = generated.clamp(-1 , 1 ) _SCREAMING_SNAKE_CASE = (generated - audio).abs().sum() _SCREAMING_SNAKE_CASE = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , __A ) print("Diff max" , __A ) assert diff_max < 1e-3, f"""Diff max: {diff_max} is too much :-/""" print(f"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') lowerCamelCase_ = parser.parse_args() main(args)
362
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( __A : str , __A : str ) -> str: _SCREAMING_SNAKE_CASE = len(__A ) _SCREAMING_SNAKE_CASE = len(__A ) _SCREAMING_SNAKE_CASE = ( first_str_length if first_str_length > second_str_length else second_str_length ) _SCREAMING_SNAKE_CASE = [] for char_count in range(__A ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(__A ) if __name__ == "__main__": print(alternative_string_arrange('AB', 'XYZ'), end=' ')
111
0
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Tuple , A : str , A : List[str]=1_0_0 , A : List[str]=1_3 , A : Union[str, Any]=3_0 , A : Union[str, Any]=2 , A : List[Any]=3 , A : Any=True , A : Tuple=True , A : Tuple=3_2 , A : str=5 , A : Any=4 , A : List[str]=3_7 , A : Tuple="gelu" , A : Union[str, Any]=0.1 , A : Tuple=0.1 , A : Union[str, Any]=1_0 , A : List[str]=0.02 , A : Dict=3 , ) ->int: lowerCamelCase__ : int = parent lowerCamelCase__ : Tuple = vocab_size lowerCamelCase__ : Dict = batch_size lowerCamelCase__ : str = image_size lowerCamelCase__ : Any = patch_size lowerCamelCase__ : str = num_channels lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : Tuple = use_labels lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : str = num_attention_heads lowerCamelCase__ : Tuple = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : Tuple = type_sequence_label_size lowerCamelCase__ : List[Any] = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase__ : List[Any] = (image_size // patch_size) ** 2 lowerCamelCase__ : Tuple = num_patches + 1 def __lowerCamelCase ( self : Optional[int] ) ->List[Any]: lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : List[str] = None if self.use_labels: lowerCamelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Any = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , ) return config, pixel_values, labels def __lowerCamelCase ( self : List[Any] , A : str , A : List[Any] , A : Any ) ->Tuple: lowerCamelCase__ : Union[str, Any] = FlaxBeitModel(config=A ) lowerCamelCase__ : int = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self : Union[str, Any] , A : List[str] , A : Optional[int] , A : Dict ) ->Optional[int]: lowerCamelCase__ : Dict = FlaxBeitForMaskedImageModeling(config=A ) lowerCamelCase__ : Optional[Any] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __lowerCamelCase ( self : Union[str, Any] , A : Optional[Any] , A : Optional[int] , A : List[Any] ) ->Any: lowerCamelCase__ : Tuple = self.type_sequence_label_size lowerCamelCase__ : Tuple = FlaxBeitForImageClassification(config=A ) lowerCamelCase__ : Any = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : Union[str, Any] = 1 lowerCamelCase__ : Optional[int] = FlaxBeitForImageClassification(A ) lowerCamelCase__ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : List[str] = model(A ) def __lowerCamelCase ( self : Optional[Any] ) ->List[str]: lowerCamelCase__ : List[Any] = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : str = config_and_inputs lowerCamelCase__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : int = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def __lowerCamelCase ( self : str ) ->None: lowerCamelCase__ : Dict = FlaxBeitModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=3_7 ) def __lowerCamelCase ( self : List[str] ) ->Any: self.config_tester.run_common_tests() def __lowerCamelCase ( self : str ) ->List[Any]: lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[str] = model_class(A ) lowerCamelCase__ : int = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) def __lowerCamelCase ( self : int ) ->List[Any]: lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ : Union[str, Any] = self._prepare_for_class(A , A ) lowerCamelCase__ : Optional[int] = model_class(A ) @jax.jit def model_jitted(A : str , **A : Optional[int] ): return model(pixel_values=A , **A ) with self.subTest('''JIT Enabled''' ): lowerCamelCase__ : str = model_jitted(**A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCamelCase__ : Dict = model_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) def __lowerCamelCase ( self : Tuple ) ->Tuple: lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def __lowerCamelCase ( self : Dict ) ->Any: lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def __lowerCamelCase ( self : Any ) ->str: lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def __lowerCamelCase ( self : Optional[int] ) ->Tuple: for model_class_name in self.all_model_classes: lowerCamelCase__ : List[str] = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' ) lowerCamelCase__ : Union[str, Any] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(A ) def _a ( ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self : List[Any] ) ->Dict: return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def __lowerCamelCase ( self : str ) ->str: lowerCamelCase__ : List[str] = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ) lowerCamelCase__ : Optional[Any] = self.default_image_processor lowerCamelCase__ : str = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=A , return_tensors='''np''' ).pixel_values # prepare bool_masked_pos lowerCamelCase__ : List[str] = np.ones((1, 1_9_6) , dtype=A ) # forward pass lowerCamelCase__ : Optional[int] = model(pixel_values=A , bool_masked_pos=A ) lowerCamelCase__ : Optional[Any] = outputs.logits # verify the logits lowerCamelCase__ : str = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape , A ) lowerCamelCase__ : Any = np.array( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , A , atol=1e-2 ) ) @slow def __lowerCamelCase ( self : Dict ) ->List[Any]: lowerCamelCase__ : Any = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ) lowerCamelCase__ : Dict = self.default_image_processor lowerCamelCase__ : List[str] = prepare_img() lowerCamelCase__ : int = image_processor(images=A , return_tensors='''np''' ) # forward pass lowerCamelCase__ : List[str] = model(**A ) lowerCamelCase__ : Optional[int] = outputs.logits # verify the logits lowerCamelCase__ : Union[str, Any] = (1, 1_0_0_0) self.assertEqual(logits.shape , A ) lowerCamelCase__ : Any = np.array([-1.23_85, -1.09_87, -1.01_08] ) self.assertTrue(np.allclose(logits[0, :3] , A , atol=1e-4 ) ) lowerCamelCase__ : Union[str, Any] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , A ) @slow def __lowerCamelCase ( self : int ) ->Tuple: lowerCamelCase__ : List[Any] = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ) lowerCamelCase__ : Any = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[Any] = image_processor(images=A , return_tensors='''np''' ) # forward pass lowerCamelCase__ : Union[str, Any] = model(**A ) lowerCamelCase__ : Any = outputs.logits # verify the logits lowerCamelCase__ : List[str] = (1, 2_1_8_4_1) self.assertEqual(logits.shape , A ) lowerCamelCase__ : str = np.array([1.68_81, -0.27_87, 0.59_01] ) self.assertTrue(np.allclose(logits[0, :3] , A , atol=1e-4 ) ) lowerCamelCase__ : List[Any] = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , A )
142
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _a ( UpperCAmelCase ) -> str: """simple docstring""" lowerCamelCase__ : int = tmp_path / '''file.csv''' lowerCamelCase__ : Tuple = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(UpperCAmelCase , '''w''' ) as f: f.write(UpperCAmelCase ) return str(UpperCAmelCase ) @pytest.fixture def _a ( UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Any = tmp_path / '''malformed_file.csv''' lowerCamelCase__ : List[str] = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(UpperCAmelCase , '''w''' ) as f: f.write(UpperCAmelCase ) return str(UpperCAmelCase ) @pytest.fixture def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" lowerCamelCase__ : Dict = tmp_path / '''csv_with_image.csv''' lowerCamelCase__ : int = textwrap.dedent( f"\\n image\n {image_file}\n " ) with open(UpperCAmelCase , '''w''' ) as f: f.write(UpperCAmelCase ) return str(UpperCAmelCase ) @pytest.fixture def _a ( UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : Union[str, Any] = tmp_path / '''csv_with_label.csv''' lowerCamelCase__ : List[Any] = textwrap.dedent( '''\ label good bad good ''' ) with open(UpperCAmelCase , '''w''' ) as f: f.write(UpperCAmelCase ) return str(UpperCAmelCase ) @pytest.fixture def _a ( UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : int = tmp_path / '''csv_with_int_list.csv''' lowerCamelCase__ : Dict = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(UpperCAmelCase , '''w''' ) as f: f.write(UpperCAmelCase ) return str(UpperCAmelCase ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : Union[str, Any] = Csv() lowerCamelCase__ : List[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(UpperCAmelCase , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(UpperCAmelCase ) in record.message for record in caplog.records ) @require_pil def _a ( UpperCAmelCase ) -> Optional[Any]: """simple docstring""" with open(UpperCAmelCase , encoding='''utf-8''' ) as f: lowerCamelCase__ : Tuple = f.read().splitlines()[1] lowerCamelCase__ : Any = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) lowerCamelCase__ : List[str] = csv._generate_tables([[csv_file_with_image]] ) lowerCamelCase__ : Dict = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() lowerCamelCase__ : Tuple = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def _a ( UpperCAmelCase ) -> List[Any]: """simple docstring""" with open(UpperCAmelCase , encoding='''utf-8''' ) as f: lowerCamelCase__ : List[Any] = f.read().splitlines()[1:] lowerCamelCase__ : List[Any] = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) lowerCamelCase__ : Optional[Any] = csv._generate_tables([[csv_file_with_label]] ) lowerCamelCase__ : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() lowerCamelCase__ : str = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(UpperCAmelCase ) for label in labels] def _a ( UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : List[str] = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda UpperCAmelCase : [int(UpperCAmelCase ) for i in x.split()]} ) lowerCamelCase__ : Optional[Any] = csv._generate_tables([[csv_file_with_int_list]] ) lowerCamelCase__ : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) lowerCamelCase__ : Tuple = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
142
1
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class A__ ( enum.Enum ): lowercase = 0 lowercase = 1 lowercase = 2 @add_end_docstrings(__magic_name__ ) class A__ ( __magic_name__ ): lowercase = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self : Optional[int] , *a : Union[str, Any] , **a : Optional[int] ): '''simple docstring''' super().__init__(*a , **a ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. lowerCAmelCase__ : str = None if self.model.config.prefix is not None: lowerCAmelCase__ : List[Any] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. lowerCAmelCase__ : List[str] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = self._sanitize_parameters(prefix=a , **self._forward_params ) lowerCAmelCase__ : Any = {**self._preprocess_params, **preprocess_params} lowerCAmelCase__ : Optional[int] = {**self._forward_params, **forward_params} def _lowerCamelCase ( self : Optional[Any] , a : Any=None , a : Optional[int]=None , a : str=None , a : Union[str, Any]=None , a : Optional[Any]=None , a : Union[str, Any]=None , a : Optional[Any]=None , a : List[Any]=None , **a : str , ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = {} if prefix is not None: lowerCAmelCase__ : int = prefix if prefix: lowerCAmelCase__ : Optional[Any] = self.tokenizer( a , padding=a , add_special_tokens=a , return_tensors=self.framework ) lowerCAmelCase__ : Dict = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ' [None, \'hole\']' ) lowerCAmelCase__ : List[str] = handle_long_generation preprocess_params.update(a ) lowerCAmelCase__ : Any = generate_kwargs lowerCAmelCase__ : Tuple = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) lowerCAmelCase__ : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) lowerCAmelCase__ : Any = ReturnType.TENSORS if return_type is not None: lowerCAmelCase__ : Optional[int] = return_type if clean_up_tokenization_spaces is not None: lowerCAmelCase__ : Union[str, Any] = clean_up_tokenization_spaces if stop_sequence is not None: lowerCAmelCase__ : Optional[int] = self.tokenizer.encode(a , add_special_tokens=a ) if len(a ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) lowerCAmelCase__ : Any = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _lowerCamelCase ( self : Dict , *a : str , **a : List[Any] ): '''simple docstring''' if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*a , **a ) def __call__( self : str , a : Any , **a : Optional[Any] ): '''simple docstring''' return super().__call__(a , **a ) def _lowerCamelCase ( self : str , a : int , a : Tuple="" , a : Optional[int]=None , **a : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.tokenizer( prefix + prompt_text , padding=a , add_special_tokens=a , return_tensors=self.framework ) lowerCAmelCase__ : Optional[int] = prompt_text if handle_long_generation == "hole": lowerCAmelCase__ : Optional[int] = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: lowerCAmelCase__ : Dict = generate_kwargs['max_new_tokens'] else: lowerCAmelCase__ : Tuple = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: lowerCAmelCase__ : str = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) lowerCAmelCase__ : Union[str, Any] = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: lowerCAmelCase__ : str = inputs['attention_mask'][:, -keep_length:] return inputs def _lowerCamelCase ( self : Dict , a : Optional[Any] , **a : int ): '''simple docstring''' lowerCAmelCase__ : List[str] = model_inputs['input_ids'] lowerCAmelCase__ : Optional[Any] = model_inputs.get('attention_mask' , a ) # Allow empty prompts if input_ids.shape[1] == 0: lowerCAmelCase__ : Dict = None lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Any = 1 else: lowerCAmelCase__ : Tuple = input_ids.shape[0] lowerCAmelCase__ : Dict = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. lowerCAmelCase__ : Optional[Any] = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: lowerCAmelCase__ : int = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: lowerCAmelCase__ : Optional[int] = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length lowerCAmelCase__ : List[Any] = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL lowerCAmelCase__ : Any = self.model.generate(input_ids=a , attention_mask=a , **a ) lowerCAmelCase__ : List[str] = generated_sequence.shape[0] if self.framework == "pt": lowerCAmelCase__ : List[Any] = generated_sequence.reshape(a , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": lowerCAmelCase__ : Union[str, Any] = tf.reshape(a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _lowerCamelCase ( self : Union[str, Any] , a : int , a : Optional[int]=ReturnType.FULL_TEXT , a : List[Any]=True ): '''simple docstring''' lowerCAmelCase__ : List[Any] = model_outputs['generated_sequence'][0] lowerCAmelCase__ : Dict = model_outputs['input_ids'] lowerCAmelCase__ : Dict = model_outputs['prompt_text'] lowerCAmelCase__ : Dict = generated_sequence.numpy().tolist() lowerCAmelCase__ : str = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: lowerCAmelCase__ : Tuple = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text lowerCAmelCase__ : int = self.tokenizer.decode( a , skip_special_tokens=a , clean_up_tokenization_spaces=a , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: lowerCAmelCase__ : Optional[Any] = 0 else: lowerCAmelCase__ : Any = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=a , clean_up_tokenization_spaces=a , ) ) if return_type == ReturnType.FULL_TEXT: lowerCAmelCase__ : List[str] = prompt_text + text[prompt_length:] else: lowerCAmelCase__ : Any = text[prompt_length:] lowerCAmelCase__ : int = {'generated_text': all_text} records.append(a ) return records
307
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ): return x return (x, x) @require_tf class A__ : def _lowerCamelCase ( self : List[Any] , a : List[str] , a : Optional[Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict , a : int , a : str , a : List[Any] , a : Dict , a : List[str]=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(a , a ) lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel(a ) lowerCAmelCase__ : Tuple = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def _lowerCamelCase ( self : Union[str, Any] , a : Dict , a : Tuple , a : Dict , a : Union[str, Any] , a : List[Any]=None , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.get_vision_text_model(a , a ) lowerCAmelCase__ : List[Any] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Optional[int] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : List[str] , a : Optional[int] , a : Optional[int] , a : Union[str, Any] , a : List[Any] , a : Any=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[Any] = {'vision_model': vision_model, 'text_model': text_model} lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**a ) lowerCAmelCase__ : Union[str, Any] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : Any , a : Optional[int] , a : Optional[int] , a : Dict , a : Optional[int] , a : Optional[int]=None , **a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : int = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Dict = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : List[str] = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : int = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = after_output[0].numpy() lowerCAmelCase__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) def _lowerCamelCase ( self : List[str] , a : Dict , a : Optional[int] , a : List[Any] , a : str , a : int=None , **a : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : str = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : Optional[int] = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : str = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : List[Any] , a : np.ndarray , a : np.ndarray , a : float ): '''simple docstring''' lowerCAmelCase__ : int = np.abs((a - b) ).max() self.assertLessEqual(a , a , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**a ) @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.get_pretrained_model_and_inputs() lowerCAmelCase__ : List[Any] = model_a(**a ) lowerCAmelCase__ : Optional[int] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(a ) lowerCAmelCase__ : str = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : List[str] = model_a(**a ) lowerCAmelCase__ : int = after_outputs[0].numpy() lowerCAmelCase__ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : int = 13 lowerCAmelCase__ : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Optional[Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : List[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , a : Dict , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFViTModel(a , name='vision_model' ) lowerCAmelCase__ : str = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFViTModelTester(self ) lowerCAmelCase__ : Tuple = TFBertModelTester(self ) lowerCAmelCase__ : Optional[int] = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) lowerCAmelCase__ : Tuple = 13 lowerCAmelCase__ : Any = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Any = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : Optional[Any] , a : Dict , a : Dict , a : Any , a : Any=None , **a : int ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Any = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCAmelCase__ : str = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Union[str, Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : List[str] = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : int , a : Optional[int] , a : int ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModel(a , name='vision_model' ) lowerCAmelCase__ : List[Any] = TFRobertaModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModelTester(self ) lowerCAmelCase__ : List[str] = TFRobertaModelTester(self ) lowerCAmelCase__ : str = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : Dict = 13 lowerCAmelCase__ : str = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Union[str, Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Optional[int] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : int , a : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFCLIPVisionModel(a , name='vision_model' ) lowerCAmelCase__ : List[str] = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = TFCLIPVisionModelTester(self ) lowerCAmelCase__ : Union[str, Any] = TFBertModelTester(self ) lowerCAmelCase__ : Any = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Any = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class A__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=a ) lowerCAmelCase__ : List[Any] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) lowerCAmelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCAmelCase__ : Any = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=a , padding=a , return_tensors='np' ) lowerCAmelCase__ : Union[str, Any] = model(**a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCAmelCase__ : List[str] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , a , atol=1E-3 ) )
307
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _UpperCamelCase : Optional[int] = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ ( _a): lowerCamelCase__ : Tuple = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **a ) -> List[Any]: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase__ : Optional[Any] = deprecated_arg[3:] lowercase__ : Dict = not kwargs.pop(a ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) lowercase__ : Dict = kwargs.pop('tpu_name' , self.tpu_name ) lowercase__ : Optional[int] = kwargs.pop('device_idx' , self.device_idx ) lowercase__ : List[Any] = kwargs.pop('eager_mode' , self.eager_mode ) lowercase__ : Union[str, Any] = kwargs.pop('use_xla' , self.use_xla ) super().__init__(**a ) lowerCamelCase__ : str = field( default=_a , metadata={"help": "Name of TPU"} , ) lowerCamelCase__ : int = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) lowerCamelCase__ : bool = field(default=_a , metadata={"help": "Benchmark models in eager model."}) lowerCamelCase__ : bool = field( default=_a , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def _UpperCAmelCase ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ['tf'] ) lowercase__ : Dict = None if self.tpu: try: if self.tpu_name: lowercase__ : Tuple = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowercase__ : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowercase__ : str = None return tpu @cached_property def _UpperCAmelCase ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowercase__ : Union[str, Any] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU' ) lowercase__ : str = tf.distribute.OneDeviceStrategy(device=f"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , 'GPU' ) # disable GPU lowercase__ : Dict = tf.distribute.OneDeviceStrategy(device=f"""/cpu:{self.device_idx}""" ) return strategy @property def _UpperCAmelCase ( self ) -> bool: requires_backends(self , ['tf'] ) return self._setup_tpu is not None @property def _UpperCAmelCase ( self ) -> "tf.distribute.Strategy": requires_backends(self , ['tf'] ) return self._setup_strategy @property def _UpperCAmelCase ( self ) -> Tuple: requires_backends(self , ['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def _UpperCAmelCase ( self ) -> int: requires_backends(self , ['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _UpperCAmelCase ( self ) -> bool: return self.n_gpu > 0
77
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = '''ibert''' def __init__( self : int , lowerCAmelCase__ : Any=3_0_5_2_2 , lowerCAmelCase__ : List[Any]=7_6_8 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : List[Any]=1_2 , lowerCAmelCase__ : Optional[int]=3_0_7_2 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : Optional[Any]=5_1_2 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : Union[str, Any]=1e-12 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Optional[Any]=0 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : Optional[Any]="absolute" , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Tuple="none" , **lowerCAmelCase__ : Optional[Any] , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : Optional[int] = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : str = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Union[str, Any] = type_vocab_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Tuple = layer_norm_eps _UpperCAmelCase : Optional[int] = position_embedding_type _UpperCAmelCase : Any = quant_mode _UpperCAmelCase : Optional[Any] = force_dequant class A__ ( UpperCamelCase ): """simple docstring""" @property def _lowerCAmelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
145
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Union[str, Any] = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
313
