code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'canine' def __init__( self : str ,lowercase__ : Any=7_6_8 ,lowercase__ : List[str]=1_2 ,lowercase__ : Tuple=1_2 ,lowercase__ : List[Any]=3_0_7_2 ,lowercase__ : List[str]="gelu" ,lowercase__ : Optional[Any]=0.1 ,lowercase__ : Union[str, Any]=0.1 ,lowercase__ : Dict=1_6_3_8_4 ,lowercase__ : Tuple=1_6 ,lowercase__ : Any=0.0_2 ,lowercase__ : str=1e-1_2 ,lowercase__ : str=0 ,lowercase__ : Tuple=0xe_000 ,lowercase__ : Optional[int]=0xe_001 ,lowercase__ : List[str]=4 ,lowercase__ : List[str]=4 ,lowercase__ : List[Any]=8 ,lowercase__ : Optional[int]=1_6_3_8_4 ,lowercase__ : Union[str, Any]=1_2_8 ,**lowercase__ : List[str] ,): super().__init__(pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,**lowercase__ ) __lowercase = max_position_embeddings __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = type_vocab_size __lowercase = layer_norm_eps # Character config: __lowercase = downsampling_rate __lowercase = upsampling_kernel_size __lowercase = num_hash_functions __lowercase = num_hash_buckets __lowercase = local_transformer_stride
104
class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =n lowerCamelCase__: Tuple =[None] * self.n lowerCamelCase__: str =0 # index of the first element lowerCamelCase__: Tuple =0 lowerCamelCase__: Optional[Any] =0 def __len__(self : str) ->int: '''simple docstring''' return self.size def SCREAMING_SNAKE_CASE_ (self : int) ->bool: '''simple docstring''' return self.size == 0 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL") lowerCamelCase__: List[Any] =data lowerCamelCase__: Dict =(self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW") lowerCamelCase__: Optional[Any] =self.array[self.front] lowerCamelCase__: Optional[int] =None lowerCamelCase__: Dict =(self.front + 1) % self.n self.size -= 1 return temp
10
0
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename _snake_case = "http://www.mocksite.com/file1.txt" _snake_case = "\"text\": [\"foo\", \"foo\"]" _snake_case = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class UpperCAmelCase_ : lowerCamelCase__ = 200 lowerCamelCase__ = {"""Content-Length""": """100"""} lowerCamelCase__ = {} def snake_case__ ( self, **__a): '''simple docstring''' return [bytes(lowercase_, "utf-8")] def A ( *_lowerCamelCase , **_lowerCamelCase ): '''simple docstring''' return MockResponse() @pytest.mark.parametrize("urls_type" , [str, list, dict] ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' import requests monkeypatch.setattr(__lowerCamelCase , "request" , __lowerCamelCase ) _lowerCAmelCase : Tuple = URL if issubclass(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = url elif issubclass(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase : Tuple = [url] elif issubclass(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase : List[str] = {"train": url} _lowerCAmelCase : Union[str, Any] = "dummy" _lowerCAmelCase : Optional[Any] = "downloads" _lowerCAmelCase : Optional[int] = tmp_path _lowerCAmelCase : List[str] = DownloadConfig( cache_dir=os.path.join(__lowerCamelCase , __lowerCamelCase ) , use_etag=__lowerCamelCase , ) _lowerCAmelCase : List[Any] = DownloadManager(dataset_name=__lowerCamelCase , download_config=__lowerCamelCase ) _lowerCAmelCase : List[Any] = dl_manager.download(__lowerCamelCase ) _lowerCAmelCase : List[Any] = urls for downloaded_paths in [downloaded_paths]: if isinstance(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase : str = [downloaded_paths] _lowerCAmelCase : int = [urls] elif isinstance(__lowerCamelCase , __lowerCamelCase ): assert "train" in downloaded_paths.keys() _lowerCAmelCase : Tuple = downloaded_paths.values() _lowerCAmelCase : str = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__lowerCamelCase , __lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _lowerCAmelCase : List[str] = Path(__lowerCamelCase ) _lowerCAmelCase : List[str] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _lowerCAmelCase : Union[str, Any] = downloaded_path.read_text() assert content == CONTENT _lowerCAmelCase : str = downloaded_path.with_suffix(".json" ) assert metadata_downloaded_path.exists() _lowerCAmelCase : Dict = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("paths_type" , [str, list, dict] ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = str(__lowerCamelCase ) if issubclass(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase : List[str] = filename elif issubclass(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase : Optional[int] = [filename] elif issubclass(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase : Optional[Any] = {"train": filename} _lowerCAmelCase : Optional[int] = "dummy" _lowerCAmelCase : List[Any] = xz_file.parent _lowerCAmelCase : List[Any] = "extracted" _lowerCAmelCase : Tuple = DownloadConfig( cache_dir=__lowerCamelCase , use_etag=__lowerCamelCase , ) _lowerCAmelCase : Any = DownloadManager(dataset_name=__lowerCamelCase , download_config=__lowerCamelCase ) _lowerCAmelCase : List[str] = dl_manager.extract(__lowerCamelCase ) _lowerCAmelCase : Dict = paths for extracted_paths in [extracted_paths]: if isinstance(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase : Optional[int] = [extracted_paths] _lowerCAmelCase : str = [paths] elif isinstance(__lowerCamelCase , __lowerCamelCase ): assert "train" in extracted_paths.keys() _lowerCAmelCase : str = extracted_paths.values() _lowerCAmelCase : Tuple = paths.values() assert extracted_paths for extracted_path, input_path in zip(__lowerCamelCase , __lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _lowerCAmelCase : Union[str, Any] = Path(__lowerCamelCase ) _lowerCAmelCase : List[str] = extracted_path.parts assert parts[-1] == hash_url_to_filename(__lowerCamelCase , etag=__lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _lowerCAmelCase : List[str] = extracted_path.read_text() _lowerCAmelCase : str = text_file.read_text() assert extracted_file_content == expected_file_content def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert path.endswith(".jsonl" ) for num_items, line in enumerate(__lowerCamelCase , start=1 ): _lowerCAmelCase : Any = json.loads(line.decode("utf-8" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("archive_jsonl" , ["tar_jsonl_path", "zip_jsonl_path"] ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = request.getfixturevalue(__lowerCamelCase ) _lowerCAmelCase : Dict = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): _test_jsonl(__lowerCamelCase , __lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("archive_nested_jsonl" , ["tar_nested_jsonl_path", "zip_nested_jsonl_path"] ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = request.getfixturevalue(__lowerCamelCase ) _lowerCAmelCase : int = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): _test_jsonl(__lowerCamelCase , __lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__lowerCamelCase ) , start=1 ): assert os.path.basename(__lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
351
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ort.SessionOptions() _lowerCAmelCase : int = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") _lowerCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") _lowerCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy") # using the PNDM scheduler by default _lowerCAmelCase : Optional[int] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "A red cat sitting on a park bench" _lowerCAmelCase : Optional[Any] = np.random.RandomState(0) _lowerCAmelCase : Any = pipe( prompt=__a, image=__a, mask_image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=15, generator=__a, output_type="np", ) _lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1E-2
300
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCAmelCase_ : def __init__( self, __a, __a=2, __a=True, __a=False, __a=10, __a=3, __a=32 * 8, __a=32 * 8, __a=4, __a=64, ): '''simple docstring''' _lowerCAmelCase : Dict = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : Tuple = is_training _lowerCAmelCase : Tuple = use_auxiliary_loss _lowerCAmelCase : Dict = num_queries _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Union[str, Any] = min_size _lowerCAmelCase : Tuple = max_size _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : Tuple = hidden_dim _lowerCAmelCase : List[Any] = hidden_dim def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( __UpperCAmelCase) _lowerCAmelCase : Any = torch.ones([self.batch_size, self.min_size, self.max_size], device=__UpperCAmelCase) _lowerCAmelCase : Optional[Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=__UpperCAmelCase) > 0.5 ).float() _lowerCAmelCase : Tuple = (torch.rand((self.batch_size, self.num_labels), device=__UpperCAmelCase) > 0.5).long() _lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = MaskaFormerConfig( hidden_size=self.hidden_dim, ) _lowerCAmelCase : Optional[Any] = self.num_queries _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Optional[Any] = [1, 1, 1, 1] _lowerCAmelCase : Union[str, Any] = self.num_channels _lowerCAmelCase : str = 64 _lowerCAmelCase : List[str] = 128 _lowerCAmelCase : str = self.hidden_dim _lowerCAmelCase : int = self.hidden_dim _lowerCAmelCase : str = self.hidden_dim return config def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = self.prepare_config_and_inputs() _lowerCAmelCase : int = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = output.encoder_hidden_states _lowerCAmelCase : Union[str, Any] = output.pixel_decoder_hidden_states _lowerCAmelCase : str = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__UpperCAmelCase), len(config.backbone_config.depths)) self.parent.assertTrue(len(__UpperCAmelCase), len(config.backbone_config.depths)) self.parent.assertTrue(len(__UpperCAmelCase), config.decoder_layers) def snake_case__ ( self, __a, __a, __a, __a=False): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase : Optional[int] = MaskaFormerModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() _lowerCAmelCase : str = model(pixel_values=__UpperCAmelCase, pixel_mask=__UpperCAmelCase) _lowerCAmelCase : Optional[int] = model(__UpperCAmelCase, output_hidden_states=__UpperCAmelCase) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_dim), ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(__UpperCAmelCase, __UpperCAmelCase) def snake_case__ ( self, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = MaskaFormerForUniversalSegmentation(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() def comm_check_on_output(__a): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape, (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4), ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): _lowerCAmelCase : Optional[int] = model(pixel_values=__UpperCAmelCase, pixel_mask=__UpperCAmelCase) _lowerCAmelCase : List[str] = model(__UpperCAmelCase) comm_check_on_output(__UpperCAmelCase) _lowerCAmelCase : Dict = model( pixel_values=__UpperCAmelCase, pixel_mask=__UpperCAmelCase, mask_labels=__UpperCAmelCase, class_labels=__UpperCAmelCase) comm_check_on_output(__UpperCAmelCase) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape, torch.Size([1])) @require_torch class UpperCAmelCase_ ( __A , __A , unittest.TestCase): lowerCamelCase__ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () lowerCamelCase__ = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = MaskaFormerModelTester(self) _lowerCAmelCase : Any = ConfigTester(self, config_class=__UpperCAmelCase, has_text_modality=__UpperCAmelCase) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__UpperCAmelCase, **__UpperCAmelCase, output_hidden_states=__UpperCAmelCase) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__UpperCAmelCase) @unittest.skip(reason="Mask2Former does not use inputs_embeds") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="Mask2Former is not a generative model") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="Mask2Former does not use token embeddings") def snake_case__ ( self): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[Any] = model_class(__UpperCAmelCase) _lowerCAmelCase : Any = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Union[str, Any] = [*signature.parameters.keys()] _lowerCAmelCase : str = ["pixel_values"] self.assertListEqual(arg_names[:1], __UpperCAmelCase) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _lowerCAmelCase : Union[str, Any] = MaskaFormerModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = (self.model_tester.min_size,) * 2 _lowerCAmelCase : int = { "pixel_values": torch.randn((2, 3, *size), device=__UpperCAmelCase), "mask_labels": torch.randn((2, 10, *size), device=__UpperCAmelCase), "class_labels": torch.zeros(2, 10, device=__UpperCAmelCase).long(), } _lowerCAmelCase : Optional[int] = self.model_tester.get_config() _lowerCAmelCase : Optional[Any] = MaskaFormerForUniversalSegmentation(__UpperCAmelCase).to(__UpperCAmelCase) _lowerCAmelCase : Tuple = model(**__UpperCAmelCase) self.assertTrue(outputs.loss is not None) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__UpperCAmelCase, **__UpperCAmelCase, output_hidden_states=__UpperCAmelCase) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(__UpperCAmelCase).to(__UpperCAmelCase) _lowerCAmelCase : Dict = model(**__UpperCAmelCase, output_attentions=__UpperCAmelCase) self.assertTrue(outputs.attentions is not None) def snake_case__ ( self): '''simple docstring''' if not self.model_tester.is_training: return _lowerCAmelCase : Optional[int] = self.all_model_classes[1] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase : List[str] = model_class(__UpperCAmelCase) model.to(__UpperCAmelCase) model.train() _lowerCAmelCase : List[Any] = model(__UpperCAmelCase, mask_labels=__UpperCAmelCase, class_labels=__UpperCAmelCase).loss loss.backward() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.all_model_classes[1] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase : List[str] = True _lowerCAmelCase : Tuple = True _lowerCAmelCase : List[Any] = model_class(__UpperCAmelCase).to(__UpperCAmelCase) model.train() _lowerCAmelCase : List[str] = model(__UpperCAmelCase, mask_labels=__UpperCAmelCase, class_labels=__UpperCAmelCase) _lowerCAmelCase : Optional[int] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _lowerCAmelCase : Tuple = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _lowerCAmelCase : List[str] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _lowerCAmelCase : Optional[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__UpperCAmelCase) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) _snake_case = 1e-4 def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase): @cached_property def snake_case__ ( self): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def snake_case__ ( self): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints) if is_vision_available() else None def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = MaskaFormerModel.from_pretrained(self.model_checkpoints).to(__UpperCAmelCase) _lowerCAmelCase : Dict = self.default_image_processor _lowerCAmelCase : List[str] = prepare_img() _lowerCAmelCase : Union[str, Any] = image_processor(__UpperCAmelCase, return_tensors="pt").to(__UpperCAmelCase) _lowerCAmelCase : str = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(__UpperCAmelCase, (1, 3, 384, 384)) with torch.no_grad(): _lowerCAmelCase : List[str] = model(**__UpperCAmelCase) _lowerCAmelCase : List[str] = torch.tensor( [[-0.2_790, -1.0_717, -1.1_668], [-0.5_128, -0.3_128, -0.4_987], [-0.5_832, 0.1_971, -0.0_197]]).to(__UpperCAmelCase) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3], __UpperCAmelCase, atol=__UpperCAmelCase)) _lowerCAmelCase : List[str] = torch.tensor( [[0.8_973, 1.1_847, 1.1_776], [1.1_934, 1.5_040, 1.5_128], [1.1_153, 1.4_486, 1.4_951]]).to(__UpperCAmelCase) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3], __UpperCAmelCase, atol=__UpperCAmelCase)) _lowerCAmelCase : Optional[Any] = torch.tensor( [[2.1_152, 1.7_000, -0.8_603], [1.5_808, 1.8_004, -0.9_353], [1.6_043, 1.7_495, -0.5_999]]).to(__UpperCAmelCase) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3], __UpperCAmelCase, atol=__UpperCAmelCase)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(__UpperCAmelCase).eval() _lowerCAmelCase : List[Any] = self.default_image_processor _lowerCAmelCase : List[Any] = prepare_img() _lowerCAmelCase : List[str] = image_processor(__UpperCAmelCase, return_tensors="pt").to(__UpperCAmelCase) _lowerCAmelCase : Optional[int] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(__UpperCAmelCase, (1, 3, 384, 384)) with torch.no_grad(): _lowerCAmelCase : List[str] = model(**__UpperCAmelCase) # masks_queries_logits _lowerCAmelCase : Optional[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4)) _lowerCAmelCase : str = [ [-8.7_839, -9.0_056, -8.8_121], [-7.4_104, -7.0_313, -6.5_401], [-6.6_105, -6.3_427, -6.4_675], ] _lowerCAmelCase : Optional[int] = torch.tensor(__UpperCAmelCase).to(__UpperCAmelCase) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], __UpperCAmelCase, atol=__UpperCAmelCase)) # class_queries_logits _lowerCAmelCase : List[Any] = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape, (1, model.config.num_queries, model.config.num_labels + 1)) _lowerCAmelCase : str = torch.tensor( [ [1.8_324, -8.0_835, -4.1_922], [0.8_450, -9.0_050, -3.6_053], [0.3_045, -7.7_293, -3.0_275], ]).to(__UpperCAmelCase) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], __UpperCAmelCase, atol=__UpperCAmelCase)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(__UpperCAmelCase).eval() _lowerCAmelCase : Any = self.default_image_processor _lowerCAmelCase : List[Any] = image_processor( [np.zeros((3, 800, 1333)), np.zeros((3, 800, 1333))], segmentation_maps=[np.zeros((384, 384)).astype(np.floataa), np.zeros((384, 384)).astype(np.floataa)], return_tensors="pt", ) _lowerCAmelCase : Dict = inputs["pixel_values"].to(__UpperCAmelCase) _lowerCAmelCase : Tuple = [el.to(__UpperCAmelCase) for el in inputs["mask_labels"]] _lowerCAmelCase : Any = [el.to(__UpperCAmelCase) for el in inputs["class_labels"]] with torch.no_grad(): _lowerCAmelCase : int = model(**__UpperCAmelCase) self.assertTrue(outputs.loss is not None)
