code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> None: if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): lowerCamelCase__ , lowerCamelCase__ : List[Any] = array[indexa], array[indexa] def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> None: if length > 1: lowerCamelCase__ : Optional[Any] = int(length / 2 ) for i in range(UpperCamelCase , low + middle ): comp_and_swap(UpperCamelCase , UpperCamelCase , i + middle , UpperCamelCase ) bitonic_merge(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) bitonic_merge(UpperCamelCase , low + middle , UpperCamelCase , UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> None: if length > 1: lowerCamelCase__ : Tuple = int(length / 2 ) bitonic_sort(UpperCamelCase , UpperCamelCase , UpperCamelCase , 1 ) bitonic_sort(UpperCamelCase , low + middle , UpperCamelCase , 0 ) bitonic_merge(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": _A : List[str] =input('''Enter numbers separated by a comma:\n''').strip() _A : List[str] =[int(item.strip()) for item in user_input.split(''',''')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('''\nSorted array in ascending order is: ''', end='''''') print(*unsorted, sep=''', ''') bitonic_merge(unsorted, 0, len(unsorted), 0) print('''Sorted array in descending order is: ''', end='''''') print(*unsorted, sep=''', ''')
41
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class UpperCamelCase ( nn.Module ): UpperCAmelCase : int UpperCAmelCase : jnp.dtype = jnp.floataa def _lowercase (self : Any) -> Optional[int]: __snake_case : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__(self : Any , _A : Any) -> str: __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = hidden_states.shape __snake_case : Union[str, Any] = jax.image.resize( _A , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) __snake_case : List[Any] = self.conv(_A) return hidden_states class UpperCamelCase ( nn.Module ): UpperCAmelCase : int UpperCAmelCase : jnp.dtype = jnp.floataa def _lowercase (self : Optional[Any]) -> List[Any]: __snake_case : Dict = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__(self : int , _A : str) -> Any: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __snake_case : Union[str, Any] = self.conv(_A) return hidden_states class UpperCamelCase ( nn.Module ): UpperCAmelCase : int UpperCAmelCase : int = None UpperCAmelCase : float = 0.0 UpperCAmelCase : bool = None UpperCAmelCase : jnp.dtype = jnp.floataa def _lowercase (self : List[str]) -> Dict: __snake_case : str = self.in_channels if self.out_channels is None else self.out_channels __snake_case : Optional[int] = nn.GroupNorm(num_groups=32 , epsilon=1E-5) __snake_case : str = nn.Conv( _A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __snake_case : Optional[int] = nn.Dense(_A , dtype=self.dtype) __snake_case : int = nn.GroupNorm(num_groups=32 , epsilon=1E-5) __snake_case : str = nn.Dropout(self.dropout_prob) __snake_case : Dict = nn.Conv( _A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __snake_case : List[str] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __snake_case : Optional[Any] = None if use_nin_shortcut: __snake_case : List[str] = nn.Conv( _A , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__(self : List[Any] , _A : Union[str, Any] , _A : str , _A : int=True) -> Any: __snake_case : List[Any] = hidden_states __snake_case : Optional[Any] = self.norma(_A) __snake_case : int = nn.swish(_A) __snake_case : Optional[int] = self.conva(_A) __snake_case : Dict = self.time_emb_proj(nn.swish(_A)) __snake_case : List[str] = jnp.expand_dims(jnp.expand_dims(_A , 1) , 1) __snake_case : Any = hidden_states + temb __snake_case : Tuple = self.norma(_A) __snake_case : Dict = nn.swish(_A) __snake_case : Union[str, Any] = self.dropout(_A , _A) __snake_case : Union[str, Any] = self.conva(_A) if self.conv_shortcut is not None: __snake_case : List[Any] = self.conv_shortcut(_A) return hidden_states + residual
172
0
'''simple docstring''' def lowercase (_A , _A ): """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def lowercase (): """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
25
'''simple docstring''' import argparse import os import re lowerCAmelCase : Tuple = """src/transformers""" # Pattern that looks at the indentation in a line. lowerCAmelCase : str = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase : str = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase : List[str] = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""\[([^\]]+)\]""") def lowercase (_A ): """simple docstring""" _lowerCAmelCase : int = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def lowercase (_A , _A="" , _A=None , _A=None ): """simple docstring""" _lowerCAmelCase : int = 0 _lowerCAmelCase : Dict = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 _lowerCAmelCase : Dict = ['\n'.join(lines[:index] )] else: _lowerCAmelCase : str = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : List[Any] = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Union[str, Any] = [] else: blocks.append('\n'.join(_A ) ) _lowerCAmelCase : List[str] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def lowercase (_A ): """simple docstring""" def _inner(_A ): return key(_A ).lower().replace('_' , '' ) return _inner def lowercase (_A , _A=None ): """simple docstring""" def noop(_A ): return x if key is None: _lowerCAmelCase : List[Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : List[Any] = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Tuple = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : List[str] = [obj for obj in objects if not key(_A )[0].isupper()] _lowerCAmelCase : Dict = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def lowercase (_A ): """simple docstring""" def _replace(_A ): _lowerCAmelCase : Dict = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : Union[str, Any] = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_A )] ) + "]" _lowerCAmelCase : Tuple = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 _lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Dict = sort_objects(_A , key=lambda _A : x[1] ) _lowerCAmelCase : Tuple = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : Tuple = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Optional[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : List[str] = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def lowercase (_A , _A=True ): """simple docstring""" with open(_A , encoding='utf-8' ) as f: _lowerCAmelCase : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Tuple = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : Tuple = main_blocks[block_idx] _lowerCAmelCase : int = block.split('\n' ) # Get to the start of the imports. _lowerCAmelCase : Tuple = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Dict = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : List[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : Optional[int] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] _lowerCAmelCase : Optional[int] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : int = 0 _lowerCAmelCase : Optional[Any] = [] for i in range(len(_A ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : Optional[int] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_A , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(_A ) ) def lowercase (_A=True ): """simple docstring""" _lowerCAmelCase : int = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: _lowerCAmelCase : Optional[Any] = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: _lowerCAmelCase : Optional[int] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(f'Would overwrite {len(_A )} files, run `make style`.' ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCAmelCase : List[str] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
25
1
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) __lowercase = logging.getLogger() def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :List[Any] = argparse.ArgumentParser() parser.add_argument('''-f''' ) __UpperCamelCase :Any = parser.parse_args() return args.f def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = {} __UpperCamelCase :str = os.path.join(SCREAMING_SNAKE_CASE , '''all_results.json''' ) if os.path.exists(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , '''r''' ) as f: __UpperCamelCase :Optional[Any] = json.load(SCREAMING_SNAKE_CASE ) else: raise ValueError(f"""can't find {path}""" ) return results def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Optional[Any] = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() __lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @classmethod def UpperCamelCase__ ( cls) -> int: # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU __UpperCamelCase :List[Any] = tempfile.mkdtemp() __UpperCamelCase :List[Any] = os.path.join(cls.tmpdir , '''default_config.yml''') write_basic_config(save_location=cls.configPath) __UpperCamelCase :int = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def UpperCamelCase__ ( cls) -> Union[str, Any]: shutil.rmtree(cls.tmpdir) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''}) def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :List[str] = self.get_auto_remove_tmp_dir() __UpperCamelCase :Any = f""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''') run_command(self._launch_args + testargs) __UpperCamelCase :Optional[Any] = get_results(__lowercase) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''epoch_0'''))) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''glue_no_trainer'''))) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''}) def UpperCamelCase__ ( self) -> int: __UpperCamelCase :Any = self.get_auto_remove_tmp_dir() __UpperCamelCase :List[str] = f""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs) __UpperCamelCase :Dict = get_results(__lowercase) self.assertLess(result['''perplexity'''] , 100) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''epoch_0'''))) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''clm_no_trainer'''))) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''}) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase :List[Any] = f""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs) __UpperCamelCase :Union[str, Any] = get_results(__lowercase) self.assertLess(result['''perplexity'''] , 42) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''epoch_0'''))) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''mlm_no_trainer'''))) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''}) def UpperCamelCase__ ( self) -> Tuple: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __UpperCamelCase :Union[str, Any] = 7 if get_gpu_count() > 1 else 2 __UpperCamelCase :List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase :List[Any] = f""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs) __UpperCamelCase :Optional[Any] = get_results(__lowercase) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75) self.assertLess(result['''train_loss'''] , 0.5) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''epoch_0'''))) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''ner_no_trainer'''))) @unittest.skip(reason='''Fix me @muellerzr''') @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''}) def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Union[str, Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase :int = f""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs) __UpperCamelCase :Any = get_results(__lowercase) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28) self.assertGreaterEqual(result['''eval_exact'''] , 28) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''epoch_0'''))) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''qa_no_trainer'''))) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''}) def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :int = self.get_auto_remove_tmp_dir() __UpperCamelCase :int = f""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs) __UpperCamelCase :Dict = get_results(__lowercase) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''swag_no_trainer'''))) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''}) def UpperCamelCase__ ( self) -> str: __UpperCamelCase :str = self.get_auto_remove_tmp_dir() __UpperCamelCase :Dict = f""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs) __UpperCamelCase :Tuple = get_results(__lowercase) self.assertGreaterEqual(result['''eval_rouge1'''] , 10) self.assertGreaterEqual(result['''eval_rouge2'''] , 2) self.assertGreaterEqual(result['''eval_rougeL'''] , 7) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''epoch_0'''))) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''summarization_no_trainer'''))) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''}) def UpperCamelCase__ ( self) -> str: __UpperCamelCase :Optional[int] = self.get_auto_remove_tmp_dir() __UpperCamelCase :Dict = f""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs) __UpperCamelCase :Optional[int] = get_results(__lowercase) self.assertGreaterEqual(result['''eval_bleu'''] , 30) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''epoch_0'''))) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''translation_no_trainer'''))) @slow def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Tuple = logging.StreamHandler(sys.stdout) logger.addHandler(__lowercase) __UpperCamelCase :int = self.get_auto_remove_tmp_dir() __UpperCamelCase :Any = f""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs) __UpperCamelCase :List[str] = get_results(__lowercase) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''}) def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Union[str, Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase :Optional[Any] = f""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''') run_command(self._launch_args + testargs) __UpperCamelCase :Optional[Any] = get_results(__lowercase) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''step_1'''))) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''image_classification_no_trainer''')))
43
"""simple docstring""" from math import pi, sqrt, tan def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError("""surface_area_cube() only accepts non-negative values""" ) return 6 * side_length**2 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError("""surface_area_cuboid() only accepts non-negative values""" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError("""surface_area_sphere() only accepts non-negative values""" ) return 4 * pi * radius**2 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError("""surface_area_hemisphere() only accepts non-negative values""" ) return 3 * pi * radius**2 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError("""surface_area_cone() only accepts non-negative values""" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( """surface_area_conical_frustum() only accepts non-negative values""" ) lowercase_ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError("""surface_area_cylinder() only accepts non-negative values""" ) return 2 * pi * radius * (height + radius) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError("""surface_area_torus() only accepts non-negative values""" ) if torus_radius < tube_radius: raise ValueError( """surface_area_torus() does not support spindle or self intersecting tori""" ) return 4 * pow(__lowerCAmelCase , 2 ) * torus_radius * tube_radius def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError("""area_rectangle() only accepts non-negative values""" ) return length * width def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError("""area_square() only accepts non-negative values""" ) return side_length**2 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError("""area_triangle() only accepts non-negative values""" ) return (base * height) / 2 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("""area_triangle_three_sides() only accepts non-negative values""" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("""Given three sides do not form a triangle""" ) lowercase_ = (sidea + sidea + sidea) / 2 lowercase_ = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError("""area_parallelogram() only accepts non-negative values""" ) return base * height def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError("""area_trapezium() only accepts non-negative values""" ) return 1 / 2 * (basea + basea) * height def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError("""area_circle() only accepts non-negative values""" ) return pi * radius**2 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError("""area_ellipse() only accepts non-negative values""" ) return pi * radius_x * radius_y def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError("""area_rhombus() only accepts non-negative values""" ) return 1 / 2 * diagonal_a * diagonal_a def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or sides < 3: raise ValueError( """area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides""" ) elif length < 0: raise ValueError( """area_reg_polygon() only accepts non-negative values as \ length of a side""" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(F"Rectangle: {area_rectangle(10, 20) = }") print(F"Square: {area_square(10) = }") print(F"Triangle: {area_triangle(10, 10) = }") print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(F"Parallelogram: {area_parallelogram(10, 20) = }") print(F"Rhombus: {area_rhombus(10, 20) = }") print(F"Trapezium: {area_trapezium(10, 20, 30) = }") print(F"Circle: {area_circle(20) = }") print(F"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(F"Cube: {surface_area_cube(20) = }") print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(F"Sphere: {surface_area_sphere(20) = }") print(F"Hemisphere: {surface_area_hemisphere(20) = }") print(F"Cone: {surface_area_cone(10, 20) = }") print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(F"Cylinder: {surface_area_cylinder(10, 20) = }") print(F"Torus: {surface_area_torus(20, 10) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(F"Square: {area_reg_polygon(4, 10) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
136
0
'''simple docstring''' from __future__ import annotations import math def snake_case_ (UpperCamelCase : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _snake_case : List[Any] = [num for num in range(3, 100001, 2) if not is_prime(num)] def snake_case_ (UpperCamelCase : int ): '''simple docstring''' if not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) _a = [] for num in range(len(UpperCamelCase ) ): _a = 0 while 2 * i * i <= odd_composites[num]: _a = odd_composites[num] - 2 * i * i if is_prime(UpperCamelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCamelCase ) == n: return list_nums return [] def snake_case_ (): '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F'''{solution() = }''')
179
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _snake_case : str = logging.get_logger(__name__) _snake_case : Tuple = {'vocab_file': 'spiece.model'} _snake_case : Optional[int] = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } _snake_case : Tuple = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } class A ( _a ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ['input_ids', 'attention_mask'] lowercase_ = [] def __init__( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]="<unk>" , lowerCAmelCase_ : Tuple="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : int="<pad>" , lowerCAmelCase_ : Union[str, Any]="[SEP]" , lowerCAmelCase_ : Dict="[MASK]" , lowerCAmelCase_ : Optional[int]="[CLS]" , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : Union[str, Any] , ) -> None: """simple docstring""" _a = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else bos_token _a = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token _a = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token _a = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token _a = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else cls_token _a = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token _a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) _a = vocab_file _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) @property def __lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" return self.sp_model.get_piece_size() def __lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" _a = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Tuple: """simple docstring""" _a = self.__dict__.copy() _a = None return state def __setstate__( self : List[str] , lowerCAmelCase_ : Any ) -> Dict: """simple docstring""" _a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _a = {} _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def __lowerCAmelCase ( self : str , lowerCAmelCase_ : List[str] ) -> int: """simple docstring""" return self.sp_model.piece_to_id(lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Tuple ) -> str: """simple docstring""" _a = self.sp_model.IdToPiece(lowerCAmelCase_ ) return token def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _a = [] _a = '''''' _a = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase_ ) + token _a = True _a = [] else: current_sub_tokens.append(lowerCAmelCase_ ) _a = False out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : Tuple , ) -> str: """simple docstring""" _a = kwargs.pop('''use_source_tokenizer''' , lowerCAmelCase_ ) _a = self.convert_ids_to_tokens(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _a = [] _a = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase_ ) ) _a = [] sub_texts.append(lowerCAmelCase_ ) else: current_sub_text.append(lowerCAmelCase_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase_ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: _a = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(lowerCAmelCase_ ) ) else: _a = ''''''.join(lowerCAmelCase_ ) _a = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _a = self.clean_up_tokenization(lowerCAmelCase_ ) return clean_text else: return text def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _a = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , '''wb''' ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,) def __lowerCAmelCase ( self : int , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a = [self.cls_token_id] _a = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1] def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
179
1
a_ = { 0: """0""", 1: """1""", 2: """2""", 3: """3""", 4: """4""", 5: """5""", 6: """6""", 7: """7""", 8: """8""", 9: """9""", 10: """a""", 11: """b""", 12: """c""", 13: """d""", 14: """e""", 15: """f""", } def a__ ( _UpperCamelCase : float ): assert type(_UpperCamelCase ) in (int, float) and decimal == int(_UpperCamelCase ) __lowerCamelCase = int(_UpperCamelCase ) __lowerCamelCase = '''''' __lowerCamelCase = False if decimal < 0: __lowerCamelCase = True decimal *= -1 while decimal > 0: __lowerCamelCase ,__lowerCamelCase = divmod(_UpperCamelCase ,16 ) __lowerCamelCase = values[remainder] + hexadecimal __lowerCamelCase = '''0x''' + hexadecimal if negative: __lowerCamelCase = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
330
import logging import os import threading import time try: import warnings except ImportError: a_ = None try: import msvcrt except ImportError: a_ = None try: import fcntl except ImportError: a_ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: a_ = OSError # Data # ------------------------------------------------ a_ = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] a_ = """3.0.12""" a_ = None def a__ ( ): global _logger __lowerCamelCase = _logger or logging.getLogger(__name__ ) return _logger class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = lock_file return None def __str__( self ): '''simple docstring''' __lowerCamelCase = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = lock return None def __enter__( self ): '''simple docstring''' return self.lock def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.lock.release() return None class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowerCamelCase = self.hash_filename_if_too_long(__UpperCAmelCase , __UpperCAmelCase ) # The path to the lock file. __lowerCamelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowerCamelCase = None # The default timeout value. __lowerCamelCase = timeout # We use this lock primarily for the lock counter. __lowerCamelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowerCamelCase = 0 return None @property def lowerCamelCase ( self ): '''simple docstring''' return self._lock_file @property def lowerCamelCase ( self ): '''simple docstring''' return self._timeout @timeout.setter def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = float(__UpperCAmelCase ) return None def lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError() def lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError() @property def lowerCamelCase ( self ): '''simple docstring''' return self._lock_file_fd is not None def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=0.05 ): '''simple docstring''' # Use the default timeout, if no timeout is provided. if timeout is None: __lowerCamelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowerCamelCase = id(self ) __lowerCamelCase = self._lock_file __lowerCamelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(__UpperCAmelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowerCamelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCamelCase ( self , __UpperCAmelCase=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowerCamelCase = id(self ) __lowerCamelCase = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __lowerCamelCase = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self ): '''simple docstring''' self.acquire() return self def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.release() return None def __del__( self ): '''simple docstring''' self.release(force=__UpperCAmelCase ) return None def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = os.path.basename(__UpperCAmelCase ) if len(__UpperCAmelCase ) > max_length and max_length > 0: __lowerCamelCase = os.path.dirname(__UpperCAmelCase ) __lowerCamelCase = str(hash(__UpperCAmelCase ) ) __lowerCamelCase = filename[: max_length - len(__UpperCAmelCase ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(__UpperCAmelCase , __UpperCAmelCase ) else: return path class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) __lowerCamelCase = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: try: msvcrt.locking(__UpperCAmelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__UpperCAmelCase ) else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self._lock_file_fd __lowerCamelCase = None msvcrt.locking(__UpperCAmelCase , msvcrt.LK_UNLCK , 1 ) os.close(__UpperCAmelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = os.statvfs(os.path.dirname(__UpperCAmelCase ) ).f_namemax super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) try: fcntl.flock(__UpperCAmelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__UpperCAmelCase ) else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition __lowerCamelCase = self._lock_file_fd __lowerCamelCase = None fcntl.flock(__UpperCAmelCase , fcntl.LOCK_UN ) os.close(__UpperCAmelCase ) return None class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' os.close(self._lock_file_fd ) __lowerCamelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None a_ = None if msvcrt: a_ = WindowsFileLock elif fcntl: a_ = UnixFileLock else: a_ = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
330
1
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self : str , *UpperCAmelCase : str , **UpperCAmelCase : int ): warnings.warn( """The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use ChineseCLIPImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
370
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class __a ( __UpperCamelCase ): __snake_case : Optional[Any] = """mra""" def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = type_vocab_size lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[int] = position_embedding_type lowerCAmelCase_ : Any = block_per_row lowerCAmelCase_ : int = approx_mode lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
28
0
'''simple docstring''' from __future__ import annotations def _lowerCamelCase ( lowercase : float , lowercase : float , lowercase : float , ) -> tuple[str, float]: if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif stress < 0: raise ValueError("Stress cannot be negative" ) elif tangential_force < 0: raise ValueError("Tangential Force cannot be negative" ) elif area < 0: raise ValueError("Area cannot be negative" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
63
'''simple docstring''' import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets _lowerCAmelCase = datasets.logging.get_logger(__name__) _lowerCAmelCase = '''\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } ''' _lowerCAmelCase = '''\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project\'s README at https://github.com/google-research/bleurt#readme for more information. ''' _lowerCAmelCase = ''' BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: \'scores\': List of scores. Examples: >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> bleurt = datasets.load_metric("bleurt") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results["scores"]]) [1.03, 1.04] ''' _lowerCAmelCase = { '''bleurt-tiny-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip''', '''bleurt-tiny-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip''', '''bleurt-base-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip''', '''bleurt-base-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip''', '''bleurt-large-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip''', '''bleurt-large-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip''', '''BLEURT-20-D3''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip''', '''BLEURT-20-D6''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip''', '''BLEURT-20-D12''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip''', '''BLEURT-20''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip''', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage="""https://github.com/google-research/bleurt""" ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""string""" ,id="""sequence""" ), """references""": datasets.Value("""string""" ,id="""sequence""" ), } ) ,codebase_urls=["""https://github.com/google-research/bleurt"""] ,reference_urls=["""https://github.com/google-research/bleurt""", """https://arxiv.org/abs/2004.04696"""] ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Tuple: # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( """Using default BLEURT-Base checkpoint for sequence maximum length 128. """ """You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').""" ) lowerCAmelCase__ : str = """bleurt-base-128""" if self.config_name.lower() in CHECKPOINT_URLS: lowerCAmelCase__ : Union[str, Any] = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: lowerCAmelCase__ : List[Any] = self.config_name.upper() else: raise KeyError( F"""{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}""" ) # download the model checkpoint specified by self.config_name and set up the scorer lowerCAmelCase__ : int = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) lowerCAmelCase__ : Dict = score.BleurtScorer(os.path.join(__UpperCAmelCase ,__UpperCAmelCase ) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Union[str, Any]: lowerCAmelCase__ : Union[str, Any] = self.scorer.score(references=__UpperCAmelCase ,candidates=__UpperCAmelCase ) return {"scores": scores}
37
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a : List[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys a : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
363
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging a : str = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: Dict=None ): """simple docstring""" UpperCAmelCase_: Any = XLNetConfig.from_json_file(lowerCAmelCase__ ) UpperCAmelCase_: int = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'Building PyTorch XLNetForSequenceClassification model from configuration: {config}' ) UpperCAmelCase_: Optional[int] = finetuning_task UpperCAmelCase_: int = GLUE_TASKS_NUM_LABELS[finetuning_task] UpperCAmelCase_: Optional[Any] = XLNetForSequenceClassification(lowerCAmelCase__ ) elif "squad" in finetuning_task: UpperCAmelCase_: List[Any] = finetuning_task UpperCAmelCase_: Optional[Any] = XLNetForQuestionAnswering(lowerCAmelCase__ ) else: UpperCAmelCase_: Tuple = XLNetLMHeadModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model UpperCAmelCase_: Tuple = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_: List[Any] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) print(F'Save PyTorch model to {os.path.abspath(lowerCAmelCase__ )}' ) torch.save(model.state_dict() , lowerCAmelCase__ ) print(F'Save configuration file to {os.path.abspath(lowerCAmelCase__ )}' ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) a : List[str] = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
82
0
from __future__ import annotations from typing import Any class lowercase : def __init__( self ,A__): lowercase = num_of_nodes lowercase = [] lowercase = {} def A__ ( self ,A__ ,A__ ,A__): self.m_edges.append([u_node, v_node, weight]) def A__ ( self ,A__): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node]) def A__ ( self ,A__): if self.m_component[u_node] != u_node: for k in self.m_component: lowercase = self.find_component(snake_case_) def A__ ( self ,A__ ,A__ ,A__): if component_size[u_node] <= component_size[v_node]: lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(snake_case_) elif component_size[u_node] >= component_size[v_node]: lowercase = self.find_component(snake_case_) component_size[u_node] += component_size[v_node] self.set_component(snake_case_) def A__ ( self): lowercase = [] lowercase = 0 lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes): self.m_component.update({node: node}) component_size.append(1) lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowercase = edge lowercase = self.m_component[u] lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(snake_case_ ,snake_case_): lowercase = edge lowercase = self.m_component[u] lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(snake_case_ ,snake_case_ ,snake_case_) print(f'Added edge [{u} - {v}]\nAdded weight: {w}\n') num_of_components -= 1 lowercase = [-1] * self.m_num_of_nodes print(f'The total weight of the minimal spanning tree is: {mst_weight}') def UpperCamelCase ( ): '''simple docstring''' pass if __name__ == "__main__": import doctest doctest.testmod()
101
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class UpperCamelCase__ : def __init__(self : List[Any] , snake_case_ : int , snake_case_ : List[str]=1_3 , snake_case_ : Tuple=7 , snake_case_ : List[Any]=True , snake_case_ : List[Any]=True , snake_case_ : Dict=True , snake_case_ : Optional[int]=True , snake_case_ : str=9_9 , snake_case_ : Dict=6_4 , snake_case_ : Any=3_2 , snake_case_ : str=5 , snake_case_ : int=4 , snake_case_ : List[Any]=3_7 , snake_case_ : Any="gelu" , snake_case_ : Dict=0.1 , snake_case_ : List[str]=0.1 , snake_case_ : str=5_1_2 , snake_case_ : Any=1_6 , snake_case_ : str=2 , snake_case_ : int=0.02 , snake_case_ : Union[str, Any]=3 , snake_case_ : Optional[Any]=4 , snake_case_ : List[Any]=None , ): __a : Any = parent __a : Optional[int] = batch_size __a : Any = seq_length __a : int = is_training __a : Optional[int] = use_input_mask __a : List[Any] = use_token_type_ids __a : Dict = use_labels __a : Tuple = vocab_size __a : str = hidden_size __a : List[Any] = embedding_size __a : List[Any] = num_hidden_layers __a : str = num_attention_heads __a : str = intermediate_size __a : Union[str, Any] = hidden_act __a : Optional[Any] = hidden_dropout_prob __a : Tuple = attention_probs_dropout_prob __a : Union[str, Any] = max_position_embeddings __a : Any = type_vocab_size __a : int = type_sequence_label_size __a : int = initializer_range __a : int = num_labels __a : Union[str, Any] = num_choices __a : Dict = scope def lowerCAmelCase (self : str ): __a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : List[Any] = None if self.use_input_mask: __a : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __a : Optional[Any] = None if self.use_token_type_ids: __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Dict = None __a : List[str] = None __a : Optional[Any] = None if self.use_labels: __a : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __a : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase (self : int ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase (self : str , snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : int , snake_case_ : int , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Any ): __a : Any = MobileBertModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : List[str] = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) __a : Optional[Any] = model(snake_case_ , token_type_ids=snake_case_ ) __a : Optional[Any] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase (self : Any , snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : str , snake_case_ : List[Any] ): __a : str = MobileBertForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : Tuple = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase (self : Tuple , snake_case_ : Any , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Dict ): __a : Optional[Any] = MobileBertForNextSentencePrediction(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : int = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase (self : Any , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Any , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : Optional[Any] ): __a : str = MobileBertForPreTraining(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : Union[str, Any] = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , next_sentence_label=snake_case_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase (self : Dict , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Dict , snake_case_ : int , snake_case_ : int , snake_case_ : str , snake_case_ : str ): __a : str = MobileBertForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : Optional[Any] = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase (self : Optional[int] , snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Optional[int] ): __a : Any = self.num_labels __a : Union[str, Any] = MobileBertForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() __a : Tuple = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase (self : List[Any] , snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : Optional[int] ): __a : Union[str, Any] = self.num_labels __a : str = MobileBertForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : Any = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase (self : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Any , snake_case_ : Dict , snake_case_ : Union[str, Any] ): __a : Union[str, Any] = self.num_choices __a : List[str] = MobileBertForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : Any = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase (self : Optional[Any] ): __a : Optional[Any] = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : int = config_and_inputs __a : Union[str, Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __lowercase ,__lowercase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Any = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Union[str, Any] = True def lowerCAmelCase (self : str , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Union[str, Any]=False ): __a : List[str] = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class in get_values(snake_case_ ): __a : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case_ ) __a : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def lowerCAmelCase (self : Tuple ): __a : List[Any] = MobileBertModelTester(self ) __a : int = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 ) def lowerCAmelCase (self : Union[str, Any] ): self.config_tester.run_common_tests() def lowerCAmelCase (self : Optional[Any] ): __a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case_ ) def lowerCAmelCase (self : str ): __a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case_ ) def lowerCAmelCase (self : Tuple ): __a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case_ ) def lowerCAmelCase (self : Dict ): __a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case_ ) def lowerCAmelCase (self : int ): __a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case_ ) def lowerCAmelCase (self : List[Any] ): __a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case_ ) def lowerCAmelCase (self : int ): __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case_ ) def lowerCAmelCase (self : Tuple ): __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case_ ) def __UpperCamelCase ( lowerCAmelCase__ : str ): return torch.tensor( lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ , ) lowercase__ =1e-3 @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase (self : Any ): __a : Dict = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(snake_case_ ) __a : Tuple = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): __a : str = model(snake_case_ )[0] __a : List[Any] = torch.Size((1, 9, 5_1_2) ) self.assertEqual(output.shape , snake_case_ ) __a : Union[str, Any] = torch.tensor( [ [ [-2.473_6526E07, 8.269_1656E04, 1.652_1838E05], [-5.754_1704E-01, 3.905_6022E00, 4.401_1507E00], [2.604_7359E00, 1.567_7652E00, -1.732_4188E-01], ] ] , device=snake_case_ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __a : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __a : Any = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
216
0
"""simple docstring""" import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class __snake_case (unittest.TestCase ): def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Tuple=56 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : int=99 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : Optional[int]="gelu_new" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : int=16 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : List[str]=4 , _UpperCAmelCase : Dict="block_sparse" , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Dict=False , _UpperCAmelCase : int=2 , _UpperCAmelCase : Optional[int]=3 , ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : str = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : Tuple = seq_length _lowerCAmelCase : Any = is_training _lowerCAmelCase : Union[str, Any] = use_attention_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Dict = use_labels _lowerCAmelCase : Tuple = vocab_size _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : Tuple = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Dict = max_position_embeddings _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : Dict = type_sequence_label_size _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Union[str, Any] = num_choices _lowerCAmelCase : List[Any] = rescale_embeddings _lowerCAmelCase : str = attention_type _lowerCAmelCase : Any = use_bias _lowerCAmelCase : str = block_size _lowerCAmelCase : Union[str, Any] = num_random_blocks def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = None if self.use_attention_mask: _lowerCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : Any = None if self.use_token_type_ids: _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : int = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Dict = self.prepare_config_and_inputs() _lowerCAmelCase : str = config_and_inputs _lowerCAmelCase : Union[str, Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask, } return config, inputs_dict @require_flax class __snake_case (_a , unittest.TestCase ): lowerCAmelCase__ = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) lowerCAmelCase__ = False lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: '''simple docstring''' _lowerCAmelCase : Any = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: '''simple docstring''' super().test_hidden_states_output() @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class_name.from_pretrained("""google/bigbird-roberta-base""" ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCAmelCase : Tuple = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : List[str] = model_class(_UpperCAmelCase ) @jax.jit def model_jitted(_UpperCAmelCase : str , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : str ): return model(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , **_UpperCAmelCase ) with self.subTest("""JIT Enabled""" ): _lowerCAmelCase : Union[str, Any] = model_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _lowerCAmelCase : List[Any] = model_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=1E-5 , _UpperCAmelCase : Optional[int]="outputs" , _UpperCAmelCase : Optional[int]=None ) -> Optional[int]: '''simple docstring''' if name.startswith("""outputs.attentions""" ): return else: super().check_pt_flax_outputs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
364
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _lowerCamelCase : List[str] = logging.get_logger(__name__) class __snake_case (_a ): def __init__( self : Optional[Any] , *_UpperCAmelCase : str , **_UpperCAmelCase : Any ) -> None: '''simple docstring''' warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
159
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
68
def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : List[Any] = abs(__magic_name__ ) lowercase : Optional[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = abs(__magic_name__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def snake_case( __magic_name__ ) -> int: '''simple docstring''' return sum(int(__magic_name__ ) for c in str(abs(__magic_name__ ) ) ) def snake_case( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__magic_name__ , __magic_name__ ) -> None: lowercase : str = F"""{func.__name__}({value})""" lowercase : Any = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) print(F"""{call:56} = {func(__magic_name__ )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__magic_name__ , __magic_name__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
308
0
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() A__ : Union[str, Any] = logging.get_logger(__name__) def a_ ( _UpperCAmelCase : int ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Any ) -> int: __snake_case : List[Any] = UniSpeechSatForSequenceClassification.from_pretrained(_UpperCAmelCase ,config=_UpperCAmelCase ) __snake_case : List[str] = downstream_dict['projector.weight'] __snake_case : int = downstream_dict['projector.bias'] __snake_case : str = downstream_dict['model.post_net.linear.weight'] __snake_case : Tuple = downstream_dict['model.post_net.linear.bias'] return model def a_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Any ,_UpperCAmelCase : List[str] ) -> str: __snake_case : List[Any] = UniSpeechSatForAudioFrameClassification.from_pretrained(_UpperCAmelCase ,config=_UpperCAmelCase ) __snake_case : Optional[Any] = downstream_dict['model.linear.weight'] __snake_case : Union[str, Any] = downstream_dict['model.linear.bias'] return model def a_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Optional[int] ) -> Tuple: __snake_case : Dict = UniSpeechSatForXVector.from_pretrained(_UpperCAmelCase ,config=_UpperCAmelCase ) __snake_case : List[Any] = downstream_dict['connector.weight'] __snake_case : int = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __snake_case : List[str] = downstream_dict[ f'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] __snake_case : int = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] __snake_case : Union[str, Any] = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] __snake_case : Any = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] __snake_case : Union[str, Any] = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] __snake_case : Tuple = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] __snake_case : int = downstream_dict['objective.W'] return model @torch.no_grad() def a_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: __snake_case : int = torch.load(_UpperCAmelCase ,map_location='cpu' ) __snake_case : Union[str, Any] = checkpoint['Downstream'] __snake_case : List[Any] = UniSpeechSatConfig.from_pretrained(_UpperCAmelCase ) __snake_case : List[Any] = WavaVecaFeatureExtractor.from_pretrained( _UpperCAmelCase ,return_attention_mask=_UpperCAmelCase ,do_normalize=_UpperCAmelCase ) __snake_case : Any = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): __snake_case : Optional[Any] = convert_classification(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) elif arch.endswith('ForAudioFrameClassification' ): __snake_case : Optional[int] = convert_diarization(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) elif arch.endswith('ForXVector' ): __snake_case : Tuple = convert_xvector(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) else: raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: __snake_case : Optional[Any] = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(_UpperCAmelCase ) hf_model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": A__ : Tuple = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') A__ : str = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
0
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) A__ : Dict = logging.getLogger() def a_ ( ) -> Tuple: __snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument('-f' ) __snake_case : Any = parser.parse_args() return args.f def a_ ( _UpperCAmelCase : Optional[int] ) -> List[Any]: __snake_case : Tuple = {} __snake_case : Union[str, Any] = os.path.join(_UpperCAmelCase ,'all_results.json' ) if os.path.exists(_UpperCAmelCase ): with open(_UpperCAmelCase ,'r' ) as f: __snake_case : List[str] = json.load(_UpperCAmelCase ) else: raise ValueError(f'''can\'t find {path}''' ) return results def a_ ( ) -> Union[str, Any]: __snake_case : Union[str, Any] = torch.cuda.is_available() and torch_device == 'cuda' return is_using_cuda and is_apex_available() A__ : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class snake_case__ ( SCREAMING_SNAKE_CASE_ ): @classmethod def A_ ( cls : Any ) -> List[str]: '''simple docstring''' # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU __snake_case : Optional[int] = tempfile.mkdtemp() __snake_case : Dict = os.path.join(cls.tmpdir , 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) __snake_case : List[Any] = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def A_ ( cls : List[str] ) -> List[str]: '''simple docstring''' shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : Any ) -> Optional[Any]: '''simple docstring''' __snake_case : List[Any] = self.get_auto_remove_tmp_dir() __snake_case : Dict = f''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append('--fp16' ) run_command(self._launch_args + testargs ) __snake_case : List[Any] = get_results(__a ) self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 ) self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'glue_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' __snake_case : Tuple = self.get_auto_remove_tmp_dir() __snake_case : str = f''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) __snake_case : str = get_results(__a ) self.assertLess(result['perplexity'] , 100 ) self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'clm_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : str ) -> List[str]: '''simple docstring''' __snake_case : int = self.get_auto_remove_tmp_dir() __snake_case : List[str] = f''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __snake_case : List[str] = get_results(__a ) self.assertLess(result['perplexity'] , 42 ) self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'mlm_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __snake_case : Any = 7 if get_gpu_count() > 1 else 2 __snake_case : Any = self.get_auto_remove_tmp_dir() __snake_case : int = f''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __snake_case : Dict = get_results(__a ) self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 ) self.assertLess(result['train_loss'] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'ner_no_trainer' ) ) ) @unittest.skip(reason='Fix me @muellerzr' ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : Any ) -> List[Any]: '''simple docstring''' __snake_case : Any = self.get_auto_remove_tmp_dir() __snake_case : Tuple = f''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __snake_case : str = get_results(__a ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['eval_f1'] , 28 ) self.assertGreaterEqual(result['eval_exact'] , 28 ) self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'qa_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : Dict ) -> List[Any]: '''simple docstring''' __snake_case : str = self.get_auto_remove_tmp_dir() __snake_case : Any = f''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) __snake_case : str = get_results(__a ) self.assertGreaterEqual(result['eval_accuracy'] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(__a , 'swag_no_trainer' ) ) ) @slow @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : Any ) -> Union[str, Any]: '''simple docstring''' __snake_case : Tuple = self.get_auto_remove_tmp_dir() __snake_case : List[str] = f''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __snake_case : int = get_results(__a ) self.assertGreaterEqual(result['eval_rouge1'] , 10 ) self.assertGreaterEqual(result['eval_rouge2'] , 2 ) self.assertGreaterEqual(result['eval_rougeL'] , 7 ) self.assertGreaterEqual(result['eval_rougeLsum'] , 7 ) self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'summarization_no_trainer' ) ) ) @slow @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : Union[str, Any] ) -> int: '''simple docstring''' __snake_case : Tuple = self.get_auto_remove_tmp_dir() __snake_case : str = f''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __snake_case : Dict = get_results(__a ) self.assertGreaterEqual(result['eval_bleu'] , 30 ) self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'translation_no_trainer' ) ) ) @slow def A_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' __snake_case : Union[str, Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(__a ) __snake_case : List[str] = self.get_auto_remove_tmp_dir() __snake_case : int = f''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) __snake_case : List[str] = get_results(__a ) self.assertGreaterEqual(result['eval_overall_accuracy'] , 0.1_0 ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : Tuple ) -> Any: '''simple docstring''' __snake_case : Dict = self.get_auto_remove_tmp_dir() __snake_case : Dict = f''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append('--fp16' ) run_command(self._launch_args + testargs ) __snake_case : Optional[int] = get_results(__a ) # The base model scores a 25% self.assertGreaterEqual(result['eval_accuracy'] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(__a , 'step_1' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'image_classification_no_trainer' ) ) )
0
1
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __A = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __A = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __A = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: str ) -> tuple[str, float]: '''simple docstring''' __lowerCamelCase : Optional[int] = len([g for position, g in enumerate(_lowerCamelCase ) if g == main_target[position]] ) return (item, float(_lowerCamelCase )) def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: str ) -> tuple[str, str]: '''simple docstring''' __lowerCamelCase : Any = random.randint(0 , len(_lowerCamelCase ) - 1 ) __lowerCamelCase : List[str] = parent_a[:random_slice] + parent_a[random_slice:] __lowerCamelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: list[str] ) -> str: '''simple docstring''' __lowerCamelCase : Tuple = list(_lowerCamelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __lowerCamelCase : Tuple = random.choice(_lowerCamelCase ) return "".join(_lowerCamelCase ) def lowercase_ ( _lowerCamelCase: tuple[str, float] , _lowerCamelCase: list[tuple[str, float]] , _lowerCamelCase: list[str] , ) -> list[str]: '''simple docstring''' __lowerCamelCase : Any = [] # Generate more children proportionally to the fitness score. __lowerCamelCase : Any = int(parent_a[1] * 100 ) + 1 __lowerCamelCase : List[str] = 10 if child_n >= 10 else child_n for _ in range(_lowerCamelCase ): __lowerCamelCase : Any = population_score[random.randint(0 , _lowerCamelCase )][0] __lowerCamelCase , __lowerCamelCase : Tuple = crossover(parent_a[0] , _lowerCamelCase ) # Append new string to the population list. pop.append(mutate(_lowerCamelCase , _lowerCamelCase ) ) pop.append(mutate(_lowerCamelCase , _lowerCamelCase ) ) return pop def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: list[str] , _lowerCamelCase: bool = True ) -> tuple[int, int, str]: '''simple docstring''' if N_POPULATION < N_SELECTED: __lowerCamelCase : List[str] = F"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(_lowerCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. __lowerCamelCase : List[Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __lowerCamelCase : Dict = F"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(_lowerCamelCase ) # Generate random starting population. __lowerCamelCase : List[str] = [] for _ in range(_lowerCamelCase ): population.append("".join([random.choice(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. __lowerCamelCase , __lowerCamelCase : Dict = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_lowerCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __lowerCamelCase : Union[str, Any] = [evaluate(_lowerCamelCase , _lowerCamelCase ) for item in population] # Check if there is a matching evolution. __lowerCamelCase : Optional[Any] = sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] , reverse=_lowerCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F"""\nGeneration: {generation}""" F"""\nTotal Population:{total_population}""" F"""\nBest score: {population_score[0][1]}""" F"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __lowerCamelCase : List[str] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_lowerCamelCase ) # Normalize population score to be between 0 and 1. __lowerCamelCase : Tuple = [ (item, score / len(_lowerCamelCase )) for item, score in population_score ] # This is selection for i in range(_lowerCamelCase ): population.extend(select(population_score[int(_lowerCamelCase )] , _lowerCamelCase , _lowerCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_lowerCamelCase ) > N_POPULATION: break if __name__ == "__main__": __A = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __A = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __A, __A, __A = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