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Any: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase_ = """""" else: lowercase_ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ = in_proj_weight[ : config.hidden_size, : ] lowercase_ = in_proj_bias[: config.hidden_size] lowercase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ = in_proj_weight[ -config.hidden_size :, : ] lowercase_ = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = dct.pop(__lowerCAmelCase ) lowercase_ = val def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = ViTMSNConfig() lowercase_ = 10_00 lowercase_ = """datasets/huggingface/label-files""" lowercase_ = """imagenet-1k-id2label.json""" lowercase_ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase ) , """r""" ) ) lowercase_ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowercase_ = idalabel lowercase_ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase_ = 3_84 lowercase_ = 15_36 lowercase_ = 6 elif "l16" in checkpoint_url: lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 elif "b4" in checkpoint_url: lowercase_ = 4 elif "l7" in checkpoint_url: lowercase_ = 7 lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 lowercase_ = ViTMSNModel(__lowerCAmelCase ) lowercase_ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" )["""target_encoder"""] lowercase_ = ViTImageProcessor(size=config.image_size ) remove_projection_head(__lowerCAmelCase ) lowercase_ = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , base_model=__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() lowercase_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) lowercase_ = ViTImageProcessor( size=config.image_size , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase ) lowercase_ = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase_ = model(**__lowerCAmelCase ) lowercase_ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase_ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowercase_ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowercase_ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowercase_ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowercase_ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __lowerCAmelCase , atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase : Tuple = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
1
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder lowerCAmelCase__ = '''base_with_context''' def snake_case_ ( A_ : Optional[Any], A_ : str ): '''simple docstring''' _lowerCamelCase : List[str] = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''] ) ) _lowerCamelCase : str = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ), requires_grad=A_ ) for lyr_num, lyr in enumerate(model.encoders ): _lowerCamelCase : Union[str, Any] = weights[F'''layers_{lyr_num}'''] _lowerCamelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) _lowerCamelCase : Optional[int] = ly_weight['''attention'''] _lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) _lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) _lowerCamelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) _lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) _lowerCamelCase : str = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) _lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) _lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) _lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) _lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def snake_case_ ( A_ : int, A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : str = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T ) ) _lowerCamelCase : List[Any] = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ), requires_grad=A_ ) for lyr_num, lyr in enumerate(model.encoders ): _lowerCamelCase : int = weights[F'''layers_{lyr_num}'''] _lowerCamelCase : List[str] = ly_weight['''attention'''] _lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) _lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) _lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) _lowerCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) _lowerCamelCase : str = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) _lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) _lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) _lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) _lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) _lowerCamelCase : int = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def snake_case_ ( A_ : Dict, A_ : str ): '''simple docstring''' _lowerCamelCase : List[str] = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T ) ) _lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T ) ) _lowerCamelCase : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ), requires_grad=A_ ) _lowerCamelCase : str = nn.Parameter( torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _lowerCamelCase : Dict = weights[F'''layers_{lyr_num}'''] _lowerCamelCase : Optional[int] = nn.Parameter( torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''] ) ) _lowerCamelCase : str = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T ) ) _lowerCamelCase : List[str] = ly_weight['''self_attention'''] _lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) _lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) _lowerCamelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) _lowerCamelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) _lowerCamelCase : Union[str, Any] = ly_weight['''MultiHeadDotProductAttention_0'''] _lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) _lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) _lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) _lowerCamelCase : int = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) _lowerCamelCase : Tuple = nn.Parameter( torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''] ) ) _lowerCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) _lowerCamelCase : int = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T ) ) _lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) _lowerCamelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) _lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) _lowerCamelCase : int = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''] ) ) _lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T ) ) return model def snake_case_ ( A_ : int ): '''simple docstring''' _lowerCamelCase : Any = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _lowerCamelCase : Optional[int] = jnp.tree_util.tree_map(onp.array, A_ ) _lowerCamelCase : Dict = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] _lowerCamelCase : List[Any] = os.path.join(args.checkpoint_path, '''..''', '''config.gin''' ) _lowerCamelCase : Tuple = inference.parse_training_gin_file(A_, A_ ) _lowerCamelCase : Optional[Any] = inference.InferenceModel(args.checkpoint_path, A_ ) _lowerCamelCase : List[str] = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''', variance_type='''fixed_large''' ) _lowerCamelCase : List[Any] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['''inputs'''], vocab_size=synth_model.model.module.config.vocab_size, d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj='''gated-gelu''', ) _lowerCamelCase : List[str] = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims, targets_context_length=synth_model.sequence_length['''targets_context'''], d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj='''gated-gelu''', ) _lowerCamelCase : Dict = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims, targets_length=synth_model.sequence_length['''targets_context'''], max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time, d_model=synth_model.model.module.config.emb_dim, num_layers=synth_model.model.module.config.num_decoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, dropout_rate=synth_model.model.module.config.dropout_rate, ) _lowerCamelCase : Optional[Any] = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''], A_ ) _lowerCamelCase : Any = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''], A_ ) _lowerCamelCase : int = load_decoder(ta_checkpoint['''target''']['''decoder'''], A_ ) _lowerCamelCase : str = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''' ) _lowerCamelCase : Optional[int] = SpectrogramDiffusionPipeline( notes_encoder=A_, continuous_encoder=A_, decoder=A_, scheduler=A_, melgan=A_, ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=F"""{MODEL}/checkpoint_500000""", type=str, required=False, help='''Path to the original jax model checkpoint.''', ) lowerCAmelCase__ = parser.parse_args() main(args)
72
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_lxmert''': ['''LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LxmertConfig'''], '''tokenization_lxmert''': ['''LxmertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''LxmertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''LxmertEncoder''', '''LxmertForPreTraining''', '''LxmertForQuestionAnswering''', '''LxmertModel''', '''LxmertPreTrainedModel''', '''LxmertVisualFeatureEncoder''', '''LxmertXLayer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLxmertForPreTraining''', '''TFLxmertMainLayer''', '''TFLxmertModel''', '''TFLxmertPreTrainedModel''', '''TFLxmertVisualFeatureEncoder''', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
1
from math import pi, sqrt def lowerCamelCase_ ( _a ): """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) if num > 1_71.5: raise OverflowError('''math range error''' ) elif num - int(_a ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(_a ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowerCamelCase_ ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(_a ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() lowerCamelCase = 1.0 while num: lowerCamelCase = float(input('''Gamma of: ''')) print(f'''gamma({num}) = {gamma(num)}''') print('''\nEnter 0 to exit...''')