36
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCamelCase__: def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> int: return None class UpperCamelCase__: def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: return None class UpperCamelCase__( unittest.TestCase ): lowerCAmelCase__ : Tuple = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def snake_case__ ( self ) -> int: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCAmelCase ,'tf' ,12 ,**__UpperCAmelCase ) @require_torch @slow def snake_case__ ( self ) -> int: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCAmelCase ,'pt' ,12 ,**__UpperCAmelCase ) @require_torch @slow def snake_case__ ( self ) -> Optional[Any]: from transformers import BertModel A__ = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(__UpperCAmelCase ) ) vocab_file.flush() A__ = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: A__ = BertModel(BertConfig(vocab_size=len(__UpperCAmelCase ) ) ) model.save_pretrained(__UpperCAmelCase ) self._test_export(__UpperCAmelCase ,'pt' ,12 ,__UpperCAmelCase ) @require_tf @slow def snake_case__ ( self ) -> Optional[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: A__ = self._test_export(__UpperCAmelCase ,'tf' ,12 ,**__UpperCAmelCase ) A__ = quantize(Path(__UpperCAmelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCAmelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def snake_case__ ( self ) -> str: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: A__ = self._test_export(__UpperCAmelCase ,'pt' ,12 ,**__UpperCAmelCase ) A__ = quantize(__UpperCAmelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCAmelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=None ,**__UpperCAmelCase ) -> Union[str, Any]: try: # Compute path with TemporaryDirectory() as tempdir: A__ = Path(__UpperCAmelCase ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) return path except Exception as e: self.fail(__UpperCAmelCase ) @require_torch @require_tokenizers @slow def snake_case__ ( self ) -> Optional[Any]: from transformers import BertModel A__ = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) A__ = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCAmelCase ,__UpperCAmelCase ,'pt' ) @require_tf @require_tokenizers @slow def snake_case__ ( self ) -> Optional[Any]: from transformers import TFBertModel A__ = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) A__ = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCAmelCase ,__UpperCAmelCase ,'tf' ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> str: A__ = FeatureExtractionPipeline(__UpperCAmelCase ,__UpperCAmelCase ) A__ = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] A__ , A__ , A__ , A__ = infer_shapes(__UpperCAmelCase ,__UpperCAmelCase ) # Assert all variables are present self.assertEqual(len(__UpperCAmelCase ) ,len(__UpperCAmelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] ,__UpperCAmelCase ) self.assertSequenceEqual(variable_names[3:] ,__UpperCAmelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} ) def snake_case__ ( self ) -> Union[str, Any]: A__ = ['input_ids', 'attention_mask', 'token_type_ids'] A__ = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} A__ , A__ = ensure_valid_input(FuncContiguousArgs() ,__UpperCAmelCase ,__UpperCAmelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__UpperCAmelCase ) ,3 ) # Should have exactly the same input names self.assertEqual(set(__UpperCAmelCase ) ,set(__UpperCAmelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__UpperCAmelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) A__ , A__ = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCAmelCase ,__UpperCAmelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__UpperCAmelCase ) ,1 ) self.assertEqual(len(__UpperCAmelCase ) ,1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] ,tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] ,'input_ids' ) def snake_case__ ( self ) -> Union[str, Any]: A__ = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
221
0
# Imports import numpy as np class __a : def __init__( self : List[str] , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : str=None ): '''simple docstring''' self.set_matricies(red=SCREAMING_SNAKE_CASE , green=SCREAMING_SNAKE_CASE , blue=SCREAMING_SNAKE_CASE , red_edge=SCREAMING_SNAKE_CASE , nir=SCREAMING_SNAKE_CASE ) def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : int=None , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Optional[int]=None ): '''simple docstring''' if red is not None: UpperCamelCase__ : List[str] = red if green is not None: UpperCamelCase__ : int = green if blue is not None: UpperCamelCase__ : int = blue if red_edge is not None: UpperCamelCase__ : int = red_edge if nir is not None: UpperCamelCase__ : Tuple = nir return True def __lowercase ( self : Dict , SCREAMING_SNAKE_CASE : Union[str, Any]="" , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Optional[Any]=None ): '''simple docstring''' self.set_matricies(red=SCREAMING_SNAKE_CASE , green=SCREAMING_SNAKE_CASE , blue=SCREAMING_SNAKE_CASE , red_edge=SCREAMING_SNAKE_CASE , nir=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = { "ARVI2": self.arvaa, "CCCI": self.ccci, "CVI": self.cvi, "GLI": self.gli, "NDVI": self.ndvi, "BNDVI": self.bndvi, "redEdgeNDVI": self.red_edge_ndvi, "GNDVI": self.gndvi, "GBNDVI": self.gbndvi, "GRNDVI": self.grndvi, "RBNDVI": self.rbndvi, "PNDVI": self.pndvi, "ATSAVI": self.atsavi, "BWDRVI": self.bwdrvi, "CIgreen": self.ci_green, "CIrededge": self.ci_rededge, "CI": self.ci, "CTVI": self.ctvi, "GDVI": self.gdvi, "EVI": self.evi, "GEMI": self.gemi, "GOSAVI": self.gosavi, "GSAVI": self.gsavi, "Hue": self.hue, "IVI": self.ivi, "IPVI": self.ipvi, "I": self.i, "RVI": self.rvi, "MRVI": self.mrvi, "MSAVI": self.m_savi, "NormG": self.norm_g, "NormNIR": self.norm_nir, "NormR": self.norm_r, "NGRDI": self.ngrdi, "RI": self.ri, "S": self.s, "IF": self._if, "DVI": self.dvi, "TVI": self.tvi, "NDRE": self.ndre, } try: return funcs[index]() except KeyError: print("Index not in the list!" ) return False def __lowercase ( self : int ): '''simple docstring''' return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def __lowercase ( self : int ): '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def __lowercase ( self : int ): '''simple docstring''' return self.nir * (self.red / (self.green**2)) def __lowercase ( self : Optional[Any] ): '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def __lowercase ( self : str ): '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def __lowercase ( self : int ): '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def __lowercase ( self : Optional[Any] ): '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def __lowercase ( self : Tuple ): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def __lowercase ( self : Tuple ): '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def __lowercase ( self : Dict ): '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def __lowercase ( self : Dict ): '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : List[Any]=0.0_8 , SCREAMING_SNAKE_CASE : int=1.2_2 , SCREAMING_SNAKE_CASE : Union[str, Any]=0.0_3 ): '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def __lowercase ( self : Optional[int] ): '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def __lowercase ( self : List[Any] ): '''simple docstring''' return (self.nir / self.green) - 1 def __lowercase ( self : Optional[Any] ): '''simple docstring''' return (self.nir / self.redEdge) - 1 def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return (self.red - self.blue) / self.red def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Any = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def __lowercase ( self : List[Any] ): '''simple docstring''' return self.nir - self.green def __lowercase ( self : str ): '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : Dict = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : int=0.1_6 ): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any]=0.5 ): '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def __lowercase ( self : Optional[Any] ): '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def __lowercase ( self : List[str] , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : List[Any]=None ): '''simple docstring''' return (self.nir - b) / (a * self.red) def __lowercase ( self : str ): '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def __lowercase ( self : Optional[int] ): '''simple docstring''' return (self.red + self.green + self.blue) / 3_0.5 def __lowercase ( self : Optional[int] ): '''simple docstring''' return self.nir / self.red def __lowercase ( self : List[Any] ): '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def __lowercase ( self : Tuple ): '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def __lowercase ( self : int ): '''simple docstring''' return self.green / (self.nir + self.red + self.green) def __lowercase ( self : Optional[int] ): '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def __lowercase ( self : List[Any] ): '''simple docstring''' return self.red / (self.nir + self.red + self.green) def __lowercase ( self : Optional[Any] ): '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def __lowercase ( self : str ): '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) UpperCamelCase__ : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def __lowercase ( self : Tuple ): '''simple docstring''' return self.nir / self.red def __lowercase ( self : Optional[int] ): '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def __lowercase ( self : str ): '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
196
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCamelCase : str =logging.get_logger(__name__) @add_end_docstrings(A__ ) class __a ( A__ ): def __init__( self : List[str] , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Dict , SCREAMING_SNAKE_CASE : Union[str, List[str], "Image", List["Image"]] , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[str] , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' UpperCamelCase__ : List[Any] = {} if "candidate_labels" in kwargs: UpperCamelCase__ : Optional[Any] = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: UpperCamelCase__ : int = kwargs["hypothesis_template"] return preprocess_params, {}, {} def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : Optional[int]="This is a photo of {}." ): '''simple docstring''' UpperCamelCase__ : Dict = load_image(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = self.image_processor(images=[image] , return_tensors=self.framework ) UpperCamelCase__ : Any = candidate_labels UpperCamelCase__ : Dict = [hypothesis_template.format(SCREAMING_SNAKE_CASE ) for x in candidate_labels] UpperCamelCase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = [text_inputs] return inputs def __lowercase ( self : int , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : Tuple = model_inputs.pop("candidate_labels" ) UpperCamelCase__ : List[str] = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Dict = text_inputs[0] else: # Batching case. UpperCamelCase__ : Union[str, Any] = text_inputs[0][0] UpperCamelCase__ : Any = self.model(**SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = model_outputs.pop("candidate_labels" ) UpperCamelCase__ : int = model_outputs["logits"][0] if self.framework == "pt": UpperCamelCase__ : Dict = logits.softmax(dim=-1 ).squeeze(-1 ) UpperCamelCase__ : Optional[Any] = probs.tolist() if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : List[Any] = [scores] elif self.framework == "tf": UpperCamelCase__ : Optional[Any] = stable_softmax(SCREAMING_SNAKE_CASE , axis=-1 ) UpperCamelCase__ : Optional[int] = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) UpperCamelCase__ : Optional[int] = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , key=lambda SCREAMING_SNAKE_CASE : -x[0] ) ] return result
196
1
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = 'pytorch_model.bin' @dataclasses.dataclass class _A : _UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) _UpperCamelCase : Optional[str] = dataclasses.field( default=_lowerCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class _A : _UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) _UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) _UpperCamelCase : Optional[str] = dataclasses.field( default=_lowerCamelCase , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) _UpperCamelCase : Optional[str] = dataclasses.field( default=_lowerCamelCase , metadata={'''help''': '''The name of the task to train on.'''} , ) _UpperCamelCase : Optional[List[str]] = dataclasses.field( default=_lowerCamelCase , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class _A : _UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) _UpperCamelCase : Optional[str] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) _UpperCamelCase : Optional[str] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) _UpperCamelCase : Optional[int] = dataclasses.field( default=1_0 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) _UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) _UpperCamelCase : Optional[bool] = dataclasses.field( default=_lowerCamelCase , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) _UpperCamelCase : Optional[bool] = dataclasses.field( default=_lowerCamelCase , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) _UpperCamelCase : Optional[bool] = dataclasses.field( default=_lowerCamelCase , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) _UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) _UpperCamelCase : Optional[int] = dataclasses.field( default=1_0_0 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) _UpperCamelCase : Optional[int] = dataclasses.field( default=_lowerCamelCase , metadata={'''help''': '''Random seed for initialization.'''} , ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: lowercase : Union[str, Any] = dataset.filter(lambda __magic_name__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 lowercase : int = int(eval_result * len(__magic_name__ ) ) print(__magic_name__ ) lowercase : List[Any] = dataset.sort('''probability''' , reverse=__magic_name__ ) lowercase : Optional[int] = dataset.select(range(__magic_name__ ) ) lowercase : Any = dataset.remove_columns(['''label''', '''probability'''] ) lowercase : List[Any] = dataset.rename_column('''prediction''' , '''label''' ) lowercase : List[str] = dataset.map(lambda __magic_name__ : {"label": idalabel[example["label"]]} ) lowercase : Union[str, Any] = dataset.shuffle(seed=args.seed ) lowercase : Any = os.path.join(__magic_name__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(__magic_name__ , index=__magic_name__ ) else: dataset.to_json(__magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' lowercase : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() lowercase : Optional[Any] = STModelArguments(model_name_or_path=__magic_name__ ) lowercase : Optional[Any] = STDataArguments(train_file=__magic_name__ , infer_file=__magic_name__ ) lowercase : Tuple = STTrainingArguments(output_dir=__magic_name__ ) lowercase : int = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(__magic_name__ ).items(): setattr(__magic_name__ , __magic_name__ , __magic_name__ ) for key, value in kwargs.items(): if hasattr(__magic_name__ , __magic_name__ ): setattr(__magic_name__ , __magic_name__ , __magic_name__ ) # Sanity checks lowercase : Optional[int] = {} lowercase : Dict = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None lowercase : Tuple = args.train_file lowercase : List[str] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None lowercase : Union[str, Any] = args.eval_file for key in data_files: lowercase : Dict = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: lowercase : Optional[Any] = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) lowercase : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format lowercase : Optional[int] = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=__magic_name__ ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) accelerator.wait_for_everyone() lowercase : Any = None lowercase : Optional[int] = None lowercase : str = 0 lowercase : Optional[int] = False # Show the progress bar lowercase : Optional[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): lowercase : Optional[int] = data_dir_format(__magic_name__ ) assert os.path.exists(__magic_name__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 lowercase : Union[str, Any] = os.path.join(__magic_name__ , '''stage-1''' ) lowercase : List[Any] = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(__magic_name__ , __magic_name__ ): arguments_dict.update({key: value} ) lowercase : Dict = os.path.join(__magic_name__ , '''best-checkpoint''' , __magic_name__ ) if os.path.exists(__magic_name__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , __magic_name__ , __magic_name__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , __magic_name__ ) finetune(**__magic_name__ ) accelerator.wait_for_everyone() assert os.path.exists(__magic_name__ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , __magic_name__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data lowercase : List[str] = os.path.join(__magic_name__ , '''best-checkpoint''' ) lowercase : List[str] = os.path.join(__magic_name__ , '''stage-2''' ) # Update arguments_dict lowercase : Dict = model_path lowercase : int = data_files['''train'''] lowercase : Dict = current_output_dir lowercase : Optional[Any] = os.path.join(__magic_name__ , '''best-checkpoint''' , __magic_name__ ) if os.path.exists(__magic_name__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , __magic_name__ , __magic_name__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , __magic_name__ ) finetune(**__magic_name__ ) accelerator.wait_for_everyone() assert os.path.exists(__magic_name__ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , __magic_name__ ) lowercase : int = iteration lowercase : int = data_dir_format(iteration + 1 ) lowercase : Optional[Any] = AutoConfig.from_pretrained(os.path.join(__magic_name__ , '''best-checkpoint''' ) ) lowercase : Union[str, Any] = config.idalabel lowercase : List[str] = os.path.join(__magic_name__ , '''eval_results_best-checkpoint.json''' ) lowercase : List[Any] = os.path.join(__magic_name__ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(__magic_name__ ) with open(__magic_name__ , '''r''' ) as f: lowercase : List[Any] = float(json.load(__magic_name__ )[args.eval_metric] ) lowercase : Optional[Any] = os.path.join(__magic_name__ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(__magic_name__ ) # Loading the dataset from local csv or json files. lowercase : List[Any] = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] lowercase : str = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) shutil.copy(__magic_name__ , os.path.join(__magic_name__ , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(__magic_name__ ): shutil.copy(__magic_name__ , os.path.join(__magic_name__ , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) accelerator.wait_for_everyone() lowercase : Any = os.path.join(__magic_name__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: lowercase : Tuple = eval_result if best_iteration is None: lowercase : Optional[int] = new_iteration lowercase : Union[str, Any] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: lowercase : Optional[Any] = new_iteration lowercase : Optional[int] = new_eval_result lowercase : Any = 0 else: if new_eval_result == best_eval_result: lowercase : Tuple = new_iteration lowercase : int = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: lowercase : Any = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , __magic_name__ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , __magic_name__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__magic_name__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(__magic_name__ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , __magic_name__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__magic_name__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(__magic_name__ , '''eval_results_best-iteration.json''' ) , )
308
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _A ( _lowerCamelCase ): def __init__( self : Tuple , _A : Dict , _A : Tuple , _A : List[Any]=1_024 , _A : str=1_024 , _A : str=3.6 ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = tokenizer lowercase : List[Any] = tokenizer.bos_token_id lowercase : Union[str, Any] = dataset lowercase : Union[str, Any] = seq_length lowercase : Optional[int] = seq_length * chars_per_token * num_of_sequences def __iter__( self : int ) -> int: """simple docstring""" lowercase : Dict = iter(self.dataset ) lowercase : Union[str, Any] = True while more_examples: lowercase , lowercase : Tuple = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_A )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase : List[str] = False break lowercase : str = tokenizer(_A , truncation=_A )['''input_ids'''] lowercase : List[str] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_A ) , self.seq_length ): lowercase : int = all_token_ids[i : i + self.seq_length] if len(_A ) == self.seq_length: yield torch.tensor(_A ) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = {'''streaming''': True} lowercase : Dict = load_dataset(args.dataset_name , split='''train''' , **__magic_name__ ) lowercase : int = ConstantLengthDataset(__magic_name__ , __magic_name__ , seq_length=args.seq_length ) lowercase : Tuple = DataLoader(__magic_name__ , batch_size=args.batch_size ) return eval_dataloader def snake_case( __magic_name__ ) -> str: '''simple docstring''' model.eval() lowercase : str = [] for step, batch in enumerate(__magic_name__ ): with torch.no_grad(): lowercase : List[Any] = model(__magic_name__ , labels=__magic_name__ ) lowercase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__magic_name__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase : Union[str, Any] = torch.mean(torch.cat(__magic_name__ ) ) try: lowercase : Tuple = torch.exp(__magic_name__ ) except OverflowError: lowercase : List[str] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase_ = Accelerator() # Parse configuration lowerCAmelCase_ = HfArgumentParser(EvaluationArguments) lowerCAmelCase_ = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase_ = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') lowerCAmelCase_ , lowerCAmelCase_ = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
308
1
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = ['''image_processor''', '''tokenizer'''] lowercase__ : Dict = '''FlavaImageProcessor''' lowercase__ : List[Any] = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : Dict = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCAmelCase__ , ) __magic_name__ : List[Any] = kwargs.pop("""feature_extractor""" ) __magic_name__ : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.image_processor def __call__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = True , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> List[Any]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __magic_name__ : Optional[Any] = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) if images is not None: __magic_name__ : Tuple = self.image_processor( lowerCAmelCase__ , return_image_mask=lowerCAmelCase__ , return_codebook_pixels=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) if text is not None and images is not None: encoding.update(lowerCAmelCase__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase__ ) , tensor_type=lowerCAmelCase__ ) def __magic_name__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : int = self.tokenizer.model_input_names __magic_name__ : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __magic_name__ ( self ) -> Optional[Any]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCAmelCase__ , ) return self.image_processor_class @property def __magic_name__ ( self ) -> Dict: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCAmelCase__ , ) return self.image_processor
138
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin __magic_name__: Union[str, Any] = False @skip_mps class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[int] = StableDiffusionAttendAndExcitePipeline lowercase__ : Tuple = False lowercase__ : List[str] = TEXT_TO_IMAGE_PARAMS lowercase__ : Dict = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) lowercase__ : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase__ : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __magic_name__ ( cls ) -> Tuple: super().setUpClass() torch.use_deterministic_algorithms(lowerCAmelCase__ ) @classmethod def __magic_name__ ( cls ) -> Optional[Any]: super().tearDownClass() torch.use_deterministic_algorithms(lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: torch.manual_seed(0 ) __magic_name__ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCAmelCase__ , ) __magic_name__ : List[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) torch.manual_seed(0 ) __magic_name__ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __magic_name__ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) __magic_name__ : Any = CLIPTextModel(lowerCAmelCase__ ) __magic_name__ : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __magic_name__ : Optional[int] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> Optional[Any]: if str(lowerCAmelCase__ ).startswith("""mps""" ): __magic_name__ : int = torch.manual_seed(lowerCAmelCase__ ) else: __magic_name__ : int = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = { """prompt""": """a cat and a frog""", """token_indices""": [2, 5], """generator""": generator, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", """max_iter_to_alter""": 2, """thresholds""": {0: 0.7}, } return inputs def __magic_name__ ( self ) -> Dict: __magic_name__ : int = """cpu""" __magic_name__ : Union[str, Any] = self.get_dummy_components() __magic_name__ : int = self.pipeline_class(**lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) __magic_name__ : str = pipe(**lowerCAmelCase__ ).images __magic_name__ : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) __magic_name__ : Dict = np.array( [0.6_3_9_0_5_3_6_4, 0.6_2_8_9_7_3_0_7, 0.4_8_5_9_9_0_1_7, 0.5_1_3_3_6_2_4, 0.5_5_5_0_0_4_8, 0.4_5_7_6_9_5_1_6, 0.5_0_3_2_6_9_7_3, 0.5_0_2_3_1_3_9, 0.4_5_3_8_4_4_9_6] ) __magic_name__ : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase__ , 1e-3 ) def __magic_name__ ( self ) -> List[Any]: super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def __magic_name__ ( self ) -> Union[str, Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __magic_name__ ( self ) -> int: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def __magic_name__ ( self ) -> List[str]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __magic_name__ ( self ) -> Any: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def __magic_name__ ( self ) -> Dict: super().test_save_load_local(expected_max_difference=5e-4 ) def __magic_name__ ( self ) -> List[Any]: super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class snake_case__ ( unittest.TestCase ): @classmethod def __magic_name__ ( cls ) -> Optional[int]: super().setUpClass() torch.use_deterministic_algorithms(lowerCAmelCase__ ) @classmethod def __magic_name__ ( cls ) -> List[Any]: super().tearDownClass() torch.use_deterministic_algorithms(lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : str = torch.manual_seed(51 ) __magic_name__ : Tuple = StableDiffusionAttendAndExcitePipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) __magic_name__ : List[str] = """a painting of an elephant with glasses""" __magic_name__ : Any = [5, 7] __magic_name__ : List[Any] = pipe( prompt=lowerCAmelCase__ , token_indices=lowerCAmelCase__ , guidance_scale=7.5 , generator=lowerCAmelCase__ , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0] __magic_name__ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""" ) assert np.abs((expected_image - image).max() ) < 5e-1
138
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : List[Any] = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
99
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Union[str, Any] = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : List[Any] = ['''pixel_values'''] def __init__( self :Optional[int] ,__snake_case :bool = True ,__snake_case :Optional[Dict[str, int]] = None ,__snake_case :PILImageResampling = PILImageResampling.BICUBIC ,__snake_case :bool = True ,__snake_case :bool = True ,__snake_case :Union[int, float] = 1 / 2_55 ,__snake_case :Dict[str, int] = None ,__snake_case :bool = True ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,**__snake_case :Dict ,) -> None: super().__init__(**__snake_case ) a__ = size if size is not None else {'height': 2_24, 'width': 2_24} a__ = get_size_dict(__snake_case ) a__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} a__ = get_size_dict(__snake_case ,default_to_square=__snake_case ,param_name='crop_size' ) a__ = do_resize a__ = do_rescale a__ = do_normalize a__ = do_center_crop a__ = crop_size a__ = size a__ = resample a__ = rescale_factor a__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN a__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowerCamelCase__( self :Dict ,__snake_case :np.ndarray ,__snake_case :Dict[str, int] ,__snake_case :PILImageResampling = PILImageResampling.BILINEAR ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :List[Any] ,) -> np.ndarray: a__ = get_size_dict(__snake_case ) if "shortest_edge" in size: a__ = get_resize_output_image_size(__snake_case ,size=size['shortest_edge'] ,default_to_square=__snake_case ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: a__ = (size['height'], size['width']) else: raise ValueError(F'Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}' ) return resize(__snake_case ,size=__snake_case ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Dict ,__snake_case :np.ndarray ,__snake_case :Dict[str, int] ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :Any ,) -> np.ndarray: a__ = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__snake_case ,size=(size['height'], size['width']) ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :int ) -> np.ndarray: return rescale(__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,__snake_case :np.ndarray ,__snake_case :Union[float, List[float]] ,__snake_case :Union[float, List[float]] ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :Any ,) -> np.ndarray: return normalize(__snake_case ,mean=__snake_case ,std=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Any ,__snake_case :ImageInput ,__snake_case :Optional[bool] = None ,__snake_case :Dict[str, int] = None ,__snake_case :PILImageResampling = None ,__snake_case :bool = None ,__snake_case :int = None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[float] = None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[str, TensorType]] = None ,__snake_case :Union[str, ChannelDimension] = ChannelDimension.FIRST ,**__snake_case :Optional[int] ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = do_normalize if do_normalize is not None else self.do_normalize a__ = do_center_crop if do_center_crop is not None else self.do_center_crop a__ = crop_size if crop_size is not None else self.crop_size a__ = get_size_dict(__snake_case ,param_name='crop_size' ,default_to_square=__snake_case ) a__ = resample if resample is not None else self.resample a__ = rescale_factor if rescale_factor is not None else self.rescale_factor a__ = image_mean if image_mean is not None else self.image_mean a__ = image_std if image_std is not None else self.image_std a__ = size if size is not None else self.size a__ = get_size_dict(__snake_case ) if not is_batched(__snake_case ): a__ = [images] if not valid_images(__snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for image in images] if do_resize: a__ = [self.resize(image=__snake_case ,size=__snake_case ,resample=__snake_case ) for image in images] if do_center_crop: a__ = [self.center_crop(image=__snake_case ,size=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(image=__snake_case ,scale=__snake_case ) for image in images] if do_normalize: a__ = [self.normalize(image=__snake_case ,mean=__snake_case ,std=__snake_case ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