135
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __A = '''pt''' elif is_tf_available(): __A = '''tf''' else: __A = '''jax''' class _snake_case ( a__ , unittest.TestCase ): snake_case__ = PerceiverTokenizer snake_case__ = False def lowerCamelCase__ ( self : List[str] ): super().setUp() __lowerCamelCase : List[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ ( self : Dict ): return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def lowerCamelCase__ ( self : List[Any] , **UpperCAmelCase : str ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def lowerCamelCase__ ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any=False , UpperCAmelCase : str=20 , UpperCAmelCase : Union[str, Any]=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __lowerCamelCase : Dict = [] for i in range(len(UpperCAmelCase ) ): try: __lowerCamelCase : int = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __lowerCamelCase : Any = list(filter(lambda UpperCAmelCase : re.match(r"^[ a-zA-Z]+$" , t[1] ) , UpperCAmelCase ) ) __lowerCamelCase : str = list(filter(lambda UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCAmelCase ) , UpperCAmelCase ) ) if max_length is not None and len(UpperCAmelCase ) > max_length: __lowerCamelCase : Optional[int] = toks[:max_length] if min_length is not None and len(UpperCAmelCase ) < min_length and len(UpperCAmelCase ) > 0: while len(UpperCAmelCase ) < min_length: __lowerCamelCase : int = toks + toks # toks_str = [t[1] for t in toks] __lowerCamelCase : str = [t[0] for t in toks] # Ensure consistency __lowerCamelCase : Optional[int] = tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) if " " not in output_txt and len(UpperCAmelCase ) > 1: __lowerCamelCase : Optional[int] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCAmelCase ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCAmelCase ) ) if with_prefix_space: __lowerCamelCase : Optional[int] = " " + output_txt __lowerCamelCase : List[Any] = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) return output_txt, output_ids def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Tuple = self.perceiver_tokenizer __lowerCamelCase : Optional[int] = "Unicode €." __lowerCamelCase : Union[str, Any] = tokenizer(UpperCAmelCase ) __lowerCamelCase : List[Any] = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["input_ids"] , UpperCAmelCase ) # decoding __lowerCamelCase : List[Any] = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , "[CLS]Unicode €.[SEP]" ) __lowerCamelCase : Optional[Any] = tokenizer("e è é ê ë" ) __lowerCamelCase : Dict = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["input_ids"] , UpperCAmelCase ) # decoding __lowerCamelCase : Optional[Any] = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , "[CLS]e è é ê ë[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "[CLS]e è é ê ë[SEP]" ) def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Dict = self.perceiver_tokenizer __lowerCamelCase : Union[str, Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off __lowerCamelCase : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __lowerCamelCase : Dict = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) if FRAMEWORK != "jax": __lowerCamelCase : Union[str, Any] = list(batch.input_ids.numpy()[0] ) else: __lowerCamelCase : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : str = self.perceiver_tokenizer __lowerCamelCase : Optional[Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] __lowerCamelCase : str = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , UpperCAmelCase ) self.assertIn("attention_mask" , UpperCAmelCase ) self.assertNotIn("decoder_input_ids" , UpperCAmelCase ) self.assertNotIn("decoder_attention_mask" , UpperCAmelCase ) def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : str = self.perceiver_tokenizer __lowerCamelCase : Union[str, Any] = [ "Summary of the text.", "Another summary.", ] __lowerCamelCase : int = tokenizer( text_target=UpperCAmelCase , max_length=32 , padding="max_length" , truncation=UpperCAmelCase , return_tensors=UpperCAmelCase ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCamelCase__ ( self : str ): # safety check on max_len default value so we are sure the test works __lowerCamelCase : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __lowerCamelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCamelCase : int = tempfile.mkdtemp() __lowerCamelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running" __lowerCamelCase : Any = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) __lowerCamelCase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCAmelCase ) __lowerCamelCase : Tuple = after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) shutil.rmtree(UpperCAmelCase ) __lowerCamelCase : int = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCamelCase : List[Any] = tempfile.mkdtemp() __lowerCamelCase : Dict = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) __lowerCamelCase : List[str] = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) __lowerCamelCase : Tuple = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) __lowerCamelCase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCAmelCase ) __lowerCamelCase : Optional[int] = after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __lowerCamelCase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: __lowerCamelCase : Optional[int] = json.load(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: __lowerCamelCase : Any = json.load(UpperCAmelCase ) __lowerCamelCase : Tuple = [F"""<extra_id_{i}>""" for i in range(125 )] __lowerCamelCase : Dict = added_tokens_extra_ids + [ "an_additional_special_token" ] __lowerCamelCase : Any = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(UpperCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(UpperCAmelCase , UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(UpperCAmelCase , UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowerCamelCase : Tuple = tokenizer_class.from_pretrained( UpperCAmelCase , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowerCamelCase : List[Any] = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=UpperCAmelCase )] __lowerCamelCase : Tuple = tokenizer_class.from_pretrained( UpperCAmelCase , additional_special_tokens=UpperCAmelCase , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : str = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , "�" ) def lowerCamelCase__ ( self : List[str] ): pass def lowerCamelCase__ ( self : Union[str, Any] ): pass def lowerCamelCase__ ( self : Union[str, Any] ): pass def lowerCamelCase__ ( self : Dict ): pass def lowerCamelCase__ ( self : Optional[int] ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __lowerCamelCase : List[str] = self.get_tokenizers(fast=UpperCAmelCase , do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __lowerCamelCase : List[Any] = ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] __lowerCamelCase : Any = tokenizer.convert_tokens_to_string(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
135
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : list[float] ) -> float: if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) snake_case = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__lowerCAmelCase ) ) return round(__lowerCAmelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __lowerCamelCase ( __lowerCAmelCase : dict ) -> tuple: return (data["data"], data["target"]) def __lowerCamelCase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ) -> XGBClassifier: snake_case = XGBClassifier() classifier.fit(__lowerCAmelCase , __lowerCAmelCase ) return classifier def __lowerCamelCase ( ) -> None: snake_case = load_iris() snake_case , snake_case = data_handling(__lowerCAmelCase ) snake_case , snake_case , snake_case , snake_case = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 ) snake_case = iris["""target_names"""] # Create an XGBoost Classifier from the training data snake_case = xgboost(__lowerCAmelCase , __lowerCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
3
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _a ( _lowerCAmelCase ): def __snake_case (self ) -> int: UpperCAmelCase_: Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, """tf_padding""" ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, """depth_multiplier""" ) ) class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=0.2_5, SCREAMING_SNAKE_CASE_=8, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=1024, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_="relu6", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.0_2, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=None, ) -> int: UpperCAmelCase_: List[str] = parent UpperCAmelCase_: Dict = batch_size UpperCAmelCase_: Union[str, Any] = num_channels UpperCAmelCase_: Optional[Any] = image_size UpperCAmelCase_: List[str] = depth_multiplier UpperCAmelCase_: int = min_depth UpperCAmelCase_: Optional[int] = tf_padding UpperCAmelCase_: Optional[int] = int(last_hidden_size * depth_multiplier ) UpperCAmelCase_: Union[str, Any] = output_stride UpperCAmelCase_: Dict = hidden_act UpperCAmelCase_: Optional[Any] = classifier_dropout_prob UpperCAmelCase_: Union[str, Any] = use_labels UpperCAmelCase_: Any = is_training UpperCAmelCase_: List[str] = num_labels UpperCAmelCase_: Dict = initializer_range UpperCAmelCase_: Optional[Any] = scope def __snake_case (self ) -> Dict: UpperCAmelCase_: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_: int = None UpperCAmelCase_: List[Any] = None if self.use_labels: UpperCAmelCase_: List[Any] = ids_tensor([self.batch_size], self.num_labels ) UpperCAmelCase_: List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCAmelCase_: Any = self.get_config() return config, pixel_values, labels, pixel_labels def __snake_case (self ) -> List[str]: return MobileNetVaConfig( num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, min_depth=self.min_depth, tf_padding=self.tf_padding, hidden_act=self.hidden_act, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCAmelCase_: str = MobileNetVaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Optional[int] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCAmelCase_: List[Any] = self.num_labels UpperCAmelCase_: Optional[int] = MobileNetVaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Optional[Any] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: List[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: List[str] = config_and_inputs UpperCAmelCase_: Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): A = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () A = ( {'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification} if is_torch_available() else {} ) A = False A = False A = False A = False def __snake_case (self ) -> List[str]: UpperCAmelCase_: int = MobileNetVaModelTester(self ) UpperCAmelCase_: Tuple = MobileNetVaConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""" ) def __snake_case (self ) -> List[Any]: pass @unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""" ) def __snake_case (self ) -> int: pass @unittest.skip(reason="""MobileNetV1 does not output attentions""" ) def __snake_case (self ) -> Tuple: pass def __snake_case (self ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_: Dict = model_class(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_: Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase_: List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[Any]: UpperCAmelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Union[str, Any]: def check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCAmelCase_: List[str] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCAmelCase_: Union[str, Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: str = outputs.hidden_states UpperCAmelCase_: Optional[int] = 26 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ , UpperCAmelCase_: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_: Any = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_: Tuple = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[Any]: UpperCAmelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def __snake_case (self ) -> List[Any]: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_: Optional[int] = MobileNetVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _a ( unittest.TestCase ): @cached_property def __snake_case (self ) -> List[Any]: return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""" ) if is_vision_available() else None ) @slow def __snake_case (self ) -> List[Any]: UpperCAmelCase_: Optional[int] = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = self.default_image_processor UpperCAmelCase_: int = prepare_img() UpperCAmelCase_: List[str] = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCAmelCase_: List[str] = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCAmelCase_: Optional[Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1E-4 ) )
147
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: List[str] , lowerCAmelCase__: Optional[Any]=[] ): """simple docstring""" UpperCAmelCase_: Union[str, Any] = size[0] - overlap_pixels * 2 UpperCAmelCase_: Dict = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels UpperCAmelCase_: Union[str, Any] = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_5_5 UpperCAmelCase_: Optional[int] = np.pad(lowerCAmelCase__ , mode="""linear_ramp""" , pad_width=lowerCAmelCase__ , end_values=0 ) if "l" in remove_borders: UpperCAmelCase_: List[Any] = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: UpperCAmelCase_: Optional[Any] = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: UpperCAmelCase_: Optional[int] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: UpperCAmelCase_: int = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: str , lowerCAmelCase__: Union[str, Any] ): """simple docstring""" return max(lowerCAmelCase__ , min(lowerCAmelCase__ , lowerCAmelCase__ ) ) def lowerCAmelCase_ (lowerCAmelCase__: [int] , lowerCAmelCase__: [int] , lowerCAmelCase__: [int] ): """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def lowerCAmelCase_ (lowerCAmelCase__: [int] , lowerCAmelCase__: int , lowerCAmelCase__: [int] ): """simple docstring""" UpperCAmelCase_: str = list(lowerCAmelCase__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap UpperCAmelCase_: int = clamp_rect(lowerCAmelCase__ , [0, 0] , [image_size[0], image_size[1]] ) return rect def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: List[str] , lowerCAmelCase__: List[Any] , lowerCAmelCase__: int ): """simple docstring""" UpperCAmelCase_: Optional[Any] = Image.new("""RGB""" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(lowerCAmelCase__ , (original_slice, 0) ) return result def lowerCAmelCase_ (lowerCAmelCase__: Dict , lowerCAmelCase__: Dict ): """simple docstring""" UpperCAmelCase_: Dict = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) UpperCAmelCase_: Optional[int] = tile.crop(lowerCAmelCase__ ) return tile def lowerCAmelCase_ (lowerCAmelCase__: Tuple , lowerCAmelCase__: int ): """simple docstring""" UpperCAmelCase_: str = n % d return n - divisor class _a ( _lowerCAmelCase ): def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 350, ) -> str: super().__init__( vae=SCREAMING_SNAKE_CASE_, text_encoder=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_, unet=SCREAMING_SNAKE_CASE_, low_res_scheduler=SCREAMING_SNAKE_CASE_, scheduler=SCREAMING_SNAKE_CASE_, max_noise_level=SCREAMING_SNAKE_CASE_, ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Dict: torch.manual_seed(0 ) UpperCAmelCase_: Dict = ( min(image.size[0] - (tile_size + original_image_slice), x * tile_size ), min(image.size[1] - (tile_size + original_image_slice), y * tile_size ), min(image.size[0], (x + 1) * tile_size ), min(image.size[1], (y + 1) * tile_size ), ) UpperCAmelCase_: Tuple = add_overlap_rect(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, image.size ) UpperCAmelCase_: List[str] = image.crop(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] UpperCAmelCase_: List[Any] = translated_slice_x - (original_image_slice / 2) UpperCAmelCase_: str = max(0, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = squeeze_tile(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = to_input.size UpperCAmelCase_: Any = to_input.resize((tile_size, tile_size), Image.BICUBIC ) UpperCAmelCase_: str = super(SCREAMING_SNAKE_CASE_, self ).__call__(image=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ).images[0] UpperCAmelCase_: Optional[int] = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4), Image.BICUBIC ) UpperCAmelCase_: int = unsqueeze_tile(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4), Image.BICUBIC ) UpperCAmelCase_: Union[str, Any] = [] if x == 0: remove_borders.append("""l""" ) elif crop_rect[2] == image.size[0]: remove_borders.append("""r""" ) if y == 0: remove_borders.append("""t""" ) elif crop_rect[3] == image.size[1]: remove_borders.append("""b""" ) UpperCAmelCase_: Tuple = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]), tile_border * 4, remove_borders=SCREAMING_SNAKE_CASE_ ), mode="""L""", ) final_image.paste( SCREAMING_SNAKE_CASE_, (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4), SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 75, SCREAMING_SNAKE_CASE_ = 9.0, SCREAMING_SNAKE_CASE_ = 50, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = 1, SCREAMING_SNAKE_CASE_ = 0.0, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = 1, SCREAMING_SNAKE_CASE_ = 128, SCREAMING_SNAKE_CASE_ = 32, SCREAMING_SNAKE_CASE_ = 32, ) -> Dict: UpperCAmelCase_: int = Image.new("""RGB""", (image.size[0] * 4, image.size[1] * 4) ) UpperCAmelCase_: str = math.ceil(image.size[0] / tile_size ) UpperCAmelCase_: int = math.ceil(image.size[1] / tile_size ) UpperCAmelCase_: Dict = tcx * tcy UpperCAmelCase_: Optional[Any] = 0 for y in range(SCREAMING_SNAKE_CASE_ ): for x in range(SCREAMING_SNAKE_CASE_ ): self._process_tile( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, prompt=SCREAMING_SNAKE_CASE_, num_inference_steps=SCREAMING_SNAKE_CASE_, guidance_scale=SCREAMING_SNAKE_CASE_, noise_level=SCREAMING_SNAKE_CASE_, negative_prompt=SCREAMING_SNAKE_CASE_, num_images_per_prompt=SCREAMING_SNAKE_CASE_, eta=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, latents=SCREAMING_SNAKE_CASE_, ) current_count += 1 if callback is not None: callback({"""progress""": current_count / total_tile_count, """image""": final_image} ) return final_image def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: Tuple = """stabilityai/stable-diffusion-x4-upscaler""" UpperCAmelCase_: Union[str, Any] = StableDiffusionTiledUpscalePipeline.from_pretrained(lowerCAmelCase__ , revision="""fp16""" , torch_dtype=torch.floataa ) UpperCAmelCase_: str = pipe.to("""cuda""" ) UpperCAmelCase_: List[str] = Image.open("""../../docs/source/imgs/diffusers_library.jpg""" ) def callback(lowerCAmelCase__: Dict ): print(F'progress: {obj["progress"]:.4f}' ) obj["image"].save("""diffusers_library_progress.jpg""" ) UpperCAmelCase_: Optional[int] = pipe(image=lowerCAmelCase__ , prompt="""Black font, white background, vector""" , noise_level=4_0 , callback=lowerCAmelCase__ ) final_image.save("""diffusers_library.jpg""" ) if __name__ == "__main__": main()
147
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCamelCase_ = get_tests_dir('''fixtures''') class __A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ (self ): # A mock response for an HTTP head request to emulate server down UpperCamelCase__ = mock.Mock() UpperCamelCase__ = 5_00 UpperCamelCase__ = {} UpperCamelCase__ = HTTPError UpperCamelCase__ = {} # Download this model to make sure it's in the cache. UpperCamelCase__ = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=UpperCamelCase_ ) as mock_head: UpperCamelCase__ = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase_ (self ): # This test is for deprecated behavior and can be removed in v5 UpperCamelCase__ = WavaVecaFeatureExtractor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json""" ) @is_staging_test class __A( unittest.TestCase ): """simple docstring""" @classmethod def UpperCAmelCase_ (cls ): UpperCamelCase__ = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def UpperCAmelCase_ (cls ): try: delete_repo(token=cls._token , repo_id="""test-feature-extractor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-feature-extractor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-feature-extractor""" ) except HTTPError: pass def UpperCAmelCase_ (self ): UpperCamelCase__ = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ ) feature_extractor.push_to_hub("""test-feature-extractor""" , use_auth_token=self._token ) UpperCamelCase__ = WavaVecaFeatureExtractor.from_pretrained(F"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCamelCase_ , repo_id="""test-feature-extractor""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) UpperCamelCase__ = WavaVecaFeatureExtractor.from_pretrained(F"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ ) feature_extractor.push_to_hub("""valid_org/test-feature-extractor""" , use_auth_token=self._token ) UpperCamelCase__ = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCamelCase_ , repo_id="""valid_org/test-feature-extractor-org""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) UpperCamelCase__ = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor-org""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def UpperCAmelCase_ (self ): CustomFeatureExtractor.register_for_auto_class() UpperCamelCase__ = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ ) feature_extractor.push_to_hub("""test-dynamic-feature-extractor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"""AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor"""} , ) UpperCamelCase__ = AutoFeatureExtractor.from_pretrained( F"{USER}/test-dynamic-feature-extractor" , trust_remote_code=UpperCamelCase_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , """CustomFeatureExtractor""" )
357
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __magic_name__ ( __a : Any ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __magic_name__ ( ): '''simple docstring''' with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" UpperCamelCase__ = [1, 2, 3] with pytest.raises(__a ): with parallel_backend("""unsupported backend""" ): map_nested(__a , __a , num_proc=2 ) with pytest.raises(__a ): with parallel_backend("""unsupported backend""" ): map_nested(__a , __a , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" , [2, -1] ) def __magic_name__ ( __a : Optional[int] ): '''simple docstring''' UpperCamelCase__ = [1, 2] UpperCamelCase__ = {"""a""": 1, """b""": 2} UpperCamelCase__ = {"""a""": [1, 2], """b""": [3, 4]} UpperCamelCase__ = {"""a""": {"""1""": 1}, """b""": 2} UpperCamelCase__ = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} UpperCamelCase__ = [2, 3] UpperCamelCase__ = {"""a""": 2, """b""": 3} UpperCamelCase__ = {"""a""": [2, 3], """b""": [4, 5]} UpperCamelCase__ = {"""a""": {"""1""": 2}, """b""": 3} UpperCamelCase__ = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa
178
0
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __UpperCamelCase ( unittest.TestCase , lowerCamelCase__ ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =load_tool('''text-classification''' ) self.tool.setup() lowerCamelCase_ =load_tool('''text-classification''', remote=lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.tool('''That\'s quite cool''', ['''positive''', '''negative'''] ) self.assertEqual(lowerCAmelCase, '''positive''' ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.remote_tool('''That\'s quite cool''', ['''positive''', '''negative'''] ) self.assertEqual(lowerCAmelCase, '''positive''' ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.tool(text='''That\'s quite cool''', labels=['''positive''', '''negative'''] ) self.assertEqual(lowerCAmelCase, '''positive''' ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.remote_tool(text='''That\'s quite cool''', labels=['''positive''', '''negative'''] ) self.assertEqual(lowerCAmelCase, '''positive''' )
75
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def snake_case_ (_a : Tuple ): return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def snake_case_ (): UpperCAmelCase = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_a ) UpperCAmelCase = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_a ) EnvironmentCommand.register_subcommand(_a ) TestCommand.register_subcommand(_a ) RunBeamCommand.register_subcommand(_a ) DummyDataCommand.register_subcommand(_a ) # Parse args UpperCAmelCase , UpperCAmelCase = parser.parse_known_args() if not hasattr(_a , '''func''' ): parser.print_help() exit(1 ) UpperCAmelCase = parse_unknown_args(_a ) # Run UpperCAmelCase = args.func(_a , **_a ) service.run() if __name__ == "__main__": main()
34
0
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params a_ = getLogger(__name__) a_ = """cuda""" if torch.cuda.is_available() else """cpu""" def __lowercase ( snake_case_ : List[str] ,snake_case_ : str ,snake_case_ : str ,snake_case_ : int = 8 ,snake_case_ : str = DEFAULT_DEVICE ,snake_case_ : Any=False ,snake_case_ : Tuple="summarization" ,snake_case_ : Any=None ,**snake_case_ : Optional[int] ,) ->Dict: '''simple docstring''' __A : str = Path(snake_case_ ).open('''w''' ,encoding='''utf-8''' ) __A : Optional[int] = str(snake_case_ ) __A : List[str] = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).to(snake_case_ ) if fpaa: __A : Optional[int] = model.half() __A : Optional[Any] = AutoTokenizer.from_pretrained(snake_case_ ) logger.info(F"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. __A : List[Any] = time.time() # update config with task specific params use_task_specific_params(snake_case_ ,snake_case_ ) if prefix is None: __A : List[Any] = prefix or getattr(model.config ,'''prefix''' ,'''''' ) or '''''' for examples_chunk in tqdm(list(chunks(snake_case_ ,snake_case_ ) ) ): __A : int = [prefix + text for text in examples_chunk] __A : Dict = tokenizer(snake_case_ ,return_tensors='''pt''' ,truncation=snake_case_ ,padding='''longest''' ).to(snake_case_ ) __A : List[Any] = model.generate( input_ids=batch.input_ids ,attention_mask=batch.attention_mask ,**snake_case_ ,) __A : List[Any] = tokenizer.batch_decode(snake_case_ ,skip_special_tokens=snake_case_ ,clean_up_tokenization_spaces=snake_case_ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __A : Dict = int(time.time() - start_time ) # seconds __A : str = len(snake_case_ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs ,4 )} def __lowercase ( ) ->List[str]: '''simple docstring''' return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def __lowercase ( snake_case_ : Dict=True ) ->Optional[int]: '''simple docstring''' __A : Any = argparse.ArgumentParser() parser.add_argument('''model_name''' ,type=snake_case_ ,help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' ,type=snake_case_ ,help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' ,type=snake_case_ ,help='''where to save summaries''' ) parser.add_argument('''--reference_path''' ,type=snake_case_ ,required=snake_case_ ,help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' ,type=snake_case_ ,required=snake_case_ ,default='''metrics.json''' ,help='''where to save metrics''' ) parser.add_argument('''--device''' ,type=snake_case_ ,required=snake_case_ ,default=snake_case_ ,help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' ,type=snake_case_ ,required=snake_case_ ,default=snake_case_ ,help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' ,type=snake_case_ ,default='''summarization''' ,help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' ,type=snake_case_ ,default=8 ,required=snake_case_ ,help='''batch size''' ) parser.add_argument( '''--n_obs''' ,type=snake_case_ ,default=-1 ,required=snake_case_ ,help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' ,action='''store_true''' ) parser.add_argument('''--dump-args''' ,action='''store_true''' ,help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' ,nargs='''?''' ,type=snake_case_ ,const=datetime_now() ,help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) ,) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __A , __A : List[Any] = parser.parse_known_args() __A : Union[str, Any] = parse_numeric_n_bool_cl_kwargs(snake_case_ ) if parsed_args and verbose: print(F"""parsed the following generate kwargs: {parsed_args}""" ) __A : List[str] = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __A : Dict = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=snake_case_ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __A : Optional[Any] = generate_summaries_or_translations( snake_case_ ,args.save_path ,args.model_name ,batch_size=args.bs ,device=args.device ,fpaa=args.fpaa ,task=args.task ,prefix=args.prefix ,**snake_case_ ,) if args.reference_path is None: return {} # Compute scores __A : Any = calculate_bleu if '''translation''' in args.task else calculate_rouge __A : Any = [x.rstrip() for x in open(args.save_path ).readlines()] __A : List[Any] = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(snake_case_ )] __A : dict = score_fn(snake_case_ ,snake_case_ ) scores.update(snake_case_ ) if args.dump_args: scores.update(snake_case_ ) if args.info: __A : Union[str, Any] = args.info if verbose: print(snake_case_ ) if args.score_path is not None: json.dump(snake_case_ ,open(args.score_path ,'''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
291
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def __lowercase ( snake_case_ : int ) ->bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(snake_case_ ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( ) ->Iterator[int]: '''simple docstring''' __A : int = 2 while True: if is_prime(snake_case_ ): yield num num += 1 def __lowercase ( snake_case_ : int = 2000000 ) ->int: '''simple docstring''' return sum(takewhile(lambda snake_case_ : x < n ,prime_generator() ) ) if __name__ == "__main__": print(f'''{solution() = }''')
291
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def _a ( a :Union[str, Any] , a :List[str] , a :List[str] ) -> int: a = UniSpeechSatForSequenceClassification.from_pretrained(a , config=a ) a = downstream_dict['''projector.weight'''] a = downstream_dict['''projector.bias'''] a = downstream_dict['''model.post_net.linear.weight'''] a = downstream_dict['''model.post_net.linear.bias'''] return model def _a ( a :Any , a :str , a :List[Any] ) -> Tuple: a = UniSpeechSatForAudioFrameClassification.from_pretrained(a , config=a ) a = downstream_dict['''model.linear.weight'''] a = downstream_dict['''model.linear.bias'''] return model def _a ( a :Dict , a :int , a :Union[str, Any] ) -> Dict: a = UniSpeechSatForXVector.from_pretrained(a , config=a ) a = downstream_dict['''connector.weight'''] a = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): a = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] a = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] a = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] a = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] a = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] a = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] a = downstream_dict['''objective.W'''] return model @torch.no_grad() def _a ( a :str , a :List[Any] , a :Optional[int] , a :Any ) -> str: a = torch.load(a , map_location='''cpu''' ) a = checkpoint['''Downstream'''] a = UniSpeechSatConfig.from_pretrained(a ) a = WavaVecaFeatureExtractor.from_pretrained( a , return_attention_mask=a , do_normalize=a ) a = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): a = convert_classification(a , a , a ) elif arch.endswith('''ForAudioFrameClassification''' ): a = convert_diarization(a , a , a ) elif arch.endswith('''ForXVector''' ): a = convert_xvector(a , a , a ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: a = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(a ) hf_model.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") UpperCAmelCase__ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
0
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) UpperCAmelCase__ = logging.getLogger() def _a ( ) -> Optional[int]: a = argparse.ArgumentParser() parser.add_argument('''-f''' ) a = parser.parse_args() return args.f def _a ( a :Any ) -> Tuple: a = {} a = os.path.join(a , '''all_results.json''' ) if os.path.exists(a ): with open(a , '''r''' ) as f: a = json.load(a ) else: raise ValueError(F"""can't find {path}""" ) return results def _a ( ) -> int: a = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() UpperCAmelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase_ ( lowercase ): '''simple docstring''' @classmethod def __lowerCAmelCase ( cls : str ) ->Tuple: """simple docstring""" a = tempfile.mkdtemp() a = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) a = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def __lowerCAmelCase ( cls : Optional[int] ) ->Union[str, Any]: """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" a = self.get_auto_remove_tmp_dir() a = F""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) a = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self.get_auto_remove_tmp_dir() a = F""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) a = get_results(__UpperCAmelCase ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __lowerCAmelCase ( self : Optional[int] ) ->int: """simple docstring""" a = self.get_auto_remove_tmp_dir() a = F""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) a = get_results(__UpperCAmelCase ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" a = 7 if get_gpu_count() > 1 else 2 a = self.get_auto_remove_tmp_dir() a = F""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) a = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __lowerCAmelCase ( self : Any ) ->int: """simple docstring""" a = self.get_auto_remove_tmp_dir() a = F""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) a = get_results(__UpperCAmelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self.get_auto_remove_tmp_dir() a = F""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs ) a = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" a = self.get_auto_remove_tmp_dir() a = F""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) a = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" a = self.get_auto_remove_tmp_dir() a = F""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) a = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''translation_no_trainer''' ) ) ) @slow def __lowerCAmelCase ( self : List[str] ) ->int: """simple docstring""" a = logging.StreamHandler(sys.stdout ) logger.addHandler(__UpperCAmelCase ) a = self.get_auto_remove_tmp_dir() a = F""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs ) a = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" a = self.get_auto_remove_tmp_dir() a = F""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) a = get_results(__UpperCAmelCase ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''image_classification_no_trainer''' ) ) )
0
1
from __future__ import annotations def UpperCamelCase ( _a , _a ) -> tuple[int, int]: '''simple docstring''' if b == 0: return (1, 0) ((lowercase_) , (lowercase_)) :Dict = extended_euclid(_a , a % b ) lowercase_ :Any = a // b return (y, x - k * y) def UpperCamelCase ( _a , _a , _a , _a ) -> int: '''simple docstring''' ((lowercase_) , (lowercase_)) :Union[str, Any] = extended_euclid(_a , _a ) lowercase_ :Optional[Any] = na * na lowercase_ :Dict = ra * x * na + ra * y * na return (n % m + m) % m def UpperCamelCase ( _a , _a ) -> int: '''simple docstring''' ((lowercase_) , (lowercase_)) :Union[str, Any] = extended_euclid(_a , _a ) if b < 0: lowercase_ :Dict = (b % n + n) % n return b def UpperCamelCase ( _a , _a , _a , _a ) -> int: '''simple docstring''' lowercase_ , lowercase_ :str = invert_modulo(_a , _a ), invert_modulo(_a , _a ) lowercase_ :Optional[int] = na * na lowercase_ :Optional[int] = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
252
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , **UpperCamelCase_ ): requires_backends(self , ['''bs4'''] ) super().__init__(**UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :Optional[int] = [] lowercase_ :Union[str, Any] = [] lowercase_ :Union[str, Any] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag lowercase_ :Any = parent.find_all(child.name , recursive=UpperCamelCase_ ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(UpperCamelCase_ ) else next(i for i, s in enumerate(UpperCamelCase_ , 1 ) if s is child ) ) lowercase_ :str = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :Dict = BeautifulSoup(UpperCamelCase_ , '''html.parser''' ) lowercase_ :Union[str, Any] = [] lowercase_ :Union[str, Any] = [] lowercase_ :List[Any] = [] for element in html_code.descendants: if type(UpperCamelCase_ ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue lowercase_ :Dict = html.unescape(UpperCamelCase_ ).strip() if not text_in_this_tag: continue all_doc_strings.append(UpperCamelCase_ ) lowercase_ , lowercase_ :Tuple = self.xpath_soup(UpperCamelCase_ ) stringaxtag_seq.append(UpperCamelCase_ ) stringaxsubs_seq.append(UpperCamelCase_ ) if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Union[str, Any] = '''''' for tagname, subs in zip(UpperCamelCase_ , UpperCamelCase_ ): xpath += f"/{tagname}" if subs != 0: xpath += f"[{subs}]" return xpath def __call__( self , UpperCamelCase_ ): lowercase_ :Dict = False # Check that strings has a valid type if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Optional[Any] = True elif isinstance(UpperCamelCase_ , (list, tuple) ): if len(UpperCamelCase_ ) == 0 or isinstance(html_strings[0] , UpperCamelCase_ ): lowercase_ :Tuple = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' f"but is of type {type(UpperCamelCase_ )}." ) lowercase_ :List[Any] = bool(isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(html_strings[0] , UpperCamelCase_ )) ) if not is_batched: lowercase_ :Dict = [html_strings] # Get nodes + xpaths lowercase_ :List[Any] = [] lowercase_ :List[str] = [] for html_string in html_strings: lowercase_ , lowercase_ , lowercase_ :List[str] = self.get_three_from_single(UpperCamelCase_ ) nodes.append(UpperCamelCase_ ) lowercase_ :str = [] for node, tag_list, sub_list in zip(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :str = self.construct_xpath(UpperCamelCase_ , UpperCamelCase_ ) xpath_strings.append(UpperCamelCase_ ) xpaths.append(UpperCamelCase_ ) # return as Dict lowercase_ :int = {'''nodes''': nodes, '''xpaths''': xpaths} lowercase_ :Optional[int] = BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ ) return encoded_inputs
252
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) A : List[Any] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(snake_case__ ) ) return round(snake_case__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' from scipy.stats import pearsonr import datasets lowercase : Optional[int] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' lowercase : Optional[Any] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' lowercase : str = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: """simple docstring""" if return_pvalue: A : Union[str, Any] = pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0] )}
3
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
361
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = ["model.decoder.embed_positions.weights"] def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" if "emb" in name: __lowerCamelCase = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: __lowerCamelCase = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: __lowerCamelCase = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: __lowerCamelCase = name.replace('linear1' , 'fc1' ) if "linear2" in name: __lowerCamelCase = name.replace('linear2' , 'fc2' ) if "norm1" in name: __lowerCamelCase = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: __lowerCamelCase = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: __lowerCamelCase = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: __lowerCamelCase = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: __lowerCamelCase = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCamelCase = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def lowerCamelCase_ ( UpperCamelCase__ : OrderedDict , UpperCamelCase__ : int ) -> Tuple[Dict, Dict]: """simple docstring""" __lowerCamelCase = list(state_dict.keys() ) __lowerCamelCase = {} for key in keys: __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = rename_keys(UpperCamelCase__ ) if "in_proj_weight" in key: # split fused qkv proj __lowerCamelCase = val[:hidden_size, :] __lowerCamelCase = val[hidden_size : 2 * hidden_size, :] __lowerCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCamelCase = val else: __lowerCamelCase = val return state_dict, enc_dec_proj_state_dict def lowerCamelCase_ ( UpperCamelCase__ : str ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values __lowerCamelCase = 1024 __lowerCamelCase = 24 __lowerCamelCase = 16 elif checkpoint == "medium": __lowerCamelCase = 1536 __lowerCamelCase = 48 __lowerCamelCase = 24 elif checkpoint == "large": __lowerCamelCase = 2048 __lowerCamelCase = 48 __lowerCamelCase = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) __lowerCamelCase = MusicgenDecoderConfig( hidden_size=UpperCamelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCamelCase__ , num_attention_heads=UpperCamelCase__ , ) return config @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[int]="cpu" ) -> List[Any]: """simple docstring""" __lowerCamelCase = MusicGen.get_pretrained(UpperCamelCase__ , device=UpperCamelCase__ ) __lowerCamelCase = decoder_config_from_checkpoint(UpperCamelCase__ ) __lowerCamelCase = fairseq_model.lm.state_dict() __lowerCamelCase , __lowerCamelCase = rename_state_dict( UpperCamelCase__ , hidden_size=decoder_config.hidden_size ) __lowerCamelCase = TaEncoderModel.from_pretrained('t5-base' ) __lowerCamelCase = EncodecModel.from_pretrained('facebook/encodec_32khz' ) __lowerCamelCase = MusicgenForCausalLM(UpperCamelCase__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCamelCase , __lowerCamelCase = decoder.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model __lowerCamelCase = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase__ , audio_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCamelCase__ ) # check we can do a forward pass __lowerCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCamelCase = model(input_ids=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits if logits.shape != (8, 1, 2048): raise ValueError('Incorrect shape for logits' ) # now construct the processor __lowerCamelCase = AutoTokenizer.from_pretrained('t5-base' ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) __lowerCamelCase = MusicgenProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) # set the appropriate bos/pad token ids __lowerCamelCase = 2048 __lowerCamelCase = 2048 # set other default generation config params __lowerCamelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCamelCase = True __lowerCamelCase = 3.0 if pytorch_dump_folder is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(UpperCamelCase__ ) processor.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) __A = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
348
0
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = emb.weight.shape __SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ ) __SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_="facebook/mbart-large-en-ro" , lowerCAmelCase_=False , lowerCAmelCase_=False ): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.load(A__ , map_location="cpu" )['model'] remove_ignore_keys_(A__ ) __SCREAMING_SNAKE_CASE = state_dict['encoder.embed_tokens.weight'].shape[0] __SCREAMING_SNAKE_CASE = MBartConfig.from_pretrained(A__ , vocab_size=A__ ) if mbart_aa and finetuned: __SCREAMING_SNAKE_CASE = 'relu' __SCREAMING_SNAKE_CASE = state_dict['decoder.embed_tokens.weight'] __SCREAMING_SNAKE_CASE = MBartForConditionalGeneration(A__ ) model.model.load_state_dict(A__ ) if finetuned: __SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": a__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') a__ : List[str] = parser.parse_args() a__ : Any = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
54
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer lowerCAmelCase__ : Dict = logging.get_logger(__name__) lowerCAmelCase__ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all BART models at https://huggingface.co/models?filter=bart lowerCAmelCase__ : Optional[int] = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json''', }, } lowerCAmelCase__ : Tuple = { '''facebook/bart-base''': 10_24, '''facebook/bart-large''': 10_24, '''facebook/bart-large-mnli''': 10_24, '''facebook/bart-large-cnn''': 10_24, '''facebook/bart-large-xsum''': 10_24, '''yjernite/bart_eli5''': 10_24, } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = ["""input_ids""", """attention_mask"""] __lowerCamelCase = BartTokenizer def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase="replace" , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase="<mask>" , __UpperCamelCase=False , __UpperCamelCase=True , **__UpperCamelCase , ) -> int: '''simple docstring''' super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , errors=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase , **__UpperCamelCase , ) snake_case__ : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCamelCase ) != add_prefix_space: snake_case__ : Any = getattr(__UpperCamelCase , pre_tok_state.pop('type' ) ) snake_case__ : List[str] = add_prefix_space snake_case__ : Any = pre_tok_class(**__UpperCamelCase ) snake_case__ : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case__ : Dict = 'post_processor' snake_case__ : Union[str, Any] = getattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase ) if tokenizer_component_instance: snake_case__ : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case__ : List[Any] = tuple(state['sep'] ) if "cls" in state: snake_case__ : List[str] = tuple(state['cls'] ) snake_case__ : int = False if state.get('add_prefix_space' , __UpperCamelCase ) != add_prefix_space: snake_case__ : Tuple = add_prefix_space snake_case__ : Any = True if state.get('trim_offsets' , __UpperCamelCase ) != trim_offsets: snake_case__ : Dict = trim_offsets snake_case__ : List[Any] = True if changes_to_apply: snake_case__ : Union[str, Any] = getattr(__UpperCamelCase , state.pop('type' ) ) snake_case__ : int = component_class(**__UpperCamelCase ) setattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase ) @property def __a ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __a ( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Tuple = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else value snake_case__ : Optional[Any] = value def __a ( self , *__UpperCamelCase , **__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' snake_case__ : str = kwargs.get('is_split_into_words' , __UpperCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def __a ( self , *__UpperCamelCase , **__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' snake_case__ : Optional[int] = kwargs.get('is_split_into_words' , __UpperCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' snake_case__ : Union[str, Any] = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' snake_case__ : Union[str, Any] = [self.sep_token_id] snake_case__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
143
0
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class a__ : def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: torch.manual_seed(0 ) __a = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) __a = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) __a = UNetaDConditionModel( sample_size=3_2 , layers_per_block=1 , block_out_channels=[3_2, 6_4] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __a = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_001 , beta_end=0.02 , thresholding=UpperCAmelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) __a = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: torch.manual_seed(0 ) __a = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) __a = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) __a = UNetaDConditionModel( sample_size=3_2 , layers_per_block=[1, 2] , block_out_channels=[3_2, 6_4] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.414 , time_embedding_act_fn='gelu' , time_embedding_dim=3_2 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __a = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_001 , beta_end=0.02 , thresholding=UpperCAmelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) __a = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_001 , beta_end=0.02 , ) torch.manual_seed(0 ) __a = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __SCREAMING_SNAKE_CASE ( self ) -> str: __a = self.get_dummy_components() __a = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __a = self.get_dummy_inputs(UpperCAmelCase ) __a = inputs['prompt'] __a = inputs['generator'] __a = inputs['num_inference_steps'] __a = inputs['output_type'] if "image" in inputs: __a = inputs['image'] else: __a = None if "mask_image" in inputs: __a = inputs['mask_image'] else: __a = None if "original_image" in inputs: __a = inputs['original_image'] else: __a = None __a , __a = pipe.encode_prompt(UpperCAmelCase ) # inputs with prompt converted to embeddings __a = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: __a = image if mask_image is not None: __a = mask_image if original_image is not None: __a = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __a = pipe(**UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase ) __a = self.pipeline_class.from_pretrained(UpperCAmelCase ) pipe_loaded.to(UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase , UpperCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) __a = self.get_dummy_inputs(UpperCAmelCase ) __a = inputs['generator'] __a = inputs['num_inference_steps'] __a = inputs['output_type'] # inputs with prompt converted to embeddings __a = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: __a = image if mask_image is not None: __a = mask_image if original_image is not None: __a = original_image __a = pipe_loaded(**UpperCAmelCase )[0] __a = np.abs(to_np(UpperCAmelCase ) - to_np(UpperCAmelCase ) ).max() self.assertLess(UpperCAmelCase , 1e-4 ) def __SCREAMING_SNAKE_CASE ( self ) -> int: __a = self.get_dummy_components() __a = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __a = self.get_dummy_inputs(UpperCAmelCase ) __a = pipe(**UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase ) __a = self.pipeline_class.from_pretrained(UpperCAmelCase ) pipe_loaded.to(UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __a = self.get_dummy_inputs(UpperCAmelCase ) __a = pipe_loaded(**UpperCAmelCase )[0] __a = np.abs(to_np(UpperCAmelCase ) - to_np(UpperCAmelCase ) ).max() self.assertLess(UpperCAmelCase , 1e-4 )
197
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase_ : Dict = {"""configuration_swin""": ["""SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwinConfig""", """SwinOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : int = [ """SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwinForImageClassification""", """SwinForMaskedImageModeling""", """SwinModel""", """SwinPreTrainedModel""", """SwinBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSwinForImageClassification""", """TFSwinForMaskedImageModeling""", """TFSwinModel""", """TFSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys lowerCamelCase_ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
197
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { 'shi-labs/dinat-mini-in1k-224': 'https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json', # See all Dinat models at https://huggingface.co/models?filter=dinat } class lowercase ( __UpperCAmelCase , __UpperCAmelCase): __lowerCAmelCase : Optional[int] = """dinat""" __lowerCAmelCase : Optional[int] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Optional[int] , _lowerCamelCase : Optional[Any]=4 , _lowerCamelCase : Optional[int]=3 , _lowerCamelCase : List[Any]=64 , _lowerCamelCase : List[Any]=[3, 4, 6, 5] , _lowerCamelCase : Dict=[2, 4, 8, 16] , _lowerCamelCase : str=7 , _lowerCamelCase : Optional[int]=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , _lowerCamelCase : Any=3.0 , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Dict=0.0 , _lowerCamelCase : str=0.1 , _lowerCamelCase : Optional[int]="gelu" , _lowerCamelCase : str=0.02 , _lowerCamelCase : int=1E-5 , _lowerCamelCase : Any=0.0 , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Any=None , **_lowerCamelCase : Optional[Any] , ): """simple docstring""" super().__init__(**_lowerCamelCase ) A_ : List[Any] = patch_size A_ : Dict = num_channels A_ : Optional[Any] = embed_dim A_ : List[Any] = depths A_ : Tuple = len(_lowerCamelCase ) A_ : str = num_heads A_ : Optional[Any] = kernel_size A_ : str = dilations A_ : List[str] = mlp_ratio A_ : Union[str, Any] = qkv_bias A_ : int = hidden_dropout_prob A_ : Any = attention_probs_dropout_prob A_ : int = drop_path_rate A_ : Any = hidden_act A_ : List[Any] = layer_norm_eps A_ : Dict = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A_ : Optional[Any] = int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) ) A_ : str = layer_scale_init_value A_ : Union[str, Any] = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(_lowerCamelCase ) + 1 )] A_ , A_ : List[Any] = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
167
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = ['model.decoder.embed_positions.weights'] def lowercase_ ( _UpperCAmelCase ): """simple docstring""" if "emb" in name: A_ : Tuple = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: A_ : Optional[int] = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: A_ : Optional[Any] = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: A_ : int = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: A_ : Optional[int] = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: A_ : Any = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: A_ : Any = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: A_ : Dict = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: A_ : Tuple = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: A_ : Union[str, Any] = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: A_ : Tuple = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : List[Any] = list(state_dict.keys() ) A_ : List[Any] = {} for key in keys: A_ : List[str] = state_dict.pop(_UpperCAmelCase ) A_ : Tuple = rename_keys(_UpperCAmelCase ) if "in_proj_weight" in key: # split fused qkv proj A_ : Any = val[:hidden_size, :] A_ : Optional[int] = val[hidden_size : 2 * hidden_size, :] A_ : Union[str, Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: A_ : List[str] = val else: A_ : int = val return state_dict, enc_dec_proj_state_dict def lowercase_ ( _UpperCAmelCase ): """simple docstring""" if checkpoint == "small": # default config values A_ : Optional[Any] = 1024 A_ : Tuple = 24 A_ : int = 16 elif checkpoint == "medium": A_ : Any = 1536 A_ : Union[str, Any] = 48 A_ : List[Any] = 24 elif checkpoint == "large": A_ : Optional[int] = 2048 A_ : Optional[int] = 48 A_ : Tuple = 32 else: raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) A_ : Tuple = MusicgenDecoderConfig( hidden_size=_UpperCAmelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , ) return config @torch.no_grad() def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="cpu" ): """simple docstring""" A_ : Any = MusicGen.get_pretrained(_UpperCAmelCase , device=_UpperCAmelCase ) A_ : str = decoder_config_from_checkpoint(_UpperCAmelCase ) A_ : Optional[int] = fairseq_model.lm.state_dict() A_ , A_ : str = rename_state_dict( _UpperCAmelCase , hidden_size=decoder_config.hidden_size ) A_ : List[str] = TaEncoderModel.from_pretrained('''t5-base''' ) A_ : Tuple = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) A_ : Union[str, Any] = MusicgenForCausalLM(_UpperCAmelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection A_ , A_ : Tuple = decoder.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" ) if len(_UpperCAmelCase ) > 0: raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model A_ : Tuple = MusicgenForConditionalGeneration(text_encoder=_UpperCAmelCase , audio_encoder=_UpperCAmelCase , decoder=_UpperCAmelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_UpperCAmelCase ) # check we can do a forward pass A_ : List[str] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) A_ : Union[str, Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): A_ : Tuple = model(input_ids=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor A_ : str = AutoTokenizer.from_pretrained('''t5-base''' ) A_ : int = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) A_ : Optional[int] = MusicgenProcessor(feature_extractor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) # set the appropriate bos/pad token ids A_ : Tuple = 2048 A_ : Union[str, Any] = 2048 # set other default generation config params A_ : Union[str, Any] = int(30 * audio_encoder.config.frame_rate ) A_ : List[str] = True A_ : List[str] = 3.0 if pytorch_dump_folder is not None: Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) if repo_id: logger.info(f"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(_UpperCAmelCase ) processor.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint', default='small', type=str, help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.', ) parser.add_argument( '--pytorch_dump_folder', required=True, default=None, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) parser.add_argument( '--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.' ) _lowerCamelCase : Optional[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