211
# using dfs for finding eulerian path traversal def lowerCamelCase_ ( _a , _a , _a , _a=None ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = True, True lowerCAmelCase__ : Any = dfs(_a , _a , _a , _a ) return path def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : str = -1 for i in range(_a ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 lowerCAmelCase__ : Tuple = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = check_circuit_or_path(_a , _a ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return lowerCAmelCase__ : Optional[int] = 1 if check == 2: lowerCAmelCase__ : Any = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) lowerCAmelCase__ : Optional[int] = dfs(_a , _a , _a ) print(_a ) def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : List[str] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} lowerCAmelCase__ : Tuple = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} lowerCAmelCase__ : str = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} lowerCAmelCase__ : List[str] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} lowerCAmelCase__ : List[Any] = { 1: [], 2: [] # all degree is zero } lowerCAmelCase__ : Optional[Any] = 10 check_euler(_a , _a ) check_euler(_a , _a ) check_euler(_a , _a ) check_euler(_a , _a ) check_euler(_a , _a ) if __name__ == "__main__": main()
211
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Any = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys _lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
167
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Optional[Any] = logging.get_logger(__name__) snake_case_ : int = { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json' ), } class lowercase__ ( lowercase ): lowercase__ = """xlm-prophetnet""" lowercase__ = ["""past_key_values"""] lowercase__ = { """num_attention_heads""": """num_encoder_attention_heads""", } def __init__( self : Optional[int] ,lowerCamelCase__ : Optional[float] = 0.1 ,lowerCamelCase__ : Optional[Union[str, Callable]] = "gelu" ,lowerCamelCase__ : Optional[int] = 30522 ,lowerCamelCase__ : Optional[int] = 1024 ,lowerCamelCase__ : Optional[int] = 4096 ,lowerCamelCase__ : Optional[int] = 12 ,lowerCamelCase__ : Optional[int] = 16 ,lowerCamelCase__ : Optional[int] = 4096 ,lowerCamelCase__ : Optional[int] = 12 ,lowerCamelCase__ : Optional[int] = 16 ,lowerCamelCase__ : Optional[float] = 0.1 ,lowerCamelCase__ : Optional[float] = 0.1 ,lowerCamelCase__ : Optional[int] = 512 ,lowerCamelCase__ : Optional[float] = 0.0_2 ,lowerCamelCase__ : Optional[bool] = True ,lowerCamelCase__ : Optional[bool] = True ,lowerCamelCase__ : Optional[int] = 0 ,lowerCamelCase__ : Optional[int] = 2 ,lowerCamelCase__ : Optional[int] = 32 ,lowerCamelCase__ : Optional[int] = 128 ,lowerCamelCase__ : Optional[bool] = False ,lowerCamelCase__ : Optional[float] = 0.0 ,lowerCamelCase__ : Optional[bool] = True ,lowerCamelCase__ : Optional[int] = 0 ,lowerCamelCase__ : Optional[int] = 1 ,lowerCamelCase__ : Optional[int] = 2 ,**lowerCamelCase__ : Union[str, Any] ,): '''simple docstring''' _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : str = encoder_ffn_dim _UpperCamelCase : List[Any] = num_encoder_layers _UpperCamelCase : Tuple = num_encoder_attention_heads _UpperCamelCase : Optional[int] = decoder_ffn_dim _UpperCamelCase : List[Any] = num_decoder_layers _UpperCamelCase : List[Any] = num_decoder_attention_heads _UpperCamelCase : Optional[Any] = max_position_embeddings _UpperCamelCase : str = init_std # Normal(0, this parameter) _UpperCamelCase : List[str] = activation_function # parameters for xlmprophetnet _UpperCamelCase : Tuple = ngram _UpperCamelCase : Optional[Any] = num_buckets _UpperCamelCase : Tuple = relative_max_distance _UpperCamelCase : str = disable_ngram_loss _UpperCamelCase : str = eps # 3 Types of Dropout _UpperCamelCase : Union[str, Any] = attention_dropout _UpperCamelCase : str = activation_dropout _UpperCamelCase : List[str] = dropout _UpperCamelCase : Tuple = use_cache super().__init__( pad_token_id=lowerCamelCase__ ,bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,is_encoder_decoder=lowerCamelCase__ ,add_cross_attention=lowerCamelCase__ ,decoder_start_token_id=lowerCamelCase__ ,**lowerCamelCase__ ,) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and' ' `num_decoder_layers`.' )
83
0
"""simple docstring""" import functools def a__ ( lowerCAmelCase , lowerCAmelCase ) -> int: UpperCAmelCase__ : List[Any] = len(lowerCAmelCase ) UpperCAmelCase__ : Tuple = len(lowerCAmelCase ) @functools.cache def min_distance(lowerCAmelCase , lowerCAmelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase__ : List[Any] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , lowerCAmelCase ) , 1 + min_distance(lowerCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
166
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , _lowerCamelCase=0.01 , _lowerCamelCase=1000 ): """simple docstring""" UpperCAmelCase__ : List[str] = p_stop UpperCAmelCase__ : Any = max_length def __iter__(self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = 0 UpperCAmelCase__ : Tuple = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase__ : Dict = random.random() < self.p_stop class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=True ): """simple docstring""" UpperCAmelCase__ : int = [ BatchSamplerShard(_lowerCamelCase , 2 , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) for i in range(2 ) ] UpperCAmelCase__ : List[Any] = [list(_lowerCamelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_lowerCamelCase ) for shard in batch_sampler_shards] , [len(_lowerCamelCase ) for e in expected] ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : List[str] = BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase__ : List[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : int = BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase__ : Any = BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase__ : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Tuple = BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is very small. UpperCAmelCase__ : str = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : int = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = [[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase__ : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase__ : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) UpperCAmelCase__ : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) # Check the shards when the dataset is very small. UpperCAmelCase__ : List[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = [[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase__ : int = BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase__ : Optional[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase__ : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : Dict = BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is very small. UpperCAmelCase__ : str = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Tuple = [[[0, 1]], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = [[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase__ : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase__ : List[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is very small. UpperCAmelCase__ : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : List[str] = [[[0, 1]], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Tuple = [[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase__ : List[str] = [BatchSamplerShard(_lowerCamelCase , 2 , _lowerCamelCase , even_batches=_lowerCamelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=False ): """simple docstring""" random.seed(_lowerCamelCase ) UpperCAmelCase__ : Tuple = list(_lowerCamelCase ) UpperCAmelCase__ : Any = [ IterableDatasetShard( _lowerCamelCase , batch_size=_lowerCamelCase , drop_last=_lowerCamelCase , num_processes=_lowerCamelCase , process_index=_lowerCamelCase , split_batches=_lowerCamelCase , ) for i in range(_lowerCamelCase ) ] UpperCAmelCase__ : List[Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_lowerCamelCase ) iterable_dataset_lists.append(list(_lowerCamelCase ) ) UpperCAmelCase__ : Union[str, Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase__ : str = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) self.assertTrue(len(_lowerCamelCase ) % shard_batch_size == 0 ) UpperCAmelCase__ : Union[str, Any] = [] for idx in range(0 , len(_lowerCamelCase ) , _lowerCamelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_lowerCamelCase ) < len(_lowerCamelCase ): reference += reference self.assertListEqual(_lowerCamelCase , reference[: len(_lowerCamelCase )] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = 42 UpperCAmelCase__ : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) # Edge case with a very small dataset UpperCAmelCase__ : str = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = BatchSampler(range(16 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : int = SkipBatchSampler(_lowerCamelCase , 2 ) self.assertListEqual(list(_lowerCamelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : int = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase__ : int = skip_first_batches(_lowerCamelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _a (self ): """simple docstring""" Accelerator() UpperCAmelCase__ : Dict = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
166
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase__ ( self : Any ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self.dummy_uncond_unet __SCREAMING_SNAKE_CASE : List[str] = KarrasVeScheduler() __SCREAMING_SNAKE_CASE : str = KarrasVePipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe(num_inference_steps=2 , generator=lowerCAmelCase__ , output_type="""numpy""" ).images __SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = pipe(num_inference_steps=2 , generator=lowerCAmelCase__ , output_type="""numpy""" , return_dict=lowerCAmelCase__ )[0] __SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __SCREAMING_SNAKE_CASE : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = """google/ncsnpp-celebahq-256""" __SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = KarrasVeScheduler() __SCREAMING_SNAKE_CASE : Tuple = KarrasVePipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = pipe(num_inference_steps=2_0 , generator=lowerCAmelCase__ , output_type="""numpy""" ).images __SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) __SCREAMING_SNAKE_CASE : int = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
112
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers UpperCamelCase__ : Dict = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def lowerCAmelCase_ ( _lowerCamelCase: List[Any] , _lowerCamelCase: Optional[int]=None ): require_version(deps[pkg] , _lowerCamelCase )
112
1
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase_ ( snake_case_ : str="ro" , snake_case_ : int="en" , snake_case_ : Union[str, Any]="wmt16" , snake_case_ : Optional[Any]=None ) -> None: '''simple docstring''' try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets" ) UpperCAmelCase_ = f"""{src_lang}-{tgt_lang}""" print(f"""Converting {dataset}-{pair}""" ) UpperCAmelCase_ = datasets.load_dataset(snake_case_ , snake_case_ ) if save_dir is None: UpperCAmelCase_ = f"""{dataset}-{pair}""" UpperCAmelCase_ = Path(snake_case_ ) save_dir.mkdir(exist_ok=snake_case_ ) for split in ds.keys(): print(f"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets UpperCAmelCase_ = "val" if split == "validation" else split UpperCAmelCase_ = save_dir.joinpath(f"""{fn}.source""" ) UpperCAmelCase_ = save_dir.joinpath(f"""{fn}.target""" ) UpperCAmelCase_ = src_path.open("w+" ) UpperCAmelCase_ = tgt_path.open("w+" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): UpperCAmelCase_ = x["translation"] src_fp.write(ex[src_lang] + "\n" ) tgt_fp.write(ex[tgt_lang] + "\n" ) print(f"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
106
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int = 1_00_00_00 ) -> int: '''simple docstring''' UpperCAmelCase_ = limit + 1 UpperCAmelCase_ = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): UpperCAmelCase_ = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a UpperCAmelCase_ = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"{solution() = }")
106
1
import requests __lowerCamelCase : Optional[int] = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["""articles"""] , 1 ): print(f"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
219
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __lowerCamelCase : List[str] = NewType('''DataClass''', Any) __lowerCamelCase : Dict = NewType('''DataClassType''', Any) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> int: """simple docstring""" if isinstance(__UpperCamelCase , __UpperCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list ) -> Callable[[str], Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = {str(__UpperCamelCase ): choice for choice in choices} return lambda __UpperCamelCase : str_to_choice.get(__UpperCamelCase , __UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( *, __UpperCamelCase : Union[str, List[str]] = None , __UpperCamelCase : str = None , __UpperCamelCase : Any = dataclasses.MISSING , __UpperCamelCase : Callable[[], Any] = dataclasses.MISSING , __UpperCamelCase : dict = None , **__UpperCamelCase : Dict , ) -> dataclasses.Field: """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls SCREAMING_SNAKE_CASE__ = {} if aliases is not None: SCREAMING_SNAKE_CASE__ = aliases if help is not None: SCREAMING_SNAKE_CASE__ = help return dataclasses.field(metadata=__UpperCamelCase , default=__UpperCamelCase , default_factory=__UpperCamelCase , **__UpperCamelCase ) class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = 42 def __init__( self : int , _lowercase : Union[DataClassType, Iterable[DataClassType]] , **_lowercase : List[str] ): """simple docstring""" if "formatter_class" not in kwargs: SCREAMING_SNAKE_CASE__ = ArgumentDefaultsHelpFormatter super().