240
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset A : int = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class A ( nn.Module ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" super().__init__() lowercase__ = torchvision.models.resnetaaa(pretrained=_a ) lowercase__ = list(model.children() )[:-2] lowercase__ = nn.Sequential(*_a ) lowercase__ = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : int ) -> List[str]: """simple docstring""" lowercase__ = self.pool(self.model(_a ) ) lowercase__ = torch.flatten(_a , start_dim=2 ) lowercase__ = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class A ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = [json.loads(_a ) for l in open(_a )] lowercase__ = os.path.dirname(_a ) lowercase__ = tokenizer lowercase__ = labels lowercase__ = len(_a ) lowercase__ = max_seq_length lowercase__ = transforms def __len__(self : int ) -> Optional[int]: """simple docstring""" return len(self.data ) def __getitem__(self : Dict , _UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" lowercase__ = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=_a ) ) lowercase__ , lowercase__ , lowercase__ = sentence[0], sentence[1:-1], sentence[-1] lowercase__ = sentence[: self.max_seq_length] lowercase__ = torch.zeros(self.n_classes ) lowercase__ = 1 lowercase__ = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) lowercase__ = self.transforms(_a ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" lowercase__ = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def UpperCamelCase ( __magic_name__ : List[str] ) -> int: """simple docstring""" lowercase__ = [len(row["""sentence"""] ) for row in batch] lowercase__ , lowercase__ = len(lowerCAmelCase__ ), max(lowerCAmelCase__ ) lowercase__ = torch.zeros(lowerCAmelCase__ , lowerCAmelCase__ , dtype=torch.long ) lowercase__ = torch.zeros(lowerCAmelCase__ , lowerCAmelCase__ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(lowerCAmelCase__ , lowerCAmelCase__ ) ): lowercase__ = input_row["""sentence"""] lowercase__ = 1 lowercase__ = torch.stack([row["""image"""] for row in batch] ) lowercase__ = torch.stack([row["""label"""] for row in batch] ) lowercase__ = torch.stack([row["""image_start_token"""] for row in batch] ) lowercase__ = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def UpperCamelCase ( ) -> int: """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def UpperCamelCase ( ) -> str: """simple docstring""" return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4_6_7_7_7_0_4_4, 0.4_4_5_3_1_4_2_9, 0.4_0_6_6_1_0_1_7] , std=[0.1_2_2_2_1_9_9_4, 0.1_2_1_4_5_8_3_5, 0.1_4_3_8_0_4_6_9] , ), ] )
361
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFXLMRobertaModel.from_pretrained("""jplu/tf-xlm-roberta-base""" ) lowercase__ = { """input_ids""": tf.convert_to_tensor([[0, 2646, 1_0269, 83, 9_9942, 2]] , dtype=tf.intaa ), # "My dog is cute" """attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } lowercase__ = model(_UpperCAmelCase )["""last_hidden_state"""] lowercase__ = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) # compare the actual values for a slice. lowercase__ = tf.convert_to_tensor( [ [ [0.0_681_762, 0.10_894_451, 0.06_772_504], [-0.06_423_668, 0.02_366_615, 0.04_329_344], [-0.06_057_295, 0.09_974_135, -0.00_070_584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
146
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : Any = logging.get_logger(__name__) snake_case__ : str = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class snake_case_( a__ ): __UpperCamelCase = '''mobilenet_v1''' def __init__( self : str , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Optional[int]=2_2_4 , UpperCamelCase_ : List[Any]=1.0 , UpperCamelCase_ : List[Any]=8 , UpperCamelCase_ : str="relu6" , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=0.999 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[str]=0.001 , **UpperCamelCase_ : str , ): super().__init__(**UpperCamelCase_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) lowerCAmelCase : List[str] = num_channels lowerCAmelCase : str = image_size lowerCAmelCase : Any = depth_multiplier lowerCAmelCase : Tuple = min_depth lowerCAmelCase : List[str] = hidden_act lowerCAmelCase : Optional[int] = tf_padding lowerCAmelCase : int = classifier_dropout_prob lowerCAmelCase : Dict = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps class snake_case_( a__ ): __UpperCamelCase = version.parse('''1.11''' ) @property def lowerCamelCase__ ( self : int ): return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def lowerCamelCase__ ( self : str ): if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def lowerCamelCase__ ( self : Optional[int] ): return 1E-4
60
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: List[str] = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[int] = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys A: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
109
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
7
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : Tuple , _snake_case : List[Any] , _snake_case : Dict=3 , _snake_case : Dict=32 , _snake_case : List[str]=3 , _snake_case : Union[str, Any]=10 , _snake_case : Tuple=[10, 20, 30, 40] , _snake_case : Dict=[1, 1, 2, 1] , _snake_case : List[Any]=True , _snake_case : Dict=True , _snake_case : Union[str, Any]="relu" , _snake_case : Tuple=3 , _snake_case : Union[str, Any]=None , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embeddings_size UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_labels UpperCAmelCase_ = scope UpperCAmelCase_ = len(_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = self.get_config() return config, pixel_values def lowerCamelCase ( self : List[Any]): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase ( self : Optional[int] , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = FlaxRegNetModel(config=_snake_case) UpperCAmelCase_ = model(_snake_case) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : Optional[Any] , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = FlaxRegNetForImageClassification(config=_snake_case) UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : int = False def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = FlaxRegNetModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : List[str]): """simple docstring""" return def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case) @unittest.skip(reason='''RegNet does not use inputs_embeds''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''') def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" pass def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" def check_hidden_states_output(_snake_case : List[str] , _snake_case : Dict , _snake_case : List[str]): UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ = self.model_tester.num_stages self.assertEqual(len(_snake_case) , expected_num_stages + 1) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case) UpperCAmelCase_ = model_class(_snake_case) @jax.jit def model_jitted(_snake_case : str , **_snake_case : Union[str, Any]): return model(pixel_values=_snake_case , **_snake_case) with self.subTest('''JIT Enabled'''): UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple() self.assertEqual(len(_snake_case) , len(_snake_case)) for jitted_output, output in zip(_snake_case , _snake_case): self.assertEqual(jitted_output.shape , output.shape) def A () -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : Dict): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''') if is_vision_available() else None @slow def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''') UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''np''') UpperCAmelCase_ = model(**_snake_case) # verify the logits UpperCAmelCase_ = (1, 1000) self.assertEqual(outputs.logits.shape , _snake_case) UpperCAmelCase_ = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6]) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4))
7
1
import functools def lowercase__ ( __snake_case : str , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = len(__snake_case ) UpperCAmelCase_ : Dict = len(__snake_case ) @functools.cache def min_distance(__snake_case : int , __snake_case : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ : List[str] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __snake_case ) , 1 + min_distance(__snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
29
def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_=False ): """simple docstring""" if isinstance(UpperCamelCase_ ,UpperCamelCase_ ) and isinstance(UpperCamelCase_ ,UpperCamelCase_ ): snake_case = len(set_a.intersection(UpperCamelCase_ ) ) if alternative_union: snake_case = len(UpperCamelCase_ ) + len(UpperCamelCase_ ) else: snake_case = len(set_a.union(UpperCamelCase_ ) ) return intersection / union if isinstance(UpperCamelCase_ ,(list, tuple) ) and isinstance(UpperCamelCase_ ,(list, tuple) ): snake_case = [element for element in set_a if element in set_b] if alternative_union: snake_case = len(UpperCamelCase_ ) + len(UpperCamelCase_ ) return len(UpperCamelCase_ ) / union else: snake_case = set_a + [element for element in set_b if element not in set_a] return len(UpperCamelCase_ ) / len(UpperCamelCase_ ) return len(UpperCamelCase_ ) / len(UpperCamelCase_ ) return None if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[int] = {"a", "b", "c", "d", "e"} _SCREAMING_SNAKE_CASE : List[str] = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
127
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = '''bert-generation''' def __init__( self : int , __lowerCamelCase : int=5_0_3_5_8 , __lowerCamelCase : Union[str, Any]=1_0_2_4 , __lowerCamelCase : str=2_4 , __lowerCamelCase : int=1_6 , __lowerCamelCase : Union[str, Any]=4_0_9_6 , __lowerCamelCase : Optional[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[Any]=5_1_2 , __lowerCamelCase : List[Any]=0.0_2 , __lowerCamelCase : Union[str, Any]=1e-12 , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : Dict=1 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : Union[str, Any]=True , **__lowerCamelCase : Optional[Any] , ): """simple docstring""" super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = position_embedding_type _SCREAMING_SNAKE_CASE = use_cache
111
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( __A : list ) -> list: if len(__A ) <= 1: return lst _SCREAMING_SNAKE_CASE = 1 while i < len(__A ): if lst[i - 1] <= lst[i]: i += 1 else: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = lst[i], lst[i - 1] i -= 1 if i == 0: _SCREAMING_SNAKE_CASE = 1 return lst if __name__ == "__main__": lowerCamelCase_ = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase_ = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
111
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( __snake_case : bytes ): '''simple docstring''' return "".join([hex(__snake_case )[2:].zfill(2 ).upper() for byte in list(__snake_case )] ) def _SCREAMING_SNAKE_CASE ( __snake_case : str ): '''simple docstring''' if (len(__snake_case ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__snake_case ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(__snake_case ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
220
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _UpperCamelCase : List[Any] = 4 _UpperCamelCase : Optional[Any] = 3 class a ( a_ ): pass def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] ): '''simple docstring''' for shard in shards: for i in range(__snake_case ): yield {"i": i, "shard": shard} def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = int(os.environ['RANK'] ) lowercase = int(os.environ['WORLD_SIZE'] ) lowercase = ArgumentParser() parser.add_argument('--streaming' , type=__snake_case ) parser.add_argument('--local_rank' , type=__snake_case ) parser.add_argument('--num_workers' , type=__snake_case , default=0 ) lowercase = parser.parse_args() lowercase = args.streaming lowercase = args.num_workers lowercase = {'shards': [f'shard_{shard_idx}' for shard_idx in range(__snake_case )]} lowercase = IterableDataset.from_generator(__snake_case , gen_kwargs=__snake_case ) if not streaming: lowercase = Dataset.from_list(list(__snake_case ) ) lowercase = split_dataset_by_node(__snake_case , rank=__snake_case , world_size=__snake_case ) lowercase = torch.utils.data.DataLoader(__snake_case , num_workers=__snake_case ) lowercase = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
220
1
"""simple docstring""" from scipy.stats import pearsonr import datasets a_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' a_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' a_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class snake_case ( datasets.Metric): def a_ ( self : Union[str, Any] ) -> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def a_ ( self : List[Any] , a__ : int , a__ : str , a__ : Optional[Any]=False ) -> str: '''simple docstring''' if return_pvalue: _A = pearsonr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )[0] )}
366
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { "configuration_xlm_roberta": [ "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig", "XLMRobertaOnnxConfig", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["XLMRobertaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["XLMRobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", "XLMRobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ "FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FlaxXLMRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
163
0
from sklearn.metrics import mean_squared_error import datasets lowercase__ : List[str] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' lowercase__ : Optional[int] = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' lowercase__ : int = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="uniform_average" , __SCREAMING_SNAKE_CASE=True ) ->Union[str, Any]: lowerCAmelCase = mean_squared_error( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , sample_weight=__SCREAMING_SNAKE_CASE , multioutput=__SCREAMING_SNAKE_CASE , squared=__SCREAMING_SNAKE_CASE ) return {"mse": mse}
338