167
1
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) __lowercase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } __lowercase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def lowercase ( A_ , A_ , A_ , A_ , A_ )-> int: '''simple docstring''' for attribute in key.split("." ): a : int = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: a : List[Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: a : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": a : Dict = value elif weight_type == "weight_g": a : Optional[int] = value elif weight_type == "weight_v": a : Union[str, Any] = value elif weight_type == "bias": a : Any = value else: a : str = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowercase ( A_ , A_ )-> Optional[int]: '''simple docstring''' a : List[str] = [] a : Union[str, Any] = fairseq_model.state_dict() a : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): a : Any = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , ) a : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): a : Union[str, Any] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue a : Any = True if "*" in mapped_key: a : Union[str, Any] = name.split(lowerCAmelCase__ )[0].split("." )[-2] a : Union[str, Any] = mapped_key.replace("*" , lowerCAmelCase__ ) if "weight_g" in name: a : int = "weight_g" elif "weight_v" in name: a : Dict = "weight_v" elif "bias" in name: a : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj a : List[Any] = "weight" else: a : str = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase ( A_ , A_ , A_ , A_ , A_ )-> List[Any]: '''simple docstring''' a : Any = full_name.split("conv_layers." )[-1] a : Tuple = name.split("." ) a : Optional[int] = int(items[0] ) a : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) a : str = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) a : List[str] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) a : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) a : Optional[int] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def lowercase ( A_ , A_ , A_=None , A_=None , A_=True )-> Any: '''simple docstring''' if config_path is not None: a : List[str] = UniSpeechSatConfig.from_pretrained(lowerCAmelCase__ ) else: a : Optional[Any] = UniSpeechSatConfig() a : int = "" if is_finetuned: a : int = UniSpeechSatForCTC(lowerCAmelCase__ ) else: a : Optional[Any] = UniSpeechSatForPreTraining(lowerCAmelCase__ ) a , a , a : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) a : Any = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowercase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
366
"""simple docstring""" def lowercase ( A_ , A_ )-> float: '''simple docstring''' def get_matched_characters(A_ , A_ ) -> str: a : Optional[int] = [] a : List[Any] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): a : int = int(max(0 , i - limit ) ) a : Optional[int] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(A_ ) a : int = F'''{_stra[0:_stra.index(A_ )]} {_stra[_stra.index(A_ ) + 1:]}''' return "".join(A_ ) # matching characters a : Tuple = get_matched_characters(A_ , A_ ) a : str = get_matched_characters(A_ , A_ ) a : List[str] = len(A_ ) # transposition a : Union[str, Any] = ( len([(ca, ca) for ca, ca in zip(A_ , A_ ) if ca != ca] ) // 2 ) if not match_count: a : Tuple = 0.0 else: a : List[str] = ( 1 / 3 * ( match_count / len(A_ ) + match_count / len(A_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a : Union[str, Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
226
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small',return_dict=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) __UpperCamelCase = tokenizer('Hello there',return_tensors='pt' ).input_ids __UpperCamelCase = tokenizer('Hi I am',return_tensors='pt' ).input_ids __UpperCamelCase = model(input_ids.to(SCREAMING_SNAKE_CASE_ ),labels=labels.to(SCREAMING_SNAKE_CASE_ ) ).loss __UpperCamelCase = -(labels.shape[-1] * loss.item()) __UpperCamelCase = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
310
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch __a = 'sshleifer/bart-tiny-random' __a = 'patrickvonplaten/t5-tiny-random' @require_torch class lowercase__( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Any ) -> Tuple: return AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : int ) -> List[Any]: lowercase_ , *lowercase_ = create_student_by_copying_alternating_layers(SCREAMING_SNAKE_CASE_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def _lowercase ( self : Union[str, Any] ) -> Optional[int]: lowercase_ , *lowercase_ = create_student_by_copying_alternating_layers(SCREAMING_SNAKE_CASE_ , tempfile.mkdtemp() , e=1 , d=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[str] ) -> List[Any]: lowercase_ , *lowercase_ = create_student_by_copying_alternating_layers(SCREAMING_SNAKE_CASE_ , tempfile.mkdtemp() , e=1 , d=SCREAMING_SNAKE_CASE_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def _lowercase ( self : List[Any] ) -> List[Any]: lowercase_ , *lowercase_ = create_student_by_copying_alternating_layers(SCREAMING_SNAKE_CASE_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def _lowercase ( self : Union[str, Any] ) -> Optional[int]: with self.assertRaises(SCREAMING_SNAKE_CASE_ ): create_student_by_copying_alternating_layers(SCREAMING_SNAKE_CASE_ , tempfile.mkdtemp() , e=SCREAMING_SNAKE_CASE_ , d=SCREAMING_SNAKE_CASE_ )
30
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=9_9 , snake_case_=3_2 , snake_case_=2 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=1_6 , snake_case_=2 , snake_case_=0.02 , snake_case_=False , snake_case_=True , snake_case_="None" , snake_case_=3 , snake_case_=4 , snake_case_=None , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = parent UpperCAmelCase_ : Union[str, Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : Tuple = is_training UpperCAmelCase_ : List[str] = use_input_mask UpperCAmelCase_ : str = use_token_type_ids UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : Optional[int] = vocab_size UpperCAmelCase_ : Optional[int] = hidden_size UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : Union[str, Any] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Optional[Any] = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_vocab_size UpperCAmelCase_ : Optional[int] = type_sequence_label_size UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : str = num_labels UpperCAmelCase_ : Optional[int] = num_choices UpperCAmelCase_ : Optional[Any] = relative_attention UpperCAmelCase_ : Optional[Any] = position_biased_input UpperCAmelCase_ : str = pos_att_type UpperCAmelCase_ : Optional[Any] = scope def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : List[Any] = None if self.use_token_type_ids: UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[int] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Optional[int] = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=snake_case_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : str = TFDebertaVaModel(config=snake_case_ ) UpperCAmelCase_ : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCAmelCase_ : Optional[int] = [input_ids, input_mask] UpperCAmelCase_ : Dict = model(snake_case_ ) UpperCAmelCase_ : Union[str, Any] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : List[str] = TFDebertaVaForMaskedLM(config=snake_case_ ) UpperCAmelCase_ : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase_ : Optional[Any] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.num_labels UpperCAmelCase_ : str = TFDebertaVaForSequenceClassification(config=snake_case_ ) UpperCAmelCase_ : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase_ : List[Any] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Any = self.num_labels UpperCAmelCase_ : Optional[Any] = TFDebertaVaForTokenClassification(config=snake_case_ ) UpperCAmelCase_ : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase_ : Optional[int] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Dict = TFDebertaVaForQuestionAnswering(config=snake_case_ ) UpperCAmelCase_ : List[str] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase_ : Optional[int] = model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : List[str] = config_and_inputs UpperCAmelCase_ : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ :Any = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase_ :Union[str, Any] = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase_ :List[str] = False lowerCamelCase_ :Tuple = False def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Any = TFDebertaVaModelTester(self ) UpperCAmelCase_ : Dict = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 ) def _UpperCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : str = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) self.assertIsNotNone(snake_case_ ) @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='Model not available yet' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @slow def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : str = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) UpperCAmelCase_ : Tuple = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) UpperCAmelCase_ : Optional[int] = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCAmelCase_ : Any = model(snake_case_ , attention_mask=snake_case_ )[0] UpperCAmelCase_ : List[str] = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , snake_case_ , atol=1E-4 )
274
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=False , snake_case_=True , snake_case_=9_9 , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=1_6 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : Dict = seq_length UpperCAmelCase_ : Any = is_training UpperCAmelCase_ : List[Any] = use_input_mask UpperCAmelCase_ : Tuple = use_token_type_ids UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : List[Any] = type_vocab_size UpperCAmelCase_ : Optional[Any] = type_sequence_label_size UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : List[Any] = num_labels UpperCAmelCase_ : Any = num_choices UpperCAmelCase_ : List[str] = scope def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : List[str] = None if self.use_input_mask: UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , use_stable_embedding=snake_case_ , ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : str = OpenLlamaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase_ : str = model(snake_case_ , attention_mask=snake_case_ ) UpperCAmelCase_ : Dict = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Dict = OpenLlamaModel(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , ) UpperCAmelCase_ : Any = model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , ) UpperCAmelCase_ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = OpenLlamaForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Tuple = OpenLlamaForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() # first forward pass UpperCAmelCase_ : Tuple = model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , use_cache=snake_case_ , ) UpperCAmelCase_ : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : Optional[int] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase_ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ : Tuple = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase_ : List[Any] = model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , output_hidden_states=snake_case_ , )['hidden_states'][0] UpperCAmelCase_ : List[str] = model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , past_key_values=snake_case_ , output_hidden_states=snake_case_ , )['hidden_states'][0] # select random slice UpperCAmelCase_ : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : int = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Tuple = config_and_inputs UpperCAmelCase_ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ :Tuple = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowerCamelCase_ :Tuple = (OpenLlamaForCausalLM,) if is_torch_available() else () lowerCamelCase_ :Union[str, Any] = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase_ :str = False lowerCamelCase_ :Optional[int] = False def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : List[str] = OpenLlamaModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 ) def _UpperCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : int = type self.model_tester.create_and_check_model(*snake_case_ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : Union[str, Any] = input_dict['input_ids'] UpperCAmelCase_ : int = input_ids.ne(1 ).to(snake_case_ ) UpperCAmelCase_ : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ : Any = OpenLlamaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = 3 UpperCAmelCase_ : str = 'single_label_classification' UpperCAmelCase_ : List[str] = input_dict['input_ids'] UpperCAmelCase_ : Optional[Any] = input_ids.ne(1 ).to(snake_case_ ) UpperCAmelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = OpenLlamaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase_ : List[Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = 3 UpperCAmelCase_ : int = 'multi_label_classification' UpperCAmelCase_ : Dict = input_dict['input_ids'] UpperCAmelCase_ : int = input_ids.ne(1 ).to(snake_case_ ) UpperCAmelCase_ : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase_ : Union[str, Any] = OpenLlamaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : int = ids_tensor([1, 1_0] , config.vocab_size ) UpperCAmelCase_ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_ : Tuple = OpenLlamaModel(snake_case_ ) original_model.to(snake_case_ ) original_model.eval() UpperCAmelCase_ : List[str] = original_model(snake_case_ ).last_hidden_state UpperCAmelCase_ : Any = original_model(snake_case_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_ : Tuple = {'type': scaling_type, 'factor': 10.0} UpperCAmelCase_ : List[str] = OpenLlamaModel(snake_case_ ) scaled_model.to(snake_case_ ) scaled_model.eval() UpperCAmelCase_ : Tuple = scaled_model(snake_case_ ).last_hidden_state UpperCAmelCase_ : Optional[int] = scaled_model(snake_case_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) )
274
1
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCAmelCase ( __lowerCamelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_12 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_="None" , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=None , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_input_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = relative_attention _snake_case = position_biased_input _snake_case = pos_att_type _snake_case = scope def lowerCamelCase ( self ): """simple docstring""" _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_input_mask: _snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_config() _snake_case = 3_00 return config def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = DebertaModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ )[0] _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ )[0] _snake_case = model(lowerCAmelCase_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = DebertaForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.num_labels _snake_case = DebertaForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.num_labels _snake_case = DebertaForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = DebertaForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowercase = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) __lowercase = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) __lowercase = True __lowercase = False __lowercase = False __lowercase = False __lowercase = False def lowerCamelCase ( self ): """simple docstring""" _snake_case = DebertaModelTester(self ) _snake_case = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowerCAmelCase_ ) @slow def lowerCamelCase ( self ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = DebertaModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def lowerCamelCase ( self ): """simple docstring""" pass @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = DebertaModel.from_pretrained('microsoft/deberta-base' ) _snake_case = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) _snake_case = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] # compare the actual values for a slice. _snake_case = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase_ , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
42
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Optional[Any] = """blip_2_vision_model""" def __init__( self , snake_case=1408 , snake_case=6144 , snake_case=39 , snake_case=16 , snake_case=224 , snake_case=14 , snake_case="gelu" , snake_case=0.00_001 , snake_case=0.0 , snake_case=1E-10 , snake_case=True , **snake_case , ): super().__init__(**snake_case ) lowercase = hidden_size lowercase = intermediate_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = patch_size lowercase = image_size lowercase = initializer_range lowercase = attention_dropout lowercase = layer_norm_eps lowercase = hidden_act lowercase = qkv_bias @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case , **snake_case ): cls._set_token_in_kwargs(snake_case ) lowercase , lowercase = cls.get_config_dict(snake_case , **snake_case ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": lowercase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case , **snake_case ) class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : int = """blip_2_qformer""" def __init__( self , snake_case=3_0522 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=0.02 , snake_case=1E-12 , snake_case=0 , snake_case="absolute" , snake_case=2 , snake_case=1408 , **snake_case , ): super().__init__(pad_token_id=snake_case , **snake_case ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = initializer_range lowercase = layer_norm_eps lowercase = position_embedding_type lowercase = cross_attention_frequency lowercase = encoder_hidden_size @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case , **snake_case ): cls._set_token_in_kwargs(snake_case ) lowercase , lowercase = cls.get_config_dict(snake_case , **snake_case ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": lowercase = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case , **snake_case ) class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : List[Any] = """blip-2""" _UpperCamelCase : str = True def __init__( self , snake_case=None , snake_case=None , snake_case=None , snake_case=32 , **snake_case ): super().__init__(**snake_case ) if vision_config is None: lowercase = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: lowercase = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: lowercase = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) lowercase = BlipaVisionConfig(**snake_case ) lowercase = BlipaQFormerConfig(**snake_case ) lowercase = text_config['model_type'] if 'model_type' in text_config else 'opt' lowercase = CONFIG_MAPPING[text_model_type](**snake_case ) lowercase = self.text_config.tie_word_embeddings lowercase = self.text_config.is_encoder_decoder lowercase = num_query_tokens lowercase = self.vision_config.hidden_size lowercase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowercase = 1.0 lowercase = 0.02 @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case , snake_case , snake_case , **snake_case , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **snake_case , ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.vision_config.to_dict() lowercase = self.qformer_config.to_dict() lowercase = self.text_config.to_dict() lowercase = self.__class__.model_type return output
195
0
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } UpperCAmelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Any: """simple docstring""" for attribute in key.split('''.''' ): snake_case_ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: snake_case_ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: snake_case_ = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case_ = value elif weight_type == "weight_g": snake_case_ = value elif weight_type == "weight_v": snake_case_ = value elif weight_type == "bias": snake_case_ = value else: snake_case_ = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Optional[int]: """simple docstring""" snake_case_ = [] snake_case_ = fairseq_model.state_dict() snake_case_ = hf_model.feature_extractor snake_case_ = hf_model.adapter for name, value in fairseq_dict.items(): snake_case_ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) snake_case_ = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: snake_case_ = True if "*" in mapped_key: snake_case_ = name.split(SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] snake_case_ = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: snake_case_ = '''weight_g''' elif "weight_v" in name: snake_case_ = '''weight_v''' elif "bias" in name: snake_case_ = '''bias''' elif "weight" in name: snake_case_ = '''weight''' else: snake_case_ = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> List[Any]: """simple docstring""" snake_case_ = full_name.split('''conv_layers.''' )[-1] snake_case_ = name.split('''.''' ) snake_case_ = int(items[0] ) snake_case_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case_ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case_ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case_ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case_ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> str: """simple docstring""" snake_case_ = full_name.split('''adaptor.''' )[-1] snake_case_ = name.split('''.''' ) if items[1].isdigit(): snake_case_ = int(items[1] ) else: snake_case_ = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' snake_case_ = value logger.info(f'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' snake_case_ = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' snake_case_ = value logger.info(f'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' snake_case_ = value logger.info(f'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' snake_case_ = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' snake_case_ = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Any: """simple docstring""" snake_case_ , snake_case_ = emb.weight.shape snake_case_ = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) snake_case_ = emb.weight.data return lin_layer @torch.no_grad() def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , )-> Optional[int]: """simple docstring""" snake_case_ = WavaVecaConfig.from_pretrained( SCREAMING_SNAKE_CASE , add_adapter=SCREAMING_SNAKE_CASE , adapter_stride=SCREAMING_SNAKE_CASE , adapter_kernel_size=SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE , output_hidden_size=SCREAMING_SNAKE_CASE , ) snake_case_ = MBartConfig.from_pretrained(SCREAMING_SNAKE_CASE ) # load model snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) snake_case_ = model[0].eval() # load feature extractor snake_case_ = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE ) # set weights for wav2vec2 encoder snake_case_ = WavaVecaModel(SCREAMING_SNAKE_CASE ) recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE ) # load decoder weights snake_case_ = MBartForCausalLM(SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE ) logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) snake_case_ = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE ) snake_case_ = False snake_case_ = MBartaaTokenizer(SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) snake_case_ = hf_wavavec.config.to_dict() snake_case_ = tokenizer.pad_token_id snake_case_ = tokenizer.bos_token_id snake_case_ = tokenizer.eos_token_id snake_case_ = '''mbart50''' snake_case_ = '''wav2vec2''' snake_case_ = tokenizer.eos_token_id snake_case_ = 25_0004 snake_case_ = tokenizer.eos_token_id snake_case_ = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=25_0004, type=int, help="""`decoder_start_token_id` of model config""") UpperCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
267
from __future__ import annotations import time UpperCAmelCase = list[tuple[int, int]] UpperCAmelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCAmelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = pos_x snake_case_ = pos_y snake_case_ = (pos_y, pos_x) snake_case_ = goal_x snake_case_ = goal_y snake_case_ = parent class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = Node(start[1] , start[0] , goal[1] , goal[0] , _UpperCAmelCase ) snake_case_ = Node(goal[1] , goal[0] , goal[1] , goal[0] , _UpperCAmelCase ) snake_case_ = [self.start] snake_case_ = False def UpperCamelCase__ ( self ): while self.node_queue: snake_case_ = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case_ = True return self.retrace_path(_UpperCAmelCase ) snake_case_ = self.get_successors(_UpperCAmelCase ) for node in successors: self.node_queue.append(_UpperCAmelCase ) if not self.reached: return [self.start.pos] return None def UpperCamelCase__ ( self , _UpperCAmelCase ): snake_case_ = [] for action in delta: snake_case_ = parent.pos_x + action[1] snake_case_ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_UpperCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_UpperCAmelCase , _UpperCAmelCase , self.target.pos_y , self.target.pos_x , _UpperCAmelCase ) ) return successors def UpperCamelCase__ ( self , _UpperCAmelCase ): snake_case_ = node snake_case_ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case_ = current_node.parent path.reverse() return path class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = BreadthFirstSearch(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = BreadthFirstSearch(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = False def UpperCamelCase__ ( self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case_ = self.fwd_bfs.node_queue.pop(0 ) snake_case_ = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case_ = True return self.retrace_bidirectional_path( _UpperCAmelCase , _UpperCAmelCase ) snake_case_ = current_bwd_node snake_case_ = current_fwd_node snake_case_ = { self.fwd_bfs: self.fwd_bfs.get_successors(_UpperCAmelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(_UpperCAmelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_UpperCAmelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = self.fwd_bfs.retrace_path(_UpperCAmelCase ) snake_case_ = self.bwd_bfs.retrace_path(_UpperCAmelCase ) bwd_path.pop() bwd_path.reverse() snake_case_ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() UpperCAmelCase = (0, 0) UpperCAmelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCAmelCase = time.time() UpperCAmelCase = BreadthFirstSearch(init, goal) UpperCAmelCase = bfs.search() UpperCAmelCase = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) UpperCAmelCase = time.time() UpperCAmelCase = BidirectionalBreadthFirstSearch(init, goal) UpperCAmelCase = bd_bfs.search() UpperCAmelCase = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
267
1
"""simple docstring""" import numpy as np def _snake_case ( UpperCamelCase : np.array ): return 1 / (1 + np.exp(-vector )) def _snake_case ( UpperCamelCase : np.array ): return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
109
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Dict = ShapEImgaImgPipeline lowerCAmelCase__ : List[str] = ["""image"""] lowerCAmelCase__ : Any = ["""image"""] lowerCAmelCase__ : Any = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] lowerCAmelCase__ : Tuple = False @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : str ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase__ (self : int ): '''simple docstring''' return 8 @property def UpperCamelCase__ (self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(UpperCamelCase ) return model @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase , do_normalize=UpperCamelCase , do_resize=UpperCamelCase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def UpperCamelCase__ (self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase__ = PriorTransformer(**UpperCamelCase ) return model @property def UpperCamelCase__ (self : int ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**UpperCamelCase ) return model def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase , clip_sample=UpperCamelCase , clip_sample_range=1.0 , ) lowercase__ = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str=0 ): '''simple docstring''' lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if str(UpperCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase ) else: lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) lowercase__ = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = torch_device == '''cpu''' lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase , relax_max_difference=UpperCamelCase , ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(UpperCamelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**UpperCamelCase , num_images_per_prompt=UpperCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) lowercase__ = pipe( UpperCamelCase , generator=UpperCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
2
0
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class a__ ( __lowercase ): def lowercase ( self : List[Any] ) -> List[str]: lowercase : List[str] = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type, pa.intaa() ) def lowercase ( self : Dict ) -> int: with self.assertRaises(_a ): lowercase : Any = pa.array(TypedSequence([1, 2, 3] ), type=pa.intaa() ) def lowercase ( self : List[Any] ) -> Optional[int]: with self.assertRaises(_a ): lowercase : Union[str, Any] = pa.array(TypedSequence([1, 2, 3], try_type=Value('bool' ), type=Value('int64' ) ) ) def lowercase ( self : Any ) -> Any: lowercase : Dict = pa.array(TypedSequence([1, 2, 3], type=Value('int32' ) ) ) self.assertEqual(arr.type, pa.intaa() ) def lowercase ( self : str ) -> Optional[int]: with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowercase : Optional[int] = pa.array(TypedSequence(['foo', 'bar'], type=Value('int64' ) ) ) def lowercase ( self : Any ) -> Dict: lowercase : str = pa.array(TypedSequence([1, 2, 3], try_type=Value('int32' ) ) ) self.assertEqual(arr.type, pa.intaa() ) def lowercase ( self : Tuple ) -> int: lowercase : Optional[int] = pa.array(TypedSequence(['foo', 'bar'], try_type=Value('int64' ) ) ) self.assertEqual(arr.type, pa.string() ) def lowercase ( self : Dict ) -> Tuple: lowercase : Dict = pa.array(TypedSequence([[[1, 2, 3]]], type=ArrayaD((1, 3), 'int64' ) ) ) self.assertEqual(arr.type, ArrayaDExtensionType((1, 3), 'int64' ) ) def lowercase ( self : Optional[int] ) -> Optional[Any]: with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowercase : Tuple = pa.array(TypedSequence(['foo', 'bar'], type=ArrayaD((1, 3), 'int64' ) ) ) def lowercase ( self : Tuple ) -> Union[str, Any]: lowercase : int = pa.array(TypedSequence([[[1, 2, 3]]], try_type=ArrayaD((1, 3), 'int64' ) ) ) self.assertEqual(arr.type, ArrayaDExtensionType((1, 3), 'int64' ) ) def lowercase ( self : Optional[Any] ) -> List[str]: lowercase : str = pa.array(TypedSequence(['foo', 'bar'], try_type=ArrayaD((1, 3), 'int64' ) ) ) self.assertEqual(arr.type, pa.string() ) @require_pil def lowercase ( self : Any ) -> int: import PIL.Image lowercase : Tuple = PIL.Image.fromarray(np.arange(10, dtype=np.uinta ).reshape(2, 5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects', side_effect=_a ) as mock_cast_to_python_objects: lowercase : Tuple = pa.array(TypedSequence([{'path': None, 'bytes': b'image_bytes'}, pil_image], type=Image() ) ) lowercase , lowercase : str = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting', _a ) self.assertFalse(kwargs['optimize_list_casting'] ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: lowercase : int = pa.BufferReader(__a ) if isinstance(__a , pa.Buffer ) else pa.memory_map(__a ) lowercase : Dict = pa.ipc.open_stream(__a ) lowercase : Any = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: lowercase : Tuple = pa.BufferOutputStream() lowercase : Optional[int] = pa.schema(__a ) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) lowercase , lowercase : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase : Tuple = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowercase__ ( ) -> Union[str, Any]: lowercase : int = pa.BufferOutputStream() lowercase : Union[str, Any] = Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=__a , features=__a ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) lowercase , lowercase : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata lowercase : str = pa.BufferReader(output.getvalue() ) lowercase : List[Any] = pa.ipc.open_stream(__a ) lowercase : List[Any] = f.read_all() lowercase : Optional[Any] = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(__a ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) def lowercase__ ( _UpperCAmelCase ) -> Dict: lowercase : List[str] = pa.BufferOutputStream() with ArrowWriter( stream=__a , writer_batch_size=__a , hash_salt='split_name' , check_duplicates=__a , ) as writer: with pytest.raises(__a ): writer.write({'col_1': 'foo', 'col_2': 1} , key=[1, 2] ) lowercase , lowercase : Any = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def lowercase__ ( _UpperCAmelCase ) -> Union[str, Any]: lowercase : Optional[Any] = pa.BufferOutputStream() with ArrowWriter( stream=__a , writer_batch_size=__a , hash_salt='split_name' , check_duplicates=__a , ) as writer: with pytest.raises(__a ): writer.write({'col_1': 'foo', 'col_2': 1} , key=10 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=10 ) lowercase , lowercase : int = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def lowercase__ ( _UpperCAmelCase ) -> Union[str, Any]: lowercase : Dict = pa.BufferOutputStream() with ArrowWriter( stream=__a , writer_batch_size=__a , hash_salt='split_name' , check_duplicates=__a , ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} , key=1 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=2 ) lowercase , lowercase : Optional[int] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: lowercase : List[Any] = pa.BufferOutputStream() lowercase : Any = pa.schema(__a ) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) lowercase , lowercase : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase : Union[str, Any] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: lowercase : Any = pa.BufferOutputStream() lowercase : str = pa.schema(__a ) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) lowercase , lowercase : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase : List[Any] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: lowercase : Any = pa.BufferOutputStream() lowercase : List[Any] = pa.schema(__a ) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) lowercase , lowercase : List[str] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase : Optional[Any] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowercase__ ( ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: lowercase : List[str] = {'col_1': pa.string(), 'col_2': pa.intaa()} lowercase : Optional[int] = os.path.join(__a , 'test.arrow' ) with ArrowWriter(path=__a , schema=pa.schema(__a ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) lowercase , lowercase : Optional[int] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(__a , 1 ) def lowercase__ ( _UpperCAmelCase ) -> Tuple: if pa.types.is_list(__a ): return get_base_dtype(arr_type.value_type ) else: return arr_type def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: if isinstance(lst[0] , __a ): change_first_primitive_element_in_list(lst[0] , __a ) else: lowercase : str = value @pytest.mark.parametrize('optimized_int_type, expected_dtype' , [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str: lowercase : Union[str, Any] = pa.array(TypedSequence(__a , optimized_int_type=__a ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype' , [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ] , ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: # in range lowercase : Optional[Any] = pa.array(OptimizedTypedSequence(__a , col=__a ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications lowercase : Optional[Any] = copy.deepcopy(__a ) lowercase : Union[str, Any] = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(__a , __a ) lowercase : Any = pa.array(OptimizedTypedSequence(__a , col=__a ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception' , [False, True] ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> str: lowercase : Any = str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=__a ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def lowercase__ ( _UpperCAmelCase ) -> Optional[Any]: lowercase : int = 'mock://dataset-train.arrow' with ArrowWriter(path=__a , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(__a ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) lowercase , lowercase : List[str] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(__a ) def lowercase__ ( ) -> Optional[Any]: lowercase : List[str] = pa.BufferOutputStream() with ParquetWriter(stream=__a ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) lowercase , lowercase : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 lowercase : str = pa.BufferReader(output.getvalue() ) lowercase : str = pq.read_table(__a ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files' , [False, True] ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> Any: import PIL.Image lowercase : List[str] = str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(__a , format='png' ) lowercase : Optional[Any] = pa.BufferOutputStream() with ParquetWriter( stream=__a , features=Features({'image': Image()} ) , embed_local_files=__a ) as writer: writer.write({'image': image_path} ) writer.finalize() lowercase : List[Any] = pa.BufferReader(output.getvalue() ) lowercase : List[str] = pq.read_table(__a ) lowercase : Union[str, Any] = pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'] , __a ) with open(__a , 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def lowercase__ ( ) -> int: lowercase : Optional[Any] = pa.schema([pa.field('col_1' , pa.string() , nullable=__a )] ) lowercase : int = pa.BufferOutputStream() with ArrowWriter(stream=__a ) as writer: writer._build_writer(inferred_schema=__a ) assert writer._schema == pa.schema([pa.field('col_1' , pa.string() )] )
350
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowercase__ ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] = np.inf def set_batch_size(_UpperCAmelCase ) -> None: nonlocal batch_size if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase : Any = min(_UpperCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase : Dict = min(_UpperCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ) and feature.dtype == "binary": lowercase : int = min(_UpperCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_UpperCAmelCase , _UpperCAmelCase ) return None if batch_size is np.inf else batch_size class a__ ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Union[str, Any], lowerCAmelCase : NestedDataStructureLike[PathLike], lowerCAmelCase : Optional[NamedSplit] = None, lowerCAmelCase : Optional[Features] = None, lowerCAmelCase : str = None, lowerCAmelCase : bool = False, lowerCAmelCase : bool = False, lowerCAmelCase : Optional[int] = None, **lowerCAmelCase : int, ) -> List[Any]: super().__init__( lowerCAmelCase, split=lowerCAmelCase, features=lowerCAmelCase, cache_dir=lowerCAmelCase, keep_in_memory=lowerCAmelCase, streaming=lowerCAmelCase, num_proc=lowerCAmelCase, **lowerCAmelCase, ) lowercase : str = path_or_paths if isinstance(lowerCAmelCase, lowerCAmelCase ) else {self.split: path_or_paths} lowercase : Tuple = _PACKAGED_DATASETS_MODULES['parquet'][1] lowercase : Optional[int] = Parquet( cache_dir=lowerCAmelCase, data_files=lowerCAmelCase, features=lowerCAmelCase, hash=lowerCAmelCase, **lowerCAmelCase, ) def lowercase ( self : Optional[int] ) -> Union[str, Any]: # Build iterable dataset if self.streaming: lowercase : Union[str, Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase : Tuple = None lowercase : Union[str, Any] = None lowercase : List[Any] = None lowercase : int = None self.builder.download_and_prepare( download_config=lowerCAmelCase, download_mode=lowerCAmelCase, verification_mode=lowerCAmelCase, base_path=lowerCAmelCase, num_proc=self.num_proc, ) lowercase : Any = self.builder.as_dataset( split=self.split, verification_mode=lowerCAmelCase, in_memory=self.keep_in_memory ) return dataset class a__ : def __init__( self : Dict, lowerCAmelCase : Dataset, lowerCAmelCase : Union[PathLike, BinaryIO], lowerCAmelCase : Optional[int] = None, **lowerCAmelCase : Optional[Any], ) -> Optional[Any]: lowercase : List[Any] = dataset lowercase : int = path_or_buf lowercase : Optional[Any] = batch_size or get_writer_batch_size(dataset.features ) lowercase : Optional[Any] = parquet_writer_kwargs def lowercase ( self : Union[str, Any] ) -> int: lowercase : Union[str, Any] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf, (str, bytes, os.PathLike) ): with open(self.path_or_buf, 'wb+' ) as buffer: lowercase : int = self._write(file_obj=lowerCAmelCase, batch_size=lowerCAmelCase, **self.parquet_writer_kwargs ) else: lowercase : List[Any] = self._write(file_obj=self.path_or_buf, batch_size=lowerCAmelCase, **self.parquet_writer_kwargs ) return written def lowercase ( self : int, lowerCAmelCase : BinaryIO, lowerCAmelCase : int, **lowerCAmelCase : Union[str, Any] ) -> int: lowercase : Optional[Any] = 0 lowercase : int = parquet_writer_kwargs.pop('path_or_buf', lowerCAmelCase ) lowercase : List[str] = self.dataset.features.arrow_schema lowercase : int = pq.ParquetWriter(lowerCAmelCase, schema=lowerCAmelCase, **lowerCAmelCase ) for offset in logging.tqdm( range(0, len(self.dataset ), lowerCAmelCase ), unit='ba', disable=not logging.is_progress_bar_enabled(), desc='Creating parquet from Arrow format', ): lowercase : Tuple = query_table( table=self.dataset._data, key=slice(lowerCAmelCase, offset + batch_size ), indices=self.dataset._indices if self.dataset._indices is not None else None, ) writer.write_table(lowerCAmelCase ) written += batch.nbytes writer.close() return written
53
0
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def _lowerCAmelCase (_lowerCAmelCase): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _lowerCAmelCase (_lowerCAmelCase): # word like '180' or '身高' or '神' for char in word: UpperCamelCase_ = ord(_lowerCAmelCase) if not _is_chinese_char(_lowerCAmelCase): return 0 return 1 def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ = set() for token in tokens: UpperCamelCase_ = len(_lowerCAmelCase) > 1 and is_chinese(_lowerCAmelCase) if chinese_word: word_set.add(_lowerCAmelCase) UpperCamelCase_ = list(_lowerCAmelCase) return word_list def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): if not chinese_word_set: return bert_tokens UpperCamelCase_ = max([len(_lowerCAmelCase) for w in chinese_word_set]) UpperCamelCase_ = bert_tokens UpperCamelCase_ , UpperCamelCase_ = 0, len(_lowerCAmelCase) while start < end: UpperCamelCase_ = True if is_chinese(bert_word[start]): UpperCamelCase_ = min(end - start , _lowerCAmelCase) for i in range(_lowerCAmelCase , 1 , -1): UpperCamelCase_ = "".join(bert_word[start : start + i]) if whole_word in chinese_word_set: for j in range(start + 1 , start + i): UpperCamelCase_ = "##" + bert_word[j] UpperCamelCase_ = start + i UpperCamelCase_ = False break if single_word: start += 1 return bert_word def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = [] for i in range(0 , len(_lowerCAmelCase) , 1_00): UpperCamelCase_ = ltp_tokenizer.pipeline(lines[i : i + 1_00] , tasks=["cws"]).cws UpperCamelCase_ = [get_chinese_word(_lowerCAmelCase) for r in res] ltp_res.extend(_lowerCAmelCase) assert len(_lowerCAmelCase) == len(_lowerCAmelCase) UpperCamelCase_ = [] for i in range(0 , len(_lowerCAmelCase) , 1_00): UpperCamelCase_ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=5_12) bert_res.extend(res["input_ids"]) assert len(_lowerCAmelCase) == len(_lowerCAmelCase) UpperCamelCase_ = [] for input_ids, chinese_word in zip(_lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = [] for id in input_ids: UpperCamelCase_ = bert_tokenizer._convert_id_to_token(_lowerCAmelCase) input_tokens.append(_lowerCAmelCase) UpperCamelCase_ = add_sub_symbol(_lowerCAmelCase , _lowerCAmelCase) UpperCamelCase_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCAmelCase): if token[:2] == "##": UpperCamelCase_ = token[2:] # save chinese tokens' pos if len(_lowerCAmelCase) == 1 and _is_chinese_char(ord(_lowerCAmelCase)): ref_id.append(_lowerCAmelCase) ref_ids.append(_lowerCAmelCase) assert len(_lowerCAmelCase) == len(_lowerCAmelCase) return ref_ids def _lowerCAmelCase (_lowerCAmelCase): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , "r" , encoding="utf-8") as f: UpperCamelCase_ = f.readlines() UpperCamelCase_ = [line.strip() for line in data if len(_lowerCAmelCase) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase_ = LTP(args.ltp) # faster in GPU device UpperCamelCase_ = BertTokenizer.from_pretrained(args.bert) UpperCamelCase_ = prepare_ref(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) with open(args.save_path , "w" , encoding="utf-8") as f: UpperCamelCase_ = [json.dumps(_lowerCAmelCase) + "\n" for ref in ref_ids] f.writelines(_lowerCAmelCase) if __name__ == "__main__": UpperCAmelCase : Optional[int] =argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) UpperCAmelCase : List[str] =parser.parse_args() main(args)
128
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar UpperCAmelCase : Dict =TypeVar("""T""") class _lowercase (Generic[T] ): '''simple docstring''' def __init__( self , snake_case__ ): '''simple docstring''' UpperCamelCase_ = data UpperCamelCase_ = None def __str__( self ): '''simple docstring''' return F"""{self.data}""" class _lowercase (Generic[T] ): '''simple docstring''' def __init__( self ): '''simple docstring''' UpperCamelCase_ = None def __iter__( self ): '''simple docstring''' UpperCamelCase_ = self.top while node: yield node.data UpperCamelCase_ = node.next def __str__( self ): '''simple docstring''' return "->".join([str(snake_case__ ) for item in self] ) def __len__( self ): '''simple docstring''' return len(tuple(iter(self ) ) ) def _lowerCamelCase ( self ): '''simple docstring''' return self.top is None def _lowerCamelCase ( self , snake_case__ ): '''simple docstring''' UpperCamelCase_ = Node(snake_case__ ) if not self.is_empty(): UpperCamelCase_ = self.top UpperCamelCase_ = node def _lowerCamelCase ( self ): '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , snake_case__ ) UpperCamelCase_ = self.top UpperCamelCase_ = self.top.next return pop_node.data def _lowerCamelCase ( self ): '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = None if __name__ == "__main__": from doctest import testmod testmod()
128
1
'''simple docstring''' from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
351
'''simple docstring''' import math __snake_case : List[Any] = 10 __snake_case : Dict = 7 __snake_case : str = BALLS_PER_COLOUR * NUM_COLOURS def __lowerCamelCase ( __snake_case : int = 20 ) -> str: """simple docstring""" A__ : Union[str, Any] =math.comb(__snake_case, __snake_case ) A__ : str =math.comb(NUM_BALLS - BALLS_PER_COLOUR, __snake_case ) A__ : Optional[int] =NUM_COLOURS * (1 - missing_colour / total) return f"{result:.9f}" if __name__ == "__main__": print(solution(20))
136
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"]): _A : Optional[int] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__lowerCamelCase) def _lowerCamelCase ( self) -> int: _A : Optional[int] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase) _A : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Dict: _A : int = "sgugger/tiny-distilbert-classification" _A : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , only_pretrain_model=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = "sshleifer/tiny-gpt2" _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , torchscript=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase) _A : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision") def _lowerCamelCase ( self) -> int: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , fpaa=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Any = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Any: _A : Union[str, Any] = "sshleifer/tiny-gpt2" _A : Any = AutoConfig.from_pretrained(__lowerCamelCase) # set architectures equal to `None` _A : Dict = None _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : List[Any] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision") def _lowerCamelCase ( self) -> Optional[Any]: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : List[Any] = PyTorchBenchmark(__lowerCamelCase) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> str: _A : List[str] = "sshleifer/tiny-gpt2" _A : Union[str, Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : Tuple = "sshleifer/tinier_bart" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> str: _A : List[Any] = "sshleifer/tiny-gpt2" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> int: _A : int = "sshleifer/tinier_bart" _A : str = AutoConfig.from_pretrained(__lowerCamelCase) _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> Dict: _A : List[str] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , save_to_csv=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowerCamelCase , "inf_time.csv") , train_memory_csv_file=os.path.join(__lowerCamelCase , "train_mem.csv") , inference_memory_csv_file=os.path.join(__lowerCamelCase , "inf_mem.csv") , train_time_csv_file=os.path.join(__lowerCamelCase , "train_time.csv") , env_info_csv_file=os.path.join(__lowerCamelCase , "env.csv") , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase) benchmark.run() self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "env.csv")).exists()) def _lowerCamelCase ( self) -> int: _A : Dict = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__lowerCamelCase): self.assertTrue(hasattr(__lowerCamelCase , "sequential")) self.assertTrue(hasattr(__lowerCamelCase , "cumulative")) self.assertTrue(hasattr(__lowerCamelCase , "current")) self.assertTrue(hasattr(__lowerCamelCase , "total")) with tempfile.TemporaryDirectory() as tmp_dir: _A : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowerCamelCase , "log.txt") , log_print=__lowerCamelCase , trace_memory_line_by_line=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : Optional[int] = PyTorchBenchmark(__lowerCamelCase) _A : Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(__lowerCamelCase , "log.txt")).exists())
11
import argparse import collections import json import os import re import string import sys import numpy as np SCREAMING_SNAKE_CASE__ : Union[str, Any] = re.compile(r"\b(a|an|the)\b", re.UNICODE) SCREAMING_SNAKE_CASE__ : int = None def __magic_name__ ( ) -> str: __lowerCamelCase = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=__lowerCAmelCase , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=__lowerCAmelCase , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]: __lowerCamelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __lowerCamelCase = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def __magic_name__ ( __lowerCAmelCase : Dict ) -> Optional[Any]: def remove_articles(__lowerCAmelCase : Optional[int] ): return ARTICLES_REGEX.sub(''' ''' , __lowerCAmelCase ) def white_space_fix(__lowerCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(__lowerCAmelCase : Union[str, Any] ): __lowerCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCAmelCase : Dict ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) ) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Optional[int]: if not s: return [] return normalize_answer(__lowerCAmelCase ).split() def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple ) -> int: return int(normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) ) def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ) -> str: __lowerCamelCase = get_tokens(__lowerCAmelCase ) __lowerCamelCase = get_tokens(__lowerCAmelCase ) __lowerCamelCase = collections.Counter(__lowerCAmelCase ) & collections.Counter(__lowerCAmelCase ) __lowerCamelCase = sum(common.values() ) if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 __lowerCamelCase = 1.0 * num_same / len(__lowerCAmelCase ) __lowerCamelCase = 1.0 * num_same / len(__lowerCAmelCase ) __lowerCamelCase = (2 * precision * recall) / (precision + recall) return fa def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ) -> Optional[Any]: __lowerCamelCase = {} __lowerCamelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __lowerCamelCase = qa['''id'''] __lowerCamelCase = [t for t in qa['''answers''']['''text'''] if normalize_answer(__lowerCAmelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string __lowerCamelCase = [''''''] if qid not in preds: print(f'''Missing prediction for {qid}''' ) continue __lowerCamelCase = preds[qid] # Take max over all gold answers __lowerCamelCase = max(compute_exact(__lowerCAmelCase , __lowerCAmelCase ) for a in gold_answers ) __lowerCamelCase = max(compute_fa(__lowerCAmelCase , __lowerCAmelCase ) for a in gold_answers ) return exact_scores, fa_scores def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ) -> List[str]: __lowerCamelCase = {} for qid, s in scores.items(): __lowerCamelCase = na_probs[qid] > na_prob_thresh if pred_na: __lowerCamelCase = float(not qid_to_has_ans[qid] ) else: __lowerCamelCase = s return new_scores def __magic_name__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any]=None ) -> Union[str, Any]: if not qid_list: __lowerCamelCase = len(__lowerCAmelCase ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores.values() ) / total), ('''f1''', 100.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: __lowerCamelCase = len(__lowerCAmelCase ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> int: for k in new_eval: __lowerCamelCase = new_eval[k] def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: plt.step(__lowerCAmelCase , __lowerCAmelCase , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(__lowerCAmelCase , __lowerCAmelCase , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__lowerCAmelCase ) plt.savefig(__lowerCAmelCase ) plt.clf() def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Tuple=None ) -> int: __lowerCamelCase = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : na_probs[k] ) __lowerCamelCase = 0.0 __lowerCamelCase = 1.0 __lowerCamelCase = 0.0 __lowerCamelCase = [1.0] __lowerCamelCase = [0.0] __lowerCamelCase = 0.0 for i, qid in enumerate(__lowerCAmelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] __lowerCamelCase = true_pos / float(i + 1 ) __lowerCamelCase = true_pos / float(__lowerCAmelCase ) if i == len(__lowerCAmelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__lowerCAmelCase ) recalls.append(__lowerCAmelCase ) if out_image: plot_pr_curve(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return {"ap": 100.0 * avg_prec} def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] ) -> List[Any]: if out_image_dir and not os.path.exists(__lowerCAmelCase ): os.makedirs(__lowerCAmelCase ) __lowerCamelCase = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return __lowerCamelCase = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) __lowerCamelCase = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) __lowerCamelCase = {k: float(__lowerCAmelCase ) for k, v in qid_to_has_ans.items()} __lowerCamelCase = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''pr_exact''' ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''pr_f1''' ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''pr_oracle''' ) def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int ) -> Optional[Any]: if not qid_list: return __lowerCamelCase = [na_probs[k] for k in qid_list] __lowerCamelCase = np.ones_like(__lowerCAmelCase ) / float(len(__lowerCAmelCase ) ) plt.hist(__lowerCAmelCase , weights=__lowerCAmelCase , bins=20 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(f'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(__lowerCAmelCase , f'''na_prob_hist_{name}.png''' ) ) plt.clf() def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Optional[int]: __lowerCamelCase = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) __lowerCamelCase = num_no_ans __lowerCamelCase = cur_score __lowerCamelCase = 0.0 __lowerCamelCase = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : na_probs[k] ) for i, qid in enumerate(__lowerCAmelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: __lowerCamelCase = scores[qid] else: if preds[qid]: __lowerCamelCase = -1 else: __lowerCamelCase = 0 cur_score += diff if cur_score > best_score: __lowerCamelCase = cur_score __lowerCamelCase = na_probs[qid] return 100.0 * best_score / len(__lowerCAmelCase ), best_thresh def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] ) -> int: __lowerCamelCase , __lowerCamelCase = find_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase = find_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = best_exact __lowerCamelCase = exact_thresh __lowerCamelCase = best_fa __lowerCamelCase = fa_thresh def __magic_name__ ( ) -> Optional[int]: with open(OPTS.data_file ) as f: __lowerCamelCase = json.load(__lowerCAmelCase ) __lowerCamelCase = dataset_json['''data'''] with open(OPTS.pred_file ) as f: __lowerCamelCase = json.load(__lowerCAmelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: __lowerCamelCase = json.load(__lowerCAmelCase ) else: __lowerCamelCase = {k: 0.0 for k in preds} __lowerCamelCase = make_qid_to_has_ans(__lowerCAmelCase ) # maps qid to True/False __lowerCamelCase = [k for k, v in qid_to_has_ans.items() if v] __lowerCamelCase = [k for k, v in qid_to_has_ans.items() if not v] __lowerCamelCase , __lowerCamelCase = get_raw_scores(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = apply_no_ans_threshold(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.na_prob_thresh ) __lowerCamelCase = apply_no_ans_threshold(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.na_prob_thresh ) __lowerCamelCase = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase ) if has_ans_qids: __lowerCamelCase = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase , qid_list=__lowerCAmelCase ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''HasAns''' ) if no_ans_qids: __lowerCamelCase = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase , qid_list=__lowerCAmelCase ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir ) histogram_na_prob(__lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(__lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) else: print(json.dumps(__lowerCAmelCase , indent=2 ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Any = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