__init__(**_lowercase ) if dataclasses.is_dataclass(_lowercase ): SCREAMING_SNAKE_CASE__ = [dataclass_types] SCREAMING_SNAKE_CASE__ = list(_lowercase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_lowercase ) @staticmethod def __a ( _lowercase : ArgumentParser , _lowercase : dataclasses.Field ): """simple docstring""" SCREAMING_SNAKE_CASE__ = f"""--{field.name}""" SCREAMING_SNAKE_CASE__ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _lowercase ): raise RuntimeError( """Unresolved type detected, which should have been done with the help of """ """`typing.get_type_hints` method by default""" ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""aliases""" , [] ) if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ = [aliases] SCREAMING_SNAKE_CASE__ = getattr(field.type , """__origin__""" , field.type ) if origin_type is Union or (hasattr(_lowercase , """UnionType""" ) and isinstance(_lowercase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_lowercase ) not in field.type.__args__ ): raise ValueError( """Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because""" """ the argument parser only supports one type per argument.""" f""" Problem encountered in field '{field.name}'.""" ) if type(_lowercase ) not in field.type.__args__: # filter `str` in Union SCREAMING_SNAKE_CASE__ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] SCREAMING_SNAKE_CASE__ = getattr(field.type , """__origin__""" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) SCREAMING_SNAKE_CASE__ = ( field.type.__args__[0] if isinstance(_lowercase , field.type.__args__[1] ) else field.type.__args__[1] ) SCREAMING_SNAKE_CASE__ = getattr(field.type , """__origin__""" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) SCREAMING_SNAKE_CASE__ = {} if origin_type is Literal or (isinstance(field.type , _lowercase ) and issubclass(field.type , _lowercase )): if origin_type is Literal: SCREAMING_SNAKE_CASE__ = field.type.__args__ else: SCREAMING_SNAKE_CASE__ = [x.value for x in field.type] SCREAMING_SNAKE_CASE__ = make_choice_type_function(kwargs["""choices"""] ) if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default else: SCREAMING_SNAKE_CASE__ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument SCREAMING_SNAKE_CASE__ = copy(_lowercase ) # Hack because type=bool in argparse does not behave as we want. SCREAMING_SNAKE_CASE__ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. SCREAMING_SNAKE_CASE__ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way SCREAMING_SNAKE_CASE__ = default # This tells argparse we accept 0 or 1 value after --field_name SCREAMING_SNAKE_CASE__ = """?""" # This is the value that will get picked if we do --field_name (without value) SCREAMING_SNAKE_CASE__ = True elif isclass(_lowercase ) and issubclass(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ = field.type.__args__[0] SCREAMING_SNAKE_CASE__ = """+""" if field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default_factory() elif field.default is dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = True else: SCREAMING_SNAKE_CASE__ = field.type if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default elif field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default_factory() else: SCREAMING_SNAKE_CASE__ = True parser.add_argument(_lowercase , *_lowercase , **_lowercase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): SCREAMING_SNAKE_CASE__ = False parser.add_argument(f"""--no_{field.name}""" , action="""store_false""" , dest=field.name , **_lowercase ) def __a ( self : List[str] , _lowercase : DataClassType ): """simple docstring""" if hasattr(_lowercase , """_argument_group_name""" ): SCREAMING_SNAKE_CASE__ = self.add_argument_group(dtype._argument_group_name ) else: SCREAMING_SNAKE_CASE__ = self try: SCREAMING_SNAKE_CASE__ = get_type_hints(_lowercase ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ """removing line of `from __future__ import annotations` which opts in Postponed """ """Evaluation of Annotations (PEP 563)""" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_lowercase ): SCREAMING_SNAKE_CASE__ = """.""".join(map(_lowercase , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ """line of `from __future__ import annotations` which opts in union types as """ """`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To """ """support Python versions that lower than 3.10, you need to use """ """`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of """ """`X | None`.""" ) from ex raise for field in dataclasses.fields(_lowercase ): if not field.init: continue SCREAMING_SNAKE_CASE__ = type_hints[field.name] self._parse_dataclass_field(_lowercase , _lowercase ) def __a ( self : str , _lowercase : int=None , _lowercase : Optional[Any]=False , _lowercase : Union[str, Any]=True , _lowercase : Any=None , _lowercase : int=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): SCREAMING_SNAKE_CASE__ = [] if args_filename: args_files.append(Path(_lowercase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(""".args""" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values SCREAMING_SNAKE_CASE__ = ArgumentParser() args_file_parser.add_argument(_lowercase , type=_lowercase , action="""append""" ) # Use only remaining args for further parsing (remove the args_file_flag) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = args_file_parser.parse_known_args(args=_lowercase ) SCREAMING_SNAKE_CASE__ = vars(_lowercase ).get(args_file_flag.lstrip("""-""" ) , _lowercase ) if cmd_args_file_paths: args_files.extend([Path(_lowercase ) for p in cmd_args_file_paths] ) SCREAMING_SNAKE_CASE__ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last SCREAMING_SNAKE_CASE__ = file_args + args if args is not None else file_args + sys.argv[1:] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.parse_known_args(args=_lowercase ) SCREAMING_SNAKE_CASE__ = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE__ = {f.name for f in dataclasses.fields(_lowercase ) if f.init} SCREAMING_SNAKE_CASE__ = {k: v for k, v in vars(_lowercase ).items() if k in keys} for k in keys: delattr(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ = dtype(**_lowercase ) outputs.append(_lowercase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_lowercase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def __a ( self : List[str] , _lowercase : Dict[str, Any] , _lowercase : bool = False ): """simple docstring""" SCREAMING_SNAKE_CASE__ = set(args.keys() ) SCREAMING_SNAKE_CASE__ = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE__ = {f.name for f in dataclasses.fields(_lowercase ) if f.init} SCREAMING_SNAKE_CASE__ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) SCREAMING_SNAKE_CASE__ = dtype(**_lowercase ) outputs.append(_lowercase ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(_lowercase )}""" ) return tuple(_lowercase ) def __a ( self : List[str] , _lowercase : str , _lowercase : bool = False ): """simple docstring""" with open(Path(_lowercase ) , encoding="""utf-8""" ) as open_json_file: SCREAMING_SNAKE_CASE__ = json.loads(open_json_file.read() ) SCREAMING_SNAKE_CASE__ = self.parse_dict(_lowercase , allow_extra_keys=_lowercase ) return tuple(_lowercase ) def __a ( self : Tuple , _lowercase : str , _lowercase : bool = False ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.parse_dict(yaml.safe_load(Path(_lowercase ).read_text() ) , allow_extra_keys=_lowercase ) return tuple(_lowercase )