import unittest import numpy as np def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , ) -> np.ndarray: lowerCAmelCase = np.shape(snake_case__ ) lowerCAmelCase = np.shape(snake_case__ ) lowerCAmelCase = np.shape(snake_case__ ) if shape_a[0] != shape_b[0]: lowerCAmelCase = ( '''Expected the same number of rows for A and B. ''' f"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(snake_case__ ) if shape_b[1] != shape_c[1]: lowerCAmelCase = ( '''Expected the same number of columns for B and C. ''' f"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(snake_case__ ) lowerCAmelCase = pseudo_inv if a_inv is None: try: lowerCAmelCase = np.linalg.inv(snake_case__ ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class lowercase_ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->None: lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCAmelCase = np.array([[2, 1], [6, 3]] ) lowerCAmelCase = schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCAmelCase = np.block([[a, b], [b.T, c]] ) lowerCAmelCase = np.linalg.det(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = np.linalg.det(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = np.linalg.det(__SCREAMING_SNAKE_CASE ) self.assertAlmostEqual(__SCREAMING_SNAKE_CASE , det_a * det_s ) def SCREAMING_SNAKE_CASE_ ( self ) ->None: lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCAmelCase = np.array([[2, 1], [6, 3]] ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->None: lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCAmelCase = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
338
1
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase : Optional[Any] = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase : List[str] = logging.get_logger(__name__) class __UpperCAmelCase ( A_ ): __lowercase = "maskformer" __lowercase = {"hidden_size": "mask_feature_size"} __lowercase = ["resnet", "swin"] __lowercase = ["detr"] def __init__( self , lowerCAmelCase_ = 2_56 , lowerCAmelCase_ = 2_56 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 0.02 , lowerCAmelCase_ = 1.0 , lowerCAmelCase_ = 1.0 , lowerCAmelCase_ = 1.0 , lowerCAmelCase_ = 20.0 , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k _snake_case = SwinConfig( image_size=3_84 , in_channels=3 , patch_size=4 , embed_dim=1_28 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(snake_case__ , snake_case__ ): _snake_case = backbone_config.pop('model_type' ) _snake_case = CONFIG_MAPPING[backbone_model_type] _snake_case = config_class.from_dict(snake_case__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' F'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 _snake_case = DetrConfig() else: # verify that the decoder is supported _snake_case = ( decoder_config.pop('model_type' ) if isinstance(snake_case__ , snake_case__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'Transformer Decoder {decoder_type} not supported, please use one of' F' {",".join(self.decoders_supported )}' ) if isinstance(snake_case__ , snake_case__ ): _snake_case = CONFIG_MAPPING[decoder_type] _snake_case = config_class.from_dict(snake_case__ ) _snake_case = backbone_config _snake_case = decoder_config # main feature dimension for the model _snake_case = fpn_feature_size _snake_case = mask_feature_size # initializer _snake_case = init_std _snake_case = init_xavier_std # Hungarian matcher && loss _snake_case = cross_entropy_weight _snake_case = dice_weight _snake_case = mask_weight _snake_case = use_auxiliary_loss _snake_case = no_object_weight _snake_case = output_auxiliary_logits _snake_case = self.decoder_config.encoder_attention_heads _snake_case = self.decoder_config.num_hidden_layers super().__init__(**snake_case__ ) @classmethod def lowerCamelCase ( cls , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" return cls( backbone_config=snake_case__ , decoder_config=snake_case__ , **snake_case__ , ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = copy.deepcopy(self.__dict__ ) _snake_case = self.backbone_config.to_dict() _snake_case = self.decoder_config.to_dict() _snake_case = self.__class__.model_type return output
360
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def SCREAMING_SNAKE_CASE__ ( __A , __A=1_000 ) -> str: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _snake_case = n - 1 _snake_case = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _snake_case = 0 while count < prec: _snake_case = random.randint(2 , n - 1 ) _snake_case = bin_exp_mod(__A , __A , __A ) if b != 1: _snake_case = True for _ in range(__A ): if b == n - 1: _snake_case = False break _snake_case = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowercase : Optional[int] = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
160
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __magic_name__ ( ) -> Optional[int]: '''simple docstring''' snake_case_ = ArgumentParser('''Accelerate CLI tool''', usage='''accelerate <command> [<args>]''', allow_abbrev=__UpperCAmelCase ) snake_case_ = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__UpperCAmelCase ) env_command_parser(subparsers=__UpperCAmelCase ) launch_command_parser(subparsers=__UpperCAmelCase ) tpu_command_parser(subparsers=__UpperCAmelCase ) test_command_parser(subparsers=__UpperCAmelCase ) # Let's go snake_case_ = parser.parse_args() if not hasattr(__UpperCAmelCase, '''func''' ): parser.print_help() exit(1 ) # Run args.func(__UpperCAmelCase ) if __name__ == "__main__": main()
56
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : str = logging.get_logger(__name__) a : str = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class a ( _lowerCamelCase ): snake_case_ = "big_bird" def __init__( self : Union[str, Any] , lowercase_ : List[Any]=5_0358 , lowercase_ : Tuple=768 , lowercase_ : Dict=12 , lowercase_ : str=12 , lowercase_ : Tuple=3072 , lowercase_ : Any="gelu_new" , lowercase_ : Optional[Any]=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : List[Any]=4096 , lowercase_ : List[Any]=2 , lowercase_ : List[str]=0.02 , lowercase_ : Optional[int]=1e-12 , lowercase_ : Tuple=True , lowercase_ : Tuple=0 , lowercase_ : str=1 , lowercase_ : Union[str, Any]=2 , lowercase_ : Optional[Any]=66 , lowercase_ : Optional[int]="block_sparse" , lowercase_ : Any=True , lowercase_ : List[str]=False , lowercase_ : Any=64 , lowercase_ : Tuple=3 , lowercase_ : Tuple=None , **lowercase_ : Tuple , ): super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , sep_token_id=lowercase_ , **lowercase_ , ) snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = type_vocab_size snake_case_ = layer_norm_eps snake_case_ = use_cache snake_case_ = rescale_embeddings snake_case_ = attention_type snake_case_ = use_bias snake_case_ = block_size snake_case_ = num_random_blocks snake_case_ = classifier_dropout class a ( _lowerCamelCase ): @property def A_ ( self : str ): if self.task == "multiple-choice": snake_case_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
56
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCAmelCase_ ( lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] = None , ): '''simple docstring''' snake_case_ : Any = {} if train_file is not None: snake_case_ : Union[str, Any] = [train_file] if eval_file is not None: snake_case_ : Any = [eval_file] if test_file is not None: snake_case_ : List[Any] = [test_file] snake_case_ : str = datasets.load_dataset("""csv""" , data_files=lowerCamelCase_ ) snake_case_ : List[str] = list(ds[list(files.keys() )[0]].features.keys() ) snake_case_ : int = features_name.pop(lowerCamelCase_ ) snake_case_ : Optional[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) snake_case_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase_ )} snake_case_ : List[str] = tokenizer.model_input_names snake_case_ : List[str] = {} if len(lowerCamelCase_ ) == 1: for k in files.keys(): snake_case_ : Any = ds[k].map( lambda lowerCamelCase_ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , padding="""max_length""" ) , batched=lowerCamelCase_ , ) elif len(lowerCamelCase_ ) == 2: for k in files.keys(): snake_case_ : int = ds[k].map( lambda lowerCamelCase_ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , padding="""max_length""" , ) , batched=lowerCamelCase_ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: snake_case_ : Optional[int] = {k: v for k, v in ex.items() if k in input_names} snake_case_ : int = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: snake_case_ : Dict = {k: v for k, v in ex.items() if k in input_names} snake_case_ : Any = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: snake_case_ : Optional[int] = {k: v for k, v in ex.items() if k in input_names} snake_case_ : Union[str, Any] = labelaid[ex[label_name]] yield (d, label) snake_case_ : Tuple = ( tf.data.Dataset.from_generator( lowerCamelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: snake_case_ : Tuple = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) snake_case_ : Optional[Any] = ( tf.data.Dataset.from_generator( lowerCamelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: snake_case_ : Any = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) snake_case_ : Optional[int] = ( tf.data.Dataset.from_generator( lowerCamelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: snake_case_ : List[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __A : Dict = logging.getLogger(__name__) @dataclass class __UpperCamelCase : lowercase : int = field(metadata={'help': 'Which column contains the label'} ) lowercase : str = field(default=lowercase__ , metadata={'help': 'The path of the training file'} ) lowercase : Optional[str] = field(default=lowercase__ , metadata={'help': 'The path of the development file'} ) lowercase : Optional[str] = field(default=lowercase__ , metadata={'help': 'The path of the test file'} ) lowercase : int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase : bool = field( default=lowercase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class __UpperCamelCase : lowercase : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowercase : Optional[str] = field( default=lowercase__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowercase : Optional[str] = field( default=lowercase__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowercase : bool = field(default=lowercase__ , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowercase : Optional[str] = field( default=lowercase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def UpperCAmelCase_ ( ): '''simple docstring''' snake_case_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) snake_case_ : Optional[int] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( F'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' F'''16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Optional[int] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowerCamelCase_ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) snake_case_ : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowerCamelCase_ ) , labelaid=lowerCamelCase_ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): snake_case_ : Optional[int] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) def compute_metrics(lowerCamelCase_ :EvalPrediction ) -> Dict: snake_case_ : Union[str, Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer snake_case_ : Optional[Any] = TFTrainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , compute_metrics=lowerCamelCase_ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case_ : List[str] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) snake_case_ : Optional[Any] = trainer.evaluate() snake_case_ : List[Any] = os.path.join(training_args.output_dir , """eval_results.txt""" ) with open(lowerCamelCase_ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) results.update(lowerCamelCase_ ) return results if __name__ == "__main__": main()
365
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __A : Optional[int] = logging.get_logger(__name__) class __UpperCamelCase ( lowercase__ ): def __init__( self :List[str] ,*_UpperCamelCase :str ,**_UpperCamelCase :Optional[int] ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" ,_UpperCamelCase ,) super().__init__(*_UpperCamelCase ,**_UpperCamelCase )
8
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Dict = logging.get_logger(__name__) snake_case__ : Optional[Any] = {} class snake_case_( a__ ): __UpperCamelCase = '''llama''' __UpperCamelCase = ['''past_key_values'''] def __init__( self : str , UpperCamelCase_ : Optional[int]=3_2_0_0_0 , UpperCamelCase_ : Tuple=4_0_9_6 , UpperCamelCase_ : Optional[Any]=1_1_0_0_8 , UpperCamelCase_ : Dict=3_2 , UpperCamelCase_ : Optional[int]=3_2 , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : int="silu" , UpperCamelCase_ : int=2_0_4_8 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Any=1E-6 , UpperCamelCase_ : str=True , UpperCamelCase_ : Tuple=0 , UpperCamelCase_ : Dict=1 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Dict=1 , UpperCamelCase_ : Optional[Any]=False , UpperCamelCase_ : List[str]=None , **UpperCamelCase_ : int , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : int = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Optional[Any] = num_attention_heads lowerCAmelCase : int = num_key_value_heads lowerCAmelCase : List[str] = hidden_act lowerCAmelCase : Dict = initializer_range lowerCAmelCase : int = rms_norm_eps lowerCAmelCase : str = pretraining_tp lowerCAmelCase : Tuple = use_cache lowerCAmelCase : Dict = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , tie_word_embeddings=UpperCamelCase_ , **UpperCamelCase_ , ) def lowerCamelCase__ ( self : Union[str, Any] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCamelCase_ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F'''got {self.rope_scaling}''' ) lowerCAmelCase : List[str] = self.rope_scaling.get('''type''' , UpperCamelCase_ ) lowerCAmelCase : List[str] = self.rope_scaling.get('''factor''' , UpperCamelCase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
60
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case_: def __init__( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Dict=1_3 , UpperCamelCase_ : Union[str, Any]=3_2 , UpperCamelCase_ : str=2 , UpperCamelCase_ : int=3 , UpperCamelCase_ : Any=1_6 , UpperCamelCase_ : int=[1, 2, 1] , UpperCamelCase_ : Optional[int]=[2, 2, 4] , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Any=2.0 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : Optional[Any]=0.0 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : Tuple="gelu" , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Any=True , UpperCamelCase_ : List[Any]=0.02 , UpperCamelCase_ : Tuple=1E-5 , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : List[Any]=1_0 , UpperCamelCase_ : Dict=8 , ): lowerCAmelCase : Union[str, Any] = parent lowerCAmelCase : int = batch_size lowerCAmelCase : List[str] = image_size lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : int = num_channels lowerCAmelCase : Any = embed_dim lowerCAmelCase : Any = depths lowerCAmelCase : Any = num_heads lowerCAmelCase : int = window_size lowerCAmelCase : List[Any] = mlp_ratio lowerCAmelCase : int = qkv_bias lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : str = drop_path_rate lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : int = use_absolute_embeddings lowerCAmelCase : Union[str, Any] = patch_norm lowerCAmelCase : int = layer_norm_eps lowerCAmelCase : str = initializer_range lowerCAmelCase : Optional[int] = is_training lowerCAmelCase : int = scope lowerCAmelCase : List[str] = use_labels lowerCAmelCase : str = type_sequence_label_size lowerCAmelCase : Union[str, Any] = encoder_stride def lowerCamelCase__ ( self : Any ): lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Union[str, Any] = None if self.use_labels: lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : List[Any] ): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : Dict ): lowerCAmelCase : List[str] = SwinvaModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[str] = model(UpperCamelCase_ ) lowerCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Tuple = SwinvaForMaskedImageModeling(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Dict = model(UpperCamelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[str] = SwinvaForMaskedImageModeling(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase : int = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : int ): lowerCAmelCase : List[str] = self.type_sequence_label_size lowerCAmelCase : Optional[Any] = SwinvaForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : str = config_and_inputs lowerCAmelCase : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case_( a__ , a__ , unittest.TestCase ): __UpperCamelCase = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __UpperCamelCase = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : int ): lowerCAmelCase : Dict = SwinvaModelTester(self ) lowerCAmelCase : List[str] = ConfigTester(self , config_class=UpperCamelCase_ , embed_dim=3_7 ) def lowerCamelCase__ ( self : Optional[int] ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def