270
0
"""simple docstring""" UpperCAmelCase : List[Any] = range(2, 20 + 1) UpperCAmelCase : Optional[int] = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase : dict[int, dict[int, list[list[int]]]] = {} def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : str = sum(a_i[j] for j in range(_UpperCamelCase , len(_UpperCamelCase ) ) ) __UpperCAmelCase : List[str] = sum(a_i[j] * base[j] for j in range(min(len(_UpperCamelCase ) , _UpperCamelCase ) ) ) __UpperCAmelCase ,__UpperCAmelCase : str = 0, 0 __UpperCAmelCase : Optional[int] = n - i __UpperCAmelCase : Optional[int] = memo.get(_UpperCamelCase ) if sub_memo is not None: __UpperCAmelCase : Any = sub_memo.get(_UpperCamelCase ) if jumps is not None and len(_UpperCamelCase ) > 0: # find and make the largest jump without going over __UpperCAmelCase : List[Any] = -1 for _k in range(len(_UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __UpperCAmelCase : List[Any] = _k break if max_jump >= 0: __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Tuple = jumps[max_jump] # since the difference between jumps is cached, add c __UpperCAmelCase : Dict = diff + c for j in range(min(_UpperCamelCase , len(_UpperCamelCase ) ) ): __UpperCAmelCase ,__UpperCAmelCase : str = divmod(_UpperCamelCase , 1_0 ) if new_c > 0: add(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: __UpperCAmelCase : str = [] else: __UpperCAmelCase : Dict = {c: []} __UpperCAmelCase : Union[str, Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = next_term(_UpperCamelCase , k - 1 , i + dn , _UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __UpperCAmelCase ,__UpperCAmelCase : Dict = compute(_UpperCamelCase , _UpperCamelCase , i + dn , _UpperCamelCase ) diff += _diff dn += terms_jumped __UpperCAmelCase : Union[str, Any] = sub_memo[c] # keep jumps sorted by # of terms skipped __UpperCAmelCase : Optional[int] = 0 while j < len(_UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_UpperCamelCase , (diff, dn, k) ) return (diff, dn) def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any ) -> Dict: '''simple docstring''' if i >= n: return 0, i if k > len(_UpperCamelCase ): a_i.extend([0 for _ in range(k - len(_UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __UpperCAmelCase : Dict = i __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : List[Any] = 0, 0, 0 for j in range(len(_UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __UpperCAmelCase : Union[str, Any] = ds_c + ds_b diff += addend __UpperCAmelCase : Tuple = 0 for j in range(_UpperCamelCase ): __UpperCAmelCase : int = a_i[j] + addend __UpperCAmelCase ,__UpperCAmelCase : str = divmod(_UpperCamelCase , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return diff, i - start_i def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple ) -> Dict: '''simple docstring''' for j in range(_UpperCamelCase , len(_UpperCamelCase ) ): __UpperCAmelCase : Optional[Any] = digits[j] + addend if s >= 1_0: __UpperCAmelCase ,__UpperCAmelCase : List[Any] = divmod(_UpperCamelCase , 1_0 ) __UpperCAmelCase : Union[str, Any] = addend // 1_0 + quotient else: __UpperCAmelCase : List[str] = s __UpperCAmelCase : Optional[int] = addend // 1_0 if addend == 0: break while addend > 0: __UpperCAmelCase ,__UpperCAmelCase : str = divmod(_UpperCamelCase , 1_0 ) digits.append(_UpperCamelCase ) def lowerCamelCase ( _UpperCamelCase : int = 1_0**1_5 ) -> int: '''simple docstring''' __UpperCAmelCase : str = [1] __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[Any] = 0 while True: __UpperCAmelCase ,__UpperCAmelCase : List[Any] = next_term(_UpperCamelCase , 2_0 , i + dn , _UpperCamelCase ) dn += terms_jumped if dn == n - i: break __UpperCAmelCase : List[Any] = 0 for j in range(len(_UpperCamelCase ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(F"{solution() = }")
320
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase__ ( A ): """simple docstring""" __a = ["""image_processor""", """tokenizer"""] __a = """AutoImageProcessor""" __a = """AutoTokenizer""" def __init__( self : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ): '''simple docstring''' super().__init__(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : str = self.image_processor def __call__( self : Dict , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : int=None , **UpperCamelCase : Optional[int] ): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __UpperCAmelCase : List[str] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: __UpperCAmelCase : Optional[Any] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: __UpperCAmelCase : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def lowerCamelCase__ ( self : List[str] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Dict ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , *UpperCamelCase : str , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
320
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule __a = {"tokenization_byt5": ["ByT5Tokenizer"]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase : str = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
0
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets lowerCamelCase__ = '\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n' lowerCamelCase__ = '\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results[\'matthews_correlation\'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results[\'matthews_correlation\'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results[\'matthews_correlation\'], 2))\n -0.25\n' lowerCamelCase__ = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : Optional[Any] ) ->Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html" ] , ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str=None ) ->Dict: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , sample_weight=_SCREAMING_SNAKE_CASE ) ), }
364
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : int = "resnet" lowerCAmelCase : Union[str, Any] = ["basic", "bottleneck"] def __init__( self : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Any=64 , lowerCamelCase__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ : int=[3, 4, 6, 3] , lowerCamelCase__ : Dict="bottleneck" , lowerCamelCase__ : Dict="relu" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple , ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[str] = embedding_size _UpperCAmelCase : Tuple = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : List[Any] = layer_type _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = downsample_in_first_stage _UpperCAmelCase : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = version.parse("1.11" ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self : str ) ->float: '''simple docstring''' return 1E-3
322
0
import numpy as np from transformers import Pipeline def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Any: """simple docstring""" __lowerCamelCase = np.max(UpperCamelCase__ , axis=-1 , keepdims=UpperCamelCase__ ) __lowerCamelCase = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=UpperCamelCase__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def lowercase_ ( self , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = {} if "second_text" in kwargs: __lowerCamelCase = kwargs['second_text'] return preprocess_kwargs, {}, {} def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=None ) -> Tuple: '''simple docstring''' return self.tokenizer(lowerCamelCase__ , text_pair=lowerCamelCase__ , return_tensors=self.framework ) def lowercase_ ( self , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' return self.model(**lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = model_outputs.logits[0].numpy() __lowerCamelCase = softmax(lowerCamelCase__ ) __lowerCamelCase = np.argmax(lowerCamelCase__ ) __lowerCamelCase = self.model.config.idalabel[best_class] __lowerCamelCase = probabilities[best_class].item() __lowerCamelCase = logits.tolist() return {"label": label, "score": score, "logits": logits}
90
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCamelCase__ = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCamelCase__ = [0, 2_5, 5_0] UpperCamelCase__ = [2_5, 5_0, 7_5] UpperCamelCase__ = fuzz.membership.trimf(X, abca) UpperCamelCase__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCamelCase__ = np.ones(7_5) UpperCamelCase__ = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) UpperCamelCase__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCamelCase__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCamelCase__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCamelCase__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCamelCase__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCamelCase__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCamelCase__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCamelCase__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
65
0
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __a ( UpperCAmelCase , unittest.TestCase ): _a : Optional[Any] = DiTPipeline _a : int = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _a : Tuple = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } _a : str = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _a : List[str] = False def UpperCAmelCase__ ( self ) -> int: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn='gelu-approximate' , num_embeds_ada_norm=1000 , norm_type='ada_norm_zero' , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ) -> str: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipe(**_SCREAMING_SNAKE_CASE ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _UpperCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella', 'white shark', 'white wolf'] _UpperCAmelCase = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type='np' ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella'] _UpperCAmelCase = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type='np' ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
355
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def lowerCAmelCase__ ( a__: Sequence[float] , a__: int , a__: int ) -> tuple[int | None, int | None, float]: '''simple docstring''' if not arr: return None, None, 0 if low == high: return low, high, arr[low] _UpperCAmelCase = (low + high) // 2 _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = max_subarray(a__ , a__ , a__ ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = max_subarray(a__ , mid + 1 , a__ ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = max_cross_sum(a__ , a__ , a__ , a__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def lowerCAmelCase__ ( a__: Sequence[float] , a__: int , a__: int , a__: int ) -> tuple[int, int, float]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = float('-inf' ), -1 _UpperCAmelCase , _UpperCAmelCase = float('-inf' ), -1 _UpperCAmelCase = 0 for i in range(a__ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: _UpperCAmelCase = summ _UpperCAmelCase = i _UpperCAmelCase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: _UpperCAmelCase = summ _UpperCAmelCase = i return max_left, max_right, (left_sum + right_sum) def lowerCAmelCase__ ( a__: int ) -> float: '''simple docstring''' _UpperCAmelCase = [randint(1 , a__ ) for _ in range(a__ )] _UpperCAmelCase = time.time() max_subarray(a__ , 0 , input_size - 1 ) _UpperCAmelCase = time.time() return end - start def lowerCAmelCase__ ( ) -> None: '''simple docstring''' _UpperCAmelCase = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] _UpperCAmelCase = [time_max_subarray(a__ ) for input_size in input_sizes] print('No of Inputs\t\tTime Taken' ) for input_size, runtime in zip(a__ , a__ ): print(a__ , '\t\t' , a__ ) plt.plot(a__ , a__ ) plt.xlabel('Number of Inputs' ) plt.ylabel('Time taken in seconds' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
185
0
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging __lowerCAmelCase : int = logging.get_logger(__name__) class __lowerCAmelCase : """simple docstring""" A__ : Optional[int] = None @experimental def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) return _map_with_joblib(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: __lowercase : str = num_proc if num_proc <= len(_snake_case ) else len(_snake_case ) __lowercase : Union[str, Any] = [] # We organize the splits ourselve (contiguous splits) for index in range(_snake_case ): __lowercase : Any = len(_snake_case ) // num_proc __lowercase : Optional[int] = len(_snake_case ) % num_proc __lowercase : Any = div * index + min(_snake_case , _snake_case ) __lowercase : Dict = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(_snake_case ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F'Error dividing inputs iterable among processes. ' F'Total number of objects {len(_snake_case )}, ' F'length: {sum(len(i[1] ) for i in split_kwds )}' ) logger.info( F'Spawning {num_proc} processes for {len(_snake_case )} objects in slices of {[len(i[1] ) for i in split_kwds]}' ) __lowercase , __lowercase : str = None, None if not disable_tqdm: __lowercase , __lowercase : List[Any] = (RLock(),), tqdm.set_lock with Pool(_snake_case , initargs=_snake_case , initializer=_snake_case ) as pool: __lowercase : Optional[Any] = pool.map(_snake_case , _snake_case ) logger.info(F'Finished {num_proc} processes' ) __lowercase : int = [obj for proc_res in mapped for obj in proc_res] logger.info(F'Unpacked {len(_snake_case )} objects' ) return mapped def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=_snake_case ): return joblib.Parallel()( joblib.delayed(_snake_case )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def UpperCAmelCase_ ( __lowerCAmelCase ) -> Optional[Any]: __lowercase : List[str] = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: __lowercase : Any = None
156
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" __a =[False] * len(_snake_case ) __a =[-1] * len(_snake_case ) def dfs(_snake_case : Dict , _snake_case : Any ): __a =True __a =c for u in graph[v]: if not visited[u]: dfs(_snake_case , 1 - c ) for i in range(len(_snake_case ) ): if not visited[i]: dfs(_snake_case , 0 ) for i in range(len(_snake_case ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph _lowerCAmelCase : int = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
218
0
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowercase : Any = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" lowercase : str = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" lowercase : Any = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> List[str]: return float((preds == labels).mean() ) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> List[str]: _snake_case = simple_accuracy(A__ , A__ ) _snake_case = float(fa_score(y_true=A__ , y_pred=A__ ) ) return { "accuracy": acc, "f1": fa, } def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Dict: _snake_case = float(pearsonr(A__ , A__ )[0] ) _snake_case = float(spearmanr(A__ , A__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): def lowerCamelCase ( self ): """simple docstring""" if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", ' '\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowerCAmelCase_ , lowerCAmelCase_ )} elif self.config_name == "stsb": return pearson_and_spearman(lowerCAmelCase_ , lowerCAmelCase_ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowerCAmelCase_ , lowerCAmelCase_ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ )} else: raise KeyError( 'You should supply a configuration name selected in ' '[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", ' '\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]' )
351
'''simple docstring''' from ...processing_utils import ProcessorMixin class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """SpeechT5FeatureExtractor""" __lowercase = """SpeechT5Tokenizer""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" _snake_case = kwargs.pop('audio' , lowerCAmelCase_ ) _snake_case = kwargs.pop('text' , lowerCAmelCase_ ) _snake_case = kwargs.pop('text_target' , lowerCAmelCase_ ) _snake_case = kwargs.pop('audio_target' , lowerCAmelCase_ ) _snake_case = kwargs.pop('sampling_rate' , lowerCAmelCase_ ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: _snake_case = self.feature_extractor(lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_ ) elif text is not None: _snake_case = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_ ) else: _snake_case = None if audio_target is not None: _snake_case = self.feature_extractor(audio_target=lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = targets['input_values'] elif text_target is not None: _snake_case = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = targets['input_ids'] else: _snake_case = None if inputs is None: return targets if targets is not None: _snake_case = labels _snake_case = targets.get('attention_mask' ) if decoder_attention_mask is not None: _snake_case = decoder_attention_mask return inputs def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" _snake_case = kwargs.pop('input_values' , lowerCAmelCase_ ) _snake_case = kwargs.pop('input_ids' , lowerCAmelCase_ ) _snake_case = kwargs.pop('labels' , lowerCAmelCase_ ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: _snake_case = self.feature_extractor.pad(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) elif input_ids is not None: _snake_case = self.tokenizer.pad(lowerCAmelCase_ , **lowerCAmelCase_ ) else: _snake_case = None if labels is not None: if "input_ids" in labels or (isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and "input_ids" in labels[0]): _snake_case = self.tokenizer.pad(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = targets['input_ids'] else: _snake_case = self.feature_extractor.feature_size _snake_case = self.feature_extractor.num_mel_bins _snake_case = self.feature_extractor.pad(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = feature_size_hack _snake_case = targets['input_values'] else: _snake_case = None if inputs is None: return targets if targets is not None: _snake_case = labels _snake_case = targets.get('attention_mask' ) if decoder_attention_mask is not None: _snake_case = decoder_attention_mask return inputs def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ )
160
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer A__ = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast A__ = TaTokenizerFast A__ = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys A__ = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
82
'''simple docstring''' import random def lowercase__ ( __lowercase : list , __lowercase : Optional[Any] ) -> tuple: """simple docstring""" __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = [], [], [] for element in data: if element < pivot: less.append(__lowercase ) elif element > pivot: greater.append(__lowercase ) else: equal.append(__lowercase ) return less, equal, greater def lowercase__ ( __lowercase : list , __lowercase : int ) -> Dict: """simple docstring""" if index >= len(__lowercase ) or index < 0: return None __UpperCamelCase = items[random.randint(0 , len(__lowercase ) - 1 )] __UpperCamelCase = 0 __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = _partition(__lowercase , __lowercase ) __UpperCamelCase = len(__lowercase ) __UpperCamelCase = len(__lowercase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__lowercase , __lowercase ) # must be in larger else: return quick_select(__lowercase , index - (m + count) )
53
0
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" return EnvironmentCommand() def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" return EnvironmentCommand(args.accelerate_config_file ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' @staticmethod def snake_case ( lowerCamelCase : ArgumentParser )-> Dict: lowerCamelCase__ : str =parser.add_parser('''env''' ) download_parser.set_defaults(func=lowerCamelCase ) download_parser.add_argument( '''--accelerate-config_file''', default=lowerCamelCase, help='''The accelerate config file to use for the default values in the launching script.''', ) download_parser.set_defaults(func=lowerCamelCase ) def __init__( self : str, lowerCamelCase : Dict, *lowerCamelCase : Tuple )-> None: lowerCamelCase__ : Dict =accelerate_config_file def snake_case ( self : List[Any] )-> List[str]: lowerCamelCase__ : List[str] ='''not installed''' if is_safetensors_available(): import safetensors lowerCamelCase__ : str =safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors lowerCamelCase__ : Tuple =F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' lowerCamelCase__ : List[Any] ='''not installed''' lowerCamelCase__ : List[Any] ='''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file lowerCamelCase__ : List[Any] =accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(lowerCamelCase ): lowerCamelCase__ : List[str] =load_config_from_file(self._accelerate_config_file ).to_dict() lowerCamelCase__ : int =( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(lowerCamelCase, lowerCamelCase ) else F'''\t{accelerate_config}''' ) lowerCamelCase__ : List[str] ='''not installed''' lowerCamelCase__ : Optional[int] ='''NA''' if is_torch_available(): import torch lowerCamelCase__ : str =torch.__version__ lowerCamelCase__ : List[str] =torch.cuda.is_available() lowerCamelCase__ : Dict ='''not installed''' lowerCamelCase__ : Any ='''NA''' if is_tf_available(): import tensorflow as tf lowerCamelCase__ : Tuple =tf.__version__ try: # deprecated in v2.1 lowerCamelCase__ : Tuple =tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool lowerCamelCase__ : Dict =bool(tf.config.list_physical_devices('''GPU''' ) ) lowerCamelCase__ : int ='''not installed''' lowerCamelCase__ : Dict ='''not installed''' lowerCamelCase__ : Dict ='''not installed''' lowerCamelCase__ : Tuple ='''NA''' if is_flax_available(): import flax import jax import jaxlib lowerCamelCase__ : Dict =flax.__version__ lowerCamelCase__ : Optional[int] =jax.__version__ lowerCamelCase__ : Dict =jaxlib.__version__ lowerCamelCase__ : int =jax.lib.xla_bridge.get_backend().platform lowerCamelCase__ : str ={ '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F'''{safetensors_version}''', '''Accelerate version''': F'''{accelerate_version}''', '''Accelerate config''': F'''{accelerate_config_str}''', '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''', '''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''', '''Jax version''': F'''{jax_version}''', '''JaxLib version''': F'''{jaxlib_version}''', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(lowerCamelCase ) ) return info @staticmethod def snake_case ( lowerCamelCase : str )-> Optional[int]: return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
272
"""simple docstring""" def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[Any] =[0] * len(__lowerCamelCase ) lowerCamelCase__ : List[Any] =[] lowerCamelCase__ : List[Any] =[1] * len(__lowerCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__lowerCamelCase ) ): if indegree[i] == 0: queue.append(__lowerCamelCase ) while queue: lowerCamelCase__ : Tuple =queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowerCamelCase__ : Optional[Any] =long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__lowerCamelCase ) print(max(__lowerCamelCase ) ) # Adjacency list of Graph _lowercase : Optional[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
272
1
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class snake_case ( unittest.TestCase ): """simple docstring""" @slow def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) __UpperCamelCase = AutoTokenizer.from_pretrained('xlm-roberta-base' ) __UpperCamelCase = """The dog is cute and lives in the garden house""" __UpperCamelCase = jnp.array([tokenizer.encode(__A )] ) __UpperCamelCase = (1, 1_2, 7_6_8) # batch_size, sequence_length, embedding_vector_dim __UpperCamelCase = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) __UpperCamelCase = model(__A )["""last_hidden_state"""] self.assertEqual(output.shape , __A ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , __A , atol=1e-3 ) )
53
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : int = KandinskyInpaintPipeline UpperCamelCase : Optional[Any] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] UpperCamelCase : int = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] UpperCamelCase : Any = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] UpperCamelCase : Tuple = False @property def lowerCamelCase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' return 32 @property def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' return 32 @property def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' return self.time_input_dim @property def lowerCamelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase__ ( self : Dict ) -> List[Any]: '''simple docstring''' return 100 @property def lowerCamelCase__ ( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowerCamelCase__ ( self : Dict ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Optional[Any] =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE_: List[str] =MultilingualCLIP(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =text_encoder.eval() return text_encoder @property def lowerCamelCase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Optional[Any] ={ """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } SCREAMING_SNAKE_CASE_: str =UNetaDConditionModel(**lowerCAmelCase ) return model @property def lowerCamelCase__ ( self : Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: List[str] =VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =self.dummy_text_encoder SCREAMING_SNAKE_CASE_: Optional[Any] =self.dummy_tokenizer SCREAMING_SNAKE_CASE_: List[str] =self.dummy_unet SCREAMING_SNAKE_CASE_: Union[str, Any] =self.dummy_movq SCREAMING_SNAKE_CASE_: int =DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=lowerCAmelCase , ) SCREAMING_SNAKE_CASE_: str ={ """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : List[str]=0 ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase ) # create init_image SCREAMING_SNAKE_CASE_: List[Any] =floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE_: List[str] =Image.fromarray(np.uinta(lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask SCREAMING_SNAKE_CASE_: Dict =np.ones((64, 64) , dtype=np.floataa ) SCREAMING_SNAKE_CASE_: Optional[Any] =0 if str(lowerCAmelCase ).startswith("""mps""" ): SCREAMING_SNAKE_CASE_: Optional[int] =torch.manual_seed(lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_: List[Any] =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple ={ """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def lowerCamelCase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict ="""cpu""" SCREAMING_SNAKE_CASE_: List[Any] =self.get_dummy_components() SCREAMING_SNAKE_CASE_: Optional[int] =self.pipeline_class(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =pipe(**self.get_dummy_inputs(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: int =output.images SCREAMING_SNAKE_CASE_: Optional[int] =pipe( **self.get_dummy_inputs(lowerCAmelCase ) , return_dict=lowerCAmelCase , )[0] SCREAMING_SNAKE_CASE_: Tuple =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: Optional[int] =image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_: List[Any] =np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) SCREAMING_SNAKE_CASE_: str =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) SCREAMING_SNAKE_CASE_: List[str] =np.ones((768, 768) , dtype=np.floataa ) SCREAMING_SNAKE_CASE_: List[str] =0 SCREAMING_SNAKE_CASE_: Union[str, Any] ="""a hat""" SCREAMING_SNAKE_CASE_: str =KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_: List[str] =pipeline.to(lowerCAmelCase ) pipeline.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =pipe_prior( lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() SCREAMING_SNAKE_CASE_: List[Any] =pipeline( lowerCAmelCase , image=lowerCAmelCase , mask_image=lowerCAmelCase , image_embeds=lowerCAmelCase , negative_image_embeds=lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) SCREAMING_SNAKE_CASE_: int =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCAmelCase , lowerCAmelCase )
173
0
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip a =logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[int]: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: return max(metric_fn(lowerCamelCase__ , lowerCamelCase__ ) for gt in ground_truths ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: __lowerCamelCase : str = [line.strip() for line in open(lowerCamelCase__ , 'r' ).readlines()] __lowerCamelCase : Optional[Any] = [] if args.gold_data_mode == "qa": __lowerCamelCase : Tuple = pd.read_csv(lowerCamelCase__ , sep='\t' , header=lowerCamelCase__ ) for answer_list in data[1]: __lowerCamelCase : int = ast.literal_eval(lowerCamelCase__ ) answers.append(lowerCamelCase__ ) else: __lowerCamelCase : Optional[Any] = [line.strip() for line in open(lowerCamelCase__ , 'r' ).readlines()] __lowerCamelCase : List[Any] = [[reference] for reference in references] __lowerCamelCase : List[str] = 0 for prediction, ground_truths in zip(lowerCamelCase__ , lowerCamelCase__ ): total += 1 em += metric_max_over_ground_truths(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) fa += metric_max_over_ground_truths(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : Dict = 100.0 * em / total __lowerCamelCase : Any = 100.0 * fa / total logger.info(F"F1: {fa:.2f}" ) logger.info(F"EM: {em:.2f}" ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: __lowerCamelCase : Dict = args.k __lowerCamelCase : Any = [line.strip() for line in open(lowerCamelCase__ , 'r' ).readlines()] __lowerCamelCase : Any = [line.strip() for line in open(lowerCamelCase__ , 'r' ).readlines()] __lowerCamelCase : List[Any] = 0 for hypo, reference in zip(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase : List[Any] = set(hypo.split('\t' )[:k] ) __lowerCamelCase : Optional[Any] = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __lowerCamelCase : List[str] = 100.0 * em / total logger.info(F"Precision@{k}: {em: .2f}" ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: def strip_title(lowerCamelCase__ ): if title.startswith('"' ): __lowerCamelCase : List[str] = title[1:] if title.endswith('"' ): __lowerCamelCase : int = title[:-1] return title __lowerCamelCase : Optional[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCamelCase__ , return_tensors='pt' , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , )['input_ids'].to(args.device ) __lowerCamelCase : int = rag_model.rag.question_encoder(lowerCamelCase__ ) __lowerCamelCase : List[Any] = question_enc_outputs[0] __lowerCamelCase : int = rag_model.retriever( lowerCamelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) __lowerCamelCase : int = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __lowerCamelCase : Any = [] for docs in all_docs: __lowerCamelCase : List[str] = [strip_title(lowerCamelCase__ ) for title in docs['title']] provenance_strings.append('\t'.join(lowerCamelCase__ ) ) return provenance_strings def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: with torch.no_grad(): __lowerCamelCase : Dict = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCamelCase__ , return_tensors='pt' , padding=lowerCamelCase__ , truncation=lowerCamelCase__ ) __lowerCamelCase : List[str] = inputs_dict.input_ids.to(args.device ) __lowerCamelCase : List[str] = inputs_dict.attention_mask.to(args.device ) __lowerCamelCase : str = rag_model.generate( # rag_model overwrites generate lowerCamelCase__ , attention_mask=lowerCamelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCamelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __lowerCamelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) if args.print_predictions: for q, a in zip(lowerCamelCase__ , lowerCamelCase__ ): logger.info('Q: {} - A: {}'.format(lowerCamelCase__ , lowerCamelCase__ ) ) return answers def SCREAMING_SNAKE_CASE__ ( ) -> Dict: __lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=lowerCamelCase__ , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=lowerCamelCase__ , choices=['exact', 'compressed', 'legacy'] , type=lowerCamelCase__ , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=lowerCamelCase__ , type=lowerCamelCase__ , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=lowerCamelCase__ , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=lowerCamelCase__ , type=lowerCamelCase__ , required=lowerCamelCase__ , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=lowerCamelCase__ , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=lowerCamelCase__ , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=lowerCamelCase__ , type=lowerCamelCase__ , required=lowerCamelCase__ , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=lowerCamelCase__ , type=lowerCamelCase__ , required=lowerCamelCase__ , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=lowerCamelCase__ , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=lowerCamelCase__ , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=lowerCamelCase__ , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=lowerCamelCase__ , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=lowerCamelCase__ , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=5_0 , type=lowerCamelCase__ , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) __lowerCamelCase : int = parser.parse_args() __lowerCamelCase : int = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> int: __lowerCamelCase : Any = {} if args.model_type is None: __lowerCamelCase : Any = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): __lowerCamelCase : Optional[int] = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration __lowerCamelCase : List[Any] = args.n_docs if args.index_name is not None: __lowerCamelCase : str = args.index_name if args.index_path is not None: __lowerCamelCase : int = args.index_path else: __lowerCamelCase : int = BartForConditionalGeneration __lowerCamelCase : str = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , lowerCamelCase__ ) __lowerCamelCase : Optional[int] = get_scores if args.eval_mode == 'e2e' else get_precision_at_k __lowerCamelCase : Optional[Any] = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(lowerCamelCase__ , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(lowerCamelCase__ ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): __lowerCamelCase : Tuple = RagRetriever.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase : Dict = model_class.from_pretrained(lowerCamelCase__ , retriever=lowerCamelCase__ , **lowerCamelCase__ ) model.retriever.init_retrieval() else: __lowerCamelCase : Union[str, Any] = model_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: __lowerCamelCase : List[str] = [] for line in tqdm(lowerCamelCase__ ): questions.append(line.strip() ) if len(lowerCamelCase__ ) == args.eval_batch_size: __lowerCamelCase : List[Any] = evaluate_batch_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) preds_file.write('\n'.join(lowerCamelCase__ ) + '\n' ) preds_file.flush() __lowerCamelCase : int = [] if len(lowerCamelCase__ ) > 0: __lowerCamelCase : int = evaluate_batch_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) preds_file.write('\n'.join(lowerCamelCase__ ) ) preds_file.flush() score_fn(lowerCamelCase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": a =get_args() main(args)
113
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[Any]: # A local function to see if a dot lands in the circle. def is_in_circle(lowerCamelCase__ , lowerCamelCase__ ) -> bool: __lowerCamelCase : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __lowerCamelCase : Optional[int] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase__ ) ) # The ratio of the area for circle to square is pi/4. __lowerCamelCase : Any = proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 1.0 , ) -> float: return mean( function_to_integrate(uniform(lowerCamelCase__ , lowerCamelCase__ ) ) for _ in range(lowerCamelCase__ ) ) * (max_value - min_value) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 1.0 ) -> None: def identity_function(lowerCamelCase__ ) -> float: return x __lowerCamelCase : str = area_under_curve_estimator( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : int = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print('******************' ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> None: def function_to_integrate(lowerCamelCase__ ) -> float: return sqrt(4.0 - x * x ) __lowerCamelCase : Any = area_under_curve_estimator( lowerCamelCase__ , lowerCamelCase__ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
113
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = "Salesforce/blip-image-captioning-base" _UpperCamelCase : str = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) _UpperCamelCase : List[Any] = "image_captioner" _UpperCamelCase : List[Any] = AutoModelForVisionaSeq _UpperCamelCase : str = ["image"] _UpperCamelCase : List[str] = ["text"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""vision"""] ) super().__init__(*a__ , **a__ ) def __A ( self , a__ ): return self.pre_processor(images=a__ , return_tensors="""pt""" ) def __A ( self , a__ ): return self.model.generate(**a__ ) def __A ( self , a__ ): return self.pre_processor.batch_decode(a__ , skip_special_tokens=a__ )[0].strip()
44
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=False , a__=True , a__="None" , a__=3 , a__=4 , a__=None , ): _lowerCAmelCase : Dict = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : List[Any] = seq_length _lowerCAmelCase : Dict = is_training _lowerCAmelCase : Dict = use_input_mask _lowerCAmelCase : int = use_token_type_ids _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = vocab_size _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : Tuple = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : List[str] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : List[str] = type_vocab_size _lowerCAmelCase : Tuple = type_sequence_label_size _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Union[str, Any] = num_labels _lowerCAmelCase : Optional[Any] = num_choices _lowerCAmelCase : Tuple = relative_attention _lowerCAmelCase : Tuple = position_biased_input _lowerCAmelCase : Dict = pos_att_type _lowerCAmelCase : Any = scope def __A ( self ): _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = None if self.use_input_mask: _lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _lowerCAmelCase : str = None if self.use_token_type_ids: _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Any = None if self.use_labels: _lowerCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __A ( self , a__ ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Union[str, Any] = DebertaVaModel(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : List[Any] = model(a__ , attention_mask=a__ , token_type_ids=a__ )[0] _lowerCAmelCase : List[Any] = model(a__ , token_type_ids=a__ )[0] _lowerCAmelCase : Any = model(a__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : List[str] = DebertaVaForMaskedLM(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[Any] = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = self.num_labels _lowerCAmelCase : int = DebertaVaForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[Any] = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(a__ ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = self.num_labels _lowerCAmelCase : str = DebertaVaForTokenClassification(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[Any] = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Any = DebertaVaForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Dict = model( a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Union[str, Any] = DebertaVaForMultipleChoice(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : List[str] = model( a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ): _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) _UpperCamelCase : str = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase : Optional[Any] = True _UpperCamelCase : List[Any] = False _UpperCamelCase : List[Any] = False _UpperCamelCase : Dict = False _UpperCamelCase : Tuple = False def __A ( self ): _lowerCAmelCase : Optional[Any] = DebertaVaModelTester(self ) _lowerCAmelCase : Any = ConfigTester(self , config_class=a__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*a__ ) def __A ( self ): _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*a__ ) def __A ( self ): _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*a__ ) def __A ( self ): _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*a__ ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*a__ ) @slow def __A ( self ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Tuple = DebertaVaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def __A ( self ): pass @slow def __A ( self ): _lowerCAmelCase : Union[str, Any] = DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" ) _lowerCAmelCase : Dict = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowerCAmelCase : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(a__ , attention_mask=a__ )[0] # compare the actual values for a slice. _lowerCAmelCase : str = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a__ , atol=1e-4 ) , F"{output[:, 1:4, 1:4]}" )
44
1
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class __magic_name__ ( _lowercase ): def lowerCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCAmelCase : Tuple =tempfile.mkdtemp() _UpperCAmelCase : Optional[int] =8 # DPR tok _UpperCAmelCase : int =[ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _UpperCAmelCase : Dict =os.path.join(self.tmpdirname , 'dpr_tokenizer') os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase) _UpperCAmelCase : List[Any] =os.path.join(__UpperCamelCase , DPR_VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) # BART tok _UpperCAmelCase : Tuple =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _UpperCAmelCase : Union[str, Any] =dict(zip(__UpperCamelCase , range(len(__UpperCamelCase)))) _UpperCAmelCase : Optional[int] =['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _UpperCAmelCase : Any ={'unk_token': '<unk>'} _UpperCAmelCase : Any =os.path.join(self.tmpdirname , 'bart_tokenizer') os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase) _UpperCAmelCase : Tuple =os.path.join(__UpperCamelCase , BART_VOCAB_FILES_NAMES['vocab_file']) _UpperCAmelCase : Union[str, Any] =os.path.join(__UpperCamelCase , BART_VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(__UpperCamelCase) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(__UpperCamelCase)) def lowerCAmelCase ( self) -> DPRQuestionEncoderTokenizer: '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer')) def lowerCAmelCase ( self) -> DPRContextEncoderTokenizer: '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer')) def lowerCAmelCase ( self) -> BartTokenizer: '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer')) def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname) def lowerCAmelCase ( self) -> int: '''simple docstring''' _UpperCAmelCase : List[Any] =Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size), 2 * np.ones(self.retrieval_vector_size)], }) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT) return dataset def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] =self.get_dummy_dataset() _UpperCAmelCase : Dict =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('transformers.models.rag.retrieval_rag.load_dataset') as mock_load_dataset: _UpperCAmelCase : Tuple =dataset _UpperCAmelCase : Optional[Any] =RagRetriever( __UpperCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def lowerCAmelCase ( self , snake_case) -> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[int] =self.get_dummy_dataset() _UpperCAmelCase : Any =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='custom' , ) if from_disk: _UpperCAmelCase : Union[str, Any] =os.path.join(self.tmpdirname , 'dataset') _UpperCAmelCase : List[str] =os.path.join(self.tmpdirname , 'index.faiss') dataset.get_index('embeddings').save(os.path.join(self.tmpdirname , 'index.faiss')) dataset.drop_index('embeddings') dataset.save_to_disk(os.path.join(self.tmpdirname , 'dataset')) del dataset _UpperCAmelCase : int =RagRetriever( __UpperCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: _UpperCAmelCase : List[Any] =RagRetriever( __UpperCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __UpperCamelCase) , ) return retriever def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size + 1), 2 * np.ones(self.retrieval_vector_size + 1)], }) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT) _UpperCAmelCase : List[str] =os.path.join(self.tmpdirname , 'hf_bert_base.hnswSQ8_correct_phi_128.c_index') dataset.save_faiss_index('embeddings' , index_file_name + '.index.dpr') pickle.dump(dataset['id'] , open(index_file_name + '.index_meta.dpr' , 'wb')) _UpperCAmelCase : Union[str, Any] =os.path.join(self.tmpdirname , 'psgs_w100.tsv.pkl') _UpperCAmelCase : Any ={sample['id']: [sample['text'], sample['title']] for sample in dataset} pickle.dump(__UpperCamelCase , open(__UpperCamelCase , 'wb')) _UpperCAmelCase : Union[str, Any] =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='legacy' , index_path=self.tmpdirname , ) _UpperCAmelCase : int =RagRetriever( __UpperCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer()) return retriever def lowerCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] =1 _UpperCAmelCase : Any =self.get_dummy_canonical_hf_index_retriever() _UpperCAmelCase : Tuple =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str =retriever.retrieve(__UpperCamelCase , n_docs=__UpperCamelCase) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(__UpperCamelCase) , 2) self.assertEqual(sorted(doc_dicts[0]) , ['embeddings', 'id', 'text', 'title']) self.assertEqual(len(doc_dicts[0]['id']) , __UpperCamelCase) self.assertEqual(doc_dicts[0]['id'][0] , '1') # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0') # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict =self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('transformers.models.rag.retrieval_rag.load_dataset') as mock_load_dataset: _UpperCAmelCase : str =self.get_dummy_dataset() retriever.save_pretrained(__UpperCamelCase) _UpperCAmelCase : int =RagRetriever.from_pretrained(__UpperCamelCase) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase) _UpperCAmelCase : Dict =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) _UpperCAmelCase : Union[str, Any] =retriever.retrieve(__UpperCamelCase , n_docs=1) self.assertTrue(out is not None) def lowerCAmelCase ( self) -> Any: '''simple docstring''' _UpperCAmelCase : Optional[Any] =1 _UpperCAmelCase : str =self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCamelCase) _UpperCAmelCase : Union[str, Any] =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] =retriever.retrieve(__UpperCamelCase , n_docs=__UpperCamelCase) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(__UpperCamelCase) , 2) self.assertEqual(sorted(doc_dicts[0]) , ['embeddings', 'id', 'text', 'title']) self.assertEqual(len(doc_dicts[0]['id']) , __UpperCamelCase) self.assertEqual(doc_dicts[0]['id'][0] , '1') # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0') # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Tuple =self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCamelCase) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCamelCase) _UpperCAmelCase : Any =RagRetriever.from_pretrained(__UpperCamelCase) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase) _UpperCAmelCase : List[Any] =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) _UpperCAmelCase : Tuple =retriever.retrieve(__UpperCamelCase , n_docs=1) self.assertTrue(out is not None) def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] =1 _UpperCAmelCase : Any =self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCamelCase) _UpperCAmelCase : Tuple =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int =retriever.retrieve(__UpperCamelCase , n_docs=__UpperCamelCase) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(__UpperCamelCase) , 2) self.assertEqual(sorted(doc_dicts[0]) , ['embeddings', 'id', 'text', 'title']) self.assertEqual(len(doc_dicts[0]['id']) , __UpperCamelCase) self.assertEqual(doc_dicts[0]['id'][0] , '1') # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0') # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] =self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCamelCase) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCamelCase) _UpperCAmelCase : List[str] =RagRetriever.from_pretrained(__UpperCamelCase) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase) _UpperCAmelCase : Optional[int] =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) _UpperCAmelCase : Union[str, Any] =retriever.retrieve(__UpperCamelCase , n_docs=1) self.assertTrue(out is not None) def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] =1 _UpperCAmelCase : List[Any] =self.get_dummy_legacy_index_retriever() _UpperCAmelCase : Dict =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str =retriever.retrieve(__UpperCamelCase , n_docs=__UpperCamelCase) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(__UpperCamelCase) , 2) self.assertEqual(sorted(doc_dicts[0]) , ['text', 'title']) self.assertEqual(len(doc_dicts[0]['text']) , __UpperCamelCase) self.assertEqual(doc_dicts[0]['text'][0] , 'bar') # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['text'][0] , 'foo') # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[str] =self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCamelCase) _UpperCAmelCase : Tuple =RagRetriever.from_pretrained(__UpperCamelCase) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase) _UpperCAmelCase : Any =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) _UpperCAmelCase : Any =retriever.retrieve(__UpperCamelCase , n_docs=1) self.assertTrue(out is not None) @require_torch @require_tokenizers @require_sentencepiece def lowerCAmelCase ( self) -> Dict: '''simple docstring''' import torch _UpperCAmelCase : Optional[Any] =1 _UpperCAmelCase : List[Any] =self.get_dummy_canonical_hf_index_retriever() _UpperCAmelCase : Any =[[5, 7], [1_0, 1_1]] _UpperCAmelCase : Any =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) _UpperCAmelCase : Optional[Any] =retriever(__UpperCamelCase , __UpperCamelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCamelCase) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any =( out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase) self.assertIsInstance(__UpperCamelCase , np.ndarray) _UpperCAmelCase : Dict =retriever( __UpperCamelCase , __UpperCamelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCamelCase , return_tensors='pt' , ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple =( # noqa: F841 out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], out['doc_ids'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertIsInstance(__UpperCamelCase , torch.Tensor) self.assertIsInstance(__UpperCamelCase , torch.Tensor) self.assertIsInstance(__UpperCamelCase , torch.Tensor) @require_torch @require_tokenizers @require_sentencepiece def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] =self.get_dpr_ctx_encoder_tokenizer() _UpperCAmelCase : Dict =1 _UpperCAmelCase : str =self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCamelCase) retriever.set_ctx_encoder_tokenizer(__UpperCamelCase) _UpperCAmelCase : Optional[Any] =[[5, 7], [1_0, 1_1]] _UpperCAmelCase : Tuple =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) _UpperCAmelCase : int =retriever(__UpperCamelCase , __UpperCamelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCamelCase) self.assertEqual( len(__UpperCamelCase) , 6) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask')) , __UpperCamelCase) # check for doc token related keys in dictionary.
360
'''simple docstring''' lowercase =[0, 2, 4, 6, 8] lowercase =[1, 3, 5, 7, 9] def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[int] , __lowerCamelCase : int ): '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 1_0 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 _UpperCAmelCase : Union[str, Any] =0 for digit in range(1_0 ): _UpperCAmelCase : str =digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 1_0 , __lowerCamelCase , __lowerCamelCase ) return result _UpperCAmelCase : Optional[Any] =0 for digita in range(1_0 ): _UpperCAmelCase : Any =digita if (remainder + digita) % 2 == 0: _UpperCAmelCase : Optional[int] =ODD_DIGITS else: _UpperCAmelCase : Union[str, Any] =EVEN_DIGITS for digita in other_parity_digits: _UpperCAmelCase : int =digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 1_0 , __lowerCamelCase , __lowerCamelCase , ) return result def lowerCamelCase__ ( __lowerCamelCase : int = 9 ): '''simple docstring''' _UpperCAmelCase : Optional[int] =0 for length in range(1 , max_power + 1 ): result += reversible_numbers(__lowerCamelCase , 0 , [0] * length , __lowerCamelCase ) return result if __name__ == "__main__": print(F"""{solution() = }""")
242