219
1
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch UpperCamelCase_ = logging.get_logger(__name__) @add_end_docstrings( _SCREAMING_SNAKE_CASE , R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class _snake_case ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def A__ ( self: Union[str, Any] ,lowerCamelCase_: List[Any] ) -> np.ndarray: if self.framework == "tf": UpperCAmelCase_ : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCAmelCase_ : Optional[int] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=lowerCamelCase_ ) else: raise ValueError("""Unsupported framework""" ) return masked_index def A__ ( self: List[Any] ,lowerCamelCase_: Optional[int] ) -> np.ndarray: UpperCAmelCase_ : List[Any] = self.get_masked_index(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" ,self.model.base_model_prefix ,F'''No mask_token ({self.tokenizer.mask_token}) found on the input''' ,) def A__ ( self: List[Any] ,lowerCamelCase_: str ) -> str: if isinstance(lowerCamelCase_ ,lowerCamelCase_ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(lowerCamelCase_ ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Any=None ,**lowerCamelCase_: List[str] ) -> Dict[str, GenericTensor]: if return_tensors is None: UpperCAmelCase_ : List[Any] = self.framework UpperCAmelCase_ : Optional[Any] = self.tokenizer(lowerCamelCase_ ,return_tensors=lowerCamelCase_ ) self.ensure_exactly_one_mask_token(lowerCamelCase_ ) return model_inputs def A__ ( self: Tuple ,lowerCamelCase_: List[Any] ) -> Optional[int]: UpperCAmelCase_ : int = self.model(**lowerCamelCase_ ) UpperCAmelCase_ : Dict = model_inputs["""input_ids"""] return model_outputs def A__ ( self: Optional[Any] ,lowerCamelCase_: int ,lowerCamelCase_: Dict=5 ,lowerCamelCase_: Optional[int]=None ) -> Dict: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: UpperCAmelCase_ : int = target_ids.shape[0] UpperCAmelCase_ : Tuple = model_outputs["""input_ids"""][0] UpperCAmelCase_ : List[Any] = model_outputs["""logits"""] if self.framework == "tf": UpperCAmelCase_ : Union[str, Any] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCAmelCase_ : Optional[int] = outputs.numpy() UpperCAmelCase_ : str = outputs[0, masked_index, :] UpperCAmelCase_ : List[Any] = stable_softmax(lowerCamelCase_ ,axis=-1 ) if target_ids is not None: UpperCAmelCase_ : Any = tf.gather_nd(tf.squeeze(lowerCamelCase_ ,0 ) ,target_ids.reshape(-1 ,1 ) ) UpperCAmelCase_ : Optional[Any] = tf.expand_dims(lowerCamelCase_ ,0 ) UpperCAmelCase_ : Tuple = tf.math.top_k(lowerCamelCase_ ,k=lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = topk.values.numpy(), topk.indices.numpy() else: UpperCAmelCase_ : Tuple = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=lowerCamelCase_ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCAmelCase_ : int = outputs[0, masked_index, :] UpperCAmelCase_ : List[Any] = logits.softmax(dim=-1 ) if target_ids is not None: UpperCAmelCase_ : Dict = probs[..., target_ids] UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = probs.topk(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : Tuple = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ): UpperCAmelCase_ : List[Any] = [] for v, p in zip(_values ,_predictions ): # Copy is important since we're going to modify this array in place UpperCAmelCase_ : List[Any] = input_ids.numpy().copy() if target_ids is not None: UpperCAmelCase_ : Optional[int] = target_ids[p].tolist() UpperCAmelCase_ : Optional[Any] = p # Filter padding out: UpperCAmelCase_ : Optional[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCAmelCase_ : Tuple = self.tokenizer.decode(lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(lowerCamelCase_ ) result.append(lowerCamelCase_ ) if single_mask: return result[0] return result def A__ ( self: str ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int=None ) -> int: if isinstance(lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase_ : List[Any] = [targets] try: UpperCAmelCase_ : Any = self.tokenizer.get_vocab() except Exception: UpperCAmelCase_ : str = {} UpperCAmelCase_ : str = [] for target in targets: UpperCAmelCase_ : str = vocab.get(lowerCamelCase_ ,lowerCamelCase_ ) if id_ is None: UpperCAmelCase_ : Dict = self.tokenizer( lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,return_token_type_ids=lowerCamelCase_ ,max_length=1 ,truncation=lowerCamelCase_ ,)["""input_ids"""] if len(lowerCamelCase_ ) == 0: logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' """We cannot replace it with anything meaningful, ignoring it""" ) continue UpperCAmelCase_ : List[str] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' F'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) UpperCAmelCase_ : Optional[Any] = list(set(lowerCamelCase_ ) ) if len(lowerCamelCase_ ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) UpperCAmelCase_ : Tuple = np.array(lowerCamelCase_ ) return target_ids def A__ ( self: Optional[int] ,lowerCamelCase_: Optional[int]=None ,lowerCamelCase_: List[str]=None ) -> Optional[Any]: UpperCAmelCase_ : str = {} if targets is not None: UpperCAmelCase_ : Tuple = self.get_target_ids(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = target_ids if top_k is not None: UpperCAmelCase_ : Optional[int] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" ,self.model.base_model_prefix ,"""The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self: List[Any] ,lowerCamelCase_: List[str] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[str] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = super().__call__(lowerCamelCase_ ,**lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) and len(lowerCamelCase_ ) == 1: return outputs[0] return outputs
365
import os def lowerCamelCase_ ( _a : str = "input.txt" ): '''simple docstring''' with open(os.path.join(os.path.dirname(_a ) , _a ) ) as input_file: UpperCAmelCase_ : Dict = [ [int(_a ) for element in line.split(""",""" )] for line in input_file.readlines() ] UpperCAmelCase_ : Any = len(_a ) UpperCAmelCase_ : Tuple = len(matrix[0] ) UpperCAmelCase_ : Optional[int] = [[-1 for _ in range(_a )] for _ in range(_a )] for i in range(_a ): UpperCAmelCase_ : Optional[Any] = matrix[i][0] for j in range(1 , _a ): for i in range(_a ): UpperCAmelCase_ : str = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _a ): UpperCAmelCase_ : Optional[int] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): UpperCAmelCase_ : Union[str, Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F"{solution() = }")
59
0