lowerCamelCase__ ( self : Dict ): pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def lowerCamelCase__ ( self : int ): pass def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase, lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , nn.Linear ) ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Tuple = model_class(UpperCamelCase_ ) lowerCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase, lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Optional[Any] = True for model_class in self.all_model_classes: lowerCAmelCase : Any = True lowerCAmelCase : List[str] = False lowerCAmelCase : int = True lowerCAmelCase : int = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : str = outputs.attentions lowerCAmelCase : int = len(self.model_tester.depths ) self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase : Any = True lowerCAmelCase : Union[str, Any] = config.window_size**2 lowerCAmelCase : int = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : Dict = outputs.attentions self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) lowerCAmelCase : str = len(UpperCamelCase_ ) # Check attention is always last and order is fine lowerCAmelCase : Optional[int] = True lowerCAmelCase : int = True lowerCAmelCase : Optional[Any] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowerCAmelCase : Tuple = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): lowerCAmelCase : List[Any] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowerCAmelCase : Union[str, Any] = 2 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase_ ) ) lowerCAmelCase : List[str] = outputs.attentions self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : int = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : str = outputs.hidden_states lowerCAmelCase : List[str] = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) # Swinv2 has a different seq_length lowerCAmelCase : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCAmelCase : List[str] = outputs.reshaped_hidden_states self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : str = reshaped_hidden_states[0].shape lowerCAmelCase : Optional[Any] = ( reshaped_hidden_states[0].view(UpperCamelCase_ , UpperCamelCase_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase : Union[str, Any] = True self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : Tuple = True self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Dict = 3 lowerCAmelCase : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase : List[str] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase : str = True self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : Optional[int] = True self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , (padded_height, padded_width) ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : int ): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = SwinvaModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase, lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Union[str, Any] = _config_zero_init(UpperCamelCase_ ) for model_class in self.all_model_classes: lowerCAmelCase : Union[str, Any] = model_class(config=UpperCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class snake_case_( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : Dict ): return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : str = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( UpperCamelCase_ ) lowerCAmelCase : List[Any] = self.default_image_processor lowerCAmelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase : Union[str, Any] = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): lowerCAmelCase : Dict = model(**UpperCamelCase_ ) # verify the logits lowerCAmelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowerCAmelCase : Any = torch.tensor([-0.3_947, -0.4_306, 0.0_026] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) )
60
1
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : Optional[Any] = 'T5Config' class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''mt5''' lowerCamelCase = MTaConfig class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''mt5''' lowerCamelCase = MTaConfig class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''mt5''' lowerCamelCase = MTaConfig
355
'''simple docstring''' import math def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" return math.sqrt(a_ ) * math.sqrt(a_ ) == num def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" A_ : Tuple = 0 A_ : Tuple = n while left <= right: A_ : int = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: A_ : Dict = mid - 1 else: A_ : str = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
164
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { """naver-clova-ix/donut-base""": """https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json""", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class A_ ( __snake_case ): """simple docstring""" __UpperCamelCase = """donut-swin""" __UpperCamelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :str , lowercase_ :Optional[Any]=2_24 , lowercase_ :Optional[Any]=4 , lowercase_ :List[str]=3 , lowercase_ :List[Any]=96 , lowercase_ :List[Any]=[2, 2, 6, 2] , lowercase_ :Dict=[3, 6, 12, 24] , lowercase_ :int=7 , lowercase_ :Union[str, Any]=4.0 , lowercase_ :List[Any]=True , lowercase_ :List[Any]=0.0 , lowercase_ :str=0.0 , lowercase_ :Union[str, Any]=0.1 , lowercase_ :str="gelu" , lowercase_ :Tuple=False , lowercase_ :str=0.02 , lowercase_ :List[Any]=1E-5 , **lowercase_ :Dict , ) -> int: super().__init__(**a_ ) UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = embed_dim UpperCAmelCase = depths UpperCAmelCase = len(a_ ) UpperCAmelCase = num_heads UpperCAmelCase = window_size UpperCAmelCase = mlp_ratio UpperCAmelCase = qkv_bias UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = drop_path_rate UpperCAmelCase = hidden_act UpperCAmelCase = use_absolute_embeddings UpperCAmelCase = layer_norm_eps UpperCAmelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase = int(embed_dim * 2 ** (len(a_ ) - 1) )
78
"""simple docstring""" import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging SCREAMING_SNAKE_CASE : Union[str, Any] = """\ """ SCREAMING_SNAKE_CASE : Any = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ SCREAMING_SNAKE_CASE : Dict = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ = 16 , a_ = True , a_=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __snake_case : Optional[Any] = '''cuda''' else: __snake_case : Tuple = '''cuda''' if torch.cuda.is_available() else '''cpu''' __snake_case : int = AutoModelForCausalLM.from_pretrained(a_ ) __snake_case : Optional[int] = model.to(a_ ) __snake_case : Optional[int] = AutoTokenizer.from_pretrained(a_ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __snake_case : List[Any] = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(a_ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __snake_case : List[Any] = model.config.max_length - 1 else: __snake_case : Dict = model.config.max_length __snake_case : Tuple = tokenizer( a_ , add_special_tokens=a_ , padding=a_ , truncation=a_ , max_length=a_ , return_tensors='''pt''' , return_attention_mask=a_ , ).to(a_ ) __snake_case : List[Any] = encodings['''input_ids'''] __snake_case : str = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __snake_case : Union[str, Any] = [] __snake_case : str = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(a_ ) , a_ ) ): __snake_case : Optional[int] = min(start_index + batch_size , len(a_ ) ) __snake_case : int = encoded_texts[start_index:end_index] __snake_case : Optional[int] = attn_masks[start_index:end_index] if add_start_token: __snake_case : List[Any] = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(a_ ) __snake_case : Union[str, Any] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) __snake_case : int = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(a_ ), attn_mask] , dim=1 ) __snake_case : List[Any] = encoded_batch with torch.no_grad(): __snake_case : List[str] = model(a_ , attention_mask=a_ ).logits __snake_case : List[str] = out_logits[..., :-1, :].contiguous() __snake_case : int = labels[..., 1:].contiguous() __snake_case : int = attn_mask[..., 1:].contiguous() __snake_case : Tuple = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , a_ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(a_ )}
102
0
from argparse import ArgumentParser from .env import EnvironmentCommand def UpperCamelCase ( ) -> Dict: """simple docstring""" lowercase__ = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) lowercase__ = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(__magic_name__ ) # Let's go lowercase__ = parser.parse_args() if not hasattr(__magic_name__ , """func""" ): parser.print_help() exit(1 ) # Run lowercase__ = args.func(__magic_name__ ) service.run() if __name__ == "__main__": main()
146
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : int = { 'andreasmadsen/efficient_mlm_m0.40': ( 'https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json' ), } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''roberta-prelayernorm''' def __init__(self : Dict , _UpperCAmelCase : List[Any]=5_0265 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Optional[Any]="absolute" , _UpperCAmelCase : int=True , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Any , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
146
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Dict = '''xlm-roberta-xl''' def __init__( self , lowerCAmelCase__=2_5_0_8_8_0 , lowerCAmelCase__=2_5_6_0 , lowerCAmelCase__=3_6 , lowerCAmelCase__=3_2 , lowerCAmelCase__=1_0_2_4_0 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_4 , lowerCAmelCase__=1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-05 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__="absolute" , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ): super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" @property def snake_case_ ( self): if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
100
"""simple docstring""" from functools import lru_cache def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : Optional[Any] =2 lowerCamelCase__ : Optional[int] =set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__lowerCamelCase ) if n > 1: factors.add(__lowerCamelCase ) return factors @lru_cache def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" return len(unique_prime_factors(__lowerCamelCase ) ) def snake_case__ ( __lowerCamelCase : list ): """simple docstring""" return len(set(__lowerCamelCase ) ) in (0, 1) def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : Tuple =2 while True: # Increment each value of a generated range lowerCamelCase__ : Tuple =[base + i for i in range(__lowerCamelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowerCamelCase__ : Optional[Any] =[upf_len(__lowerCamelCase ) for x in group] checker.append(__lowerCamelCase ) # If all numbers in the list are equal, return the group variable. if equality(__lowerCamelCase ): return group # Increment our base variable by 1 base += 1 def snake_case__ ( __lowerCamelCase : int = 4 ): """simple docstring""" lowerCamelCase__ : List[Any] =run(__lowerCamelCase ) return results[0] if len(__lowerCamelCase ) else None if __name__ == "__main__": print(solution())
238
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowercase__ = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) lowercase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] lowercase__ = {"unk_token": "<unk>"} lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_lowercase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_lowercase ) ) lowercase__ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], } lowercase__ = os.path.join(self.tmpdirname , _lowercase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_lowercase , _lowercase ) def UpperCAmelCase ( self :Optional[Any] , **_lowercase :Dict ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **_lowercase ) def UpperCAmelCase ( self :Optional[Any] , **_lowercase :int ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **_lowercase ) def UpperCAmelCase ( self :List[str] , **_lowercase :List[Any] ): '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' lowercase__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = OwlViTProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_lowercase ) lowercase__ = OwlViTProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowercase ) self.assertIsInstance(processor_fast.tokenizer , _lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowercase ) self.assertIsInstance(processor_fast.image_processor , _lowercase ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' lowercase__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase__ = self.get_image_processor(do_normalize=_lowercase ) lowercase__ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=_lowercase , image_processor=_lowercase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_lowercase , return_tensors="np" ) lowercase__ = processor(images=_lowercase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase ( self :Dict ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=_lowercase , image_processor=_lowercase ) lowercase__ = "lower newer" lowercase__ = processor(text=_lowercase , return_tensors="np" ) lowercase__ = tokenizer(_lowercase , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=_lowercase , image_processor=_lowercase ) lowercase__ = "lower newer" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ = "google/owlvit-base-patch32" lowercase__ = OwlViTProcessor.from_pretrained(_lowercase ) lowercase__ = ["cat", "nasa badge"] lowercase__ = processor(text=_lowercase ) lowercase__ = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def UpperCAmelCase ( self :Any ): '''simple docstring''' lowercase__ = "google/owlvit-base-patch32" lowercase__ = OwlViTProcessor.from_pretrained(_lowercase ) lowercase__ = [["cat", "nasa badge"], ["person"]] lowercase__ = processor(text=_lowercase ) lowercase__ = 16 lowercase__ = len(_lowercase ) lowercase__ = max([len(_lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ = "google/owlvit-base-patch32" lowercase__ = OwlViTProcessor.from_pretrained(_lowercase ) lowercase__ = ["cat", "nasa badge"] lowercase__ = processor(text=_lowercase ) lowercase__ = 16 lowercase__ = inputs["input_ids"] lowercase__ = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=_lowercase , image_processor=_lowercase ) lowercase__ = self.prepare_image_inputs() lowercase__ = self.prepare_image_inputs() lowercase__ = processor(images=_lowercase , query_images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=_lowercase , image_processor=_lowercase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_lowercase ) lowercase__ = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase )
357