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint snake_case_ : Any = { "169M": 12, "430M": 24, "1B5": 24, "3B": 32, "7B": 32, "14B": 40, } snake_case_ : Tuple = { "169M": 768, "430M": 1024, "1B5": 2048, "3B": 2560, "7B": 4096, "14B": 5120, } def A (__A : Tuple ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = list(state_dict.keys() ) for name in state_dict_keys: UpperCAmelCase_ = state_dict.pop(__A ) # emb -> embedding if name.startswith('''emb.''' ): UpperCAmelCase_ = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): UpperCAmelCase_ = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention UpperCAmelCase_ = re.sub(R'''blocks\.(\d+)\.att''' , R'''blocks.\1.attention''' , __A ) # ffn -> feed_forward UpperCAmelCase_ = re.sub(R'''blocks\.(\d+)\.ffn''' , R'''blocks.\1.feed_forward''' , __A ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): UpperCAmelCase_ = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): UpperCAmelCase_ = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): UpperCAmelCase_ = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": UpperCAmelCase_ = '''rwkv.''' + name UpperCAmelCase_ = weight return state_dict def A (__A : Any , __A : int , __A : Optional[int] , __A : Tuple=None , __A : str=None , __A : List[Any]=False , __A : List[str]=None ) -> Dict: """simple docstring""" if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) UpperCAmelCase_ = 50277 UpperCAmelCase_ = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: UpperCAmelCase_ = PreTrainedTokenizerFast(tokenizer_file=__A ) UpperCAmelCase_ = len(__A ) tokenizer.save_pretrained(__A ) # 2. Build the config UpperCAmelCase_ = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: UpperCAmelCase_ = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) UpperCAmelCase_ = RwkvConfig( vocab_size=__A , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__A ) # 3. Download model file then convert state_dict UpperCAmelCase_ = hf_hub_download(__A , __A ) UpperCAmelCase_ = torch.load(__A , map_location='''cpu''' ) UpperCAmelCase_ = convert_state_dict(__A ) # 4. Split in shards and save UpperCAmelCase_ , UpperCAmelCase_ = shard_checkpoint(__A ) for shard_file, shard in shards.items(): torch.save(__A , os.path.join(__A , __A ) ) if index is not None: UpperCAmelCase_ = os.path.join(__A , __A ) # Save the index as well with open(__A , '''w''' , encoding='''utf-8''' ) as f: UpperCAmelCase_ = json.dumps(__A , indent=2 , sort_keys=__A ) + '''\n''' f.write(__A ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) UpperCAmelCase_ = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: UpperCAmelCase_ = torch.load(os.path.join(__A , __A ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__A , __A ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained(__A ) model.push_to_hub(__A , max_shard_size='''2GB''' ) tokenizer.push_to_hub(__A ) if __name__ == "__main__": snake_case_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--repo_id", default=None, type=str, required=True, help="Repo ID from which to pull the checkpoint." ) parser.add_argument( "--checkpoint_file", default=None, type=str, required=True, help="Name of the checkpoint file in the repo." ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="Where to save the converted model." ) parser.add_argument( "--tokenizer_file", default=None, type=str, help="Path to the tokenizer file to use (if not provided, only the model is converted).", ) parser.add_argument( "--size", default=None, type=str, help="Size of the model. Will be inferred from the `checkpoint_file` if not passed.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Push to the Hub the converted model.", ) parser.add_argument( "--model_name", default=None, type=str, help="Name of the pushed model on the Hub, including the username / organization.", ) snake_case_ : Optional[Any] = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
51
import argparse from collections import defaultdict import yaml lowerCAmelCase : Dict = 'docs/source/en/_toctree.yml' def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = defaultdict(a ) for doc in model_doc: counts[doc["local"]] += 1 SCREAMING_SNAKE_CASE_ : Tuple = [key for key, value in counts.items() if value > 1] SCREAMING_SNAKE_CASE_ : int = [] for duplicate_key in duplicates: SCREAMING_SNAKE_CASE_ : List[Any] = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(a ) > 1: raise ValueError( f"{duplicate_key} is present several times in the documentation table of content at " '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(a , key=lambda a : s["title"].lower() ) def A_ ( a=False ): """simple docstring""" with open(a , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : str = yaml.safe_load(f.read() ) # Get to the API doc SCREAMING_SNAKE_CASE_ : List[str] = 0 while content[api_idx]["title"] != "API": api_idx += 1 SCREAMING_SNAKE_CASE_ : List[str] = content[api_idx]['sections'] # Then to the model doc SCREAMING_SNAKE_CASE_ : List[str] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = api_doc[model_idx]['sections'] SCREAMING_SNAKE_CASE_ : List[str] = [(idx, section) for idx, section in enumerate(a ) if 'sections' in section] SCREAMING_SNAKE_CASE_ : List[Any] = False for idx, modality_doc in modalities_docs: SCREAMING_SNAKE_CASE_ : Tuple = modality_doc['sections'] SCREAMING_SNAKE_CASE_ : int = clean_model_doc_toc(a ) if old_modality_doc != new_modality_doc: SCREAMING_SNAKE_CASE_ : List[str] = True if overwrite: SCREAMING_SNAKE_CASE_ : Optional[int] = new_modality_doc if diff: if overwrite: SCREAMING_SNAKE_CASE_ : List[Any] = model_doc SCREAMING_SNAKE_CASE_ : List[Any] = api_doc with open(a , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(a , allow_unicode=a ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase : List[str] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
253
0
"""simple docstring""" from abc import ABC, abstractmethod from typing import List, Optional class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : Optional[Any] ): # test for the above condition self.test() def a ( self : Dict ): __UpperCAmelCase = 0 __UpperCAmelCase = False while not completed: if counter == 1: self.reset() __UpperCAmelCase = self.advance() if not self.does_advance(_lowercase ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.update(_lowercase ) counter += 1 if counter > 1_00_00: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def a ( self : Optional[Any] ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def a ( self : Optional[int] , _lowercase : int ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def a ( self : List[Any] , _lowercase : int ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def a ( self : Any ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def a ( self : str ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def a ( self : Dict , _lowercase : Dict=False ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : Union[str, Any] , _lowercase : List[int] ): super(_lowercase , self ).__init__() if not isinstance(_lowercase , _lowercase ) or len(_lowercase ) == 0: raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(_lowercase , _lowercase ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) __UpperCAmelCase = token_ids __UpperCAmelCase = len(self.token_ids ) __UpperCAmelCase = -1 # the index of the currently fulfilled step __UpperCAmelCase = False def a ( self : str ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def a ( self : Tuple , _lowercase : int ): if not isinstance(_lowercase , _lowercase ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(_lowercase )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def a ( self : Union[str, Any] , _lowercase : int ): if not isinstance(_lowercase , _lowercase ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(_lowercase )}''' ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False if self.does_advance(_lowercase ): self.fulfilled_idx += 1 __UpperCAmelCase = True if self.fulfilled_idx == (self.seqlen - 1): __UpperCAmelCase = True __UpperCAmelCase = completed else: # failed to make progress. __UpperCAmelCase = True self.reset() return stepped, completed, reset def a ( self : Union[str, Any] ): __UpperCAmelCase = False __UpperCAmelCase = 0 def a ( self : Any ): return self.seqlen - (self.fulfilled_idx + 1) def a ( self : str , _lowercase : str=False ): __UpperCAmelCase = PhrasalConstraint(self.token_ids ) if stateful: __UpperCAmelCase = self.seqlen __UpperCAmelCase = self.fulfilled_idx __UpperCAmelCase = self.completed return new_constraint class _UpperCAmelCase : def __init__( self : Optional[int] , _lowercase : List[List[int]] , _lowercase : Dict=True ): __UpperCAmelCase = max([len(_lowercase ) for one in nested_token_ids] ) __UpperCAmelCase = {} for token_ids in nested_token_ids: __UpperCAmelCase = root for tidx, token_id in enumerate(_lowercase ): if token_id not in level: __UpperCAmelCase = {} __UpperCAmelCase = level[token_id] if no_subsets and self.has_subsets(_lowercase , _lowercase ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F''' {nested_token_ids}.''' ) __UpperCAmelCase = root def a ( self : Tuple , _lowercase : Union[str, Any] ): __UpperCAmelCase = self.trie for current_token in current_seq: __UpperCAmelCase = start[current_token] __UpperCAmelCase = list(start.keys() ) return next_tokens def a ( self : Any , _lowercase : int ): __UpperCAmelCase = self.next_tokens(_lowercase ) return len(_lowercase ) == 0 def a ( self : Any , _lowercase : Dict ): __UpperCAmelCase = list(root.values() ) if len(_lowercase ) == 0: return 1 else: return sum([self.count_leaves(_lowercase ) for nn in next_nodes] ) def a ( self : int , _lowercase : List[Any] , _lowercase : List[str] ): __UpperCAmelCase = self.count_leaves(_lowercase ) return len(_lowercase ) != leaf_count class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : Union[str, Any] , _lowercase : List[List[int]] ): super(_lowercase , self ).__init__() if not isinstance(_lowercase , _lowercase ) or len(_lowercase ) == 0: raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(_lowercase , _lowercase ) for token_ids in nested_token_ids ): raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(_lowercase , _lowercase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) __UpperCAmelCase = DisjunctiveTrie(_lowercase ) __UpperCAmelCase = nested_token_ids __UpperCAmelCase = self.trie.max_height __UpperCAmelCase = [] __UpperCAmelCase = False def a ( self : Optional[int] ): __UpperCAmelCase = self.trie.next_tokens(self.current_seq ) if len(_lowercase ) == 0: return None else: return token_list def a ( self : int , _lowercase : int ): if not isinstance(_lowercase , _lowercase ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowercase )}''' ) __UpperCAmelCase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def a ( self : Optional[int] , _lowercase : int ): if not isinstance(_lowercase , _lowercase ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowercase )}''' ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False if self.does_advance(_lowercase ): self.current_seq.append(_lowercase ) __UpperCAmelCase = True else: __UpperCAmelCase = True self.reset() __UpperCAmelCase = self.trie.reached_leaf(self.current_seq ) __UpperCAmelCase = completed return stepped, completed, reset def a ( self : Optional[int] ): __UpperCAmelCase = False __UpperCAmelCase = [] def a ( self : Any ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def a ( self : List[Any] , _lowercase : Optional[int]=False ): __UpperCAmelCase = DisjunctiveConstraint(self.token_ids ) if stateful: __UpperCAmelCase = self.seqlen __UpperCAmelCase = self.current_seq __UpperCAmelCase = self.completed return new_constraint class _UpperCAmelCase : def __init__( self : Optional[Any] , _lowercase : List[Constraint] ): __UpperCAmelCase = constraints # max # of steps required to fulfill a given constraint __UpperCAmelCase = max([c.seqlen for c in constraints] ) __UpperCAmelCase = len(_lowercase ) __UpperCAmelCase = False self.init_state() def a ( self : Dict ): __UpperCAmelCase = [] __UpperCAmelCase = None __UpperCAmelCase = [constraint.copy(stateful=_lowercase ) for constraint in self.constraints] def a ( self : Tuple ): __UpperCAmelCase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def a ( self : Optional[Any] ): __UpperCAmelCase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" __UpperCAmelCase = constraint.advance() if isinstance(_lowercase , _lowercase ): token_list.append(_lowercase ) elif isinstance(_lowercase , _lowercase ): token_list.extend(_lowercase ) else: __UpperCAmelCase = self.inprogress_constraint.advance() if isinstance(_lowercase , _lowercase ): token_list.append(_lowercase ) elif isinstance(_lowercase , _lowercase ): token_list.extend(_lowercase ) if len(_lowercase ) == 0: return None else: return token_list def a ( self : Tuple , _lowercase : Optional[List[int]] ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint __UpperCAmelCase , __UpperCAmelCase = self.add(_lowercase ) # the entire list of constraints are fulfilled if self.completed: break def a ( self : Union[str, Any] , _lowercase : int ): if not isinstance(_lowercase , _lowercase ): raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' ) __UpperCAmelCase , __UpperCAmelCase = False, False if self.completed: __UpperCAmelCase = True __UpperCAmelCase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.inprogress_constraint.update(_lowercase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_lowercase ) ) __UpperCAmelCase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) __UpperCAmelCase = None if len(self.pending_constraints ) == 0: # we're done! __UpperCAmelCase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_lowercase ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = pending_constraint.update(_lowercase ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(_lowercase ) __UpperCAmelCase = None if not complete and stepped: __UpperCAmelCase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". __UpperCAmelCase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. __UpperCAmelCase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def a ( self : List[str] , _lowercase : Dict=True ): __UpperCAmelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: __UpperCAmelCase = [ constraint.copy(stateful=_lowercase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: __UpperCAmelCase = self.inprogress_constraint.copy(stateful=_lowercase ) __UpperCAmelCase = [constraint.copy() for constraint in self.pending_constraints] return new_state
365
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : int = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[Any] = "bloom" a__ : List[Any] = ["past_key_values"] a__ : Optional[Any] = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Union[str, Any] , _lowercase : Dict=25_08_80 , _lowercase : str=64 , _lowercase : int=2 , _lowercase : Union[str, Any]=8 , _lowercase : Optional[Any]=1E-5 , _lowercase : Dict=0.02 , _lowercase : Optional[int]=True , _lowercase : Any=1 , _lowercase : Dict=2 , _lowercase : Optional[Any]=False , _lowercase : Union[str, Any]=0.0 , _lowercase : str=0.0 , _lowercase : str=1 , _lowercase : int=False , **_lowercase : List[str] , ): __UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg __UpperCAmelCase = kwargs.pop('''n_embed''' , _lowercase ) __UpperCAmelCase = hidden_size if n_embed is None else n_embed __UpperCAmelCase = n_layer __UpperCAmelCase = n_head __UpperCAmelCase = layer_norm_epsilon __UpperCAmelCase = initializer_range __UpperCAmelCase = use_cache __UpperCAmelCase = pretraining_tp __UpperCAmelCase = apply_residual_connection_post_layernorm __UpperCAmelCase = hidden_dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = bos_token_id __UpperCAmelCase = eos_token_id __UpperCAmelCase = slow_but_exact super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) class _UpperCAmelCase ( _lowerCAmelCase ): a__ : List[str] = version.parse("1.12" ) def __init__( self : Optional[int] , _lowercase : PretrainedConfig , _lowercase : str = "default" , _lowercase : List[PatchingSpec] = None , _lowercase : bool = False , ): super().__init__(_lowercase , task=_lowercase , patching_specs=_lowercase , use_past=_lowercase ) if not getattr(self._config , '''pad_token_id''' , _lowercase ): # TODO: how to do that better? __UpperCAmelCase = 0 @property def a ( self : Optional[int] ): __UpperCAmelCase = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_lowercase , direction='''inputs''' , inverted_values_shape=_lowercase ) __UpperCAmelCase = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def a ( self : Any ): return self._config.n_layer @property def a ( self : Tuple ): return self._config.n_head @property def a ( self : Dict ): return 1E-3 def a ( self : List[str] , _lowercase : "PreTrainedTokenizer" , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional["TensorType"] = None , ): __UpperCAmelCase = super(_lowercase , self ).generate_dummy_inputs( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) # We need to order the input in the way they appears in the forward() __UpperCAmelCase = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __UpperCAmelCase , __UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __UpperCAmelCase = seqlen + 2 __UpperCAmelCase = self._config.hidden_size // self.num_attention_heads __UpperCAmelCase = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __UpperCAmelCase = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __UpperCAmelCase = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(self.num_layers ) ] __UpperCAmelCase = common_inputs['''attention_mask'''] if self.use_past: __UpperCAmelCase = ordered_inputs['''attention_mask'''].dtype __UpperCAmelCase = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) return ordered_inputs @property def a ( self : Any ): return 13
86
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : List[str] = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class _a ( SCREAMING_SNAKE_CASE_): """simple docstring""" UpperCamelCase__ = """swinv2""" UpperCamelCase__ = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , __UpperCamelCase : List[str]=2_2_4 , __UpperCamelCase : Optional[Any]=4 , __UpperCamelCase : Dict=3 , __UpperCamelCase : int=9_6 , __UpperCamelCase : str=[2, 2, 6, 2] , __UpperCamelCase : Any=[3, 6, 1_2, 2_4] , __UpperCamelCase : List[Any]=7 , __UpperCamelCase : Tuple=4.0 , __UpperCamelCase : List[str]=True , __UpperCamelCase : Optional[int]=0.0 , __UpperCamelCase : Tuple=0.0 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : Dict=False , __UpperCamelCase : Union[str, Any]=0.0_2 , __UpperCamelCase : Union[str, Any]=1e-5 , __UpperCamelCase : Union[str, Any]=3_2 , **__UpperCamelCase : Dict , )->Union[str, Any]: super().__init__(**__UpperCAmelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(__UpperCAmelCase ) _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) ) _UpperCAmelCase = (0, 0, 0, 0)
260
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->Tuple: a_ = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip") a_ = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip") model.to(__UpperCAmelCase) from datasets import load_dataset a_ = load_dataset("nielsr/rvlcdip-demo") a_ = dataset["train"][0]["image"].convert("RGB") a_ = image_processor(__UpperCAmelCase , return_tensors="pt").to(__UpperCAmelCase) # forward pass with torch.no_grad(): a_ = model(**__UpperCAmelCase) a_ = outputs.logits a_ = torch.Size((1, 16)) self.assertEqual(logits.shape , __UpperCAmelCase) a_ = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=__UpperCAmelCase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4))
243
0
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def _snake_case ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ): A__ = AutoConfig.from_pretrained(UpperCAmelCase_ ) A__ = FlaxAutoModelForSeqaSeqLM.from_config(config=UpperCAmelCase_ ) A__ = checkpoints.load_tax_checkpoint(UpperCAmelCase_ ) A__ = """wi_0""" in tax_model["""target"""]["""encoder"""]["""layers_0"""]["""mlp"""] if config.model_type == "t5": A__ = """SelfAttention""" if config.model_type == "longt5" and config.encoder_attention_type == "local": A__ = """LocalSelfAttention""" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = """TransientGlobalSelfAttention""" else: raise ValueError( """Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`""" """ attribute with a value from ['local', 'transient-global].""" ) # Encoder for layer_index in range(config.num_layers ): A__ = F"""layers_{str(UpperCAmelCase_ )}""" # Self-Attention A__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""key"""]["""kernel"""] A__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""out"""]["""kernel"""] A__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""query"""]["""kernel"""] A__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""value"""]["""kernel"""] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""T5LayerNorm_0"""]["""scale"""] # Layer Normalization A__ = tax_model["""target"""]["""encoder"""][layer_name]["""pre_attention_layer_norm"""]["""scale"""] if split_mlp_wi: A__ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] A__ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: A__ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] A__ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization A__ = tax_model["""target"""]["""encoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning A__ = flax_model.params["""encoder"""]["""block"""][str(UpperCAmelCase_ )]["""layer"""] A__ = tax_attention_key A__ = tax_attention_out A__ = tax_attention_query A__ = tax_attention_value A__ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = tax_global_layer_norm if split_mlp_wi: A__ = tax_mlp_wi_a A__ = tax_mlp_wi_a else: A__ = tax_mlp_wi A__ = tax_mlp_wo A__ = tax_mlp_layer_norm A__ = flax_model_encoder_layer_block # Only for layer 0: A__ = tax_model["""target"""]["""encoder"""]["""relpos_bias"""]["""rel_embedding"""].T A__ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = tax_model["""target"""]["""encoder"""]["""side_relpos_bias"""]["""rel_embedding"""].T A__ = tax_encoder_global_rel_embedding # Assigning A__ = tax_model["""target"""]["""encoder"""]["""encoder_norm"""]["""scale"""] A__ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): A__ = F"""layers_{str(UpperCAmelCase_ )}""" # Self-Attention A__ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""key"""]["""kernel"""] A__ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""out"""]["""kernel"""] A__ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""query"""]["""kernel"""] A__ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""value"""]["""kernel"""] # Layer Normalization A__ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_self_attention_layer_norm"""][ """scale""" ] # Encoder-Decoder-Attention A__ = tax_model["""target"""]["""decoder"""][layer_name]["""encoder_decoder_attention"""] A__ = tax_enc_dec_attention_module["""key"""]["""kernel"""] A__ = tax_enc_dec_attention_module["""out"""]["""kernel"""] A__ = tax_enc_dec_attention_module["""query"""]["""kernel"""] A__ = tax_enc_dec_attention_module["""value"""]["""kernel"""] # Layer Normalization A__ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_cross_attention_layer_norm"""]["""scale"""] # MLP if split_mlp_wi: A__ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] A__ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: A__ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] A__ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization A__ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning A__ = flax_model.params["""decoder"""]["""block"""][str(UpperCAmelCase_ )]["""layer"""] A__ = tax_attention_key A__ = tax_attention_out A__ = tax_attention_query A__ = tax_attention_value A__ = tax_pre_attention_layer_norm A__ = tax_enc_dec_attention_key A__ = tax_enc_dec_attention_out A__ = tax_enc_dec_attention_query A__ = tax_enc_dec_attention_value A__ = tax_cross_layer_norm if split_mlp_wi: A__ = tax_mlp_wi_a A__ = tax_mlp_wi_a else: A__ = tax_mlp_wi A__ = tax_mlp_wo A__ = txa_mlp_layer_norm A__ = flax_model_decoder_layer_block # Decoder Normalization A__ = tax_model["""target"""]["""decoder"""]["""decoder_norm"""]["""scale"""] A__ = txa_decoder_norm # Only for layer 0: A__ = tax_model["""target"""]["""decoder"""]["""relpos_bias"""]["""rel_embedding"""].T A__ = tax_decoder_rel_embedding # Token Embeddings A__ = tax_model["""target"""]["""token_embedder"""]["""embedding"""] A__ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: A__ = tax_model["""target"""]["""decoder"""]["""logits_dense"""]["""kernel"""] flax_model.save_pretrained(UpperCAmelCase_ ) print("""T5X Model was sucessfully converted!""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) SCREAMING_SNAKE_CASE_ : int = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
69
"""simple docstring""" import argparse SCREAMING_SNAKE_CASE_ : Any = 'docs/source/_static/js/custom.js' def _snake_case ( UpperCAmelCase_ : List[Any] ): with open(UpperCAmelCase_ , encoding="""utf-8""" , newline="""\n""" ) as f: A__ = f.readlines() A__ = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 A__ = F"""const stableVersion = \"v{version}\"\n""" # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += F""" \"v{version}\": \"v{version}\",\n""" with open(UpperCAmelCase_ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(UpperCAmelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : int = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args() update_custom_js(args.version)
69
1
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCAmelCase_ ( )-> Dict: '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join UpperCAmelCase : Any ='''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , __lowerCAmelCase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCAmelCase_ ( )-> Any: '''simple docstring''' assert _test_patching.open is open UpperCAmelCase : Optional[Any] ='''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , __lowerCAmelCase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCAmelCase_ ( )-> Dict: '''simple docstring''' UpperCAmelCase : Dict ='''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , __lowerCAmelCase ): pass def lowerCAmelCase_ ( )-> str: '''simple docstring''' UpperCAmelCase : Tuple ='''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , __lowerCAmelCase ) is None with patch_submodule(_test_patching , '''len''' , __lowerCAmelCase ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCAmelCase_ ( )-> str: '''simple docstring''' UpperCAmelCase : Optional[int] ='''__test_patch_submodule_start_and_stop_mock__''' UpperCAmelCase : str =patch_submodule(_test_patching , '''open''' , __lowerCAmelCase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCAmelCase_ ( )-> List[str]: '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join UpperCAmelCase : Tuple ='''__test_patch_submodule_successive_join__''' UpperCAmelCase : str ='''__test_patch_submodule_successive_dirname__''' UpperCAmelCase : List[str] ='''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , __lowerCAmelCase ): with patch_submodule(_test_patching , '''os.rename''' , __lowerCAmelCase ): with patch_submodule(_test_patching , '''os.path.dirname''' , __lowerCAmelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , __lowerCAmelCase ): with patch_submodule(_test_patching , '''os.path.join''' , __lowerCAmelCase ): with patch_submodule(_test_patching , '''os.path.dirname''' , __lowerCAmelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCAmelCase_ ( )-> Optional[Any]: '''simple docstring''' UpperCAmelCase : int ='''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , __lowerCAmelCase ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , __lowerCAmelCase ): pass
348
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCAmelCase_ ( )-> int: '''simple docstring''' UpperCAmelCase : str ={ '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } UpperCAmelCase : Union[str, Any] =Dataset.from_dict(__lowerCAmelCase ) return dataset class __snake_case ( lowerCamelCase__ ): def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[str] =get_dataset() UpperCAmelCase : Optional[int] =make_duplicate_clusters(snake_case__ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : str =get_dataset() UpperCAmelCase , UpperCAmelCase : Tuple =deduplicate_dataset(snake_case__ ) self.assertEqual(len(snake_case__ ) , 2 ) print(snake_case__ ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , snake_case__ )
348
1
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _a : A = None A = False A = False A = False A = None A = None A = False A = False A = False A = True A = None A = 1 A = None A = False A = None A = None def __snake_case (self ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(SCREAMING_SNAKE_CASE_ ) for k, v in self.__dict__.items()} )
82
from typing import TYPE_CHECKING from ....utils import _LazyModule a : Tuple = {'tokenization_tapex': ['TapexTokenizer']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
82
1
from __future__ import annotations from fractions import Fraction def UpperCAmelCase ( a_ , a_ ) -> bool: """simple docstring""" return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def UpperCAmelCase ( a_ ) -> list[str]: """simple docstring""" __A = [] __A = 1_1 __A = int("1" + "0" * digit_len ) for num in range(a_ , a_ ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(a_ , a_ ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 __A = 1_0 return solutions def UpperCAmelCase ( a_ = 2 ) -> int: """simple docstring""" __A = 1.0 for fraction in fraction_list(a_ ): __A = Fraction(a_ ) result *= frac.denominator / frac.numerator return int(a_ ) if __name__ == "__main__": print(solution())
15
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A_ : def __init__( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : int=3 , UpperCAmelCase : int=4 , UpperCAmelCase : str=2 , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[Any]=9_9 , UpperCAmelCase : Tuple=3_6 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Union[str, Any]=3_7 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[str]=5_1_2 , UpperCAmelCase : int=1_6 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=6 , UpperCAmelCase : int=6 , UpperCAmelCase : str=3 , UpperCAmelCase : Any=4 , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=1_0_0_0 , ) -> int: __lowerCAmelCase: List[str] = parent __lowerCAmelCase: List[str] = batch_size __lowerCAmelCase: Optional[Any] = num_channels __lowerCAmelCase: Tuple = image_size __lowerCAmelCase: str = patch_size __lowerCAmelCase: List[str] = is_training __lowerCAmelCase: Union[str, Any] = use_input_mask __lowerCAmelCase: Union[str, Any] = use_token_type_ids __lowerCAmelCase: Tuple = use_labels __lowerCAmelCase: Optional[int] = vocab_size __lowerCAmelCase: Any = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: Optional[int] = num_attention_heads __lowerCAmelCase: Dict = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: str = hidden_dropout_prob __lowerCAmelCase: str = attention_probs_dropout_prob __lowerCAmelCase: str = max_position_embeddings __lowerCAmelCase: str = type_vocab_size __lowerCAmelCase: Optional[Any] = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: List[str] = coordinate_size __lowerCAmelCase: Tuple = shape_size __lowerCAmelCase: List[Any] = num_labels __lowerCAmelCase: Any = num_choices __lowerCAmelCase: List[str] = scope __lowerCAmelCase: Dict = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __lowerCAmelCase: Optional[Any] = text_seq_length __lowerCAmelCase: List[Any] = (image_size // patch_size) ** 2 + 1 __lowerCAmelCase: int = self.text_seq_length + self.image_seq_length def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __lowerCAmelCase: Any = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __lowerCAmelCase: str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowerCAmelCase: Optional[Any] = bbox[i, j, 3] __lowerCAmelCase: Tuple = bbox[i, j, 1] __lowerCAmelCase: Dict = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __lowerCAmelCase: Any = bbox[i, j, 2] __lowerCAmelCase: int = bbox[i, j, 0] __lowerCAmelCase: int = tmp_coordinate __lowerCAmelCase: List[Any] = tf.constant(UpperCAmelCase ) __lowerCAmelCase: Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase: Union[str, Any] = None if self.use_input_mask: __lowerCAmelCase: List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __lowerCAmelCase: int = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __lowerCAmelCase: str = None __lowerCAmelCase: Dict = None if self.use_labels: __lowerCAmelCase: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __lowerCAmelCase: Dict = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> int: __lowerCAmelCase: Tuple = TFLayoutLMvaModel(config=UpperCAmelCase ) # text + image __lowerCAmelCase: Dict = model(UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) __lowerCAmelCase: List[str] = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , training=UpperCAmelCase , ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __lowerCAmelCase: str = model(UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __lowerCAmelCase: List[str] = model({'pixel_values': pixel_values} , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] ) -> int: __lowerCAmelCase: List[str] = self.num_labels __lowerCAmelCase: Tuple = TFLayoutLMvaForSequenceClassification(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : int ) -> Any: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: List[str] = TFLayoutLMvaForTokenClassification(config=UpperCAmelCase ) __lowerCAmelCase: Any = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Any: __lowerCAmelCase: str = 2 __lowerCAmelCase: Dict = TFLayoutLMvaForQuestionAnswering(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)): List[str] = config_and_inputs __lowerCAmelCase: List[str] = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class A_ ( snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : List[Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _lowercase : Tuple = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Dict = False _lowercase : Tuple = False def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> List[str]: return True def UpperCAmelCase ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=False ) -> dict: __lowerCAmelCase: Optional[Any] = copy.deepcopy(UpperCAmelCase ) if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: int = { k: tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(UpperCAmelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Tuple = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: str = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase: Tuple = TFLayoutLMvaModelTester(self ) __lowerCAmelCase: str = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def UpperCAmelCase ( self : Tuple ) -> Dict: self.config_tester.run_common_tests() def UpperCAmelCase ( self : List[Any] ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: List[Any] = model_class(UpperCAmelCase ) if getattr(UpperCAmelCase , 'hf_compute_loss' , UpperCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label __lowerCAmelCase: Optional[int] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: List[Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCAmelCase )[0] ] __lowerCAmelCase: Tuple = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __lowerCAmelCase: Optional[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Tuple = prepared_for_class.pop('input_ids' ) __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __lowerCAmelCase: Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[int] = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: __lowerCAmelCase: str = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __lowerCAmelCase: Tuple = -1_0_0 __lowerCAmelCase: Union[str, Any] = tf.convert_to_tensor(UpperCAmelCase ) __lowerCAmelCase: Dict = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __lowerCAmelCase: str = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __lowerCAmelCase: Any = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) # Get keys that were added with the _prepare_for_class function __lowerCAmelCase: Tuple = prepared_for_class.keys() - inputs_dict.keys() __lowerCAmelCase: Dict = inspect.signature(model.call ).parameters __lowerCAmelCase: Dict = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __lowerCAmelCase: str = {0: 'input_ids'} for label_key in label_keys: __lowerCAmelCase: Optional[Any] = signature_names.index(UpperCAmelCase ) __lowerCAmelCase: Tuple = label_key __lowerCAmelCase: Tuple = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __lowerCAmelCase: List[Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __lowerCAmelCase: Optional[Any] = prepared_for_class[value] __lowerCAmelCase: Union[str, Any] = tuple(UpperCAmelCase ) # Send to model __lowerCAmelCase: Any = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def UpperCAmelCase ( self : Dict ) -> Tuple: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Dict ) -> int: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase: Tuple = type self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : int ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: Optional[int] = TFLayoutLMvaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def _a ( ) -> Any: """simple docstring""" __lowerCAmelCase: Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class A_ ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self : int ) -> Dict: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase ) if is_vision_available() else None @slow def UpperCAmelCase ( self : Any ) -> List[str]: __lowerCAmelCase: Any = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) __lowerCAmelCase: Tuple = self.default_image_processor __lowerCAmelCase: str = prepare_img() __lowerCAmelCase: Optional[int] = image_processor(images=UpperCAmelCase , return_tensors='tf' ).pixel_values __lowerCAmelCase: Dict = tf.constant([[1, 2]] ) __lowerCAmelCase: str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __lowerCAmelCase: List[str] = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) # verify the logits __lowerCAmelCase: Tuple = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase ) __lowerCAmelCase: str = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
322
0
"""simple docstring""" import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = VideoMAEConfig() set_architecture_configs(lowercase_ , lowercase_ ) if "finetuned" not in model_name: UpperCAmelCase = False if "finetuned" in model_name: UpperCAmelCase = 'huggingface/label-files' if "kinetics" in model_name: UpperCAmelCase = 400 UpperCAmelCase = 'kinetics400-id2label.json' elif "ssv2" in model_name: UpperCAmelCase = 174 UpperCAmelCase = 'something-something-v2-id2label.json' else: raise ValueError('Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.' ) UpperCAmelCase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='dataset' ) , 'r' ) ) UpperCAmelCase = {int(lowercase_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( lowercase_ , lowercase_ ): if "small" in model_name: UpperCAmelCase = 384 UpperCAmelCase = 1536 UpperCAmelCase = 12 UpperCAmelCase = 16 UpperCAmelCase = 12 UpperCAmelCase = 3 UpperCAmelCase = 192 UpperCAmelCase = 768 elif "large" in model_name: UpperCAmelCase = 1024 UpperCAmelCase = 4096 UpperCAmelCase = 24 UpperCAmelCase = 16 UpperCAmelCase = 12 UpperCAmelCase = 8 UpperCAmelCase = 512 UpperCAmelCase = 2048 elif "huge" in model_name: UpperCAmelCase = 1280 UpperCAmelCase = 5120 UpperCAmelCase = 32 UpperCAmelCase = 16 UpperCAmelCase = 12 UpperCAmelCase = 8 UpperCAmelCase = 640 UpperCAmelCase = 2560 elif "base" not in model_name: raise ValueError('Model name should include either "small", "base", "large", or "huge"' ) def _lowerCAmelCase ( lowercase_ ): if "encoder." in name: UpperCAmelCase = name.replace('encoder.' , '' ) if "cls_token" in name: UpperCAmelCase = name.replace('cls_token' , 'videomae.embeddings.cls_token' ) if "decoder_pos_embed" in name: UpperCAmelCase = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: UpperCAmelCase = name.replace('pos_embed' , 'videomae.embeddings.position_embeddings' ) if "patch_embed.proj" in name: UpperCAmelCase = name.replace('patch_embed.proj' , 'videomae.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCAmelCase = name.replace('patch_embed.norm' , 'videomae.embeddings.norm' ) if "decoder.blocks" in name: UpperCAmelCase = name.replace('decoder.blocks' , 'decoder.decoder_layers' ) if "blocks" in name: UpperCAmelCase = name.replace('blocks' , 'videomae.encoder.layer' ) if "attn.proj" in name: UpperCAmelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "bias" not in name: UpperCAmelCase = name.replace('attn' , 'attention.self' ) if "attn" in name: UpperCAmelCase = name.replace('attn' , 'attention.attention' ) if "norm1" in name: UpperCAmelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCAmelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: UpperCAmelCase = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: UpperCAmelCase = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: UpperCAmelCase = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: UpperCAmelCase = name.replace('norm.weight' , 'videomae.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: UpperCAmelCase = name.replace('norm.bias' , 'videomae.layernorm.bias' ) if "head" in name and "decoder" not in name: UpperCAmelCase = name.replace('head' , 'classifier' ) return name def _lowerCAmelCase ( lowercase_ , lowercase_ ): for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(lowercase_ ) if key.startswith('encoder.' ): UpperCAmelCase = key.replace('encoder.' , '' ) if "qkv" in key: UpperCAmelCase = key.split('.' ) if key.startswith('decoder.blocks' ): UpperCAmelCase = config.decoder_hidden_size UpperCAmelCase = int(key_split[2] ) UpperCAmelCase = 'decoder.decoder_layers.' if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[dim : dim * 2, :] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = config.hidden_size UpperCAmelCase = int(key_split[1] ) UpperCAmelCase = 'videomae.encoder.layer.' if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[dim : dim * 2, :] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ): UpperCAmelCase = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) UpperCAmelCase = np.load(lowercase_ ) return list(lowercase_ ) def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = get_videomae_config(lowercase_ ) if "finetuned" in model_name: UpperCAmelCase = VideoMAEForVideoClassification(lowercase_ ) else: UpperCAmelCase = VideoMAEForPreTraining(lowercase_ ) # download original checkpoint, hosted on Google Drive UpperCAmelCase = 'pytorch_model.bin' gdown.cached_download(lowercase_ , lowercase_ , quiet=lowercase_ ) UpperCAmelCase = torch.load(lowercase_ , map_location='cpu' ) if "model" in files: UpperCAmelCase = files['model'] else: UpperCAmelCase = files['module'] UpperCAmelCase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() # verify model on basic input UpperCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) UpperCAmelCase = prepare_video() UpperCAmelCase = image_processor(lowercase_ , return_tensors='pt' ) if "finetuned" not in model_name: UpperCAmelCase = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) UpperCAmelCase = torch.load(lowercase_ ) UpperCAmelCase = model(**lowercase_ ) UpperCAmelCase = outputs.logits UpperCAmelCase = [ 'videomae-small-finetuned-kinetics', 'videomae-small-finetuned-ssv2', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) 'videomae-base-short', 'videomae-base-short-finetuned-kinetics', 'videomae-base', 'videomae-base-finetuned-kinetics', 'videomae-large', 'videomae-large-finetuned-kinetics', 'videomae-huge-finetuned-kinetics', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) 'videomae-base-short-ssv2', 'videomae-base-short-finetuned-ssv2', 'videomae-base-ssv2', 'videomae-base-finetuned-ssv2', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": UpperCAmelCase = torch.Size([1, 400] ) UpperCAmelCase = torch.tensor([-0.9_2_9_1, -0.4_0_6_1, -0.9_3_0_7] ) elif model_name == "videomae-small-finetuned-ssv2": UpperCAmelCase = torch.Size([1, 174] ) UpperCAmelCase = torch.tensor([0.2_6_7_1, -0.4_6_8_9, -0.8_2_3_5] ) elif model_name == "videomae-base": UpperCAmelCase = torch.Size([1, 1408, 1536] ) UpperCAmelCase = torch.tensor([[0.7_7_3_9, 0.7_9_6_8, 0.7_0_8_9], [0.6_7_0_1, 0.7_4_8_7, 0.6_2_0_9], [0.4_2_8_7, 0.5_1_5_8, 0.4_7_7_3]] ) elif model_name == "videomae-base-short": UpperCAmelCase = torch.Size([1, 1408, 1536] ) UpperCAmelCase = torch.tensor([[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ) # we verified the loss both for normalized and unnormalized targets for this one UpperCAmelCase = torch.tensor([0.5_1_4_2] ) if config.norm_pix_loss else torch.tensor([0.6_4_6_9] ) elif model_name == "videomae-large": UpperCAmelCase = torch.Size([1, 1408, 1536] ) UpperCAmelCase = torch.tensor([[0.7_1_4_9, 0.7_9_9_7, 0.6_9_6_6], [0.6_7_6_8, 0.7_8_6_9, 0.6_9_4_8], [0.5_1_3_9, 0.6_2_2_1, 0.5_6_0_5]] ) elif model_name == "videomae-large-finetuned-kinetics": UpperCAmelCase = torch.Size([1, 400] ) UpperCAmelCase = torch.tensor([0.0_7_7_1, 0.0_0_1_1, -0.3_6_2_5] ) elif model_name == "videomae-huge-finetuned-kinetics": UpperCAmelCase = torch.Size([1, 400] ) UpperCAmelCase = torch.tensor([0.2_4_3_3, 0.1_6_3_2, -0.4_8_9_4] ) elif model_name == "videomae-base-short-finetuned-kinetics": UpperCAmelCase = torch.Size([1, 400] ) UpperCAmelCase = torch.tensor([0.6_5_8_8, 0.0_9_9_0, -0.2_4_9_3] ) elif model_name == "videomae-base-finetuned-kinetics": UpperCAmelCase = torch.Size([1, 400] ) UpperCAmelCase = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ) elif model_name == "videomae-base-short-ssv2": UpperCAmelCase = torch.Size([1, 1408, 1536] ) UpperCAmelCase = torch.tensor([[0.4_7_1_2, 0.5_2_9_6, 0.5_7_8_6], [0.2_2_7_8, 0.2_7_2_9, 0.4_0_2_6], [0.0_3_5_2, 0.0_7_3_0, 0.2_5_0_6]] ) elif model_name == "videomae-base-short-finetuned-ssv2": UpperCAmelCase = torch.Size([1, 174] ) UpperCAmelCase = torch.tensor([-0.0_5_3_7, -0.1_5_3_9, -0.3_2_6_6] ) elif model_name == "videomae-base-ssv2": UpperCAmelCase = torch.Size([1, 1408, 1536] ) UpperCAmelCase = torch.tensor([[0.8_1_3_1, 0.8_7_2_7, 0.8_5_4_6], [0.7_3_6_6, 0.9_3_7_7, 0.8_8_7_0], [0.5_9_3_5, 0.8_8_7_4, 0.8_5_6_4]] ) elif model_name == "videomae-base-finetuned-ssv2": UpperCAmelCase = torch.Size([1, 174] ) UpperCAmelCase = torch.tensor([0.1_9_6_1, -0.8_3_3_7, -0.6_3_8_9] ) else: raise ValueError(F"""Model name not supported. Should be one of {model_names}""" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) else: print('Logits:' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowercase_ , atol=1e-4 ) print('Logits ok!' ) # verify loss, if applicable if model_name == "videomae-base-short": UpperCAmelCase = outputs.loss assert torch.allclose(lowercase_ , lowercase_ , atol=1e-4 ) print('Loss ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) model.save_pretrained(lowercase_ ) if push_to_hub: print('Pushing to the hub...' ) model.push_to_hub(lowercase_ , organization='nielsr' ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case_ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
181
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller snake_case_ = 3 def _lowerCAmelCase ( lowercase_ ): print('Generating primitive root of p' ) while True: UpperCAmelCase = random.randrange(3 , lowercase_ ) if pow(lowercase_ , 2 , lowercase_ ) == 1: continue if pow(lowercase_ , lowercase_ , lowercase_ ) == 1: continue return g def _lowerCAmelCase ( lowercase_ ): print('Generating prime p...' ) UpperCAmelCase = rabin_miller.generate_large_prime(lowercase_ ) # select large prime number. UpperCAmelCase = primitive_root(lowercase_ ) # one primitive root on modulo p. UpperCAmelCase = random.randrange(3 , lowercase_ ) # private_key -> have to be greater than 2 for safety. UpperCAmelCase = cryptomath.find_mod_inverse(pow(lowercase_ , lowercase_ , lowercase_ ) , lowercase_ ) UpperCAmelCase = (key_size, e_a, e_a, p) UpperCAmelCase = (key_size, d) return public_key, private_key def _lowerCAmelCase ( lowercase_ , lowercase_ ): if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() UpperCAmelCase , UpperCAmelCase = generate_key(lowercase_ ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , 'w' ) as fo: fo.write(F"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , 'w' ) as fo: fo.write(F"""{private_key[0]},{private_key[1]}""" ) def _lowerCAmelCase ( ): print('Making key files...' ) make_key_files('elgamal' , 2048 ) print('Key files generation successful' ) if __name__ == "__main__": main()
181
1
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __lowercase (lowerCAmelCase_ ): _UpperCamelCase = DistilBertTokenizer _UpperCamelCase = DistilBertTokenizerFast _UpperCamelCase = True @slow def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : int = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) __lowerCAmelCase : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=snake_case_ ) __lowerCAmelCase : Optional[int] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=snake_case_ ) __lowerCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(snake_case_ ) __lowerCAmelCase : int = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
275
'''simple docstring''' from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
22
0
import os import sys A__ = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) A__ = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def _lowerCAmelCase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" return AutoConfig.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def _lowerCAmelCase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: """simple docstring""" return AutoTokenizer.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def _lowerCAmelCase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> str: """simple docstring""" return AutoModel.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def _lowerCAmelCase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Optional[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def _lowerCAmelCase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def _lowerCAmelCase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def _lowerCAmelCase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Optional[Any]: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
44
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A__ = logging.get_logger(__name__) A__ = { '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''', # See all BART models at https://huggingface.co/models?filter=bart } class a ( __lowerCamelCase ): __lowerCAmelCase : List[str] = """bart""" __lowerCAmelCase : Any = ["""past_key_values"""] __lowerCAmelCase : List[Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :int ,__lowercase :Union[str, Any]=5_0_2_6_5 ,__lowercase :Optional[int]=1_0_2_4 ,__lowercase :int=1_2 ,__lowercase :Tuple=4_0_9_6 ,__lowercase :str=1_6 ,__lowercase :List[Any]=1_2 ,__lowercase :str=4_0_9_6 ,__lowercase :List[str]=1_6 ,__lowercase :Optional[int]=0.0 ,__lowercase :List[str]=0.0 ,__lowercase :int="gelu" ,__lowercase :int=1_0_2_4 ,__lowercase :Any=0.1 ,__lowercase :Optional[Any]=0.0 ,__lowercase :List[Any]=0.0 ,__lowercase :Tuple=0.02 ,__lowercase :List[str]=0.0 ,__lowercase :int=False ,__lowercase :Any=True ,__lowercase :List[str]=3 ,__lowercase :List[Any]=1 ,__lowercase :List[str]=0 ,__lowercase :List[str]=2 ,__lowercase :Union[str, Any]=True ,__lowercase :List[Any]=2 ,__lowercase :Dict=2 ,**__lowercase :List[str] ,): snake_case__ : Union[str, Any] = vocab_size snake_case__ : Tuple = max_position_embeddings snake_case__ : List[Any] = d_model snake_case__ : Any = encoder_ffn_dim snake_case__ : int = encoder_layers snake_case__ : Union[str, Any] = encoder_attention_heads snake_case__ : List[str] = decoder_ffn_dim snake_case__ : Any = decoder_layers snake_case__ : Union[str, Any] = decoder_attention_heads snake_case__ : int = dropout snake_case__ : Optional[int] = attention_dropout snake_case__ : str = activation_dropout snake_case__ : List[Any] = activation_function snake_case__ : Any = init_std snake_case__ : Union[str, Any] = encoder_layerdrop snake_case__ : Optional[int] = decoder_layerdrop snake_case__ : List[Any] = classifier_dropout snake_case__ : Tuple = use_cache snake_case__ : List[str] = encoder_layers snake_case__ : Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__lowercase ,pad_token_id=__lowercase ,bos_token_id=__lowercase ,eos_token_id=__lowercase ,is_encoder_decoder=__lowercase ,decoder_start_token_id=__lowercase ,forced_eos_token_id=__lowercase ,**__lowercase ,) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' ,__lowercase ): snake_case__ : int = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ '''The config can simply be saved and uploaded again to be fixed.''' ) class a ( __lowerCamelCase ): @property def __lowerCamelCase ( self :Optional[int] ): if self.task in ["default", "seq2seq-lm"]: snake_case__ : Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: snake_case__ : Union[str, Any] = {0: '''batch'''} snake_case__ : Any = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: snake_case__ : Any = {0: '''batch''', 1: '''decoder_sequence'''} snake_case__ : Dict = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__lowercase ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case__ : List[str] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: snake_case__ , snake_case__ : Dict = self.num_layers for i in range(__lowercase ): snake_case__ : int = {0: '''batch''', 2: '''past_sequence + sequence'''} snake_case__ : Tuple = {0: '''batch''', 2: '''past_sequence + sequence'''} else: snake_case__ : Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def __lowerCamelCase ( self :Dict ): if self.task in ["default", "seq2seq-lm"]: snake_case__ : List[str] = super().outputs else: snake_case__ : List[str] = super(__lowercase ,self ).outputs if self.use_past: snake_case__ , snake_case__ : Any = self.num_layers for i in range(__lowercase ): snake_case__ : Optional[int] = {0: '''batch''', 2: '''past_sequence + sequence'''} snake_case__ : List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __lowerCamelCase ( self :Optional[Any] ,__lowercase :PreTrainedTokenizer ,__lowercase :int = -1 ,__lowercase :int = -1 ,__lowercase :bool = False ,__lowercase :Optional[TensorType] = None ,): snake_case__ : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) # Generate decoder inputs snake_case__ : List[Any] = seq_length if not self.use_past else 1 snake_case__ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) snake_case__ : Any = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} snake_case__ : List[str] = dict(**__lowercase ,**__lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch snake_case__ , snake_case__ : Union[str, Any] = common_inputs['''input_ids'''].shape snake_case__ : List[str] = common_inputs['''decoder_input_ids'''].shape[1] snake_case__ , snake_case__ : Dict = self.num_attention_heads snake_case__ : List[str] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case__ : Optional[int] = decoder_seq_length + 3 snake_case__ : Dict = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case__ : List[Any] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__lowercase ,__lowercase )] ,dim=1 ) snake_case__ : Any = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case__ , snake_case__ : List[Any] = self.num_layers snake_case__ : List[Any] = min(__lowercase ,__lowercase ) snake_case__ : Dict = max(__lowercase ,__lowercase ) - min_num_layers snake_case__ : Union[str, Any] = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(__lowercase ), torch.zeros(__lowercase ), torch.zeros(__lowercase ), torch.zeros(__lowercase ), ) ) # TODO: test this. snake_case__ : Optional[Any] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__lowercase ,__lowercase ): common_inputs["past_key_values"].append((torch.zeros(__lowercase ), torch.zeros(__lowercase )) ) return common_inputs def __lowerCamelCase ( self :List[Any] ,__lowercase :PreTrainedTokenizer ,__lowercase :int = -1 ,__lowercase :int = -1 ,__lowercase :bool = False ,__lowercase :Optional[TensorType] = None ,): snake_case__ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch snake_case__ , snake_case__ : str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values snake_case__ : Dict = seqlen + 2 snake_case__ , snake_case__ : Tuple = self.num_layers snake_case__ , snake_case__ : List[str] = self.num_attention_heads snake_case__ : Optional[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case__ : int = common_inputs['''attention_mask'''].dtype snake_case__ : int = torch.cat( [common_inputs['''attention_mask'''], torch.ones(__lowercase ,__lowercase ,dtype=__lowercase )] ,dim=1 ) snake_case__ : Union[str, Any] = [ (torch.zeros(__lowercase ), torch.zeros(__lowercase )) for _ in range(__lowercase ) ] return common_inputs def __lowerCamelCase ( self :str ,__lowercase :PreTrainedTokenizer ,__lowercase :int = -1 ,__lowercase :int = -1 ,__lowercase :bool = False ,__lowercase :Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case__ : Optional[int] = compute_effective_axis_dimension( __lowercase ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case__ : str = tokenizer.num_special_tokens_to_add(__lowercase ) snake_case__ : int = compute_effective_axis_dimension( __lowercase ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=__lowercase ) # Generate dummy inputs according to compute batch and sequence snake_case__ : Union[str, Any] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case__ : Optional[Any] = dict(tokenizer(__lowercase ,return_tensors=__lowercase ) ) return common_inputs def __lowerCamelCase ( self :int ,__lowercase :PreTrainedTokenizer ,__lowercase :int = -1 ,__lowercase :int = -1 ,__lowercase :bool = False ,__lowercase :Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: snake_case__ : str = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowercase ,batch_size=__lowercase ,seq_length=__lowercase ,is_pair=__lowercase ,framework=__lowercase ) elif self.task == "causal-lm": snake_case__ : int = self._generate_dummy_inputs_for_causal_lm( __lowercase ,batch_size=__lowercase ,seq_length=__lowercase ,is_pair=__lowercase ,framework=__lowercase ) else: snake_case__ : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowercase ,batch_size=__lowercase ,seq_length=__lowercase ,is_pair=__lowercase ,framework=__lowercase ) return common_inputs def __lowerCamelCase ( self :Tuple ,__lowercase :Optional[int] ,__lowercase :List[str] ,__lowercase :Optional[int] ,__lowercase :Tuple ): if self.task in ["default", "seq2seq-lm"]: snake_case__ : Optional[Any] = super()._flatten_past_key_values_(__lowercase ,__lowercase ,__lowercase ,__lowercase ) else: snake_case__ : int = super(__lowercase ,self )._flatten_past_key_values_( __lowercase ,__lowercase ,__lowercase ,__lowercase )
44
1
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Any, lowerCAmelCase_ : List[str] ): __lowerCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=lowerCAmelCase_ ) __lowerCAmelCase = checkpoints.load_tax_checkpoint(lowerCAmelCase_ ) __lowerCAmelCase = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": __lowerCAmelCase = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": __lowerCAmelCase = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __lowerCAmelCase = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].' ) # Encoder for layer_index in range(config.num_layers ): __lowerCAmelCase = F"""layers_{str(lowerCAmelCase_ )}""" # Self-Attention __lowerCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] __lowerCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] __lowerCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] __lowerCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __lowerCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization __lowerCAmelCase = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: __lowerCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] __lowerCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: __lowerCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] __lowerCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization __lowerCAmelCase = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning __lowerCAmelCase = flax_model.params['encoder']['block'][str(lowerCAmelCase_ )]['layer'] __lowerCAmelCase = tax_attention_key __lowerCAmelCase = tax_attention_out __lowerCAmelCase = tax_attention_query __lowerCAmelCase = tax_attention_value __lowerCAmelCase = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __lowerCAmelCase = tax_global_layer_norm if split_mlp_wi: __lowerCAmelCase = tax_mlp_wi_a __lowerCAmelCase = tax_mlp_wi_a else: __lowerCAmelCase = tax_mlp_wi __lowerCAmelCase = tax_mlp_wo __lowerCAmelCase = tax_mlp_layer_norm __lowerCAmelCase = flax_model_encoder_layer_block # Only for layer 0: __lowerCAmelCase = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T __lowerCAmelCase = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __lowerCAmelCase = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T __lowerCAmelCase = tax_encoder_global_rel_embedding # Assigning __lowerCAmelCase = tax_model['target']['encoder']['encoder_norm']['scale'] __lowerCAmelCase = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): __lowerCAmelCase = F"""layers_{str(lowerCAmelCase_ )}""" # Self-Attention __lowerCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] __lowerCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] __lowerCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] __lowerCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization __lowerCAmelCase = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention __lowerCAmelCase = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] __lowerCAmelCase = tax_enc_dec_attention_module['key']['kernel'] __lowerCAmelCase = tax_enc_dec_attention_module['out']['kernel'] __lowerCAmelCase = tax_enc_dec_attention_module['query']['kernel'] __lowerCAmelCase = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization __lowerCAmelCase = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: __lowerCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] __lowerCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: __lowerCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] __lowerCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization __lowerCAmelCase = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning __lowerCAmelCase = flax_model.params['decoder']['block'][str(lowerCAmelCase_ )]['layer'] __lowerCAmelCase = tax_attention_key __lowerCAmelCase = tax_attention_out __lowerCAmelCase = tax_attention_query __lowerCAmelCase = tax_attention_value __lowerCAmelCase = tax_pre_attention_layer_norm __lowerCAmelCase = tax_enc_dec_attention_key __lowerCAmelCase = tax_enc_dec_attention_out __lowerCAmelCase = tax_enc_dec_attention_query __lowerCAmelCase = tax_enc_dec_attention_value __lowerCAmelCase = tax_cross_layer_norm if split_mlp_wi: __lowerCAmelCase = tax_mlp_wi_a __lowerCAmelCase = tax_mlp_wi_a else: __lowerCAmelCase = tax_mlp_wi __lowerCAmelCase = tax_mlp_wo __lowerCAmelCase = txa_mlp_layer_norm __lowerCAmelCase = flax_model_decoder_layer_block # Decoder Normalization __lowerCAmelCase = tax_model['target']['decoder']['decoder_norm']['scale'] __lowerCAmelCase = txa_decoder_norm # Only for layer 0: __lowerCAmelCase = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T __lowerCAmelCase = tax_decoder_rel_embedding # Token Embeddings __lowerCAmelCase = tax_model['target']['token_embedder']['embedding'] __lowerCAmelCase = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: __lowerCAmelCase = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(lowerCAmelCase_ ) print('T5X Model was sucessfully converted!' ) if __name__ == "__main__": _snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) _snake_case : Tuple = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
284
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _snake_case : Dict = pytest.mark.integration @require_faiss class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowerCAmelCase_ ) for x in np.arange(3_0 ).tolist()]} ) return dset def lowercase ( self : List[str] ) -> Tuple: import faiss __lowerCAmelCase = self._create_dummy_dataset() __lowerCAmelCase = dset.map( lambda lowerCAmelCase_ , lowerCAmelCase_ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=lowerCAmelCase_ , keep_in_memory=lowerCAmelCase_ ) __lowerCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT ) __lowerCAmelCase , __lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def lowercase ( self : Optional[Any] ) -> str: import faiss __lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __lowerCAmelCase , __lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def lowercase ( self : int ) -> Optional[Any]: import faiss __lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCAmelCase_ ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) __lowerCAmelCase , __lowerCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def lowercase ( self : Union[str, Any] ) -> List[Any]: __lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(lowerCAmelCase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def lowercase ( self : Union[str, Any] ) -> Tuple: from elasticsearch import Elasticsearch __lowerCAmelCase = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __lowerCAmelCase = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 3_0 ) __lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 2_9}]}} __lowerCAmelCase = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=lowerCAmelCase_ ) __lowerCAmelCase , __lowerCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : str ) -> int: import faiss __lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 1_0 ) # single query __lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) __lowerCAmelCase = 1 __lowerCAmelCase , __lowerCAmelCase = index.search(lowerCAmelCase_ ) self.assertRaises(lowerCAmelCase_ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __lowerCAmelCase = np.eye(5 , dtype=np.floataa )[::-1] __lowerCAmelCase , __lowerCAmelCase = index.search_batch(lowerCAmelCase_ ) self.assertRaises(lowerCAmelCase_ , index.search_batch , queries[0] ) __lowerCAmelCase = [scores[0] for scores in total_scores] __lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCAmelCase_ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> List[str]: import faiss __lowerCAmelCase = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __lowerCAmelCase = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(lowerCAmelCase_ ): __lowerCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def lowercase ( self : Union[str, Any] ) -> Dict: import faiss __lowerCAmelCase = faiss.IndexFlat(5 ) __lowerCAmelCase = FaissIndex(custom_index=lowerCAmelCase_ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def lowercase ( self : str ) -> Any: import faiss __lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCAmelCase_ ) as tmp_file: index.save(tmp_file.name ) __lowerCAmelCase = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) __lowerCAmelCase = 1 __lowerCAmelCase , __lowerCAmelCase = index.search(lowerCAmelCase_ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def a_ ( lowerCAmelCase_ : Union[str, Any] ): import faiss __lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) __lowerCAmelCase = 'index.faiss' __lowerCAmelCase = F"""mock://{index_name}""" index.save(lowerCAmelCase_, storage_options=mockfs.storage_options ) __lowerCAmelCase = FaissIndex.load(lowerCAmelCase_, storage_options=mockfs.storage_options ) __lowerCAmelCase = np.zeros(5, dtype=np.floataa ) __lowerCAmelCase = 1 __lowerCAmelCase , __lowerCAmelCase = index.search(lowerCAmelCase_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Any ) -> int: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __lowerCAmelCase = Elasticsearch() __lowerCAmelCase = {'acknowledged': True} __lowerCAmelCase = ElasticSearchIndex(es_client=lowerCAmelCase_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query __lowerCAmelCase = 'foo' __lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __lowerCAmelCase , __lowerCAmelCase = index.search(lowerCAmelCase_ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __lowerCAmelCase = 'foo' __lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __lowerCAmelCase , __lowerCAmelCase = index.search(lowerCAmelCase_ , request_timeout=3_0 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __lowerCAmelCase = ['foo', 'bar', 'foobar'] __lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __lowerCAmelCase , __lowerCAmelCase = index.search_batch(lowerCAmelCase_ ) __lowerCAmelCase = [scores[0] for scores in total_scores] __lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCAmelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , lowerCAmelCase_ ) # batched queries with timeout __lowerCAmelCase = ['foo', 'bar', 'foobar'] __lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __lowerCAmelCase , __lowerCAmelCase = index.search_batch(lowerCAmelCase_ , request_timeout=3_0 ) __lowerCAmelCase = [scores[0] for scores in total_scores] __lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCAmelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , lowerCAmelCase_ )
284
1
def snake_case_(_UpperCamelCase ) -> bool: """simple docstring""" _snake_case = set() # To detect a back edge, keep track of vertices currently in the recursion stack _snake_case = set() return any( node not in visited and depth_first_search(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for node in graph ) def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> bool: """simple docstring""" visited.add(_UpperCamelCase ) rec_stk.add(_UpperCamelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(_UpperCamelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
278
from ..utils import DummyObject, requires_backends class lowercase_ ( metaclass=__lowercase ): UpperCamelCase_ : Optional[int] = ["speech"] def __init__( self : str , *A__ : List[str] , **A__ : Tuple ) -> Optional[Any]: requires_backends(self , ['''speech'''] ) class lowercase_ ( metaclass=__lowercase ): UpperCamelCase_ : Optional[Any] = ["speech"] def __init__( self : Dict , *A__ : int , **A__ : int ) -> Tuple: requires_backends(self , ['''speech'''] )
278
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable _UpperCamelCase = list[list[float | int]] def lowercase_ ( lowerCAmelCase__ : Matrix , lowerCAmelCase__ : Matrix ): """simple docstring""" __UpperCAmelCase : int = len(lowerCAmelCase__ ) __UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(lowerCAmelCase__ )] __UpperCAmelCase : int __UpperCAmelCase : int __UpperCAmelCase : int __UpperCAmelCase : int __UpperCAmelCase : int __UpperCAmelCase : float for row in range(lowerCAmelCase__ ): for col in range(lowerCAmelCase__ ): __UpperCAmelCase : Tuple = matrix[row][col] __UpperCAmelCase : Dict = vector[row][0] __UpperCAmelCase : str = 0 __UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting __UpperCAmelCase : List[str] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(lowerCAmelCase__ , lowerCAmelCase__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __UpperCAmelCase , __UpperCAmelCase : Tuple = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , lowerCAmelCase__ ): __UpperCAmelCase : List[Any] = augmented[rowa][col] / augmented[row][col] __UpperCAmelCase : str = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , lowerCAmelCase__ ): for row in range(lowerCAmelCase__ ): __UpperCAmelCase : Optional[int] = augmented[row][col] / augmented[col][col] for cola in range(lowerCAmelCase__ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(lowerCAmelCase__ ) ] def lowercase_ ( lowerCAmelCase__ : list[int] ): """simple docstring""" __UpperCAmelCase : int = len(lowerCAmelCase__ ) __UpperCAmelCase : Matrix = [[0 for _ in range(lowerCAmelCase__ )] for _ in range(lowerCAmelCase__ )] __UpperCAmelCase : Matrix = [[0] for _ in range(lowerCAmelCase__ )] __UpperCAmelCase : Matrix __UpperCAmelCase : int __UpperCAmelCase : int __UpperCAmelCase : int for x_val, y_val in enumerate(lowerCAmelCase__ ): for col in range(lowerCAmelCase__ ): __UpperCAmelCase : Any = (x_val + 1) ** (size - col - 1) __UpperCAmelCase : Any = y_val __UpperCAmelCase : Union[str, Any] = solve(lowerCAmelCase__ , lowerCAmelCase__ ) def interpolated_func(lowerCAmelCase__ : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(lowerCAmelCase__ ) ) return interpolated_func def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowercase_ ( lowerCAmelCase__ : Callable[[int], int] = question_function , lowerCAmelCase__ : int = 10 ): """simple docstring""" __UpperCAmelCase : list[int] = [func(lowerCAmelCase__ ) for x_val in range(1 , order + 1 )] __UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __UpperCAmelCase : int = 0 __UpperCAmelCase : Callable[[int], int] __UpperCAmelCase : int for poly in polynomials: __UpperCAmelCase : Optional[int] = 1 while func(lowerCAmelCase__ ) == poly(lowerCAmelCase__ ): x_val += 1 ret += poly(lowerCAmelCase__ ) return ret if __name__ == "__main__": print(F'{solution() = }')
254
'''simple docstring''' from sklearn.metrics import fa_score import datasets _UpperCamelCase = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' _UpperCamelCase = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' _UpperCamelCase = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def __A ( self ) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=1 , __UpperCAmelCase="binary" , __UpperCAmelCase=None ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = fa_score( __UpperCAmelCase , __UpperCAmelCase , labels=__UpperCAmelCase , pos_label=__UpperCAmelCase , average=__UpperCAmelCase , sample_weight=__UpperCAmelCase ) return {"f1": float(__UpperCAmelCase ) if score.size == 1 else score}
254
1
def A_ ( _lowerCAmelCase ) -> str: UpperCamelCase : List[Any] = set() # edges = list of graph's edges UpperCamelCase : int = get_edges(_a ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: UpperCamelCase : Dict = edges.pop() chosen_vertices.add(_a ) chosen_vertices.add(_a ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_a ) return chosen_vertices def A_ ( _lowerCAmelCase ) -> int: UpperCamelCase : List[str] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
364
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : Dict = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class A__ ( __snake_case , unittest.TestCase ): _UpperCAmelCase :int = AlbertTokenizer _UpperCAmelCase :int = AlbertTokenizerFast _UpperCAmelCase :int = True _UpperCAmelCase :List[str] = True _UpperCAmelCase :Optional[Any] = True def __UpperCamelCase( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase : List[str] = AlbertTokenizer(A_ ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = "this is a test" UpperCamelCase : List[Any] = "this is a test" return input_text, output_text def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = "<pad>" UpperCamelCase : Dict = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(A_ ) , 3_0000 ) def __UpperCamelCase( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def __UpperCamelCase( self ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCamelCase : Any = self.get_tokenizer() UpperCamelCase : Optional[int] = self.get_rust_tokenizer() UpperCamelCase : List[Any] = "I was born in 92000, and this is falsé." UpperCamelCase : Optional[Any] = tokenizer.tokenize(A_ ) UpperCamelCase : Optional[int] = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase : Optional[Any] = tokenizer.encode(A_ , add_special_tokens=A_ ) UpperCamelCase : Optional[int] = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase : List[Any] = self.get_rust_tokenizer() UpperCamelCase : Union[str, Any] = tokenizer.encode(A_ ) UpperCamelCase : Optional[int] = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = AlbertTokenizer(A_ , keep_accents=A_ ) UpperCamelCase : Optional[int] = tokenizer.tokenize("This is a test" ) self.assertListEqual(A_ , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [48, 25, 21, 1289] ) UpperCamelCase : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( A_ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) UpperCamelCase : Optional[int] = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual(A_ , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) UpperCamelCase : List[str] = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = AlbertTokenizer(A_ ) UpperCamelCase : Dict = tokenizer.encode("sequence builders" ) UpperCamelCase : Tuple = tokenizer.encode("multi-sequence build" ) UpperCamelCase : str = tokenizer.build_inputs_with_special_tokens(A_ ) UpperCamelCase : int = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
140
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class snake_case__ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=_UpperCAmelCase ).to(_UpperCAmelCase ) a__ : Dict = AutoTokenizer.from_pretrained("""google/mt5-small""" ) a__ : Any = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids a__ : str = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids a__ : Optional[Any] = model(input_ids.to(_UpperCAmelCase ) , labels=labels.to(_UpperCAmelCase ) ).loss a__ : Optional[int] = -(labels.shape[-1] * loss.item()) a__ : str = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
170
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = ['''input_values''', '''attention_mask'''] def __init__( self : Dict , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 16_000 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 80 , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : str = "hann_window" , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : float = 80 , _UpperCAmelCase : float = 7_600 , _UpperCAmelCase : float = 1E-1_0 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : bool = True , **_UpperCAmelCase : List[Any] , ): super().__init__(feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase ) _A = do_normalize _A = return_attention_mask _A = num_mel_bins _A = hop_length _A = win_length _A = win_function _A = frame_signal_scale _A = fmin _A = fmax _A = mel_floor _A = reduction_factor _A = win_length * sampling_rate // 1_000 _A = hop_length * sampling_rate // 1_000 _A = optimal_fft_length(self.sample_size ) _A = (self.n_fft // 2) + 1 _A = window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCAmelCase ) _A = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCAmelCase_ ( _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : float = 0.0 ): if attention_mask is not None: _A = np.array(_UpperCAmelCase , np.intaa ) _A = [] for vector, length in zip(_UpperCAmelCase , attention_mask.sum(-1 ) ): _A = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _A = padding_value normed_input_values.append(_UpperCAmelCase ) else: _A = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , ): _A = spectrogram( _UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : int , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ): if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: _A = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) else: _A = None if audio_target is not None: _A = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) if inputs is None: return inputs_target else: _A = inputs_target['input_values'] _A = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: _A = decoder_attention_mask return inputs def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : List[Any] , ): _A = isinstance(_UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _A = is_batched_numpy or ( isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ): _A = np.asarray(_UpperCAmelCase , dtype=np.floataa ) elif isinstance(_UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): _A = speech.astype(np.floataa ) # always return batch if not is_batched: _A = [speech] # needed to make pad() work on spectrogram inputs _A = self.feature_size # convert into correct format for padding if is_target: _A = [self._extract_mel_features(_UpperCAmelCase ) for waveform in speech] _A = BatchFeature({'input_values': features} ) _A = self.num_mel_bins else: _A = BatchFeature({'input_values': speech} ) _A = self.pad( _UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) _A = feature_size_hack # convert input values to correct format _A = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): _A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_UpperCAmelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): _A = [array.astype(np.floataa ) for array in input_values] elif isinstance(_UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): _A = input_values.astype(np.floataa ) # convert attention_mask to correct format _A = padded_inputs.get('attention_mask' ) if attention_mask is not None: _A = [np.asarray(_UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: _A = ( attention_mask if self._get_padding_strategies(_UpperCAmelCase , max_length=_UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) _A = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_UpperCAmelCase , padding_value=self.padding_value ) if return_tensors is not None: _A = padded_inputs.convert_to_tensors(_UpperCAmelCase ) return padded_inputs def lowerCAmelCase_ ( self : Any ): _A = super().to_dict() # Don't serialize these as they are derived from the other properties. _A = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
315
0
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) __UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) __UpperCAmelCase : List[Any] = "Hello world! cécé herlolip" __UpperCAmelCase : str = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : Optional[Any] = BertAbsConfig( temp_dir='''.''' , finetune_bert=a_ , large=a_ , share_emb=a_ , use_bert_emb=a_ , encoder='''bert''' , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , ) UpperCamelCase : Dict = torch.load(a_ , lambda SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : storage ) UpperCamelCase : Tuple = AbsSummarizer(a_ , torch.device('''cpu''' ) , a_ ) original.eval() UpperCamelCase : Dict = BertAbsSummarizer(a_ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) UpperCamelCase : Dict = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs UpperCamelCase : List[Any] = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(a_ )) ) UpperCamelCase : Union[str, Any] = torch.tensor(a_ ).unsqueeze(0 ) UpperCamelCase : List[str] = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(a_ )) ) UpperCamelCase : Any = torch.tensor(a_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass UpperCamelCase : Union[str, Any] = encoder_input_ids UpperCamelCase : Optional[int] = decoder_input_ids UpperCamelCase : List[str] = None UpperCamelCase : List[Any] = None UpperCamelCase : Dict = None UpperCamelCase : List[str] = None UpperCamelCase : Optional[int] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical UpperCamelCase : Tuple = original(a_ , a_ , a_ , a_ , a_ , a_ , a_ )[0] UpperCamelCase : str = original.generator(a_ ) UpperCamelCase : int = new_model( a_ , a_ , a_ , a_ , a_ )[0] UpperCamelCase : Union[str, Any] = new_model.generator(a_ ) UpperCamelCase : Tuple = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(a_ ) ) UpperCamelCase : List[Any] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(a_ ) ) UpperCamelCase : Dict = torch.allclose(a_ , a_ , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": __UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) __UpperCAmelCase : Union[str, Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
367
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup __UpperCAmelCase : int = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''bs4'''] ) super().__init__(**__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = [] UpperCamelCase : int = [] UpperCamelCase : List[Any] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag UpperCamelCase : Tuple = parent.find_all(child.name , recursive=__SCREAMING_SNAKE_CASE ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__SCREAMING_SNAKE_CASE ) else next(i for i, s in enumerate(__SCREAMING_SNAKE_CASE , 1 ) if s is child ) ) UpperCamelCase : Optional[Any] = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[Any] = BeautifulSoup(__SCREAMING_SNAKE_CASE , '''html.parser''' ) UpperCamelCase : Union[str, Any] = [] UpperCamelCase : List[str] = [] UpperCamelCase : str = [] for element in html_code.descendants: if type(__SCREAMING_SNAKE_CASE ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue UpperCamelCase : Any = html.unescape(__SCREAMING_SNAKE_CASE ).strip() if not text_in_this_tag: continue all_doc_strings.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase : int = self.xpath_soup(__SCREAMING_SNAKE_CASE ) stringaxtag_seq.append(__SCREAMING_SNAKE_CASE ) stringaxsubs_seq.append(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[Any] = '''''' for tagname, subs in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): xpath += f"""/{tagname}""" if subs != 0: xpath += f"""[{subs}]""" return xpath def __call__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = False # Check that strings has a valid type if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[Any] = True elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ): if len(__SCREAMING_SNAKE_CASE ) == 0 or isinstance(html_strings[0] , __SCREAMING_SNAKE_CASE ): UpperCamelCase : List[str] = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' f"""but is of type {type(__SCREAMING_SNAKE_CASE )}.""" ) UpperCamelCase : int = bool(isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(html_strings[0] , __SCREAMING_SNAKE_CASE )) ) if not is_batched: UpperCamelCase : Union[str, Any] = [html_strings] # Get nodes + xpaths UpperCamelCase : str = [] UpperCamelCase : int = [] for html_string in html_strings: UpperCamelCase , UpperCamelCase , UpperCamelCase : Dict = self.get_three_from_single(__SCREAMING_SNAKE_CASE ) nodes.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [] for node, tag_list, sub_list in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : str = self.construct_xpath(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) xpath_strings.append(__SCREAMING_SNAKE_CASE ) xpaths.append(__SCREAMING_SNAKE_CASE ) # return as Dict UpperCamelCase : List[str] = {'''nodes''': nodes, '''xpaths''': xpaths} UpperCamelCase : List[Any] = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE ) return encoded_inputs
315
0
"""simple docstring""" from collections.abc import Sequence from queue import Queue class lowercase: '''simple docstring''' def __init__( self: Dict, a_: Dict, a_: Any, a_: int, a_: Optional[Any]=None, a_: int=None ): '''simple docstring''' _snake_case : List[str] = start _snake_case : Optional[Any] = end _snake_case : Union[str, Any] = val _snake_case : str = (start + end) // 2 _snake_case : List[str] = left _snake_case : Optional[Any] = right def __repr__( self: int ): '''simple docstring''' return f"SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})" class lowercase: '''simple docstring''' def __init__( self: Union[str, Any], a_: Sequence, a_: Tuple ): '''simple docstring''' _snake_case : List[Any] = collection _snake_case : List[str] = function if self.collection: _snake_case : str = self._build_tree(0, len(a_ ) - 1 ) def UpperCamelCase_ ( self: List[str], a_: Tuple, a_: List[str] ): '''simple docstring''' self._update_tree(self.root, a_, a_ ) def UpperCamelCase_ ( self: Any, a_: List[Any], a_: Optional[Any] ): '''simple docstring''' return self._query_range(self.root, a_, a_ ) def UpperCamelCase_ ( self: Optional[int], a_: List[str], a_: int ): '''simple docstring''' if start == end: return SegmentTreeNode(a_, a_, self.collection[start] ) _snake_case : Optional[Any] = (start + end) // 2 _snake_case : List[str] = self._build_tree(a_, a_ ) _snake_case : List[Any] = self._build_tree(mid + 1, a_ ) return SegmentTreeNode(a_, a_, self.fn(left.val, right.val ), a_, a_ ) def UpperCamelCase_ ( self: Optional[int], a_: List[Any], a_: Tuple, a_: Dict ): '''simple docstring''' if node.start == i and node.end == i: _snake_case : Any = val return if i <= node.mid: self._update_tree(node.left, a_, a_ ) else: self._update_tree(node.right, a_, a_ ) _snake_case : List[Any] = self.fn(node.left.val, node.right.val ) def UpperCamelCase_ ( self: List[str], a_: Any, a_: Any, a_: Dict ): '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left, a_, a_ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left, a_, node.mid ), self._query_range(node.right, node.mid + 1, a_ ), ) else: # range in right child tree return self._query_range(node.right, a_, a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' if self.root is not None: _snake_case : List[str] = Queue() queue.put(self.root ) while not queue.empty(): _snake_case : int = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) A_ = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
64
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings( _lowercase , R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class _lowerCamelCase ( _lowercase ): def snake_case_ (self , __a ) -> np.ndarray: if self.framework == "tf": UpperCamelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCamelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__a ) else: raise ValueError("Unsupported framework" ) return masked_index def snake_case_ (self , __a ) -> np.ndarray: UpperCamelCase = self.get_masked_index(__a ) UpperCamelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask" , self.model.base_model_prefix , F"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def snake_case_ (self , __a ) -> Any: if isinstance(__a , __a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__a ) def snake_case_ (self , __a , __a=None , **__a ) -> Dict[str, GenericTensor]: if return_tensors is None: UpperCamelCase = self.framework UpperCamelCase = self.tokenizer(__a , return_tensors=__a ) self.ensure_exactly_one_mask_token(__a ) return model_inputs def snake_case_ (self , __a ) -> Dict: UpperCamelCase = self.model(**__a ) UpperCamelCase = model_inputs["input_ids"] return model_outputs def snake_case_ (self , __a , __a=5 , __a=None ) -> Dict: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: UpperCamelCase = target_ids.shape[0] UpperCamelCase = model_outputs["input_ids"][0] UpperCamelCase = model_outputs["logits"] if self.framework == "tf": UpperCamelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCamelCase = outputs.numpy() UpperCamelCase = outputs[0, masked_index, :] UpperCamelCase = stable_softmax(__a , axis=-1 ) if target_ids is not None: UpperCamelCase = tf.gather_nd(tf.squeeze(__a , 0 ) , target_ids.reshape(-1 , 1 ) ) UpperCamelCase = tf.expand_dims(__a , 0 ) UpperCamelCase = tf.math.top_k(__a , k=__a ) UpperCamelCase , UpperCamelCase = topk.values.numpy(), topk.indices.numpy() else: UpperCamelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCamelCase = outputs[0, masked_index, :] UpperCamelCase = logits.softmax(dim=-1 ) if target_ids is not None: UpperCamelCase = probs[..., target_ids] UpperCamelCase , UpperCamelCase = probs.topk(__a ) UpperCamelCase = [] UpperCamelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): UpperCamelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place UpperCamelCase = input_ids.numpy().copy() if target_ids is not None: UpperCamelCase = target_ids[p].tolist() UpperCamelCase = p # Filter padding out: UpperCamelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCamelCase = self.tokenizer.decode(__a , skip_special_tokens=__a ) UpperCamelCase = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(__a ) result.append(__a ) if single_mask: return result[0] return result def snake_case_ (self , __a , __a=None ) -> Any: if isinstance(__a , __a ): UpperCamelCase = [targets] try: UpperCamelCase = self.tokenizer.get_vocab() except Exception: UpperCamelCase = {} UpperCamelCase = [] for target in targets: UpperCamelCase = vocab.get(__a , __a ) if id_ is None: UpperCamelCase = self.tokenizer( __a , add_special_tokens=__a , return_attention_mask=__a , return_token_type_ids=__a , max_length=1 , truncation=__a , )["input_ids"] if len(__a ) == 0: logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " "We cannot replace it with anything meaningful, ignoring it" ) continue UpperCamelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " F"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) UpperCamelCase = list(set(__a ) ) if len(__a ) == 0: raise ValueError("At least one target must be provided when passed." ) UpperCamelCase = np.array(__a ) return target_ids def snake_case_ (self , __a=None , __a=None ) -> int: UpperCamelCase = {} if targets is not None: UpperCamelCase = self.get_target_ids(__a , __a ) UpperCamelCase = target_ids if top_k is not None: UpperCamelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" , self.model.base_model_prefix , "The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__(self , __a , *__a , **__a ) -> Tuple: UpperCamelCase = super().__call__(__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs
153
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A ={ '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
364
from collections import defaultdict def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = first_str.lower().strip() lowerCamelCase_ = second_str.lower().strip() # Remove whitespace lowerCamelCase_ = first_str.replace(" " , "" ) lowerCamelCase_ = second_str.replace(" " , "" ) # Strings of different lengths are not anagrams if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): return False # Default values for count should be 0 lowerCamelCase_ = defaultdict(lowerCamelCase__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(lowerCamelCase__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __A =input('''Enter the first string ''').strip() __A =input('''Enter the second string ''').strip() __A =check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
47
0
import itertools import math def lowerCAmelCase_ ( snake_case_ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5,int(math.sqrt(snake_case_ ) + 1 ),6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ): _A : Dict = 2 while True: if is_prime(snake_case_ ): yield num num += 1 def lowerCAmelCase_ ( snake_case_ = 10001 ): return next(itertools.islice(prime_generator(),nth - 1,snake_case_ ) ) if __name__ == "__main__": print(f"""{solution() = }""")
26
A_ :Optional[int] = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' A_ :Union[str, Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] A_ :Optional[Any] = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
71
0
"""simple docstring""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _UpperCamelCase : List[str] = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def snake_case (A_ :Optional[int] , A_ :int , A_ :Union[str, Any] , A_ :List[Any]=None ): '''simple docstring''' _A : Any = XLNetConfig.from_json_file(A__ ) _A : Union[str, Any] = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) _A : Any = finetuning_task _A : int = GLUE_TASKS_NUM_LABELS[finetuning_task] _A : Union[str, Any] = XLNetForSequenceClassification(A__ ) elif "squad" in finetuning_task: _A : Dict = finetuning_task _A : Optional[Any] = XLNetForQuestionAnswering(A__ ) else: _A : Dict = XLNetLMHeadModel(A__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(A__ , A__ , A__ ) # Save pytorch-model _A : Optional[Any] = os.path.join(A__ , A__ ) _A : Optional[Any] = os.path.join(A__ , A__ ) print(f'''Save PyTorch model to {os.path.abspath(A__ )}''' ) torch.save(model.state_dict() , A__ ) print(f'''Save configuration file to {os.path.abspath(A__ )}''' ) with open(A__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) _UpperCamelCase : Union[str, Any] = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
351
"""simple docstring""" import os import sys _UpperCamelCase : str = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _UpperCamelCase : int = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def snake_case (*A_ :Optional[int] , **A_ :int ): '''simple docstring''' return AutoConfig.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def snake_case (*A_ :Optional[int] , **A_ :List[Any] ): '''simple docstring''' return AutoTokenizer.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModel.__doc__ ) def snake_case (*A_ :Optional[Any] , **A_ :Tuple ): '''simple docstring''' return AutoModel.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def snake_case (*A_ :str , **A_ :Optional[int] ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def snake_case (*A_ :Optional[Any] , **A_ :Dict ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def snake_case (*A_ :Dict , **A_ :str ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def snake_case (*A_ :Dict , **A_ :List[Any] ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*A_ , **A_ )
186
0
import collections import importlib.util import os import re from pathlib import Path _UpperCAmelCase : str = "src/transformers" # Matches is_xxx_available() _UpperCAmelCase : Union[str, Any] = re.compile(r"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} _UpperCAmelCase : Tuple = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _UpperCAmelCase : int = re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available _UpperCAmelCase : Optional[int] = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") _UpperCAmelCase : List[str] = re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _UpperCAmelCase : List[Any] = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", _UpperCAmelCase : int = re.compile("^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], _UpperCAmelCase : Union[str, Any] = re.compile("^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo _UpperCAmelCase : Dict = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: _UpperCAmelCase : List[Any] = re.compile(r"^\s*try:") # Catches a line with else: _UpperCAmelCase : Optional[int] = re.compile(r"^\s*else:") def UpperCAmelCase__ ( lowerCamelCase ): if _re_test_backend.search(__lowerCamelCase ) is None: return None lowercase :Union[str, Any] = [b[0] for b in _re_backend.findall(__lowerCamelCase )] backends.sort() return "_and_".join(__lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase ): with open(__lowerCamelCase, "r", encoding="utf-8", newline="\n" ) as f: lowercase :str = f.readlines() lowercase :List[str] = 0 while line_index < len(__lowerCamelCase ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__lowerCamelCase ): return None # First grab the objects without a specific backend in _import_structure lowercase :List[str] = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: lowercase :List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__lowerCamelCase ): lowercase :List[Any] = _re_one_line_import_struct.search(__lowerCamelCase ).groups()[0] lowercase :Tuple = re.findall("\[([^\]]+)\]", __lowerCamelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue lowercase :Dict = _re_import_struct_key_value.search(__lowerCamelCase ) if single_line_import_search is not None: lowercase :int = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(__lowerCamelCase ) > 0] objects.extend(__lowerCamelCase ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 lowercase :str = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. lowercase :Union[str, Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase :Dict = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase :Optional[int] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): lowercase :Union[str, Any] = lines[line_index] if _re_import_struct_add_one.search(__lowerCamelCase ) is not None: objects.append(_re_import_struct_add_one.search(__lowerCamelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__lowerCamelCase ) is not None: lowercase :List[str] = _re_import_struct_add_many.search(__lowerCamelCase ).groups()[0].split(", " ) lowercase :Optional[int] = [obj[1:-1] for obj in imports if len(__lowerCamelCase ) > 0] objects.extend(__lowerCamelCase ) elif _re_between_brackets.search(__lowerCamelCase ) is not None: lowercase :Optional[int] = _re_between_brackets.search(__lowerCamelCase ).groups()[0].split(", " ) lowercase :Optional[int] = [obj[1:-1] for obj in imports if len(__lowerCamelCase ) > 0] objects.extend(__lowerCamelCase ) elif _re_quote_object.search(__lowerCamelCase ) is not None: objects.append(_re_quote_object.search(__lowerCamelCase ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 lowercase :str = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowercase :Optional[Any] = [] while ( line_index < len(__lowerCamelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): lowercase :Optional[Any] = lines[line_index] lowercase :int = _re_import.search(__lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 lowercase :List[str] = {"none": objects} # Let's continue with backend-specific objects while line_index < len(__lowerCamelCase ): # If the line is an if is_backend_available, we grab all objects associated. lowercase :Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase :Tuple = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase :Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): lowercase :Union[str, Any] = lines[line_index] lowercase :int = _re_import.search(__lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 lowercase :str = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): def find_duplicates(lowerCamelCase ): return [k for k, v in collections.Counter(__lowerCamelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowercase :Dict = [] for key in import_dict_objects.keys(): lowercase :Optional[Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) lowercase :Tuple = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowercase :Tuple = "base imports" if key == "none" else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def UpperCAmelCase__ ( ): lowercase :Dict = [] for root, _, files in os.walk(__lowerCamelCase ): if "__init__.py" in files: lowercase :str = os.path.join(__lowerCamelCase, "__init__.py" ) lowercase :Optional[int] = parse_init(__lowerCamelCase ) if objects is not None: lowercase :str = analyze_results(*__lowerCamelCase ) if len(__lowerCamelCase ) > 0: lowercase :Optional[Any] = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("\n".join(__lowerCamelCase ) ) if len(__lowerCamelCase ) > 0: raise ValueError("\n\n".join(__lowerCamelCase ) ) def UpperCAmelCase__ ( ): lowercase :List[Any] = [] for path, directories, files in os.walk(__lowerCamelCase ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(__lowerCamelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__lowerCamelCase ) / folder).glob("*.py" ) ) ) == 0: continue lowercase :Optional[int] = str((Path(__lowerCamelCase ) / folder).relative_to(__lowerCamelCase ) ) lowercase :int = short_path.replace(os.path.sep, "." ) submodules.append(__lowerCamelCase ) for fname in files: if fname == "__init__.py": continue lowercase :Union[str, Any] = str((Path(__lowerCamelCase ) / fname).relative_to(__lowerCamelCase ) ) lowercase :List[Any] = short_path.replace(".py", "" ).replace(os.path.sep, "." ) if len(submodule.split("." ) ) == 1: submodules.append(__lowerCamelCase ) return submodules _UpperCAmelCase : str = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", ] def UpperCAmelCase__ ( ): # This is to make sure the transformers module imported is the one in the repo. lowercase :Optional[int] = importlib.util.spec_from_file_location( "transformers", os.path.join(__lowerCamelCase, "__init__.py" ), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowercase :List[Any] = spec.loader.load_module() lowercase :str = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__lowerCamelCase ) > 0: lowercase :str = "\n".join(F"- {module}" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F"{list_of_modules}\n" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
236
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename UpperCAmelCase__ = 'http://www.mocksite.com/file1.txt' UpperCAmelCase__ = '"text": ["foo", "foo"]' UpperCAmelCase__ = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class lowerCAmelCase__ : __a = 200 __a = {"""Content-Length""": """100"""} __a = {} def lowercase ( self : List[str] , **_lowerCamelCase : List[str] ): return [bytes(_lowerCamelCase , '''utf-8''' )] def _UpperCAmelCase ( *__lowerCamelCase : List[str] , **__lowerCamelCase : Dict ) -> Dict: return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def _UpperCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : str ) -> int: import requests monkeypatch.setattr(__lowerCamelCase , '''request''' , __lowerCamelCase ) _snake_case = URL if issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = url elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = [url] elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = {'''train''': url} _snake_case = '''dummy''' _snake_case = '''downloads''' _snake_case = tmp_path _snake_case = DownloadConfig( cache_dir=os.path.join(__lowerCamelCase , __lowerCamelCase ) , use_etag=__lowerCamelCase , ) _snake_case = DownloadManager(dataset_name=__lowerCamelCase , download_config=__lowerCamelCase ) _snake_case = dl_manager.download(__lowerCamelCase ) _snake_case = urls for downloaded_paths in [downloaded_paths]: if isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = [downloaded_paths] _snake_case = [urls] elif isinstance(__lowerCamelCase , __lowerCamelCase ): assert "train" in downloaded_paths.keys() _snake_case = downloaded_paths.values() _snake_case = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__lowerCamelCase , __lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case = Path(__lowerCamelCase ) _snake_case = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case = downloaded_path.read_text() assert content == CONTENT _snake_case = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() _snake_case = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : Optional[int] ) -> int: _snake_case = str(__lowerCamelCase ) if issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = filename elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = [filename] elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = {'''train''': filename} _snake_case = '''dummy''' _snake_case = xz_file.parent _snake_case = '''extracted''' _snake_case = DownloadConfig( cache_dir=__lowerCamelCase , use_etag=__lowerCamelCase , ) _snake_case = DownloadManager(dataset_name=__lowerCamelCase , download_config=__lowerCamelCase ) _snake_case = dl_manager.extract(__lowerCamelCase ) _snake_case = paths for extracted_paths in [extracted_paths]: if isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = [extracted_paths] _snake_case = [paths] elif isinstance(__lowerCamelCase , __lowerCamelCase ): assert "train" in extracted_paths.keys() _snake_case = extracted_paths.values() _snake_case = paths.values() assert extracted_paths for extracted_path, input_path in zip(__lowerCamelCase , __lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case = Path(__lowerCamelCase ) _snake_case = extracted_path.parts assert parts[-1] == hash_url_to_filename(__lowerCamelCase , etag=__lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case = extracted_path.read_text() _snake_case = text_file.read_text() assert extracted_file_content == expected_file_content def _UpperCAmelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ) -> Dict: assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(__lowerCamelCase , start=1 ): _snake_case = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def _UpperCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : str ) -> Dict: _snake_case = request.getfixturevalue(__lowerCamelCase ) _snake_case = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): _test_jsonl(__lowerCamelCase , __lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : List[Any] ) -> Tuple: _snake_case = request.getfixturevalue(__lowerCamelCase ) _snake_case = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): _test_jsonl(__lowerCamelCase , __lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> List[Any]: _snake_case = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__lowerCamelCase ) , start=1 ): assert os.path.basename(__lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
288
0
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _UpperCAmelCase: def __init__( self , __a , __a=sys.maxsize) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = '''bilinear''' _UpperCamelCase = max_size _UpperCamelCase = short_edge_length def __call__( self , __a) -> Dict: '''simple docstring''' _UpperCamelCase = [] for img in imgs: _UpperCamelCase , _UpperCamelCase = img.shape[:2] # later: provide list and randomly choose index for resize _UpperCamelCase = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img _UpperCamelCase = size * 1.0 / min(__a , __a) if h < w: _UpperCamelCase , _UpperCamelCase = size, scale * w else: _UpperCamelCase , _UpperCamelCase = scale * h, size if max(__a , __a) > self.max_size: _UpperCamelCase = self.max_size * 1.0 / max(__a , __a) _UpperCamelCase = newh * scale _UpperCamelCase = neww * scale _UpperCamelCase = int(neww + 0.5) _UpperCamelCase = int(newh + 0.5) if img.dtype == np.uinta: _UpperCamelCase = Image.fromarray(__a) _UpperCamelCase = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) _UpperCamelCase = np.asarray(__a) else: _UpperCamelCase = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw _UpperCamelCase = nn.functional.interpolate( __a , (newh, neww) , mode=self.interp_method , align_corners=__a).squeeze(0) img_augs.append(__a) return img_augs class _UpperCAmelCase: def __init__( self , __a) -> int: '''simple docstring''' _UpperCamelCase = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) _UpperCamelCase = cfg.INPUT.FORMAT _UpperCamelCase = cfg.SIZE_DIVISIBILITY _UpperCamelCase = cfg.PAD_VALUE _UpperCamelCase = cfg.INPUT.MAX_SIZE_TEST _UpperCamelCase = cfg.MODEL.DEVICE _UpperCamelCase = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) _UpperCamelCase = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) _UpperCamelCase = lambda __a: (x - self.pixel_mean) / self.pixel_std def UpperCAmelCase ( self , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = tuple(max(__a) for s in zip(*[img.shape for img in images])) _UpperCamelCase = [im.shape[-2:] for im in images] _UpperCamelCase = [ nn.functional.pad( __a , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(__a , __a) ] return torch.stack(__a), torch.tensor(__a) def __call__( self , __a , __a=False) -> Any: '''simple docstring''' with torch.no_grad(): if not isinstance(__a , __a): _UpperCamelCase = [images] if single_image: assert len(__a) == 1 for i in range(len(__a)): if isinstance(images[i] , torch.Tensor): images.insert(__a , images.pop(__a).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( __a , torch.as_tensor(img_tensorize(images.pop(__a) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge _UpperCamelCase = torch.tensor([im.shape[:2] for im in images]) _UpperCamelCase = self.aug(__a) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic _UpperCamelCase = [self.normalizer(__a) for x in images] # now pad them to do the following operations _UpperCamelCase , _UpperCamelCase = self.pad(__a) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad _UpperCamelCase = torch.true_divide(__a , __a) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCamelCase__ ( __snake_case, __snake_case ) -> Any: """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCamelCase__ ( __snake_case, __snake_case ) -> Union[str, Any]: """simple docstring""" assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!" _UpperCamelCase , _UpperCamelCase = box_size tensor[:, 0].clamp_(min=0, max=__snake_case ) tensor[:, 1].clamp_(min=0, max=__snake_case ) tensor[:, 2].clamp_(min=0, max=__snake_case ) tensor[:, 3].clamp_(min=0, max=__snake_case )
100
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """microsoft/biogpt""": """https://huggingface.co/microsoft/biogpt/resolve/main/config.json""", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'biogpt' def __init__( self , __a=4_23_84 , __a=10_24 , __a=24 , __a=16 , __a=40_96 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10_24 , __a=0.02 , __a=1e-12 , __a=True , __a=True , __a=0.0 , __a=0.0 , __a=1 , __a=0 , __a=2 , **__a , ) -> Dict: '''simple docstring''' _UpperCamelCase = vocab_size _UpperCamelCase = max_position_embeddings _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = scale_embedding _UpperCamelCase = use_cache _UpperCamelCase = layerdrop _UpperCamelCase = activation_dropout super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a)
100
1
from torch import nn def A ( _UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"Unsupported activation function: {act_fn}" )
339
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""", } class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = "t5" snake_case = ["past_key_values"] snake_case = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , _SCREAMING_SNAKE_CASE=3_2128 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-6 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=1 , **_SCREAMING_SNAKE_CASE , )->List[Any]: '''simple docstring''' A_ : List[Any] = vocab_size A_ : int = d_model A_ : Optional[Any] = d_kv A_ : str = d_ff A_ : int = num_layers A_ : Any = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A_ : Optional[Any] = num_heads A_ : Union[str, Any] = relative_attention_num_buckets A_ : Dict = relative_attention_max_distance A_ : List[str] = dropout_rate A_ : Dict = layer_norm_epsilon A_ : str = initializer_factor A_ : Dict = feed_forward_proj A_ : int = use_cache A_ : Optional[int] = self.feed_forward_proj.split('''-''' ) A_ : Optional[Any] = act_info[-1] A_ : Optional[Any] = act_info[0] == '''gated''' if len(_SCREAMING_SNAKE_CASE ) > 1 and act_info[0] != "gated" or len(_SCREAMING_SNAKE_CASE ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": A_ : Tuple = '''gelu_new''' super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" @property def _snake_case ( self )->Mapping[str, Mapping[int, str]]: '''simple docstring''' A_ : Union[str, Any] = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: A_ : List[str] = '''past_encoder_sequence + sequence''' A_ : Optional[int] = {0: '''batch'''} A_ : str = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: A_ : Optional[int] = {0: '''batch''', 1: '''decoder_sequence'''} A_ : List[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction='''inputs''' ) return common_inputs @property def _snake_case ( self )->int: '''simple docstring''' return 13
186
0
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = {"""vocab_file""": """vocab.json"""} __lowercase = { """vocab_file""": { """mgp-str""": """https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json""", } } __lowercase = {"""mgp-str""": 27} class _A ( _a ): """simple docstring""" UpperCAmelCase : str = VOCAB_FILES_NAMES UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any="[GO]" , __UpperCAmelCase : int="[GO]" , __UpperCAmelCase : Optional[Any]="[s]" , __UpperCAmelCase : int="[GO]" , **__UpperCAmelCase : List[str]): super().__init__( unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8") as vocab_handle: a : Tuple = json.load(lowerCAmelCase__) a : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def __snake_case ( self : List[str]): return len(self.vocab) def __snake_case ( self : Dict): return dict(self.vocab , **self.added_tokens_encoder) def __snake_case ( self : Dict , __UpperCAmelCase : Union[str, Any]): a : List[Any] = [] for s in text: char_tokens.extend(lowerCAmelCase__) return char_tokens def __snake_case ( self : int , __UpperCAmelCase : int): return self.vocab.get(lowerCAmelCase__ , self.vocab.get(self.unk_token)) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : Optional[int]): return self.decoder.get(lowerCAmelCase__) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error("Vocabulary path ({}) should be a directory".format(lowerCAmelCase__)) return a : Union[str, Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) with open(lowerCAmelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + "\n") return (vocab_file,)
367
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
226
0