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _A ( __magic_name__ ): lowercase__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): __lowerCamelCase = StableDiffusionLatentUpscalePipeline __lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __lowerCamelCase = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowerCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowerCamelCase = frozenset([] ) __lowerCamelCase = True @property def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = 1 lowercase__ = 4 lowercase__ = (16, 16) lowercase__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowercase ) return image def UpperCAmelCase ( self :Dict ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=_lowercase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=_lowercase , only_cross_attention=_lowercase , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) lowercase__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) lowercase__ = EulerDiscreteScheduler(prediction_type="sample" ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , ) lowercase__ = CLIPTextModel(_lowercase ) lowercase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowercase__ = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def UpperCAmelCase ( self :Dict , _lowercase :Union[str, Any] , _lowercase :int=0 ): '''simple docstring''' if str(_lowercase ).startswith("mps" ): lowercase__ = torch.manual_seed(_lowercase ) else: lowercase__ = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) lowercase__ = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = "cpu" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) lowercase__ = self.get_dummy_inputs(_lowercase ) lowercase__ = pipe(**_lowercase ).images lowercase__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) lowercase__ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowercase , 1e-3 ) def UpperCAmelCase ( self :Any ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def UpperCAmelCase ( self :int ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3e-3 ) def UpperCAmelCase ( self :Tuple ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3e-3 ) def UpperCAmelCase ( self :Dict ): '''simple docstring''' lowercase__ = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_lowercase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) lowercase__ = self.get_dummy_inputs(_lowercase ) lowercase__ = 2 lowercase__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue lowercase__ = getattr(_lowercase , scheduler_enum.name ) lowercase__ = scheduler_cls.from_config(pipe.scheduler.config ) lowercase__ = pipe(**_lowercase )[0] outputs.append(_lowercase ) assert check_same_shape(_lowercase ) @require_torch_gpu @slow class lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = torch.manual_seed(33 ) lowercase__ = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) lowercase__ = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) lowercase__ = "a photo of an astronaut high resolution, unreal engine, ultra realistic" lowercase__ = pipe(_lowercase , generator=_lowercase , output_type="latent" ).images lowercase__ = upscaler( prompt=_lowercase , image=_lowercase , num_inference_steps=20 , guidance_scale=0 , generator=_lowercase , output_type="np" , ).images[0] lowercase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5e-2 def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = torch.manual_seed(33 ) lowercase__ = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) lowercase__ = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) lowercase__ = upscaler( prompt=_lowercase , image=_lowercase , num_inference_steps=20 , guidance_scale=0 , generator=_lowercase , output_type="np" , ).images[0] lowercase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5e-2
201
0
'''simple docstring''' def a_ ( __snake_case : list ) -> bool: """simple docstring""" if not isinstance(__snake_case , __snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(__snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(__snake_case ) == 1: return True lowerCamelCase_ =series[1] - series[0] for index in range(len(__snake_case ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def a_ ( __snake_case : list ) -> float: """simple docstring""" if not isinstance(__snake_case , __snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(__snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) lowerCamelCase_ =0 for val in series: answer += val return answer / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
75
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _UpperCamelCase = 8 def a_ ( _lowerCAmelCase ,_lowerCAmelCase=BITS ) -> Any: __lowerCamelCase : List[str] = x.device __lowerCamelCase : int = (x * 255).int().clamp(0 ,255 ) __lowerCamelCase : Any = 2 ** torch.arange(bits - 1 ,-1 ,-1 ,device=_lowerCAmelCase ) __lowerCamelCase : List[str] = rearrange(_lowerCAmelCase ,'d -> d 1 1' ) __lowerCamelCase : Optional[Any] = rearrange(_lowerCAmelCase ,'b c h w -> b c 1 h w' ) __lowerCamelCase : Optional[Any] = ((x & mask) != 0).float() __lowerCamelCase : Tuple = rearrange(_lowerCAmelCase ,'b c d h w -> b (c d) h w' ) __lowerCamelCase : Union[str, Any] = bits * 2 - 1 return bits def a_ ( _lowerCAmelCase ,_lowerCAmelCase=BITS ) -> Optional[Any]: __lowerCamelCase : int = x.device __lowerCamelCase : int = (x > 0).int() __lowerCamelCase : List[str] = 2 ** torch.arange(bits - 1 ,-1 ,-1 ,device=_lowerCAmelCase ,dtype=torch.intaa ) __lowerCamelCase : Any = rearrange(_lowerCAmelCase ,'d -> d 1 1' ) __lowerCamelCase : Any = rearrange(_lowerCAmelCase ,'b (c d) h w -> b c d h w' ,d=8 ) __lowerCamelCase : List[str] = reduce(x * mask ,'b c d h w -> b c h w' ,'sum' ) return (dec / 255).clamp(0.0 ,1.0 ) def a_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = 0.0 ,_lowerCAmelCase = True ,_lowerCAmelCase=None ,_lowerCAmelCase = True ,) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __lowerCamelCase : Optional[Any] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __lowerCamelCase : str = self.alphas_cumprod[timestep] __lowerCamelCase : Optional[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __lowerCamelCase : Union[str, Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCamelCase : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __lowerCamelCase : Dict = self.bit_scale if self.config.clip_sample: __lowerCamelCase : Optional[Any] = torch.clamp(_lowerCAmelCase ,-scale ,_lowerCAmelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __lowerCamelCase : int = self._get_variance(_lowerCAmelCase ,_lowerCAmelCase ) __lowerCamelCase : Tuple = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __lowerCamelCase : List[str] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCamelCase : Union[str, Any] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCamelCase : Any = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __lowerCamelCase : Dict = model_output.device if torch.is_tensor(_lowerCAmelCase ) else 'cpu' __lowerCamelCase : Dict = torch.randn(model_output.shape ,dtype=model_output.dtype ,generator=_lowerCAmelCase ).to(_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = self._get_variance(_lowerCAmelCase ,_lowerCAmelCase ) ** 0.5 * eta * noise __lowerCamelCase : int = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase ,pred_original_sample=_lowerCAmelCase ) def a_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase="epsilon" ,_lowerCAmelCase=None ,_lowerCAmelCase = True ,) -> Union[DDPMSchedulerOutput, Tuple]: __lowerCamelCase : Dict = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __lowerCamelCase ,__lowerCamelCase : int = torch.split(_lowerCAmelCase ,sample.shape[1] ,dim=1 ) else: __lowerCamelCase : Optional[Any] = None # 1. compute alphas, betas __lowerCamelCase : Optional[int] = self.alphas_cumprod[t] __lowerCamelCase : Optional[int] = self.alphas_cumprod[t - 1] if t > 0 else self.one __lowerCamelCase : Any = 1 - alpha_prod_t __lowerCamelCase : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __lowerCamelCase : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __lowerCamelCase : Any = model_output else: raise ValueError(F'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" __lowerCamelCase : Optional[Any] = self.bit_scale if self.config.clip_sample: __lowerCamelCase : Union[str, Any] = torch.clamp(_lowerCAmelCase ,-scale ,_lowerCAmelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCamelCase : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __lowerCamelCase : Dict = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCamelCase : Dict = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __lowerCamelCase : Optional[Any] = 0 if t > 0: __lowerCamelCase : Any = torch.randn( model_output.size() ,dtype=model_output.dtype ,layout=model_output.layout ,generator=_lowerCAmelCase ).to(model_output.device ) __lowerCamelCase : Optional[Any] = (self._get_variance(_lowerCAmelCase ,predicted_variance=_lowerCAmelCase ) ** 0.5) * noise __lowerCamelCase : str = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_lowerCAmelCase ,pred_original_sample=_lowerCAmelCase ) class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self : List[str] , _a : UNetaDConditionModel , _a : Union[DDIMScheduler, DDPMScheduler] , _a : Optional[float] = 1.0 , ) -> Union[str, Any]: super().__init__() __lowerCamelCase : Dict = bit_scale __lowerCamelCase : List[str] = ( ddim_bit_scheduler_step if isinstance(_a , _a ) else ddpm_bit_scheduler_step ) self.register_modules(unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self : Tuple , _a : Optional[int] = 256 , _a : Optional[int] = 256 , _a : Optional[int] = 50 , _a : Optional[torch.Generator] = None , _a : Optional[int] = 1 , _a : Optional[str] = "pil" , _a : bool = True , **_a : Dict , ) -> Union[Tuple, ImagePipelineOutput]: __lowerCamelCase : str = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=_a , ) __lowerCamelCase : int = decimal_to_bits(_a ) * self.bit_scale __lowerCamelCase : Dict = latents.to(self.device ) self.scheduler.set_timesteps(_a ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __lowerCamelCase : int = self.unet(_a , _a ).sample # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase : List[Any] = self.scheduler.step(_a , _a , _a ).prev_sample __lowerCamelCase : Dict = bits_to_decimal(_a ) if output_type == "pil": __lowerCamelCase : int = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
208
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE__ = { 'vocab_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt', }, 'tokenizer_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json' ), 'google/realm-orqa-nq-openqa': ( 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-nq-reader': ( 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-openqa': ( 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-reader': ( 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json' ), }, } SCREAMING_SNAKE_CASE__ = { 'google/realm-cc-news-pretrained-embedder': 5_1_2, 'google/realm-cc-news-pretrained-encoder': 5_1_2, 'google/realm-cc-news-pretrained-scorer': 5_1_2, 'google/realm-cc-news-pretrained-openqa': 5_1_2, 'google/realm-orqa-nq-openqa': 5_1_2, 'google/realm-orqa-nq-reader': 5_1_2, 'google/realm-orqa-wq-openqa': 5_1_2, 'google/realm-orqa-wq-reader': 5_1_2, } SCREAMING_SNAKE_CASE__ = { 'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-reader': {'do_lower_case': True}, 'google/realm-orqa-wq-openqa': {'do_lower_case': True}, 'google/realm-orqa-wq-reader': {'do_lower_case': True}, } class a_ ( _UpperCamelCase ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = RealmTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="[UNK]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="[PAD]" , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[MASK]" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get("""strip_accents""" , _SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): UpperCamelCase = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop("""type""" ) ) UpperCamelCase = do_lower_case UpperCamelCase = strip_accents UpperCamelCase = tokenize_chinese_chars UpperCamelCase = normalizer_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = do_lower_case def A__ ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase = PaddingStrategy.MAX_LENGTH UpperCamelCase = text UpperCamelCase = kwargs.pop("""text_pair""" , _SCREAMING_SNAKE_CASE ) UpperCamelCase = kwargs.pop("""return_tensors""" , _SCREAMING_SNAKE_CASE ) UpperCamelCase = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(_SCREAMING_SNAKE_CASE ): if batch_text_pair is not None: UpperCamelCase = batch_text_pair[idx] else: UpperCamelCase = None UpperCamelCase = super().__call__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = encoded_candidates.get("""input_ids""" ) UpperCamelCase = encoded_candidates.get("""attention_mask""" ) UpperCamelCase = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(_SCREAMING_SNAKE_CASE ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_SCREAMING_SNAKE_CASE ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = {key: item for key, item in output_data.items() if len(_SCREAMING_SNAKE_CASE ) != 0} return BatchEncoding(_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]: """simple docstring""" UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" UpperCamelCase = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
368
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'vocab_file': 'spm_char.model'} SCREAMING_SNAKE_CASE__ = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } SCREAMING_SNAKE_CASE__ = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class a_ ( lowerCamelCase ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["""input_ids""", """attention_mask"""] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def A__ ( self ) -> Tuple: """simple docstring""" return self.sp_model.get_piece_size() def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase = self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) return token def A__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase = [] UpperCamelCase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token UpperCamelCase = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCamelCase = [1] if token_ids_a is None: return ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones return ([0] * len(_SCREAMING_SNAKE_CASE )) + ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , """wb""" ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
183
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class a_ ( metaclass=_lowercase ): __A = ["torch", "scipy"] def __init__( self : List[Any] , *lowercase : List[str] , **lowercase : str ): """simple docstring""" requires_backends(self , ["torch", "scipy"] ) @classmethod def lowercase__ ( cls : List[Any] , *lowercase : Any , **lowercase : Any ): """simple docstring""" requires_backends(cls , ["torch", "scipy"] ) @classmethod def lowercase__ ( cls : List[Any] , *lowercase : Dict , **lowercase : Dict ): """simple docstring""" requires_backends(cls , ["torch", "scipy"] )
223
"""simple docstring""" def snake_case_ ( A_ : list[list] ): '''simple docstring''' _lowerCamelCase : Optional[int] = current_set.copy() for row_index, row in enumerate(A_ ): _lowerCamelCase : Tuple = row[0] for column_index, column in enumerate(A_ ): if magnitude == 0: _lowerCamelCase : List[Any] = column continue _lowerCamelCase : List[Any] = column / magnitude # Subtract to cancel term _lowerCamelCase : Union[str, Any] = current_set[0] _lowerCamelCase : Dict = [first_row] _lowerCamelCase : str = current_set[1::] for row in current_set: _lowerCamelCase : Union[str, Any] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(A_ ) continue for column_index in range(len(A_ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(A_ ) # Create next recursion iteration set if len(final_set[0] ) != 3: _lowerCamelCase : Any = final_set[0] _lowerCamelCase : Any = [] _lowerCamelCase : Optional[int] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _lowerCamelCase : Dict = simplify(A_ ) for i in range(len(A_ ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, A_ ) _lowerCamelCase : Tuple = resultant return final_set def snake_case_ ( A_ : list[list] ): '''simple docstring''' if len(A_ ) == 0: raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) _lowerCamelCase : Dict = len(A_ ) + 1 if any(len(A_ ) != _length for item in equations ): raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) for row in equations: if any(not isinstance(A_, (int, float) ) for column in row ): raise ValueError('''solve_simultaneous() requires lists of integers''' ) if len(A_ ) == 1: return [equations[0][-1] / equations[0][0]] _lowerCamelCase : Optional[Any] = equations.copy() if any(0 in row for row in data_set ): _lowerCamelCase : str = data_set.copy() _lowerCamelCase : List[Any] = [] for row_index, row in enumerate(A_ ): if 0 not in row: _lowerCamelCase : Union[str, Any] = data_set.pop(A_ ) break if not full_row: raise ValueError('''solve_simultaneous() requires at least 1 full equation''' ) data_set.insert(0, A_ ) _lowerCamelCase : List[str] = data_set.copy() _lowerCamelCase : int = simplify(A_ ) _lowerCamelCase : int = simplified[::-1] _lowerCamelCase : list = [] for row in simplified: _lowerCamelCase : Tuple = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _lowerCamelCase : Optional[Any] = row.copy()[: len(A_ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(A_ ) == 0: solutions.append(0 ) continue _lowerCamelCase : Tuple = temp_row[1::] _lowerCamelCase : Tuple = temp_row[::-1] for column_index, column in enumerate(A_ ): current_solution -= column * solutions[column_index] solutions.append(A_ ) _lowerCamelCase : Optional[int] = [] for item in solutions: final.append(float(round(A_, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
72
0