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase=13 , UpperCamelCase=7 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=99 , UpperCamelCase=32 , UpperCamelCase=5 , UpperCamelCase=4 , UpperCamelCase=37 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=512 , UpperCamelCase=16 , UpperCamelCase=2 , UpperCamelCase=0.02 , UpperCamelCase=4 , ): """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_attention_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_choices def snake_case ( self ): """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_attention_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = config_and_inputs lowerCamelCase_ = True lowerCamelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class snake_case ( lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = FlaxRobertaModelTester(self ) @slow def snake_case ( self ): """simple docstring""" for model_class_name in self.all_model_classes: lowerCamelCase_ = model_class_name.from_pretrained("roberta-base" , from_pt=UpperCamelCase ) lowerCamelCase_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase )
55
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = SwinConfig() SCREAMING_SNAKE_CASE = swin_name.split("""_""" ) SCREAMING_SNAKE_CASE = name_split[1] SCREAMING_SNAKE_CASE = int(name_split[4] ) SCREAMING_SNAKE_CASE = int(name_split[3][-1] ) if model_size == "tiny": SCREAMING_SNAKE_CASE = 96 SCREAMING_SNAKE_CASE = (2, 2, 6, 2) SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif model_size == "small": SCREAMING_SNAKE_CASE = 96 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif model_size == "base": SCREAMING_SNAKE_CASE = 1_28 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (4, 8, 16, 32) else: SCREAMING_SNAKE_CASE = 1_92 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (6, 12, 24, 48) if "in22k" in swin_name: SCREAMING_SNAKE_CASE = 2_18_41 else: SCREAMING_SNAKE_CASE = 10_00 SCREAMING_SNAKE_CASE = """huggingface/label-files""" SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = img_size SCREAMING_SNAKE_CASE = num_classes SCREAMING_SNAKE_CASE = embed_dim SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = window_size return config def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: SCREAMING_SNAKE_CASE = """encoder.""" + name if "attn.proj" in name: SCREAMING_SNAKE_CASE = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: SCREAMING_SNAKE_CASE = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": SCREAMING_SNAKE_CASE = """layernorm.weight""" if name == "norm.bias": SCREAMING_SNAKE_CASE = """layernorm.bias""" if "head" in name: SCREAMING_SNAKE_CASE = name.replace("""head""" , """classifier""" ) else: SCREAMING_SNAKE_CASE = """swin.""" + name return name def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: SCREAMING_SNAKE_CASE = key.split(""".""" ) SCREAMING_SNAKE_CASE = int(key_split[1] ) SCREAMING_SNAKE_CASE = int(key_split[3] ) SCREAMING_SNAKE_CASE = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE = val[:dim, :] SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE = val[-dim:, :] else: SCREAMING_SNAKE_CASE = val[ :dim ] SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] SCREAMING_SNAKE_CASE = val[ -dim: ] else: SCREAMING_SNAKE_CASE = val return orig_state_dict def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() SCREAMING_SNAKE_CASE = get_swin_config(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = SwinForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) SCREAMING_SNAKE_CASE = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) SCREAMING_SNAKE_CASE = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE = timm_model(inputs["""pixel_values"""] ) SCREAMING_SNAKE_CASE = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
296
0
'''simple docstring''' import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __SCREAMING_SNAKE_CASE :Dict = 50000 __SCREAMING_SNAKE_CASE :Any = 5000 __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[int] = os.path.split(__file__) __SCREAMING_SNAKE_CASE :List[str] = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def UpperCAmelCase_ ( __lowercase : int , __lowercase : List[Any] ) -> Union[str, Any]: '''simple docstring''' for i in range(lowercase__ ): _UpperCAmelCase = dataset[i] @get_duration def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : Optional[Any] , __lowercase : Optional[Any] ) -> str: '''simple docstring''' for i in range(0 , len(lowercase__ ) , lowercase__ ): _UpperCAmelCase = dataset[i : i + batch_size] @get_duration def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : Dict , __lowercase : Union[str, Any] ) -> str: '''simple docstring''' with dataset.formatted_as(type=lowercase__ ): for i in range(lowercase__ ): _UpperCAmelCase = dataset[i] @get_duration def UpperCAmelCase_ ( __lowercase : List[str] , __lowercase : Any , __lowercase : Dict , __lowercase : Any ) -> List[Any]: '''simple docstring''' with dataset.formatted_as(type=lowercase__ ): for i in range(0 , lowercase__ , lowercase__ ): _UpperCAmelCase = dataset[i : i + batch_size] def UpperCAmelCase_ ( ) -> str: '''simple docstring''' _UpperCAmelCase = {'num examples': SPEED_TEST_N_EXAMPLES} _UpperCAmelCase = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1000}), ] _UpperCAmelCase = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) _UpperCAmelCase = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) _UpperCAmelCase = generate_example_dataset( os.path.join(lowercase__ , "dataset.arrow" ) , lowercase__ , num_examples=lowercase__ , seq_shapes={"list": (100,)} , ) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__ , str(lowercase__ ) ) _UpperCAmelCase = func(lowercase__ , **lowercase__ ) print("shuffling dataset" ) _UpperCAmelCase = dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled " , func.__name__ , str(lowercase__ ) ) _UpperCAmelCase = func( lowercase__ , **lowercase__ ) with open(lowercase__ , "wb" ) as f: f.write(json.dumps(lowercase__ ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
362
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' _UpperCAmelCase = set() # Replace all the whitespace in our sentence _UpperCAmelCase = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__lowercase ) == 26 def UpperCAmelCase_ ( __lowercase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' _UpperCAmelCase = [False] * 26 for char in input_str: if char.islower(): _UpperCAmelCase = True elif char.isupper(): _UpperCAmelCase = True return all(__lowercase ) def UpperCAmelCase_ ( __lowercase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def UpperCAmelCase_ ( ) -> None: '''simple docstring''' from timeit import timeit _UpperCAmelCase = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=__lowercase ) ) print(timeit("is_pangram_faster()" , setup=__lowercase ) ) print(timeit("is_pangram_fastest()" , setup=__lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
156
0
"""simple docstring""" import string from math import logaa def lowercase ( __snake_case : str , __snake_case : str ): lowercase_ : Union[str, Any] = document.translate( str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' ) lowercase_ : str = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowercase ( __snake_case : str , __snake_case : str ): lowercase_ : Union[str, Any] = corpus.lower().translate( str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with '' lowercase_ : Optional[Any] = corpus_without_punctuation.split('''\n''' ) lowercase_ : Tuple = term.lower() return (len([doc for doc in docs if term in doc] ), len(__snake_case )) def lowercase ( __snake_case : int , __snake_case : int , __snake_case : int=False ): if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) , 3 ) def lowercase ( __snake_case : int , __snake_case : int ): return round(tf * idf , 3 )
33
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
33
1
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : List[Any] ): lowercase_ : int = 3 lowercase_ : Tuple = 250 lowercase_ : Union[str, Any] = ids_tensor((batch_size, length) , lowercase_ ) lowercase_ : str = torch.ones((batch_size, length) , device=lowercase_ , dtype=torch.float ) / length return input_ids, scores def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ , lowercase_ : str = self._get_tensors(5 ) lowercase_ : int = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) lowercase_ , lowercase_ : Any = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) lowercase_ , lowercase_ : int = self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Any = MaxLengthCriteria(max_length=10 ) lowercase_ , lowercase_ : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) lowercase_ , lowercase_ : str = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) lowercase_ , lowercase_ : Dict = self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Tuple = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) lowercase_ , lowercase_ : str = self._get_tensors(5 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) lowercase_ , lowercase_ : Dict = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) lowercase_ , lowercase_ : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) lowercase_ : List[str] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ , lowercase_ : Tuple = self._get_tensors(5 ) lowercase_ : List[str] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) lowercase_ : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowercase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) lowercase_ : Dict = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowercase_ ) , 1 )
21
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __magic_name__ ( ctypes.Structure): # _fields is a specific attr expected by ctypes UpperCamelCase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def lowerCamelCase ( ) -> List[Any]: if os.name == "nt": lowercase_ : List[Any] = CursorInfo() lowercase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def lowerCamelCase ( ) -> str: if os.name == "nt": lowercase_ : int = CursorInfo() lowercase_ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : Optional[int] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def lowerCamelCase ( ) -> Any: try: hide_cursor() yield finally: show_cursor()
21
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def UpperCamelCase (lowercase_: Tuple ) -> Optional[Any]: A__ : Optional[Any] = botoa.client("""iam""" ) A__ : Dict = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=lowercase_ , AssumeRolePolicyDocument=json.dumps(lowercase_ , indent=2 ) ) A__ : Dict = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=lowercase_ , PolicyName=f"""{role_name}_policy_permission""" , PolicyDocument=json.dumps(lowercase_ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f"""role {role_name} already exists. Using existing one""" ) def UpperCamelCase (lowercase_: str ) -> Dict: A__ : Optional[Any] = botoa.client("""iam""" ) return iam_client.get_role(RoleName=lowercase_ )["Role"]["Arn"] def UpperCamelCase () -> Tuple: A__ : Union[str, Any] = _ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , lowercase_ , ) A__ : str = None if credentials_configuration == 0: A__ : Any = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) A__ : Any = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) A__ : Optional[Any] = _ask_field("""AWS Access Key ID: """ ) A__ : Any = aws_access_key_id A__ : Optional[Any] = _ask_field("""AWS Secret Access Key: """ ) A__ : List[Any] = aws_secret_access_key A__ : Dict = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) A__ : Union[str, Any] = aws_region A__ : Tuple = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , lowercase_ , ) if role_management == 0: A__ : str = _ask_field("""Enter your IAM role name: """ ) else: A__ : Tuple = """accelerate_sagemaker_execution_role""" print(f"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" ) _create_iam_role_for_sagemaker(lowercase_ ) A__ : Any = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase_ , error_message="""Please enter yes or no.""" , ) A__ : Dict = None if is_custom_docker_image: A__ : Any = _ask_field("""Enter your Docker image: """ , lambda lowercase_ : str(lowercase_ ).lower() ) A__ : List[str] = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase_ , error_message="""Please enter yes or no.""" , ) A__ : Dict = None if is_sagemaker_inputs_enabled: A__ : int = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda lowercase_ : str(lowercase_ ).lower() , ) A__ : Optional[Any] = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase_ , error_message="""Please enter yes or no.""" , ) A__ : Tuple = None if is_sagemaker_metrics_enabled: A__ : Optional[Any] = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda lowercase_ : str(lowercase_ ).lower() , ) A__ : List[str] = _ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) A__ : Any = {} A__ : Union[str, Any] = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=lowercase_ , error_message="""Please enter yes or no.""" , ) if use_dynamo: A__ : Optional[int] = """dynamo_""" A__ : Optional[Any] = _ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) A__ : Any = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase_ , error_message="""Please enter yes or no.""" , ) if use_custom_options: A__ : Union[str, Any] = _ask_options( """Which mode do you want to use?""" , lowercase_ , lambda lowercase_ : TORCH_DYNAMO_MODES[int(lowercase_ )] , default="""default""" , ) A__ : Optional[Any] = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase_ , error_message="""Please enter yes or no.""" , ) A__ : Dict = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase_ , error_message="""Please enter yes or no.""" , ) A__ : Union[str, Any] = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: A__ : Tuple = _ask_options( lowercase_ , lowercase_ , lambda lowercase_ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(lowercase_ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" A__ : List[str] = _ask_field(lowercase_ , lambda lowercase_ : str(lowercase_ ).lower() , default="""ml.p3.2xlarge""" ) A__ : Any = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): A__ : List[Any] = _ask_field( """How many machines do you want use? [1]: """ , lowercase_ , default=1 , ) A__ : List[str] = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=lowercase_ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=lowercase_ , use_cpu=lowercase_ , dynamo_config=lowercase_ , eca_instance_type=lowercase_ , profile=lowercase_ , region=lowercase_ , iam_role_name=lowercase_ , mixed_precision=lowercase_ , num_machines=lowercase_ , sagemaker_inputs_file=lowercase_ , sagemaker_metrics_file=lowercase_ , )
192
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A_ : List[str] = logging.get_logger(__name__) A_ : Tuple = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A_ : List[Any] = { 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } A_ : Tuple = { 'junnyu/roformer_chinese_small': 1536, 'junnyu/roformer_chinese_base': 1536, 'junnyu/roformer_chinese_char_small': 512, 'junnyu/roformer_chinese_char_base': 512, 'junnyu/roformer_small_discriminator': 128, 'junnyu/roformer_small_generator': 128, } A_ : Union[str, Any] = { 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Dict = VOCAB_FILES_NAMES UpperCAmelCase__: Tuple = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__: List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__: List[Any] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__: Optional[int] = RoFormerTokenizer def __init__( self , A__=None , A__=None , A__=True , A__="[UNK]" , A__="[SEP]" , A__="[PAD]" , A__="[CLS]" , A__="[MASK]" , A__=True , A__=None , **A__ , ): super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , tokenize_chinese_chars=A__ , strip_accents=A__ , **A__ , ) A__ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , A__ ) != do_lower_case or pre_tok_state.get("""strip_accents""" , A__ ) != strip_accents ): A__ : List[Any] = getattr(A__ , pre_tok_state.pop("""type""" ) ) A__ : Optional[int] = do_lower_case A__ : int = strip_accents A__ : str = pre_tok_class(**A__ ) A__ : Any = do_lower_case def __getstate__( self ): A__ : int = self.__dict__.copy() A__ : Union[str, Any] = BertPreTokenizer() return state def __setstate__( self , A__ ): A__ : Union[str, Any] = d A__ : Union[str, Any] = self.__dict__["""_tokenizer"""].get_vocab() A__ : Dict = PreTokenizer.custom(JiebaPreTokenizer(A__ ) ) def __A ( self , A__ , A__=None ): A__ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , A__ , A__ = None ): A__ : Tuple = [self.sep_token_id] A__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , A__ , A__ = None ): A__ : Any = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ ) def __A ( self , A__ , A__=None , A__=None , A__=False , **A__ , ): A__ : str = BertPreTokenizer() return super().save_pretrained(A__ , A__ , A__ , A__ , **A__ )
192
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _A = logging.get_logger(__name__) _A = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'convnextv2' def __init__(self , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="gelu" , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=0.0 , _lowerCamelCase=224 , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ): """simple docstring""" super().__init__(**_lowerCamelCase ) UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : Dict = patch_size UpperCAmelCase__ : Dict = num_stages UpperCAmelCase__ : str = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes UpperCAmelCase__ : Tuple = [3, 3, 9, 3] if depths is None else depths UpperCAmelCase__ : List[Any] = hidden_act UpperCAmelCase__ : Dict = initializer_range UpperCAmelCase__ : Tuple = layer_norm_eps UpperCAmelCase__ : Optional[int] = drop_path_rate UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : Any = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] UpperCAmelCase__ : List[Any] = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
369
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _A = { """configuration_layoutlmv3""": [ """LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv3Config""", """LayoutLMv3OnnxConfig""", ], """processing_layoutlmv3""": ["""LayoutLMv3Processor"""], """tokenization_layoutlmv3""": ["""LayoutLMv3Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""LayoutLMv3TokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv3ForQuestionAnswering""", """LayoutLMv3ForSequenceClassification""", """LayoutLMv3ForTokenClassification""", """LayoutLMv3Model""", """LayoutLMv3PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLayoutLMv3ForQuestionAnswering""", """TFLayoutLMv3ForSequenceClassification""", """TFLayoutLMv3ForTokenClassification""", """TFLayoutLMv3Model""", """TFLayoutLMv3PreTrainedModel""", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""LayoutLMv3FeatureExtractor"""] _A = ["""LayoutLMv3ImageProcessor"""] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
166
0
from sklearn.metrics import recall_score import datasets SCREAMING_SNAKE_CASE :Union[str, Any] = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' SCREAMING_SNAKE_CASE :str = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' SCREAMING_SNAKE_CASE :Any = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) ,reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] ,) def UpperCamelCase_ ( self : Any ,A : List[str] ,A : str ,A : Optional[int]=None ,A : int=1 ,A : Optional[int]="binary" ,A : Any=None ,A : str="warn" ,): __A = recall_score( A ,A ,labels=A ,pos_label=A ,average=A ,sample_weight=A ,zero_division=A ,) return {"recall": float(A ) if score.size == 1 else score}
15
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class A ( UpperCAmelCase_ ): __UpperCAmelCase : torch.FloatTensor __UpperCAmelCase : Optional[torch.FloatTensor] = None def lowerCAmelCase_ ( __A, __A=0.999, __A="cosine", ) -> Tuple: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__A ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCAmelCase__ = [] for i in range(__A ): UpperCAmelCase__ = i / num_diffusion_timesteps UpperCAmelCase__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__A ) / alpha_bar_fn(__A ), __A ) ) return torch.tensor(__A, dtype=torch.floataa ) class A ( UpperCAmelCase_ , UpperCAmelCase_ ): @register_to_config def __init__(self : List[str] , __UpperCAmelCase : int = 1_0_0_0 , __UpperCAmelCase : str = "fixed_small_log" , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[float] = 1.0 , __UpperCAmelCase : str = "epsilon" , __UpperCAmelCase : str = "squaredcos_cap_v2" , ) -> Optional[int]: """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) UpperCAmelCase__ = betas_for_alpha_bar(__UpperCAmelCase ) UpperCAmelCase__ = 1.0 - self.betas UpperCAmelCase__ = torch.cumprod(self.alphas , dim=0 ) UpperCAmelCase__ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase__ = 1.0 # setable values UpperCAmelCase__ = None UpperCAmelCase__ = torch.from_numpy(np.arange(0 , __UpperCAmelCase )[::-1].copy() ) UpperCAmelCase__ = variance_type def lowercase_ (self : List[str] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : Optional[int] = None ) -> torch.FloatTensor: """simple docstring""" return sample def lowercase_ (self : int , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, torch.device] = None ) -> Any: """simple docstring""" UpperCAmelCase__ = num_inference_steps UpperCAmelCase__ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase__ = (np.arange(0 , __UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase__ = torch.from_numpy(__UpperCAmelCase ).to(__UpperCAmelCase ) def lowercase_ (self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : List[str]=None ) -> Tuple: """simple docstring""" if prev_timestep is None: UpperCAmelCase__ = t - 1 UpperCAmelCase__ = self.alphas_cumprod[t] UpperCAmelCase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase__ = 1 - alpha_prod_t UpperCAmelCase__ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase__ = self.betas[t] else: UpperCAmelCase__ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase__ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase__ = torch.log(torch.clamp(__UpperCAmelCase , min=1E-20 ) ) UpperCAmelCase__ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase__ = variance.log() UpperCAmelCase__ = beta.log() UpperCAmelCase__ = (predicted_variance + 1) / 2 UpperCAmelCase__ = frac * max_log + (1 - frac) * min_log return variance def lowercase_ (self : Optional[int] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : int , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : bool = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: """simple docstring""" UpperCAmelCase__ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase__ , UpperCAmelCase__ = torch.split(__UpperCAmelCase , sample.shape[1] , dim=1 ) else: UpperCAmelCase__ = None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase__ = t - 1 UpperCAmelCase__ = self.alphas_cumprod[t] UpperCAmelCase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase__ = 1 - alpha_prod_t UpperCAmelCase__ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase__ = self.betas[t] UpperCAmelCase__ = self.alphas[t] else: UpperCAmelCase__ = 1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase__ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ = torch.clamp( __UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase__ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase__ = 0 if t > 0: UpperCAmelCase__ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=__UpperCAmelCase , device=model_output.device ) UpperCAmelCase__ = self._get_variance( __UpperCAmelCase , predicted_variance=__UpperCAmelCase , prev_timestep=__UpperCAmelCase , ) if self.variance_type == "fixed_small_log": UpperCAmelCase__ = variance elif self.variance_type == "learned_range": UpperCAmelCase__ = (0.5 * variance).exp() else: raise ValueError( f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" " for the UnCLIPScheduler." ) UpperCAmelCase__ = variance * variance_noise UpperCAmelCase__ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__UpperCAmelCase , pred_original_sample=__UpperCAmelCase ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : torch.IntTensor , ) -> torch.FloatTensor: """simple docstring""" UpperCAmelCase__ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCAmelCase__ = timesteps.to(original_samples.device ) UpperCAmelCase__ = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase__ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase__ = sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase__ = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase__ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase__ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase__ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
65
0
'''simple docstring''' import argparse from collections import defaultdict import yaml A__ : str ='''docs/source/en/_toctree.yml''' def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = defaultdict(lowerCAmelCase ) _lowerCAmelCase = [] _lowerCAmelCase = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(lowerCAmelCase ) _lowerCAmelCase = new_doc_list _lowerCAmelCase = [key for key, value in counts.items() if value > 1] _lowerCAmelCase = [] for duplicate_key in duplicates: _lowerCAmelCase = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(lowerCAmelCase ) > 1: raise ValueError( f"{duplicate_key} is present several times in the documentation table of content at " """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) _lowerCAmelCase = sorted(lowerCAmelCase , key=lambda lowerCAmelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowerCAmelCase ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(lowerCAmelCase ) # Sort return overview_doc def UpperCamelCase__ ( lowerCAmelCase=False ): """simple docstring""" with open(lowerCAmelCase , encoding="""utf-8""" ) as f: _lowerCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase = content[api_idx]["""sections"""] # Then to the model doc _lowerCAmelCase = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _lowerCAmelCase = api_doc[scheduler_idx]["""sections"""] _lowerCAmelCase = clean_doc_toc(lowerCAmelCase ) _lowerCAmelCase = False if new_scheduler_doc != scheduler_doc: _lowerCAmelCase = True if overwrite: _lowerCAmelCase = new_scheduler_doc if diff: if overwrite: _lowerCAmelCase = api_doc with open(lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(lowerCAmelCase , allow_unicode=lowerCAmelCase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def UpperCamelCase__ ( lowerCAmelCase=False ): """simple docstring""" with open(lowerCAmelCase , encoding="""utf-8""" ) as f: _lowerCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase = content[api_idx]["""sections"""] # Then to the model doc _lowerCAmelCase = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _lowerCAmelCase = False _lowerCAmelCase = api_doc[pipeline_idx]["""sections"""] _lowerCAmelCase = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _lowerCAmelCase = pipeline_doc["""section"""] _lowerCAmelCase = clean_doc_toc(lowerCAmelCase ) if overwrite: _lowerCAmelCase = new_sub_pipeline_doc new_pipeline_docs.append(lowerCAmelCase ) # sort overall pipeline doc _lowerCAmelCase = clean_doc_toc(lowerCAmelCase ) if new_pipeline_docs != pipeline_docs: _lowerCAmelCase = True if overwrite: _lowerCAmelCase = new_pipeline_docs if diff: if overwrite: _lowerCAmelCase = api_doc with open(lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(lowerCAmelCase , allow_unicode=lowerCAmelCase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": A__ : str =argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') A__ : Tuple =parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
220
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool A__ : List[str] ={ '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class UpperCAmelCase ( snake_case_ ): _lowercase: Dict = '''facebook/nllb-200-distilled-600M''' _lowercase: int = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) _lowercase: Any = '''translator''' _lowercase: Optional[int] = AutoTokenizer _lowercase: str = AutoModelForSeqaSeqLM _lowercase: List[Any] = LANGUAGE_CODES _lowercase: Tuple = ['''text''', '''text''', '''text'''] _lowercase: List[str] = ['''text'''] def lowercase__ ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Dict ) -> Optional[Any]: if src_lang not in self.lang_to_code: raise ValueError(f"{src_lang} is not a supported language." ) if tgt_lang not in self.lang_to_code: raise ValueError(f"{tgt_lang} is not a supported language." ) _lowerCAmelCase = self.lang_to_code[src_lang] _lowerCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __snake_case , return_tensors="""pt""" , src_lang=__snake_case , tgt_lang=__snake_case ) def lowercase__ ( self : Optional[int] , __snake_case : Any ) -> List[str]: return self.model.generate(**__snake_case ) def lowercase__ ( self : Dict , __snake_case : List[Any] ) -> Any: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__snake_case )
220
1
'''simple docstring''' from math import isclose, sqrt def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> tuple[float, float, float]: UpperCAmelCase : Optional[int] = point_y / 4 / point_x UpperCAmelCase : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) UpperCAmelCase : Any = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) UpperCAmelCase : Union[str, Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 UpperCAmelCase : Union[str, Any] = outgoing_gradient**2 + 4 UpperCAmelCase : Dict = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) UpperCAmelCase : List[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 UpperCAmelCase : List[str] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) UpperCAmelCase : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point UpperCAmelCase : Optional[Any] = x_minus if isclose(_lowerCAmelCase , _lowerCAmelCase ) else x_plus UpperCAmelCase : Union[str, Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def snake_case_ ( _lowerCAmelCase : float = 1.4 , _lowerCAmelCase : float = -9.6 ) -> int: UpperCAmelCase : int = 0 UpperCAmelCase : float = first_x_coord UpperCAmelCase : float = first_y_coord UpperCAmelCase : float = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = next_point(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"{solution() = }")
23
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __a : '''simple docstring''' def __init__( self , _a , _a=3 , _a=7 , _a=True , _a=True , _a=False , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = parent SCREAMING_SNAKE_CASE__ : int = batch_size SCREAMING_SNAKE_CASE__ : Dict = seq_length SCREAMING_SNAKE_CASE__ : int = is_training SCREAMING_SNAKE_CASE__ : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE__ : Optional[Any] = use_token_type_ids SCREAMING_SNAKE_CASE__ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE__ : Tuple = vocab_size SCREAMING_SNAKE_CASE__ : List[Any] = hidden_size SCREAMING_SNAKE_CASE__ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE__ : int = num_attention_heads SCREAMING_SNAKE_CASE__ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE__ : int = hidden_act SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE__ : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE__ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE__ : Dict = num_labels SCREAMING_SNAKE_CASE__ : Optional[Any] = num_choices SCREAMING_SNAKE_CASE__ : Optional[int] = scope def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self ) -> str: """simple docstring""" return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=_a , ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = FalconModel(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : str = model(_a , attention_mask=_a ) SCREAMING_SNAKE_CASE__ : Any = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Dict = FalconModel(_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : int = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , ) SCREAMING_SNAKE_CASE__ : List[str] = model( _a , attention_mask=_a , encoder_hidden_states=_a , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_a , attention_mask=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = FalconForCausalLM(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Optional[int] = FalconForCausalLM(config=_a ) model.to(_a ) model.eval() # first forward pass SCREAMING_SNAKE_CASE__ : int = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , use_cache=_a , ) SCREAMING_SNAKE_CASE__ : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE__ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE__ : Tuple = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , output_hidden_states=_a , )["""hidden_states"""][0] SCREAMING_SNAKE_CASE__ : Tuple = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , past_key_values=_a , output_hidden_states=_a , )["""hidden_states"""][0] # select random slice SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1E-3 ) ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __a (UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :List[Any] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE :Any = (FalconForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE :List[Any] = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE :List[str] = False _SCREAMING_SNAKE_CASE :str = False def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = FalconModelTester(self ) SCREAMING_SNAKE_CASE__ : List[str] = ConfigTester(self , config_class=_a , hidden_size=37 ) def _a ( self ) -> int: """simple docstring""" self.config_tester.run_common_tests() def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: SCREAMING_SNAKE_CASE__ : str = alibi self.model_tester.create_and_check_model(_a , *_a ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : List[Any] = 3 SCREAMING_SNAKE_CASE__ : Optional[Any] = input_dict["""input_ids"""] SCREAMING_SNAKE_CASE__ : str = input_ids.ne(1 ).to(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = FalconForSequenceClassification(_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : List[str] = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Union[str, Any] = 3 SCREAMING_SNAKE_CASE__ : Optional[Any] = """single_label_classification""" SCREAMING_SNAKE_CASE__ : List[str] = input_dict["""input_ids"""] SCREAMING_SNAKE_CASE__ : Tuple = input_ids.ne(1 ).to(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : List[Any] = FalconForSequenceClassification(_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : str = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Optional[int] = input_dict["""input_ids"""] SCREAMING_SNAKE_CASE__ : int = FalconForCausalLM(_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Dict = model(_a , use_cache=_a ) SCREAMING_SNAKE_CASE__ : str = input_ids.shape[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = model._convert_to_rw_cache(result.past_key_values ) SCREAMING_SNAKE_CASE__ : Any = model._convert_cache_to_standard_format(_a , _a ) for layer in range(len(_a ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : List[str] = 3 SCREAMING_SNAKE_CASE__ : str = """multi_label_classification""" SCREAMING_SNAKE_CASE__ : int = input_dict["""input_ids"""] SCREAMING_SNAKE_CASE__ : List[str] = input_ids.ne(1 ).to(_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE__ : int = FalconForSequenceClassification(_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : List[Any] = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self ) -> List[str]: """simple docstring""" for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(_a , """use_cache""" ): return SCREAMING_SNAKE_CASE__ : Optional[int] = model_class(_a ).to(_a ) if "use_cache" not in inputs: SCREAMING_SNAKE_CASE__ : Optional[Any] = True SCREAMING_SNAKE_CASE__ : Tuple = model(**_a ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return SCREAMING_SNAKE_CASE__ : Dict = ( getattr(_a , """decoder_layers""" , _a ) or getattr(_a , """num_decoder_layers""" , _a ) or config.num_hidden_layers ) SCREAMING_SNAKE_CASE__ : Any = getattr(_a , """num_kv_heads""" , config.num_attention_heads ) SCREAMING_SNAKE_CASE__ : str = getattr(_a , """d_model""" , config.hidden_size ) SCREAMING_SNAKE_CASE__ : str = embed_dim // num_attention_heads SCREAMING_SNAKE_CASE__ : List[Any] = outputs["""past_key_values"""] self.assertEqual(len(_a ) , _a ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = inputs["""input_ids"""].shape for i in range(_a ): if config.new_decoder_architecture: SCREAMING_SNAKE_CASE__ : Any = config.num_attention_heads elif config.multi_query: SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __a (unittest.TestCase): '''simple docstring''' @slow def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = AutoTokenizer.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) SCREAMING_SNAKE_CASE__ : Tuple = FalconForCausalLM.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) model.eval() model.to(_a ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( """My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.""" ) SCREAMING_SNAKE_CASE__ : Any = model.generate(**_a , do_sample=_a , max_new_tokens=19 ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.batch_decode(_a )[0] self.assertEqual(_a , _a ) @slow def _a ( self ) -> Union[str, Any]: """simple docstring""" for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: SCREAMING_SNAKE_CASE__ : Any = AutoTokenizer.from_pretrained(_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = FalconForCausalLM.from_pretrained(_a ) model.eval() model.to(_a ) SCREAMING_SNAKE_CASE__ : str = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(_a ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**_a , do_sample=_a , max_new_tokens=4 ) model.generate(**_a , do_sample=_a , max_new_tokens=4 ) model.generate(**_a , num_beams=2 , max_new_tokens=4 ) @slow def _a ( self ) -> Optional[int]: """simple docstring""" with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: SCREAMING_SNAKE_CASE__ : Optional[int] = AutoTokenizer.from_pretrained(_a ) SCREAMING_SNAKE_CASE__ : int = FalconForCausalLM.from_pretrained(_a ) model.eval() model.to(device=_a ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(_a ) # Test results are the same with and without cache SCREAMING_SNAKE_CASE__ : Tuple = model.generate(**_a , do_sample=_a , max_new_tokens=20 , use_cache=_a ) SCREAMING_SNAKE_CASE__ : Tuple = model.generate(**_a , do_sample=_a , max_new_tokens=20 , use_cache=_a ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
132
0
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase__( __A ): lowerCAmelCase__ : Optional[Any] = CLIPConfig lowerCAmelCase__ : Dict = ['CLIPEncoderLayer'] def __init__( self ,__UpperCAmelCase ) -> Optional[int]: super().__init__(__UpperCAmelCase ) A__ = CLIPVisionModelWithProjection(config.vision_config ) A__ = nn.Linear(config.vision_config.projection_dim ,1 ) A__ = nn.Linear(config.vision_config.projection_dim ,1 ) @torch.no_grad() def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=0.5 ,__UpperCAmelCase=0.5 ) -> Optional[Any]: A__ = self.vision_model(__UpperCAmelCase )[0] A__ = self.p_head(__UpperCAmelCase ) A__ = nsfw_detected.flatten() A__ = nsfw_detected > p_threshold A__ = nsfw_detected.tolist() if any(__UpperCAmelCase ): logger.warning( 'Potential NSFW content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, nsfw_detected_ in enumerate(__UpperCAmelCase ): if nsfw_detected_: A__ = np.zeros(images[idx].shape ) A__ = self.w_head(__UpperCAmelCase ) A__ = watermark_detected.flatten() A__ = watermark_detected > w_threshold A__ = watermark_detected.tolist() if any(__UpperCAmelCase ): logger.warning( 'Potential watermarked content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, watermark_detected_ in enumerate(__UpperCAmelCase ): if watermark_detected_: A__ = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
154
"""simple docstring""" import os def UpperCAmelCase ( ): """simple docstring""" with open(os.path.dirname(UpperCamelCase__ ) + '/grid.txt' ) as f: A__ = [] # noqa: E741 for _ in range(20 ): l.append([int(UpperCamelCase__ ) for x in f.readline().split()] ) A__ = 0 # right for i in range(20 ): for j in range(17 ): A__ = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: A__ = temp # down for i in range(17 ): for j in range(20 ): A__ = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: A__ = temp # diagonal 1 for i in range(17 ): for j in range(17 ): A__ = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: A__ = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): A__ = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: A__ = temp return maximum if __name__ == "__main__": print(solution())
154
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case : Optional[Any] = logging.get_logger(__name__) snake_case : List[Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class _snake_case ( snake_case ): UpperCamelCase__ = 'data2vec-vision' def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=224 , _a=16 , _a=3 , _a=False , _a=False , _a=False , _a=False , _a=0.1 , _a=0.1 , _a=True , _a=[3, 5, 7, 11] , _a=[1, 2, 3, 6] , _a=True , _a=0.4 , _a=256 , _a=1 , _a=False , _a=255 , **_a , ): super().__init__(**_a ) __magic_name__ : Optional[int] = hidden_size __magic_name__ : Union[str, Any] = num_hidden_layers __magic_name__ : List[str] = num_attention_heads __magic_name__ : int = intermediate_size __magic_name__ : Tuple = hidden_act __magic_name__ : str = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : str = initializer_range __magic_name__ : Optional[Any] = layer_norm_eps __magic_name__ : Tuple = image_size __magic_name__ : str = patch_size __magic_name__ : Tuple = num_channels __magic_name__ : Optional[Any] = use_mask_token __magic_name__ : Any = use_absolute_position_embeddings __magic_name__ : Union[str, Any] = use_relative_position_bias __magic_name__ : str = use_shared_relative_position_bias __magic_name__ : Tuple = layer_scale_init_value __magic_name__ : List[str] = drop_path_rate __magic_name__ : Any = use_mean_pooling # decode head attributes (semantic segmentation) __magic_name__ : Tuple = out_indices __magic_name__ : int = pool_scales # auxiliary head attributes (semantic segmentation) __magic_name__ : str = use_auxiliary_head __magic_name__ : Union[str, Any] = auxiliary_loss_weight __magic_name__ : Optional[Any] = auxiliary_channels __magic_name__ : Dict = auxiliary_num_convs __magic_name__ : Optional[int] = auxiliary_concat_input __magic_name__ : Dict = semantic_loss_ignore_index class _snake_case ( snake_case ): UpperCamelCase__ = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE ( self ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE ( self ): return 1e-4
281
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class _snake_case : @staticmethod def SCREAMING_SNAKE_CASE ( *_a , **_a ): pass def lowerCAmelCase_ ( _snake_case : Image ) -> str: '''simple docstring''' __magic_name__ : Optional[int] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def lowerCAmelCase_ ( _snake_case : Image ) -> Dict: '''simple docstring''' __magic_name__ : List[Any] = np.array(_snake_case ) __magic_name__ : Optional[int] = npimg.shape return {"hash": hashimage(_snake_case ), "shape": shape} @is_pipeline_test @require_vision @require_torch class _snake_case ( unittest.TestCase ): UpperCamelCase__ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) UpperCamelCase__ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): __magic_name__ : Dict = MaskGenerationPipeline(model=_a , image_processor=_a ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def SCREAMING_SNAKE_CASE ( self , _a , _a ): pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def SCREAMING_SNAKE_CASE ( self ): pass @slow @require_torch def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) __magic_name__ : str = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=256 ) # Shortening by hashing __magic_name__ : Dict = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_a ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.04_44}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0_21}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.01_67}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.01_32}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.00_53}, {"mask": {"hash": "e2d0b7a0b7", "shape": (480, 640)}, "scores": 0.99_67}, {"mask": {"hash": "453c7844bd", "shape": (480, 640)}, "scores": 0.9_93}, {"mask": {"hash": "3d44f2926d", "shape": (480, 640)}, "scores": 0.99_09}, {"mask": {"hash": "64033ddc3f", "shape": (480, 640)}, "scores": 0.98_79}, {"mask": {"hash": "801064ff79", "shape": (480, 640)}, "scores": 0.98_34}, {"mask": {"hash": "6172f276ef", "shape": (480, 640)}, "scores": 0.97_16}, {"mask": {"hash": "b49e60e084", "shape": (480, 640)}, "scores": 0.96_12}, {"mask": {"hash": "a811e775fd", "shape": (480, 640)}, "scores": 0.95_99}, {"mask": {"hash": "a6a8ebcf4b", "shape": (480, 640)}, "scores": 0.95_52}, {"mask": {"hash": "9d8257e080", "shape": (480, 640)}, "scores": 0.95_32}, {"mask": {"hash": "32de6454a8", "shape": (480, 640)}, "scores": 0.95_16}, {"mask": {"hash": "af3d4af2c8", "shape": (480, 640)}, "scores": 0.94_99}, {"mask": {"hash": "3c6db475fb", "shape": (480, 640)}, "scores": 0.94_83}, {"mask": {"hash": "c290813fb9", "shape": (480, 640)}, "scores": 0.94_64}, {"mask": {"hash": "b6f0b8f606", "shape": (480, 640)}, "scores": 0.9_43}, {"mask": {"hash": "92ce16bfdf", "shape": (480, 640)}, "scores": 0.9_43}, {"mask": {"hash": "c749b25868", "shape": (480, 640)}, "scores": 0.94_08}, {"mask": {"hash": "efb6cab859", "shape": (480, 640)}, "scores": 0.93_35}, {"mask": {"hash": "1ff2eafb30", "shape": (480, 640)}, "scores": 0.93_26}, {"mask": {"hash": "788b798e24", "shape": (480, 640)}, "scores": 0.92_62}, {"mask": {"hash": "abea804f0e", "shape": (480, 640)}, "scores": 0.89_99}, {"mask": {"hash": "7b9e8ddb73", "shape": (480, 640)}, "scores": 0.89_86}, {"mask": {"hash": "cd24047c8a", "shape": (480, 640)}, "scores": 0.89_84}, {"mask": {"hash": "6943e6bcbd", "shape": (480, 640)}, "scores": 0.88_73}, {"mask": {"hash": "b5f47c9191", "shape": (480, 640)}, "scores": 0.88_71} ] , ) # fmt: on @require_torch @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : str = "facebook/sam-vit-huge" __magic_name__ : str = pipeline("mask-generation" , model=_a ) __magic_name__ : Tuple = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __magic_name__ : Any = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_a ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.04_44}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.02_10}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.01_67}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.01_32}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.00_53}, ] , )
281
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _snake_case (__SCREAMING_SNAKE_CASE): __A : Optional[int] =["image_processor", "tokenizer"] __A : List[Any] ="LayoutLMv2ImageProcessor" __A : List[str] =("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self ,_snake_case=None ,_snake_case=None ,**_snake_case ): if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,_snake_case ,) UpperCAmelCase_ : List[str] = kwargs.pop("feature_extractor" ) UpperCAmelCase_ : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_snake_case ,_snake_case ) def __call__( self ,_snake_case ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = True ,_snake_case = False ,_snake_case = None ,_snake_case = None ,_snake_case = 0 ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = False ,_snake_case = False ,_snake_case = False ,_snake_case = False ,_snake_case = True ,_snake_case = None ,**_snake_case ,): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor UpperCAmelCase_ : str = self.image_processor(images=_snake_case ,return_tensors=_snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_snake_case ,_snake_case ): UpperCAmelCase_ : List[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Optional[Any] = features["words"] UpperCAmelCase_ : Union[str, Any] = self.tokenizer( text=text if text is not None else features["words"] ,text_pair=text_pair if text_pair is not None else None ,boxes=boxes if boxes is not None else features["boxes"] ,word_labels=_snake_case ,add_special_tokens=_snake_case ,padding=_snake_case ,truncation=_snake_case ,max_length=_snake_case ,stride=_snake_case ,pad_to_multiple_of=_snake_case ,return_token_type_ids=_snake_case ,return_attention_mask=_snake_case ,return_overflowing_tokens=_snake_case ,return_special_tokens_mask=_snake_case ,return_offsets_mapping=_snake_case ,return_length=_snake_case ,verbose=_snake_case ,return_tensors=_snake_case ,**_snake_case ,) # add pixel values UpperCAmelCase_ : Tuple = features.pop("pixel_values" ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[Any] = self.get_overflowing_images(_snake_case ,encoded_inputs["overflow_to_sample_mapping"] ) UpperCAmelCase_ : Optional[Any] = images return encoded_inputs def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : Any = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_snake_case ) != len(_snake_case ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f''' {len(_snake_case )} and {len(_snake_case )}''' ) return images_with_overflow def UpperCamelCase__ ( self ,*_snake_case ,**_snake_case ): return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCamelCase__ ( self ,*_snake_case ,**_snake_case ): return self.tokenizer.decode(*_snake_case ,**_snake_case ) @property def UpperCamelCase__ ( self ): return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCamelCase__ ( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." ,_snake_case ,) return self.image_processor_class @property def UpperCamelCase__ ( self ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." ,_snake_case ,) return self.image_processor
67
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class _snake_case (__SCREAMING_SNAKE_CASE): def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = tempfile.mkdtemp() UpperCAmelCase_ : Optional[int] = 8 # DPR tok UpperCAmelCase_ : Optional[Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ : Any = os.path.join(self.tmpdirname ,"dpr_tokenizer" ) os.makedirs(_snake_case ,exist_ok=_snake_case ) UpperCAmelCase_ : List[str] = os.path.join(_snake_case ,DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok UpperCAmelCase_ : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCAmelCase_ : str = dict(zip(_snake_case ,range(len(_snake_case ) ) ) ) UpperCAmelCase_ : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCAmelCase_ : Optional[int] = {"unk_token": "<unk>"} UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname ,"bart_tokenizer" ) os.makedirs(_snake_case ,exist_ok=_snake_case ) UpperCAmelCase_ : Any = os.path.join(_snake_case ,BART_VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ : Union[str, Any] = os.path.join(_snake_case ,BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(_snake_case ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(_snake_case ) ) def UpperCamelCase__ ( self ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"dpr_tokenizer" ) ) def UpperCamelCase__ ( self ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"dpr_tokenizer" ) ) def UpperCamelCase__ ( self ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"bart_tokenizer" ) ) def UpperCamelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Any = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" ,string_factory="Flat" ,metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = self.get_dummy_dataset() UpperCAmelCase_ : Optional[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: UpperCAmelCase_ : List[Any] = dataset UpperCAmelCase_ : Any = RagRetriever( _snake_case ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,) return retriever def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : Union[str, Any] = self.get_dummy_dataset() UpperCAmelCase_ : Union[str, Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,index_name="custom" ,) if from_disk: UpperCAmelCase_ : str = os.path.join(self.tmpdirname ,"dataset" ) UpperCAmelCase_ : str = os.path.join(self.tmpdirname ,"index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname ,"index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname ,"dataset" ) ) del dataset UpperCAmelCase_ : List[Any] = RagRetriever( _snake_case ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,) else: UpperCAmelCase_ : int = RagRetriever( _snake_case ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,index=CustomHFIndex(config.retrieval_vector_size ,_snake_case ) ,) return retriever def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" ,string_factory="Flat" ,metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname ,"hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" ,index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] ,open(index_file_name + ".index_meta.dpr" ,"wb" ) ) UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname ,"psgs_w100.tsv.pkl" ) UpperCAmelCase_ : Optional[Any] = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(_snake_case ,open(_snake_case ,"wb" ) ) UpperCAmelCase_ : List[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,index_name="legacy" ,index_path=self.tmpdirname ,) UpperCAmelCase_ : Optional[Any] = RagRetriever( _snake_case ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ) return retriever def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Dict = self.get_dummy_canonical_hf_index_retriever() UpperCAmelCase_ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = retriever.retrieve(_snake_case ,n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) ,_snake_case ) self.assertEqual(doc_dicts[0]["id"][0] ,"1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] ,"0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: UpperCAmelCase_ : Union[str, Any] = self.get_dummy_dataset() retriever.save_pretrained(_snake_case ) UpperCAmelCase_ : Optional[Any] = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) UpperCAmelCase_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) UpperCAmelCase_ : Dict = retriever.retrieve(_snake_case ,n_docs=1 ) self.assertTrue(out is not None ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) UpperCAmelCase_ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = retriever.retrieve(_snake_case ,n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) ,_snake_case ) self.assertEqual(doc_dicts[0]["id"][0] ,"1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] ,"0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_snake_case ) UpperCAmelCase_ : int = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) UpperCAmelCase_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) UpperCAmelCase_ : List[Any] = retriever.retrieve(_snake_case ,n_docs=1 ) self.assertTrue(out is not None ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = 1 UpperCAmelCase_ : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) UpperCAmelCase_ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = retriever.retrieve(_snake_case ,n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) ,_snake_case ) self.assertEqual(doc_dicts[0]["id"][0] ,"1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] ,"0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_snake_case ) UpperCAmelCase_ : str = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) UpperCAmelCase_ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) UpperCAmelCase_ : Optional[int] = retriever.retrieve(_snake_case ,n_docs=1 ) self.assertTrue(out is not None ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[Any] = 1 UpperCAmelCase_ : List[str] = self.get_dummy_legacy_index_retriever() UpperCAmelCase_ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = retriever.retrieve(_snake_case ,n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) ,_snake_case ) self.assertEqual(doc_dicts[0]["text"][0] ,"bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] ,"foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Union[str, Any] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_snake_case ) UpperCAmelCase_ : Tuple = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) UpperCAmelCase_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) UpperCAmelCase_ : Dict = retriever.retrieve(_snake_case ,n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def UpperCamelCase__ ( self ): import torch UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : List[Any] = self.get_dummy_canonical_hf_index_retriever() UpperCAmelCase_ : Tuple = [[5, 7], [10, 11]] UpperCAmelCase_ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) UpperCAmelCase_ : Optional[int] = retriever(_snake_case ,_snake_case ,prefix=retriever.config.generator.prefix ,n_docs=_snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertIsInstance(_snake_case ,np.ndarray ) UpperCAmelCase_ : Optional[Any] = retriever( _snake_case ,_snake_case ,prefix=retriever.config.generator.prefix ,n_docs=_snake_case ,return_tensors="pt" ,) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_snake_case ,torch.Tensor ) self.assertIsInstance(_snake_case ,torch.Tensor ) self.assertIsInstance(_snake_case ,torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = self.get_dpr_ctx_encoder_tokenizer() UpperCAmelCase_ : int = 1 UpperCAmelCase_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) retriever.set_ctx_encoder_tokenizer(_snake_case ) UpperCAmelCase_ : Optional[int] = [[5, 7], [10, 11]] UpperCAmelCase_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) UpperCAmelCase_ : Optional[int] = retriever(_snake_case ,_snake_case ,prefix=retriever.config.generator.prefix ,n_docs=_snake_case ) self.assertEqual( len(_snake_case ) ,6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) ,_snake_case ) # check for doc token related keys in dictionary.
67
1
import functools from typing import Any def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) or len(lowerCamelCase__ ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) or not all( isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie __snake_case : dict[str, Any] = {} __snake_case : Optional[int] = """WORD_KEEPER""" for word in words: __snake_case : Optional[int] = trie for c in word: if c not in trie_node: __snake_case : str = {} __snake_case : Dict = trie_node[c] __snake_case : Optional[int] = True __snake_case : Any = len(lowerCamelCase__ ) # Dynamic programming method @functools.cache def is_breakable(__lowerCamelCase ) -> bool: if index == len_string: return True __snake_case : Optional[Any] = trie for i in range(lowerCamelCase__ , lowerCamelCase__ ): __snake_case : Optional[Any] = trie_node.get(string[i] , lowerCamelCase__ ) if trie_node is None: return False if trie_node.get(lowerCamelCase__ , lowerCamelCase__ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
123
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def a ( lowerCamelCase__ ): '''simple docstring''' if not sentence: return "" A_ : Optional[int] = dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
206
0
"""simple docstring""" def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCamelCase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCamelCase = sorted(_SCREAMING_SNAKE_CASE ) # declaring useful variables UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCamelCase = sorted_profit_by_weight[length - i - 1] UpperCamelCase = profit_by_weight.index(_SCREAMING_SNAKE_CASE ) UpperCamelCase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) lowerCAmelCase__ = [int(x) for x in input('''Input profits separated by spaces: ''').split()] lowerCAmelCase__ = [int(x) for x in input('''Input weights separated by spaces: ''').split()] lowerCAmelCase__ = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
244
"""simple docstring""" def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCamelCase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCamelCase = sorted(_SCREAMING_SNAKE_CASE ) # declaring useful variables UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCamelCase = sorted_profit_by_weight[length - i - 1] UpperCamelCase = profit_by_weight.index(_SCREAMING_SNAKE_CASE ) UpperCamelCase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) lowerCAmelCase__ = [int(x) for x in input('''Input profits separated by spaces: ''').split()] lowerCAmelCase__ = [int(x) for x in input('''Input weights separated by spaces: ''').split()] lowerCAmelCase__ = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
244
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class snake_case_ (UpperCamelCase__ ): UpperCAmelCase__ : jnp.ndarray UpperCAmelCase__ : jnp.ndarray class snake_case_ (nn.Module ): UpperCAmelCase__ : int UpperCAmelCase__ : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCamelCase__( self :List[Any] ) -> Optional[int]: a__ = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) a__ = [] for i in range(len(self.block_out_channels ) - 1 ): a__ = self.block_out_channels[i] a__ = self.block_out_channels[i + 1] a__ = nn.Conv( UpperCamelCase_ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(UpperCamelCase_ ) a__ = nn.Conv( UpperCamelCase_ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(UpperCamelCase_ ) a__ = blocks a__ = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self :Optional[int] ,__snake_case :Optional[int] ) -> List[Any]: a__ = self.conv_in(UpperCamelCase_ ) a__ = nn.silu(UpperCamelCase_ ) for block in self.blocks: a__ = block(UpperCamelCase_ ) a__ = nn.silu(UpperCamelCase_ ) a__ = self.conv_out(UpperCamelCase_ ) return embedding @flax_register_to_config class snake_case_ (nn.Module , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : int = 3_2 UpperCAmelCase__ : int = 4 UpperCAmelCase__ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCAmelCase__ : Union[bool, Tuple[bool]] = False UpperCAmelCase__ : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) UpperCAmelCase__ : int = 2 UpperCAmelCase__ : Union[int, Tuple[int]] = 8 UpperCAmelCase__ : Optional[Union[int, Tuple[int]]] = None UpperCAmelCase__ : int = 1_2_8_0 UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : bool = False UpperCAmelCase__ : jnp.dtype = jnp.floataa UpperCAmelCase__ : bool = True UpperCAmelCase__ : int = 0 UpperCAmelCase__ : str = "rgb" UpperCAmelCase__ : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def lowerCamelCase__( self :List[Any] ,__snake_case :jax.random.KeyArray ) -> FrozenDict: a__ = (1, self.in_channels, self.sample_size, self.sample_size) a__ = jnp.zeros(UpperCamelCase_ ,dtype=jnp.floataa ) a__ = jnp.ones((1,) ,dtype=jnp.intaa ) a__ = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) a__ = (1, 3, self.sample_size * 8, self.sample_size * 8) a__ = jnp.zeros(UpperCamelCase_ ,dtype=jnp.floataa ) a__ , a__ = jax.random.split(UpperCamelCase_ ) a__ = {'params': params_rng, 'dropout': dropout_rng} return self.init(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ )["params"] def lowerCamelCase__( self :Optional[int] ) -> List[str]: a__ = self.block_out_channels a__ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. a__ = self.num_attention_heads or self.attention_head_dim # input a__ = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time a__ = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) a__ = FlaxTimestepEmbedding(UpperCamelCase_ ,dtype=self.dtype ) a__ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) a__ = self.only_cross_attention if isinstance(UpperCamelCase_ ,UpperCamelCase_ ): a__ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(UpperCamelCase_ ,UpperCamelCase_ ): a__ = (num_attention_heads,) * len(self.down_block_types ) # down a__ = [] a__ = [] a__ = block_out_channels[0] a__ = nn.Conv( UpperCamelCase_ ,kernel_size=(1, 1) ,padding='VALID' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(UpperCamelCase_ ) for i, down_block_type in enumerate(self.down_block_types ): a__ = output_channel a__ = block_out_channels[i] a__ = i == len(UpperCamelCase_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": a__ = FlaxCrossAttnDownBlockaD( in_channels=UpperCamelCase_ ,out_channels=UpperCamelCase_ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: a__ = FlaxDownBlockaD( in_channels=UpperCamelCase_ ,out_channels=UpperCamelCase_ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(UpperCamelCase_ ) for _ in range(self.layers_per_block ): a__ = nn.Conv( UpperCamelCase_ ,kernel_size=(1, 1) ,padding='VALID' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(UpperCamelCase_ ) if not is_final_block: a__ = nn.Conv( UpperCamelCase_ ,kernel_size=(1, 1) ,padding='VALID' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(UpperCamelCase_ ) a__ = down_blocks a__ = controlnet_down_blocks # mid a__ = block_out_channels[-1] a__ = FlaxUNetMidBlockaDCrossAttn( in_channels=UpperCamelCase_ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) a__ = nn.Conv( UpperCamelCase_ ,kernel_size=(1, 1) ,padding='VALID' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self :Dict ,__snake_case :Union[str, Any] ,__snake_case :Any ,__snake_case :Optional[Any] ,__snake_case :List[Any] ,__snake_case :float = 1.0 ,__snake_case :bool = True ,__snake_case :bool = False ,) -> Union[FlaxControlNetOutput, Tuple]: a__ = self.controlnet_conditioning_channel_order if channel_order == "bgr": a__ = jnp.flip(UpperCamelCase_ ,axis=1 ) # 1. time if not isinstance(UpperCamelCase_ ,jnp.ndarray ): a__ = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(UpperCamelCase_ ,jnp.ndarray ) and len(timesteps.shape ) == 0: a__ = timesteps.astype(dtype=jnp.floataa ) a__ = jnp.expand_dims(UpperCamelCase_ ,0 ) a__ = self.time_proj(UpperCamelCase_ ) a__ = self.time_embedding(UpperCamelCase_ ) # 2. pre-process a__ = jnp.transpose(UpperCamelCase_ ,(0, 2, 3, 1) ) a__ = self.conv_in(UpperCamelCase_ ) a__ = jnp.transpose(UpperCamelCase_ ,(0, 2, 3, 1) ) a__ = self.controlnet_cond_embedding(UpperCamelCase_ ) sample += controlnet_cond # 3. down a__ = (sample,) for down_block in self.down_blocks: if isinstance(UpperCamelCase_ ,UpperCamelCase_ ): a__ , a__ = down_block(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,deterministic=not train ) else: a__ , a__ = down_block(UpperCamelCase_ ,UpperCamelCase_ ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid a__ = self.mid_block(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,deterministic=not train ) # 5. contronet blocks a__ = () for down_block_res_sample, controlnet_block in zip(UpperCamelCase_ ,self.controlnet_down_blocks ): a__ = controlnet_block(UpperCamelCase_ ) controlnet_down_block_res_samples += (down_block_res_sample,) a__ = controlnet_down_block_res_samples a__ = self.controlnet_mid_block(UpperCamelCase_ ) # 6. scaling a__ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=UpperCamelCase_ ,mid_block_res_sample=UpperCamelCase_ )
240
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class _a : def __init__( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: Any=13 , UpperCamelCase_: Optional[Any]=7 , UpperCamelCase_: Optional[Any]=6 , UpperCamelCase_: Any=17 , UpperCamelCase_: str=23 , UpperCamelCase_: List[Any]=11 , UpperCamelCase_: Optional[int]=True , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = act_dim lowercase__ = state_dim lowercase__ = hidden_size lowercase__ = max_length lowercase__ = is_training def lowerCamelCase_ ( self: Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase__ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase__ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase__ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase__ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) lowercase__ = random_attention_mask((self.batch_size, self.seq_length) ) lowercase__ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: int , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: int , ) -> Dict: """simple docstring""" lowercase__ = DecisionTransformerModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class _a ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : str = (DecisionTransformerModel,) if is_torch_available() else () _lowercase : List[str] = () _lowercase : List[Any] = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids _lowercase : Any = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features _lowercase : Tuple = False _lowercase : str = False _lowercase : Tuple = False _lowercase : Optional[Any] = False _lowercase : Tuple = False _lowercase : Dict = False _lowercase : Tuple = False _lowercase : Optional[Any] = False _lowercase : Optional[int] = False def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = DecisionTransformerModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self: Any ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = DecisionTransformerModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(UpperCamelCase_ )] , UpperCamelCase_ ) @require_torch class _a ( unittest.TestCase ): @slow def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = 2 # number of steps of autoregressive prediction we will perform lowercase__ = 10 # defined by the RL environment, may be normalized lowercase__ = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) lowercase__ = model.to(UpperCamelCase_ ) lowercase__ = model.config torch.manual_seed(0 ) lowercase__ = torch.randn(1 , 1 , config.state_dim ).to(device=UpperCamelCase_ , dtype=torch.floataa ) # env.reset() lowercase__ = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=UpperCamelCase_ ) lowercase__ = torch.tensor(UpperCamelCase_ , device=UpperCamelCase_ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowercase__ = state lowercase__ = torch.zeros(1 , 0 , config.act_dim , device=UpperCamelCase_ , dtype=torch.floataa ) lowercase__ = torch.zeros(1 , 0 , device=UpperCamelCase_ , dtype=torch.floataa ) lowercase__ = torch.tensor(0 , device=UpperCamelCase_ , dtype=torch.long ).reshape(1 , 1 ) for step in range(UpperCamelCase_ ): lowercase__ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=UpperCamelCase_ )] , dim=1 ) lowercase__ = torch.cat([rewards, torch.zeros(1 , 1 , device=UpperCamelCase_ )] , dim=1 ) lowercase__ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowercase__ , lowercase__ , lowercase__ = model( states=UpperCamelCase_ , actions=UpperCamelCase_ , rewards=UpperCamelCase_ , returns_to_go=UpperCamelCase_ , timesteps=UpperCamelCase_ , attention_mask=UpperCamelCase_ , return_dict=UpperCamelCase_ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=UpperCamelCase_ , dtype=torch.floataa ), 1.0, False, {}, ) lowercase__ = action_pred[0, -1] lowercase__ = torch.cat([states, state] , dim=1 ) lowercase__ = returns_to_go[0, -1] - reward lowercase__ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowercase__ = torch.cat( [timesteps, torch.ones((1, 1) , device=UpperCamelCase_ , dtype=torch.long ) * (step + 1)] , dim=1 )
110
0
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging a : List[str] = logging.get_logger(__name__) class _a ( lowercase_ ): def __init__(self, SCREAMING_SNAKE_CASE_ ) -> Dict: super().__init__() UpperCAmelCase_: Optional[Any] = nn.ModuleList(a__ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = True, ) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(a__, a__, self.nets ) ): UpperCAmelCase_ , UpperCAmelCase_: Optional[Any] = controlnet( a__, a__, a__, a__, a__, a__, a__, a__, a__, a__, a__, ) # merge samples if i == 0: UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = down_samples, mid_sample else: UpperCAmelCase_: str = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(a__, a__ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, ) -> List[str]: UpperCAmelCase_: str = 0 UpperCAmelCase_: Optional[int] = save_directory for controlnet in self.nets: controlnet.save_pretrained( a__, is_main_process=a__, save_function=a__, safe_serialization=a__, variant=a__, ) idx += 1 UpperCAmelCase_: Tuple = model_path_to_save + f'_{idx}' @classmethod def __snake_case (cls, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: List[Any] = 0 UpperCAmelCase_: Dict = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... UpperCAmelCase_: Union[str, Any] = pretrained_model_path while os.path.isdir(a__ ): UpperCAmelCase_: Any = ControlNetModel.from_pretrained(a__, **a__ ) controlnets.append(a__ ) idx += 1 UpperCAmelCase_: Optional[int] = pretrained_model_path + f'_{idx}' logger.info(f'{len(a__ )} controlnets loaded from {pretrained_model_path}.' ) if len(a__ ) == 0: raise ValueError( f'No ControlNets found under {os.path.dirname(a__ )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(a__ )
353
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _a ( _lowerCAmelCase ): A = 42 A = None def lowerCAmelCase_ (lowerCAmelCase__: List[str] , lowerCAmelCase__: Optional[int]=0.999 , lowerCAmelCase__: List[str]="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase__: List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase__: str ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) UpperCAmelCase_: List[Any] = [] for i in range(lowerCAmelCase__ ): UpperCAmelCase_: Optional[int] = i / num_diffusion_timesteps UpperCAmelCase_: int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) class _a ( _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__(self, SCREAMING_SNAKE_CASE_ = 1000, SCREAMING_SNAKE_CASE_ = "fixed_small_log", SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = 1.0, SCREAMING_SNAKE_CASE_ = "epsilon", SCREAMING_SNAKE_CASE_ = "squaredcos_cap_v2", ) -> List[Any]: if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) UpperCAmelCase_: Tuple = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = 1.0 - self.betas UpperCAmelCase_: int = torch.cumprod(self.alphas, dim=0 ) UpperCAmelCase_: Tuple = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase_: List[str] = 1.0 # setable values UpperCAmelCase_: str = None UpperCAmelCase_: str = torch.from_numpy(np.arange(0, SCREAMING_SNAKE_CASE_ )[::-1].copy() ) UpperCAmelCase_: Dict = variance_type def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> torch.FloatTensor: return sample def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Optional[Any]: UpperCAmelCase_: Optional[Any] = num_inference_steps UpperCAmelCase_: Tuple = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase_: Tuple = (np.arange(0, SCREAMING_SNAKE_CASE_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase_: Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None ) -> List[Any]: if prev_timestep is None: UpperCAmelCase_: Any = t - 1 UpperCAmelCase_: int = self.alphas_cumprod[t] UpperCAmelCase_: Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase_: int = 1 - alpha_prod_t UpperCAmelCase_: List[Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase_: List[str] = self.betas[t] else: UpperCAmelCase_: List[str] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase_: Tuple = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase_: List[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase_: str = torch.log(torch.clamp(SCREAMING_SNAKE_CASE_, min=1E-20 ) ) UpperCAmelCase_: Dict = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase_: Dict = variance.log() UpperCAmelCase_: Tuple = beta.log() UpperCAmelCase_: int = (predicted_variance + 1) / 2 UpperCAmelCase_: int = frac * max_log + (1 - frac) * min_log return variance def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_ = True, ) -> Union[UnCLIPSchedulerOutput, Tuple]: UpperCAmelCase_: List[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase_ , UpperCAmelCase_: List[str] = torch.split(SCREAMING_SNAKE_CASE_, sample.shape[1], dim=1 ) else: UpperCAmelCase_: Union[str, Any] = None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase_: List[Any] = t - 1 UpperCAmelCase_: Optional[int] = self.alphas_cumprod[t] UpperCAmelCase_: Union[str, Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase_: Optional[Any] = 1 - alpha_prod_t UpperCAmelCase_: Optional[Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase_: Tuple = self.betas[t] UpperCAmelCase_: Dict = self.alphas[t] else: UpperCAmelCase_: List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase_: List[str] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase_: Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase_: int = model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase_: Optional[int] = torch.clamp( SCREAMING_SNAKE_CASE_, -self.config.clip_sample_range, self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase_: Optional[Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase_: Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase_: List[str] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase_: Union[str, Any] = 0 if t > 0: UpperCAmelCase_: Any = randn_tensor( model_output.shape, dtype=model_output.dtype, generator=SCREAMING_SNAKE_CASE_, device=model_output.device ) UpperCAmelCase_: Dict = self._get_variance( SCREAMING_SNAKE_CASE_, predicted_variance=SCREAMING_SNAKE_CASE_, prev_timestep=SCREAMING_SNAKE_CASE_, ) if self.variance_type == "fixed_small_log": UpperCAmelCase_: Optional[int] = variance elif self.variance_type == "learned_range": UpperCAmelCase_: Dict = (0.5 * variance).exp() else: raise ValueError( f'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' """ for the UnCLIPScheduler.""" ) UpperCAmelCase_: int = variance * variance_noise UpperCAmelCase_: List[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_, pred_original_sample=SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples UpperCAmelCase_: Tuple = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype ) UpperCAmelCase_: Union[str, Any] = timesteps.to(original_samples.device ) UpperCAmelCase_: Dict = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase_: int = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase_: str = sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase_: Tuple = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase_: Optional[Any] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase_: Optional[int] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase_: List[str] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
82
0
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": a_ = pd.read_csv("""sample_data.csv""", header=None) a_ = df.shape[:1][0] # If you're using some other dataset input the target column a_ = df.iloc[:, 1:2] a_ = actual_data.values.reshape(len_data, 1) a_ = MinMaxScaler().fit_transform(actual_data) a_ = 10 a_ = 5 a_ = 20 a_ = len_data - periods * look_back a_ = actual_data[:division] a_ = actual_data[division - look_back :] a_ , a_ = [], [] a_ , a_ = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) a_ = np.array(train_x) a_ = np.array(test_x) a_ = np.array([list(i.ravel()) for i in train_y]) a_ = np.array([list(i.ravel()) for i in test_y]) a_ = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") a_ = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) a_ = model.predict(x_test)
330
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_config() __lowerCamelCase = 300 return config def lowerCamelCase ( self ): '''simple docstring''' ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = self.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = True __lowerCamelCase = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_choices __lowerCamelCase = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = () def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCamelCase = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def lowerCamelCase ( self ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def lowerCamelCase ( self ): '''simple docstring''' return @require_torch class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) __lowerCamelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) __lowerCamelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = 50265 __lowerCamelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) __lowerCamelCase = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = 50265 __lowerCamelCase = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
330
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
315
import math def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCamelCase : Union[str, Any] = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=1 , **SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" UpperCamelCase : Tuple = factor * value UpperCamelCase : Optional[int] = value while not is_prime(SCREAMING_SNAKE_CASE_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE_ ) return value
315
1
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar _snake_case = TypeVar("T") _snake_case = TypeVar("U") class UpperCAmelCase_ ( Generic[T, U]): def __init__( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = key _lowerCAmelCase : Any = val _lowerCAmelCase : DoubleLinkedListNode[T, U] | None = None _lowerCAmelCase : DoubleLinkedListNode[T, U] | None = None def __repr__( self): '''simple docstring''' return ( f"Node: key: {self.key}, val: {self.val}, " f"has next: {bool(self.next)}, has prev: {bool(self.prev)}" ) class UpperCAmelCase_ ( Generic[T, U]): def __init__( self): '''simple docstring''' _lowerCAmelCase : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(__a, __a) _lowerCAmelCase : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(__a, __a) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.rear, self.head def __repr__( self): '''simple docstring''' _lowerCAmelCase : Dict = ["DoubleLinkedList"] _lowerCAmelCase : str = self.head while node.next is not None: rep.append(str(__a)) _lowerCAmelCase : Tuple = node.next rep.append(str(self.rear)) return ",\n ".join(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _lowerCAmelCase : Union[str, Any] = node _lowerCAmelCase : Union[str, Any] = previous _lowerCAmelCase : Tuple = node _lowerCAmelCase : Optional[Any] = self.rear def snake_case__ ( self, __a): '''simple docstring''' if node.prev is None or node.next is None: return None _lowerCAmelCase : List[str] = node.next _lowerCAmelCase : Union[str, Any] = node.prev _lowerCAmelCase : Dict = None _lowerCAmelCase : Optional[Any] = None return node class UpperCAmelCase_ ( Generic[T, U]): lowerCamelCase__ = {} def __init__( self, __a): '''simple docstring''' _lowerCAmelCase : DoubleLinkedList[T, U] = DoubleLinkedList() _lowerCAmelCase : int = capacity _lowerCAmelCase : int = 0 _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self): '''simple docstring''' return ( f"CacheInfo(hits={self.hits}, misses={self.miss}, " f"capacity={self.capacity}, current size={self.num_keys})" ) def __contains__( self, __a): '''simple docstring''' return key in self.cache def snake_case__ ( self, __a): '''simple docstring''' if key in self.cache: self.hits += 1 _lowerCAmelCase : DoubleLinkedListNode[T, U] = self.cache[key] _lowerCAmelCase : Optional[int] = self.list.remove(self.cache[key]) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(__a) return node.val self.miss += 1 return None def snake_case__ ( self, __a, __a): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _lowerCAmelCase : str = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(__a) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _lowerCAmelCase : Union[str, Any] = DoubleLinkedListNode(__a, __a) self.list.add(self.cache[key]) self.num_keys += 1 else: # bump node to the end of the list, update value _lowerCAmelCase : Optional[Any] = self.list.remove(self.cache[key]) assert node is not None # node guaranteed to be in list _lowerCAmelCase : List[str] = value self.list.add(__a) @classmethod def snake_case__ ( cls, __a = 128): '''simple docstring''' def cache_decorator_inner(__a) -> Callable[..., U]: def cache_decorator_wrapper(*__a) -> U: if func not in cls.decorator_function_to_instance_map: _lowerCAmelCase : Tuple = LRUCache(__a) _lowerCAmelCase : Dict = cls.decorator_function_to_instance_map[func].get(args[0]) if result is None: _lowerCAmelCase : Optional[int] = func(*__a) cls.decorator_function_to_instance_map[func].put(args[0], __a) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(__a, "cache_info", __a) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
36
import argparse import copy def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = {} with open(_lowerCamelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _lowerCAmelCase : Tuple = [] _list.append([line.split()[1], line.split()[2]] ) _lowerCAmelCase : Any = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _lowerCAmelCase : str = [] _list.append([line.split()[0], line.split()[2]] ) _lowerCAmelCase : Any = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' with open(_lowerCamelCase ) as f: _lowerCAmelCase : str = f.read(1 ) _lowerCAmelCase : str = start_node _lowerCAmelCase : List[str] = [] _lowerCAmelCase : Any = start_node _lowerCAmelCase : str = 0 while visiting not in first_solution: _lowerCAmelCase : Dict = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_lowerCamelCase ) and k[0] not in first_solution: _lowerCAmelCase : List[str] = k[1] _lowerCAmelCase : List[Any] = k[0] first_solution.append(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = distance_of_first_solution + int(_lowerCamelCase ) _lowerCAmelCase : str = best_node first_solution.append(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _lowerCAmelCase : Tuple = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = [] for n in solution[1:-1]: _lowerCAmelCase : Dict = solution.index(_lowerCamelCase ) for kn in solution[1:-1]: _lowerCAmelCase : Dict = solution.index(_lowerCamelCase ) if n == kn: continue _lowerCAmelCase : Optional[int] = copy.deepcopy(_lowerCamelCase ) _lowerCAmelCase : int = kn _lowerCAmelCase : Dict = n _lowerCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _lowerCAmelCase : str = _tmp[_tmp.index(_lowerCamelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _lowerCAmelCase : Optional[Any] = distance + int(i[1] ) _tmp.append(_lowerCamelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _lowerCAmelCase : List[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _lowerCamelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : int = first_solution _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Tuple = distance_of_first_solution _lowerCAmelCase : Optional[int] = solution while count <= iters: _lowerCAmelCase : int = find_neighborhood(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = neighborhood[index_of_best_solution] _lowerCAmelCase : int = len(_lowerCamelCase ) - 1 _lowerCAmelCase : Union[str, Any] = False while not found: _lowerCAmelCase : Tuple = 0 while i < len(_lowerCamelCase ): if best_solution[i] != solution[i]: _lowerCAmelCase : str = best_solution[i] _lowerCAmelCase : Tuple = solution[i] break _lowerCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : Optional[Any] = best_solution[:-1] _lowerCAmelCase : Tuple = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _lowerCAmelCase : Union[str, Any] = cost _lowerCAmelCase : List[Any] = solution else: _lowerCAmelCase : Optional[Any] = index_of_best_solution + 1 _lowerCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] if len(_lowerCamelCase ) >= size: tabu_list.pop(0 ) _lowerCAmelCase : int = count + 1 return best_solution_ever, best_cost def A ( _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = generate_neighbours(args.File ) _lowerCAmelCase , _lowerCAmelCase : List[str] = generate_first_solution( args.File , _lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Any = tabu_search( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , args.Iterations , args.Size , ) print(F"Best solution: {best_sol}, with total distance: {best_cost}." ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
36
1
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): _lowerCAmelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCAmelCase = 12_8022 _lowerCAmelCase = 12_8028 @require_sentencepiece class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : Tuple = MaMaaaTokenizer __lowercase : List[Any] = False __lowercase : Any = False __lowercase : Optional[int] = True def UpperCAmelCase_ ( self ) -> List[str]: super().setUp() lowerCAmelCase__ : List[Any] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] lowerCAmelCase__ : List[Any] = dict(zip(__UpperCAmelCase ,range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ : int = Path(self.tmpdirname ) save_json(__UpperCAmelCase ,save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__UpperCAmelCase ,save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) lowerCAmelCase__ : Tuple = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self ,**__UpperCAmelCase ) -> Any: return MaMaaaTokenizer.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[int]: return ( "This is a test", "This is a test", ) def UpperCAmelCase_ ( self ) -> List[Any]: lowerCAmelCase__ : int = """</s>""" lowerCAmelCase__ : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) ,__UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : int = self.get_tokenizer() lowerCAmelCase__ : Union[str, Any] = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""</s>""" ) self.assertEqual(vocab_keys[1] ,"""<unk>""" ) self.assertEqual(vocab_keys[-1] ,"""<s>""" ) self.assertEqual(len(__UpperCAmelCase ) ,tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("""Skip this test while all models are still to be uploaded.""" ) def UpperCAmelCase_ ( self ) -> int: pass def UpperCAmelCase_ ( self ) -> List[Any]: lowerCAmelCase__ : Dict = self.get_tokenizer() lowerCAmelCase__ : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__UpperCAmelCase ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) ,[2, 3, 4, 5, 6] ,) lowerCAmelCase__ : Union[str, Any] = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(__UpperCAmelCase ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) lowerCAmelCase__ : Any = tokenizer.convert_tokens_to_string(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase ,"""This is a test""" ) @slow def UpperCAmelCase_ ( self ) -> Optional[int]: # fmt: off lowerCAmelCase__ : Dict = {"""input_ids""": [[12_8022, 11_0108, 397, 11, 3_8272, 2247, 12_4811, 285, 1_8105, 1586, 207, 7, 3_9534, 4428, 397, 1019, 1_8105, 1586, 207, 7, 4_1337, 1_6786, 241, 7, 2_0214, 17, 12_5690, 1_0398, 7, 4_4378, 5_8069, 6_8342, 7798, 7343, 11, 299, 3_3310, 4, 158, 3_7350, 9_4077, 4569, 299, 3_3310, 90, 4, 5_2840, 290, 4, 3_1270, 112, 299, 682, 4, 5_2840, 3_9953, 1_4079, 193, 5_2519, 9_0894, 1_7894, 12_0697, 11, 4_0445, 551, 17, 1019, 5_2519, 9_0894, 1_7756, 963, 11, 4_0445, 480, 17, 9792, 1120, 5173, 1393, 6240, 1_6786, 241, 12_0996, 28, 1245, 1393, 11_8240, 1_1123, 1019, 9_3612, 2691, 1_0618, 9_8058, 12_0409, 1928, 279, 4, 4_0683, 367, 178, 207, 1019, 103, 10_3121, 506, 6_5296, 5, 2], [12_8022, 2_1217, 367, 117, 12_5450, 128, 719, 7, 7308, 40, 9_3612, 1_2669, 1116, 1_6704, 71, 1_7785, 3699, 1_5592, 35, 144, 9584, 241, 1_1943, 713, 950, 799, 2247, 8_8427, 150, 149, 11_8813, 12_0706, 1019, 10_6906, 8_1518, 28, 1224, 2_2799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_8022, 1658, 12_3311, 5155, 5578, 4722, 279, 1_4947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase ,model_name="""facebook/m2m100_418M""" ,revision="""c168bae485c864188cf9aa0e4108b0b6934dc91e""" ,) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' __lowercase : str = '''facebook/m2m100_418M''' __lowercase : int = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] __lowercase : Any = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off __lowercase : List[Any] = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def UpperCAmelCase_ ( cls ) -> Any: lowerCAmelCase__ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name ,src_lang="""en""" ,tgt_lang="""fr""" ) lowerCAmelCase__ : str = 1 return cls def UpperCAmelCase_ ( self ) -> List[Any]: self.assertEqual(self.tokenizer.get_lang_id("""ar""" ) ,12_8006 ) self.assertEqual(self.tokenizer.get_lang_id("""en""" ) ,12_8022 ) self.assertEqual(self.tokenizer.get_lang_id("""ro""" ) ,12_8076 ) self.assertEqual(self.tokenizer.get_lang_id("""mr""" ) ,12_8063 ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : Any = self.tokenizer.get_vocab() self.assertEqual(len(__UpperCAmelCase ) ,self.tokenizer.vocab_size ) self.assertEqual(vocab["""<unk>"""] ,3 ) self.assertIn(self.tokenizer.get_lang_token("""en""" ) ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : List[str] = """en""" lowerCAmelCase__ : Any = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Tuple: self.assertIn(__UpperCAmelCase ,self.tokenizer.all_special_ids ) # fmt: off lowerCAmelCase__ : Tuple = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 1_4028, 136, 3286, 9706, 6, 9_0797, 6, 14_4012, 162, 8_8128, 3_0061, 5, 2] # fmt: on lowerCAmelCase__ : Optional[int] = self.tokenizer.decode(__UpperCAmelCase ,skip_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase ,__UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : Optional[int] = tempfile.mkdtemp() lowerCAmelCase__ : Optional[Any] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = MaMaaaTokenizer.from_pretrained(__UpperCAmelCase ) self.assertDictEqual(new_tok.lang_token_to_id ,__UpperCAmelCase ) @require_torch def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : str = """en""" lowerCAmelCase__ : str = """fr""" lowerCAmelCase__ : Tuple = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=__UpperCAmelCase ,return_tensors="""pt""" ) lowerCAmelCase__ : Dict = shift_tokens_right( batch["""labels"""] ,self.tokenizer.pad_token_id ,self.tokenizer.eos_token_id ) for k in batch: lowerCAmelCase__ : Union[str, Any] = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : Tuple = """mr""" self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) lowerCAmelCase__ : int = """zh""" self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) @require_torch def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : List[Any] = """mr""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) lowerCAmelCase__ : Optional[Any] = """zh""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : str = self.tokenizer._build_translation_inputs("""A test""" ,return_tensors="""pt""" ,src_lang="""en""" ,tgt_lang="""ar""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) ,{ # en_XX, A, test, EOS """input_ids""": [[12_8022, 58, 4183, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 12_8006, } ,)
184
'''simple docstring''' import os def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = len(grid[0] ) lowerCAmelCase__ : int = len(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Optional[Any] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(UpperCamelCase ): for j in range(n_rows - 3 ): lowerCAmelCase__ : str = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowerCAmelCase__ : Optional[int] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowerCAmelCase__ : Optional[int] = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowerCAmelCase__ : Tuple = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowerCAmelCase__ : Dict = max( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) if max_product > largest: lowerCAmelCase__ : Any = max_product return largest def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : List[str] = [] with open(os.path.dirname(UpperCamelCase ) + """/grid.txt""" ) as file: for line in file: grid.append(line.strip("""\n""" ).split(""" """ ) ) lowerCAmelCase__ : Dict = [[int(UpperCamelCase ) for i in grid[j]] for j in range(len(UpperCamelCase ) )] return largest_product(UpperCamelCase ) if __name__ == "__main__": print(solution())
184
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _snake_case( ) -> str: lowercase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=_lowerCamelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=_lowerCamelCase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=_lowerCamelCase ) return parser.parse_args() def _snake_case( ) -> Optional[Any]: lowercase : List[Any] = parse_args() # Import training_script as a module. lowercase : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase : Union[str, Any] = script_fpath.stem lowercase : Optional[Any] = importlib.import_module(_lowerCamelCase ) # Patch sys.argv lowercase : Tuple = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
20
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[Any] = logging.get_logger(__name__) _a : Any = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = "swinv2" _UpperCamelCase : List[str] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , a__=224 , a__=4 , a__=3 , a__=96 , a__=[2, 2, 6, 2] , a__=[3, 6, 12, 24] , a__=7 , a__=4.0 , a__=True , a__=0.0 , a__=0.0 , a__=0.1 , a__="gelu" , a__=False , a__=0.0_2 , a__=1e-5 , a__=32 , **a__ , ): super().__init__(**a__ ) _lowerCAmelCase : int = image_size _lowerCAmelCase : Optional[Any] = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : List[Any] = embed_dim _lowerCAmelCase : Optional[int] = depths _lowerCAmelCase : List[Any] = len(a__ ) _lowerCAmelCase : Any = num_heads _lowerCAmelCase : Tuple = window_size _lowerCAmelCase : Tuple = mlp_ratio _lowerCAmelCase : Any = qkv_bias _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : str = drop_path_rate _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : List[str] = use_absolute_embeddings _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Any = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : Tuple = int(embed_dim * 2 ** (len(a__ ) - 1) ) _lowerCAmelCase : Tuple = (0, 0, 0, 0)
44
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['DeiTFeatureExtractor'] __A = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
364
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , )-> str: lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_input_mask lowerCamelCase_ =use_token_type_ids lowerCamelCase_ =use_labels lowerCamelCase_ =vocab_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_act lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =type_sequence_label_size lowerCamelCase_ =initializer_range lowerCamelCase_ =num_labels lowerCamelCase_ =num_choices lowerCamelCase_ =scope def _snake_case ( self )-> int: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ =None if self.use_input_mask: lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ =None if self.use_token_type_ids: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ =ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self )-> Dict: return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def _snake_case ( self )-> Tuple: ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) =self.prepare_config_and_inputs() lowerCamelCase_ =True lowerCamelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Optional[int]: lowerCamelCase_ =NezhaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> Tuple: lowerCamelCase_ =True lowerCamelCase_ =NezhaModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , ) lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> List[str]: lowerCamelCase_ =NezhaForMaskedLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Tuple: lowerCamelCase_ =NezhaForNextSentencePrediction(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> int: lowerCamelCase_ =NezhaForPreTraining(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , next_sentence_label=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Dict: lowerCamelCase_ =NezhaForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> int: lowerCamelCase_ =self.num_labels lowerCamelCase_ =NezhaForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Dict: lowerCamelCase_ =self.num_labels lowerCamelCase_ =NezhaForTokenClassification(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Tuple: lowerCamelCase_ =self.num_choices lowerCamelCase_ =NezhaForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self )-> List[str]: lowerCamelCase_ =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) =config_and_inputs lowerCamelCase_ ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:Optional[int] = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) _UpperCamelCase:int = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase:Tuple = True def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False )-> Optional[Any]: lowerCamelCase_ =super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(_SCREAMING_SNAKE_CASE ): lowerCamelCase_ =torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def _snake_case ( self )-> Dict: lowerCamelCase_ =NezhaModelTester(self ) lowerCamelCase_ =ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def _snake_case ( self )-> List[str]: self.config_tester.run_common_tests() def _snake_case ( self )-> str: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: # This regression test was failing with PyTorch < 1.3 ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) =self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase_ =None self.model_tester.create_and_check_model_as_decoder( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) def _snake_case ( self )-> Dict: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Tuple: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Any: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )-> Union[str, Any]: for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =NezhaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu def _snake_case ( self )-> Any: lowerCamelCase_ , lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return lowerCamelCase_ =True lowerCamelCase_ =model_class(config=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.jit.trace( _SCREAMING_SNAKE_CASE , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , """bert.pt""" ) ) lowerCamelCase_ =torch.jit.load(os.path.join(_SCREAMING_SNAKE_CASE , """bert.pt""" ) , map_location=_SCREAMING_SNAKE_CASE ) loaded(inputs_dict["""input_ids"""].to(_SCREAMING_SNAKE_CASE ) , inputs_dict["""attention_mask"""].to(_SCREAMING_SNAKE_CASE ) ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase): @slow def _snake_case ( self )-> Dict: lowerCamelCase_ =NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" ) lowerCamelCase_ =torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ =torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] lowerCamelCase_ =torch.Size((1, 6, 768) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" ) lowerCamelCase_ =torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ =torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] lowerCamelCase_ =torch.Size((1, 6, 2_1128) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
49
0
"""simple docstring""" from manim import * class _lowerCAmelCase ( lowercase ): """simple docstring""" def _lowercase ( self : Any ): __lowercase = Rectangle(height=0.5, width=0.5 ) __lowercase = Rectangle(height=0.25, width=0.25 ) __lowercase = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0 ) __lowercase = [mem.copy() for i in range(6 )] __lowercase = [mem.copy() for i in range(6 )] __lowercase = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0 ) __lowercase = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0 ) __lowercase = VGroup(UpperCAmelCase__, UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0 ) __lowercase = Text("CPU", font_size=2_4 ) __lowercase = Group(UpperCAmelCase__, UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0.5, aligned_edge=UpperCAmelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase__ ) __lowercase = [mem.copy() for i in range(4 )] __lowercase = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0 ) __lowercase = Text("GPU", font_size=2_4 ) __lowercase = Group(UpperCAmelCase__, UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0.5, aligned_edge=UpperCAmelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase__ ) __lowercase = [mem.copy() for i in range(6 )] __lowercase = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0 ) __lowercase = Text("Model", font_size=2_4 ) __lowercase = Group(UpperCAmelCase__, UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0.5, aligned_edge=UpperCAmelCase__ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase__ ) __lowercase = [] __lowercase = [] __lowercase = [] for i, rect in enumerate(UpperCAmelCase__ ): rect.set_stroke(UpperCAmelCase__ ) __lowercase = Rectangle(height=0.46 / 4, width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase__, opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ), buff=0.02, direction=UpperCAmelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0], direction=UpperCAmelCase__, buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1], direction=UpperCAmelCase__, buff=0.0 ) self.add(UpperCAmelCase__ ) model_cpu_arr.append(UpperCAmelCase__ ) self.add(*UpperCAmelCase__, *UpperCAmelCase__, *UpperCAmelCase__ ) __lowercase = [mem.copy() for i in range(6 )] __lowercase = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0 ) __lowercase = Text("Loaded Checkpoint", font_size=2_4 ) __lowercase = Group(UpperCAmelCase__, UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0.5, aligned_edge=UpperCAmelCase__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(UpperCAmelCase__ ) __lowercase = [] __lowercase = [] for i, rect in enumerate(UpperCAmelCase__ ): __lowercase = fill.copy().set_fill(UpperCAmelCase__, opacity=0.7 ) target.move_to(UpperCAmelCase__ ) ckpt_arr.append(UpperCAmelCase__ ) __lowercase = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(UpperCAmelCase__ ) self.add(*UpperCAmelCase__, *UpperCAmelCase__ ) __lowercase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __lowercase = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""", font_size=1_8, ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""", font_size=1_8, ) blue_text.next_to(UpperCAmelCase__, DOWN * 2.4, aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase__ ) __lowercase = MarkupText( F"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""", font_size=2_4, ) step_a.move_to([2, 2, 0] ) __lowercase = [meta_mem.copy() for i in range(6 )] __lowercase = [meta_mem.copy() for i in range(6 )] __lowercase = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0 ) __lowercase = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0 ) __lowercase = VGroup(UpperCAmelCase__, UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0 ) __lowercase = Text("Disk", font_size=2_4 ) __lowercase = Group(UpperCAmelCase__, UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0.5, aligned_edge=UpperCAmelCase__ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(UpperCAmelCase__, run_time=3 ), Write(UpperCAmelCase__, run_time=1 ), Create(UpperCAmelCase__, run_time=1 ) ) __lowercase = [] for i, rect in enumerate(UpperCAmelCase__ ): __lowercase = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(UpperCAmelCase__, run_time=1.5 ) ) self.play(*UpperCAmelCase__ ) self.play(FadeOut(UpperCAmelCase__ ) ) __lowercase = MarkupText(F"""Then, the checkpoint is removed from memory\nthrough garbage collection.""", font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase__, run_time=3 ) ) self.play( FadeOut(UpperCAmelCase__, UpperCAmelCase__, *UpperCAmelCase__, *UpperCAmelCase__ ), ) self.wait()
17
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=3 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=10 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[1, 1, 2, 1] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=3 , UpperCAmelCase=None , ): """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = embeddings_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_act _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = len(UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = TFResNetModel(config=UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFResNetForImageClassification(UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCamelCase__ = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TFResNetModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self ): """simple docstring""" return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCAmelCase = layer_type _UpperCAmelCase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def UpperCamelCase ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFResNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __A ( )-> Optional[Any]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __lowerCamelCase ( unittest.TestCase): """simple docstring""" @cached_property def UpperCamelCase ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=UpperCAmelCase , return_tensors='tf' ) # forward pass _UpperCAmelCase = model(**UpperCAmelCase ) # verify the logits _UpperCAmelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _UpperCAmelCase = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , UpperCAmelCase , atol=1e-4 ) )
39
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case : int = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[str] = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Any = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[str] = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys snake_case : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
109
def __lowercase ( __lowerCAmelCase : int ): if num <= 0: raise ValueError('Input must be a positive integer' ) a__ = [True] * (num + 1) a__ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , __lowerCAmelCase ): a__ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() snake_case : Optional[Any] = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
109
1
"""simple docstring""" import os def a__ ( SCREAMING_SNAKE_CASE : str = "matrix.txt" ): '''simple docstring''' with open(os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) as in_file: lowerCAmelCase : Any = in_file.read() lowerCAmelCase : Optional[Any] = [[int(SCREAMING_SNAKE_CASE ) for cell in row.split("," )] for row in data.strip().splitlines()] lowerCAmelCase : Union[str, Any] = [[0 for cell in row] for row in grid] lowerCAmelCase : Dict = len(grid[0] ) lowerCAmelCase : Tuple = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] lowerCAmelCase : str = grid[0][0] for i in range(1 , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Union[str, Any] = grid[0][i] + dp[0][i - 1] for i in range(1 , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Optional[int] = grid[i][0] + dp[i - 1][0] for i in range(1 , SCREAMING_SNAKE_CASE ): for j in range(1 , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Tuple = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F"{solution() = }")
108
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def UpperCamelCase ( _lowerCAmelCase : Any, _lowerCAmelCase : List[str], _lowerCAmelCase : Dict ) -> str: _UpperCAmelCase : Union[str, Any] = OmegaConf.load(_lowerCAmelCase ) _UpperCAmelCase : str = torch.load(_lowerCAmelCase, map_location="""cpu""" )["""model"""] _UpperCAmelCase : Dict = list(state_dict.keys() ) # extract state_dict for VQVAE _UpperCAmelCase : List[str] = {} _UpperCAmelCase : List[str] = """first_stage_model.""" for key in keys: if key.startswith(_lowerCAmelCase ): _UpperCAmelCase : Dict = state_dict[key] # extract state_dict for UNetLDM _UpperCAmelCase : str = {} _UpperCAmelCase : Tuple = """model.diffusion_model.""" for key in keys: if key.startswith(_lowerCAmelCase ): _UpperCAmelCase : Tuple = state_dict[key] _UpperCAmelCase : Optional[Any] = config.model.params.first_stage_config.params _UpperCAmelCase : Optional[Any] = config.model.params.unet_config.params _UpperCAmelCase : List[str] = VQModel(**_lowerCAmelCase ).eval() vqvae.load_state_dict(_lowerCAmelCase ) _UpperCAmelCase : List[Any] = UNetLDMModel(**_lowerCAmelCase ).eval() unet.load_state_dict(_lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = DDIMScheduler( timesteps=config.model.params.timesteps, beta_schedule="""scaled_linear""", beta_start=config.model.params.linear_start, beta_end=config.model.params.linear_end, clip_sample=_lowerCAmelCase, ) _UpperCAmelCase : Tuple = LDMPipeline(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) pipeline.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowerCamelCase__ : List[str] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
246
0
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]: A__ = list(range(len(lowercase_ ) ) ) A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ = 0 A__ = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ = 1 max_value += value[i] capacity -= weight[i] else: A__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
367
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ ( A_ ): lowercase__ = ['''image_processor''', '''tokenizer'''] lowercase__ = '''AutoImageProcessor''' lowercase__ = '''AutoTokenizer''' def __init__( self : str , snake_case_ : Dict , snake_case_ : List[str] ) -> str: '''simple docstring''' super().__init__(snake_case_ , snake_case_ ) A__ = self.image_processor def __call__( self : int , snake_case_ : Any=None , snake_case_ : Any=None , snake_case_ : Union[str, Any]=None , **snake_case_ : Optional[int] ) -> Optional[int]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: A__ = self.tokenizer(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if images is not None: A__ = self.image_processor(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if text is not None and images is not None: A__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case_ ) , tensor_type=snake_case_ ) def __magic_name__ ( self : Optional[int] , *snake_case_ : Union[str, Any] , **snake_case_ : List[Any] ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def __magic_name__ ( self : List[str] , *snake_case_ : List[str] , **snake_case_ : Optional[int] ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def __magic_name__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
230
0
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class A : """simple docstring""" def __init__( self : Optional[Any],lowercase_ : Optional[int],lowercase_ : Optional[int]=2,lowercase_ : Union[str, Any]=8,lowercase_ : int=True,lowercase_ : Union[str, Any]=True,lowercase_ : str=True,lowercase_ : str=True,lowercase_ : int=9_9,lowercase_ : int=1_6,lowercase_ : Union[str, Any]=5,lowercase_ : List[Any]=2,lowercase_ : Optional[Any]=3_6,lowercase_ : List[Any]="gelu",lowercase_ : str=0.0,lowercase_ : List[str]=0.0,lowercase_ : str=5_1_2,lowercase_ : Optional[int]=1_6,lowercase_ : int=2,lowercase_ : Optional[int]=0.02,lowercase_ : Union[str, Any]=3,lowercase_ : Tuple=4,lowercase_ : str=None,)-> str: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size],self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) A__ = ids_tensor([self.batch_size],self.num_choices ) A__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Optional[Any] )-> str: '''simple docstring''' return MraConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=lowercase_,initializer_range=self.initializer_range,) def snake_case__ ( self : Union[str, Any] )-> Optional[int]: '''simple docstring''' A__ = self.get_config() A__ = 3_0_0 return config def snake_case__ ( self : List[Any] )-> Tuple: '''simple docstring''' ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = self.prepare_config_and_inputs() A__ = True A__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A__ = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case__ ( self : int,lowercase_ : Dict,lowercase_ : Optional[int],lowercase_ : Tuple,lowercase_ : List[str],lowercase_ : Dict,lowercase_ : Tuple,lowercase_ : Tuple )-> str: '''simple docstring''' A__ = MraModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_ ) A__ = model(lowercase_,token_type_ids=lowercase_ ) A__ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Dict,lowercase_ : Tuple,lowercase_ : Any,lowercase_ : Tuple,lowercase_ : Dict,lowercase_ : Optional[Any],lowercase_ : Optional[Any],lowercase_ : Dict,lowercase_ : str,lowercase_ : Dict,)-> List[str]: '''simple docstring''' A__ = True A__ = MraModel(lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model( lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_,encoder_hidden_states=lowercase_,encoder_attention_mask=lowercase_,) A__ = model( lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_,encoder_hidden_states=lowercase_,) A__ = model(lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : List[Any],lowercase_ : List[str],lowercase_ : Any,lowercase_ : int,lowercase_ : Optional[Any],lowercase_ : List[str],lowercase_ : Dict,lowercase_ : str )-> Optional[int]: '''simple docstring''' A__ = MraForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_,labels=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : int,lowercase_ : int,lowercase_ : Optional[Any],lowercase_ : Tuple,lowercase_ : Dict,lowercase_ : Union[str, Any],lowercase_ : Dict,lowercase_ : Optional[Any] )-> Dict: '''simple docstring''' A__ = MraForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model( lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_,start_positions=lowercase_,end_positions=lowercase_,) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def snake_case__ ( self : Optional[Any],lowercase_ : str,lowercase_ : Union[str, Any],lowercase_ : Union[str, Any],lowercase_ : List[Any],lowercase_ : Optional[Any],lowercase_ : str,lowercase_ : Any )-> Optional[int]: '''simple docstring''' A__ = self.num_labels A__ = MraForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_,labels=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def snake_case__ ( self : List[Any],lowercase_ : List[str],lowercase_ : Optional[Any],lowercase_ : Union[str, Any],lowercase_ : List[Any],lowercase_ : Any,lowercase_ : Optional[int],lowercase_ : int )-> int: '''simple docstring''' A__ = self.num_labels A__ = MraForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_,labels=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : Dict,lowercase_ : List[Any],lowercase_ : int,lowercase_ : Tuple,lowercase_ : Dict,lowercase_ : Tuple,lowercase_ : str,lowercase_ : List[str] )-> List[str]: '''simple docstring''' A__ = self.num_choices A__ = MraForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() A__ = token_type_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() A__ = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() A__ = model( lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_,labels=lowercase_,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def snake_case__ ( self : Dict )-> int: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = () def snake_case__ ( self : Any )-> List[Any]: '''simple docstring''' A__ = MraModelTester(self ) A__ = ConfigTester(self,config_class=lowercase_,hidden_size=3_7 ) def snake_case__ ( self : Dict )-> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self : List[Any] )-> str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def snake_case__ ( self : int )-> int: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(*lowercase_ ) def snake_case__ ( self : Optional[int] )-> str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def snake_case__ ( self : Optional[Any] )-> Any: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase_ ) def snake_case__ ( self : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) def snake_case__ ( self : Union[str, Any] )-> str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def snake_case__ ( self : Optional[Any] )-> Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @slow def snake_case__ ( self : Any )-> List[Any]: '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = MraModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip(reason='MRA does not output attentions' ) def snake_case__ ( self : Tuple )-> str: '''simple docstring''' return @require_torch class A ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self : int )-> str: '''simple docstring''' A__ = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) A__ = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): A__ = model(lowercase_ )[0] A__ = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape,lowercase_ ) A__ = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3],lowercase_,atol=1E-4 ) ) @slow def snake_case__ ( self : Optional[int] )-> Any: '''simple docstring''' A__ = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) A__ = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): A__ = model(lowercase_ )[0] A__ = 5_0_2_6_5 A__ = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape,lowercase_ ) A__ = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3],lowercase_,atol=1E-4 ) ) @slow def snake_case__ ( self : List[str] )-> Union[str, Any]: '''simple docstring''' A__ = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) A__ = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): A__ = model(lowercase_ )[0] A__ = 5_0_2_6_5 A__ = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape,lowercase_ ) A__ = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3],lowercase_,atol=1E-4 ) )
7
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowercase_ = False @skip_mps class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = StableDiffusionAttendAndExcitePipeline lowerCamelCase = False lowerCamelCase = TEXT_TO_IMAGE_PARAMS lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def snake_case__ ( cls : Any )-> Optional[Any]: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(lowercase_ ) @classmethod def snake_case__ ( cls : Optional[Any] )-> Dict: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(lowercase_ ) def snake_case__ ( self : List[str] )-> int: '''simple docstring''' torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(3_2, 6_4),layers_per_block=1,sample_size=3_2,in_channels=4,out_channels=4,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'),up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'),cross_attention_dim=3_2,attention_head_dim=(2, 4),use_linear_projection=lowercase_,) A__ = DDIMScheduler( beta_start=0.00_085,beta_end=0.012,beta_schedule='scaled_linear',clip_sample=lowercase_,set_alpha_to_one=lowercase_,) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[3_2, 6_4],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=1_2_8,) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=3_2,intermediate_size=3_7,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,hidden_act='gelu',projection_dim=5_1_2,) A__ = CLIPTextModel(lowercase_ ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def snake_case__ ( self : Tuple,lowercase_ : str,lowercase_ : List[Any]=0 )-> int: '''simple docstring''' if str(lowercase_ ).startswith('mps' ): A__ = torch.manual_seed(lowercase_ ) else: A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) A__ = A__ = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def snake_case__ ( self : List[str] )-> Optional[Any]: '''simple docstring''' A__ = 'cpu' A__ = self.get_dummy_components() A__ = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) A__ = self.get_dummy_inputs(lowercase_ ) A__ = pipe(**lowercase_ ).images A__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape,(1, 6_4, 6_4, 3) ) A__ = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) A__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase_,1E-3 ) def snake_case__ ( self : str )-> Optional[Any]: '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def snake_case__ ( self : str )-> int: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case__ ( self : str )-> Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2,expected_max_diff=7E-4 ) def snake_case__ ( self : Optional[Any] )-> int: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def snake_case__ ( self : Union[str, Any] )-> str: '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def snake_case__ ( self : Dict )-> Any: '''simple docstring''' super().test_save_load_local(expected_max_difference=5E-4 ) def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class A ( unittest.TestCase ): """simple docstring""" @classmethod def snake_case__ ( cls : Any )-> Optional[int]: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(lowercase_ ) @classmethod def snake_case__ ( cls : int )-> List[Any]: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(lowercase_ ) def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : Union[str, Any] )-> List[Any]: '''simple docstring''' A__ = torch.manual_seed(5_1 ) A__ = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4',safety_checker=lowercase_,torch_dtype=torch.floataa ) pipe.to('cuda' ) A__ = 'a painting of an elephant with glasses' A__ = [5, 7] A__ = pipe( prompt=lowercase_,token_indices=lowercase_,guidance_scale=7.5,generator=lowercase_,num_inference_steps=5,max_iter_to_alter=5,output_type='numpy',).images[0] A__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5E-1
7
1
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class A_ ( snake_case__ ): def __init__(self :Tuple )-> List[Any]: __A = [] def _lowerCAmelCase (self :Dict , _UpperCamelCase :Optional[Any] , _UpperCamelCase :List[Any] , _UpperCamelCase :Tuple , **_UpperCamelCase :Optional[Any] )-> Optional[Any]: self.events.append('''on_init_end''' ) def _lowerCAmelCase (self :List[str] , _UpperCamelCase :str , _UpperCamelCase :Any , _UpperCamelCase :str , **_UpperCamelCase :Optional[Any] )-> List[str]: self.events.append('''on_train_begin''' ) def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :Tuple , _UpperCamelCase :Tuple , _UpperCamelCase :int , **_UpperCamelCase :Any )-> str: self.events.append('''on_train_end''' ) def _lowerCAmelCase (self :Tuple , _UpperCamelCase :Optional[int] , _UpperCamelCase :str , _UpperCamelCase :int , **_UpperCamelCase :Optional[int] )-> Tuple: self.events.append('''on_epoch_begin''' ) def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :str , _UpperCamelCase :Dict , _UpperCamelCase :Tuple , **_UpperCamelCase :List[Any] )-> List[Any]: self.events.append('''on_epoch_end''' ) def _lowerCAmelCase (self :Any , _UpperCamelCase :int , _UpperCamelCase :int , _UpperCamelCase :Any , **_UpperCamelCase :List[Any] )-> Any: self.events.append('''on_step_begin''' ) def _lowerCAmelCase (self :str , _UpperCamelCase :Dict , _UpperCamelCase :Any , _UpperCamelCase :Dict , **_UpperCamelCase :Tuple )-> Tuple: self.events.append('''on_step_end''' ) def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :Any , _UpperCamelCase :Optional[int] , _UpperCamelCase :List[str] , **_UpperCamelCase :Optional[int] )-> Dict: self.events.append('''on_evaluate''' ) def _lowerCAmelCase (self :List[Any] , _UpperCamelCase :Tuple , _UpperCamelCase :Optional[int] , _UpperCamelCase :int , **_UpperCamelCase :List[str] )-> List[Any]: self.events.append('''on_predict''' ) def _lowerCAmelCase (self :Tuple , _UpperCamelCase :List[Any] , _UpperCamelCase :Optional[int] , _UpperCamelCase :Any , **_UpperCamelCase :Optional[Any] )-> Any: self.events.append('''on_save''' ) def _lowerCAmelCase (self :List[Any] , _UpperCamelCase :Union[str, Any] , _UpperCamelCase :Any , _UpperCamelCase :List[str] , **_UpperCamelCase :Union[str, Any] )-> Optional[int]: self.events.append('''on_log''' ) def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :Optional[Any] , _UpperCamelCase :List[str] , _UpperCamelCase :Optional[Any] , **_UpperCamelCase :List[str] )-> List[Any]: self.events.append('''on_prediction_step''' ) @require_torch class A_ ( unittest.TestCase ): def _lowerCAmelCase (self :Optional[int] )-> int: __A = tempfile.mkdtemp() def _lowerCAmelCase (self :List[str] )-> List[Any]: shutil.rmtree(self.output_dir ) def _lowerCAmelCase (self :List[Any] , _UpperCamelCase :List[str]=0 , _UpperCamelCase :int=0 , _UpperCamelCase :Optional[Any]=64 , _UpperCamelCase :Optional[Any]=64 , _UpperCamelCase :Optional[int]=None , _UpperCamelCase :Any=False , **_UpperCamelCase :List[str] )-> Optional[int]: __A = RegressionDataset(length=UpperCAmelCase_ ) __A = RegressionDataset(length=UpperCAmelCase_ ) __A = RegressionModelConfig(a=UpperCAmelCase_ , b=UpperCAmelCase_ ) __A = RegressionPreTrainedModel(UpperCAmelCase_ ) __A = TrainingArguments(self.output_dir , disable_tqdm=UpperCAmelCase_ , report_to=[] , **UpperCAmelCase_ ) return Trainer( UpperCAmelCase_ , UpperCAmelCase_ , train_dataset=UpperCAmelCase_ , eval_dataset=UpperCAmelCase_ , callbacks=UpperCAmelCase_ , ) def _lowerCAmelCase (self :int , _UpperCamelCase :int , _UpperCamelCase :List[Any] )-> Any: self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) # Order doesn't matter __A = sorted(UpperCAmelCase_ , key=lambda _UpperCamelCase : cb.__name__ if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else cb.__class__.__name__ ) __A = sorted(UpperCAmelCase_ , key=lambda _UpperCamelCase : cb.__name__ if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else cb.__class__.__name__ ) for cba, cba in zip(UpperCAmelCase_ , UpperCAmelCase_ ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(UpperCAmelCase_ , cba.__class__ ) elif not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(cba.__class__ , UpperCAmelCase_ ) else: self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def _lowerCAmelCase (self :Tuple , _UpperCamelCase :Optional[Any] )-> Optional[Any]: __A = ["on_init_end", "on_train_begin"] __A = 0 __A = len(trainer.get_eval_dataloader() ) __A = ["on_prediction_step"] * len(trainer.get_eval_dataloader() ) + ["on_log", "on_evaluate"] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(UpperCAmelCase_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _lowerCAmelCase (self :str )-> Any: __A = self.get_trainer() __A = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_ ) # Callbacks passed at init are added to the default callbacks __A = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(UpperCAmelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __A = self.get_trainer(disable_tqdm=UpperCAmelCase_ ) __A = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_ ) def _lowerCAmelCase (self :Any )-> Optional[int]: __A = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __A = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(UpperCAmelCase_ ) expected_callbacks.remove(UpperCAmelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_ ) __A = self.get_trainer() __A = trainer.pop_callback(UpperCAmelCase_ ) self.assertEqual(cb.__class__ , UpperCAmelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_ ) trainer.add_callback(UpperCAmelCase_ ) expected_callbacks.insert(0 , UpperCAmelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_ ) # We can also add, pop, or remove by instance __A = self.get_trainer() __A = trainer.callback_handler.callbacks[0] trainer.remove_callback(UpperCAmelCase_ ) expected_callbacks.remove(UpperCAmelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_ ) __A = self.get_trainer() __A = trainer.callback_handler.callbacks[0] __A = trainer.pop_callback(UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_ ) trainer.add_callback(UpperCAmelCase_ ) expected_callbacks.insert(0 , UpperCAmelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_ ) def _lowerCAmelCase (self :int )-> Optional[Any]: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' , category=UpperCAmelCase_ ) __A = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __A = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_ ) ) # Independent log/save/eval __A = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() __A = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_ ) ) __A = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() __A = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_ ) ) __A = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='''steps''' ) trainer.train() __A = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_ ) ) __A = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='''epoch''' ) trainer.train() __A = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_ ) ) # A bit of everything __A = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='''steps''' , ) trainer.train() __A = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __A = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(UpperCAmelCase_ ) in warn_mock.call_args[0][0]
365
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _a ( lowerCamelCase: Dict=None ) -> Tuple: '''simple docstring''' if subparsers is not None: __A = subparsers.add_parser('''test''' ) else: __A = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=lowerCamelCase , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase ) return parser def _a ( lowerCamelCase: Optional[int] ) -> str: '''simple docstring''' __A = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: __A = script_name else: __A = F"""--config_file={args.config_file} {script_name}""" __A = ['''accelerate-launch'''] + test_args.split() __A = execute_subprocess_async(lowerCamelCase , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def _a ( ) -> str: '''simple docstring''' __A = test_command_parser() __A = parser.parse_args() test_command(lowerCamelCase ) if __name__ == "__main__": main()
250
0