"""simple docstring""" from typing import Any def lowercase ( lowerCAmelCase__ : Dict ) -> Any: if not input_list: return [] __a = [input_list.count(lowercase__ ) for value in input_list] __a = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[list[str]] , lowerCAmelCase__ : int , ) -> None: __a = len(lowerCAmelCase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowerCAmelCase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowerCAmelCase__ , lowerCAmelCase__ , ) def lowercase ( lowerCAmelCase__ : int ) -> None: __a = [] depth_first_search([] , [] , [] , lowerCAmelCase__ , lowerCAmelCase__ ) # Print all the boards for board in boards: for column in board: print(lowerCAmelCase__ ) print('''''' ) print(len(lowerCAmelCase__ ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
11
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model"} _UpperCAmelCase : List[str] = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", } } _UpperCAmelCase : Any = { "camembert-base": 512, } _UpperCAmelCase : List[Any] = "▁" class __lowerCAmelCase ( lowerCAmelCase): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ['''input_ids''', '''attention_mask'''] def __init__( self: List[str] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: Dict="<s>" , _lowerCAmelCase: Union[str, Any]="</s>" , _lowerCAmelCase: Optional[int]="</s>" , _lowerCAmelCase: List[Any]="<s>" , _lowerCAmelCase: Tuple="<unk>" , _lowerCAmelCase: Union[str, Any]="<pad>" , _lowerCAmelCase: str="<mask>" , _lowerCAmelCase: int=["<s>NOTUSED", "</s>NOTUSED"] , _lowerCAmelCase: Optional[Dict[str, Any]] = None , **_lowerCAmelCase: Any , ): # Mask token behave like a normal word, i.e. include the space before it lowercase :Dict = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token lowercase :Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase :Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) lowercase :Tuple = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> lowercase :int = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} lowercase :Tuple = len(self.fairseq_tokens_to_ids ) lowercase :int = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) lowercase :Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self: Tuple , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase :List[Any] = [self.cls_token_id] lowercase :List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None , _lowerCAmelCase: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None ): lowercase :Any = [self.sep_token_id] lowercase :str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :Any = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: str ): return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: List[str] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_lowerCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str , _lowerCAmelCase: Tuple ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: List[str] ): lowercase :Tuple = [] lowercase :Any = "" lowercase :str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowercase :Optional[int] = True lowercase :Any = [] else: current_sub_tokens.append(_lowerCAmelCase ) lowercase :str = False out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def __getstate__( self: Dict ): lowercase :int = self.__dict__.copy() lowercase :List[str] = None return state def __setstate__( self: Optional[Any] , _lowerCAmelCase: Dict ): lowercase :int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase :Optional[int] = {} lowercase :List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self: Optional[int] , _lowerCAmelCase: str , _lowerCAmelCase: Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowercase :Any = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , "wb" ) as fi: lowercase :Dict = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
236
import os import pytest from attr import dataclass _UpperCAmelCase : List[str] = "us-east-1" # defaults region @dataclass class __lowerCAmelCase : _a = 42 _a = '''arn:aws:iam::558105141721:role/sagemaker_execution_role''' _a = { '''task_name''': '''mnli''', '''per_device_train_batch_size''': 16, '''per_device_eval_batch_size''': 16, '''do_train''': True, '''do_eval''': True, '''do_predict''': True, '''output_dir''': '''/opt/ml/model''', '''overwrite_output_dir''': True, '''max_steps''': 500, '''save_steps''': 5500, } _a = {**hyperparameters, '''max_steps''': 1000} @property def SCREAMING_SNAKE_CASE ( self: str ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def SCREAMING_SNAKE_CASE ( self: Dict ): return F"{self.framework}-transfromers-test" @property def SCREAMING_SNAKE_CASE ( self: Any ): return F"./tests/sagemaker/scripts/{self.framework}" @property def SCREAMING_SNAKE_CASE ( self: Optional[int] ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def UpperCAmelCase__ ( lowerCamelCase ): lowercase :Union[str, Any] = SageMakerTestEnvironment(framework=request.cls.framework )
236
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { 'google/vit-base-patch16-224': 'https://huggingface.co/vit-base-patch16-224/resolve/main/config.json', # See all ViT models at https://huggingface.co/models?filter=vit } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = """vit""" def __init__( self : Dict , UpperCamelCase__ : int=768 , UpperCamelCase__ : List[str]=12 , UpperCamelCase__ : List[Any]=12 , UpperCamelCase__ : Union[str, Any]=3072 , UpperCamelCase__ : Union[str, Any]="gelu" , UpperCamelCase__ : List[str]=0.0 , UpperCamelCase__ : List[str]=0.0 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : int=1E-12 , UpperCamelCase__ : Tuple=224 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : Optional[Any]=3 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : str=16 , **UpperCamelCase__ : Dict , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE : List[Any] = image_size SCREAMING_SNAKE_CASE : Optional[Any] = patch_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : int = qkv_bias SCREAMING_SNAKE_CASE : int = encoder_stride class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = version.parse("""1.11""") @property def __A ( self : Dict ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __A ( self : Any ): '''simple docstring''' return 1E-4
355
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A ( _lowercase , _lowercase ): # Load checkpoint SCREAMING_SNAKE_CASE : Union[str, Any] = torch.load(_lowercase , map_location='''cpu''' ) SCREAMING_SNAKE_CASE : List[str] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository SCREAMING_SNAKE_CASE : int = {} for k, v in state_dict.items(): if "pred_layer" in k: SCREAMING_SNAKE_CASE : Optional[Any] = v else: SCREAMING_SNAKE_CASE : List[Any] = v SCREAMING_SNAKE_CASE : Dict = chkpt['''params'''] SCREAMING_SNAKE_CASE : Optional[Any] = {n: v for n, v in config.items() if not isinstance(_lowercase , (torch.FloatTensor, numpy.ndarray) )} SCREAMING_SNAKE_CASE : Any = chkpt['''dico_word2id'''] SCREAMING_SNAKE_CASE : str = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model SCREAMING_SNAKE_CASE : Dict = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME SCREAMING_SNAKE_CASE : List[str] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME SCREAMING_SNAKE_CASE : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(_lowercase , _lowercase ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_lowercase , indent=2 ) + '''\n''' ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : List[Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
258
0
"""simple docstring""" import functools def _snake_case ( UpperCamelCase : str , UpperCamelCase : str ): UpperCAmelCase : str = len(UpperCamelCase ) UpperCAmelCase : int = len(UpperCamelCase ) @functools.cache def min_distance(UpperCamelCase : int , UpperCamelCase : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase : List[str] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , UpperCamelCase ) , 1 + min_distance(UpperCamelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
109
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A: str = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Dict = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: List[Any] = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Dict = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: int = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys A: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
109
1
"""simple docstring""" from collections.abc import Sequence def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Sequence[int] | None = None ) -> int: if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) _lowerCAmelCase : Union[str, Any] = nums[0] for i in range(1 ,len(_lowerCamelCase ) ): _lowerCAmelCase : Optional[Any] = nums[i] _lowerCAmelCase : Dict = max(_lowerCamelCase ,ans + num ,_lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _a : str = int(input('Enter number of elements : ').strip()) _a : Optional[int] = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
351
"""simple docstring""" import socket def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Optional[int] = socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) _lowerCAmelCase : Optional[int] = socket.gethostname() _lowerCAmelCase : Tuple = 12312 sock.connect((host, port) ) sock.send(b"""Hello server!""" ) with open("""Received_file""" ,"""wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: _lowerCAmelCase : List[Any] = sock.recv(1024 ) if not data: break out_file.write(_lowerCamelCase ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
126
0
'''simple docstring''' def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = len(__snake_case ) __SCREAMING_SNAKE_CASE = [[0] * n for i in range(__snake_case )] for i in range(__snake_case ): __SCREAMING_SNAKE_CASE = y_points[i] for i in range(2 , __snake_case ): for j in range(__snake_case , __snake_case ): __SCREAMING_SNAKE_CASE = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
267
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def _lowerCAmelCase ( __snake_case : float , __snake_case : float , __snake_case : bool = False ) -> list[float]: if radian_mode: return [magnitude * cos(__snake_case ), magnitude * sin(__snake_case )] return [magnitude * cos(radians(__snake_case ) ), magnitude * sin(radians(__snake_case ) )] def _lowerCAmelCase ( __snake_case : NDArray[floataa] , __snake_case : NDArray[floataa] , __snake_case : float = 10**-1 ) -> bool: __A : NDArray[floataa] = cross(__snake_case , __snake_case ) __A : float = sum(__snake_case ) return abs(__snake_case ) < eps if __name__ == "__main__": # Test to check if it works lowercase__ : List[Any] = array( [ polar_force(718.4, 1_80 - 30), polar_force(879.54, 45), polar_force(1_00, -90), ] ) lowercase__ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowercase__ : Dict = array( [ polar_force(30 * 9.81, 15), polar_force(2_15, 1_80 - 45), polar_force(2_64, 90 - 30), ] ) lowercase__ : Any = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowercase__ : Optional[int] = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]]) lowercase__ : Optional[int] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
190
0
"""simple docstring""" __UpperCamelCase : Tuple = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict ): # Return True if there is node that has not iterated. lowerCAmelCase = [False] * len(_UpperCAmelCase ) lowerCAmelCase = [s] lowerCAmelCase = True while queue: lowerCAmelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_UpperCAmelCase ) lowerCAmelCase = True lowerCAmelCase = u return visited[t] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ): lowerCAmelCase = [-1] * (len(_UpperCAmelCase )) lowerCAmelCase = 0 lowerCAmelCase = [] lowerCAmelCase = [i[:] for i in graph] # Record original cut, copy. while bfs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowerCAmelCase = float('Inf' ) lowerCAmelCase = sink while s != source: # Find the minimum value in select path lowerCAmelCase = min(_UpperCAmelCase , graph[parent[s]][s] ) lowerCAmelCase = parent[s] max_flow += path_flow lowerCAmelCase = sink while v != source: lowerCAmelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCAmelCase = parent[v] for i in range(len(_UpperCAmelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
309
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_script.main ) def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_ops.main )
309
1
"""simple docstring""" class lowerCAmelCase__ : '''simple docstring''' def __init__( self : List[str] , lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = arr.split(''',''') def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = [int(self.array[0])] * len(self.array) SCREAMING_SNAKE_CASE_ : Optional[int] = [int(self.array[0])] * len(self.array) for i in range(1 , len(self.array)): SCREAMING_SNAKE_CASE_ : Dict = max( int(self.array[i]) + sum_value[i - 1] , int(self.array[i])) SCREAMING_SNAKE_CASE_ : int = max(sum_value[i] , rear[i - 1]) return rear[len(self.array) - 1] if __name__ == "__main__": UpperCAmelCase_ : Any = input("""please input some numbers:""") UpperCAmelCase_ : int = SubArray(whole_array) UpperCAmelCase_ : Optional[Any] = array.solve_sub_array() print(("""the results is:""", re))
91
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class __lowercase (_UpperCAmelCase ): _UpperCamelCase = """table-transformer""" _UpperCamelCase = ["""past_key_values"""] _UpperCamelCase = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , A_=True , A_=None , A_=3 , A_=100 , A_=6 , A_=2048 , A_=8 , A_=6 , A_=2048 , A_=8 , A_=0.0 , A_=0.0 , A_=True , A_="relu" , A_=256 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=1.0 , A_=False , A_="sine" , A_="resnet50" , A_=True , A_=False , A_=1 , A_=5 , A_=2 , A_=1 , A_=1 , A_=5 , A_=2 , A_=0.1 , **A_ , ) ->Any: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __lowerCAmelCase : Optional[Any] = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(A_ , A_ ): __lowerCAmelCase : int = backbone_config.get('''model_type''' ) __lowerCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __lowerCAmelCase : Any = config_class.from_dict(A_ ) # set timm attributes to None __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : List[str] = None, None, None __lowerCAmelCase : Tuple = use_timm_backbone __lowerCAmelCase : Optional[Any] = backbone_config __lowerCAmelCase : List[str] = num_channels __lowerCAmelCase : Tuple = num_queries __lowerCAmelCase : int = d_model __lowerCAmelCase : List[Any] = encoder_ffn_dim __lowerCAmelCase : Optional[int] = encoder_layers __lowerCAmelCase : List[str] = encoder_attention_heads __lowerCAmelCase : str = decoder_ffn_dim __lowerCAmelCase : Union[str, Any] = decoder_layers __lowerCAmelCase : Any = decoder_attention_heads __lowerCAmelCase : Optional[int] = dropout __lowerCAmelCase : Any = attention_dropout __lowerCAmelCase : Tuple = activation_dropout __lowerCAmelCase : Optional[Any] = activation_function __lowerCAmelCase : List[str] = init_std __lowerCAmelCase : Tuple = init_xavier_std __lowerCAmelCase : Any = encoder_layerdrop __lowerCAmelCase : List[Any] = decoder_layerdrop __lowerCAmelCase : Optional[Any] = encoder_layers __lowerCAmelCase : Optional[Any] = auxiliary_loss __lowerCAmelCase : Optional[Any] = position_embedding_type __lowerCAmelCase : Tuple = backbone __lowerCAmelCase : Any = use_pretrained_backbone __lowerCAmelCase : int = dilation # Hungarian matcher __lowerCAmelCase : Dict = class_cost __lowerCAmelCase : List[str] = bbox_cost __lowerCAmelCase : int = giou_cost # Loss coefficients __lowerCAmelCase : Optional[Any] = mask_loss_coefficient __lowerCAmelCase : Tuple = dice_loss_coefficient __lowerCAmelCase : int = bbox_loss_coefficient __lowerCAmelCase : List[Any] = giou_loss_coefficient __lowerCAmelCase : int = eos_coefficient super().__init__(is_encoder_decoder=A_ , **A_ ) @property def UpperCamelCase__ ( self ) ->int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCamelCase__ ( self ) ->int: '''simple docstring''' return self.d_model class __lowercase (_UpperCAmelCase ): _UpperCamelCase = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def UpperCamelCase__ ( self ) ->float: '''simple docstring''' return 1e-5 @property def UpperCamelCase__ ( self ) ->int: '''simple docstring''' return 12
275
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __SCREAMING_SNAKE_CASE ( self ) -> str: __a = 1 __a = 3 __a = (3_2, 3_2) __a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A__ ) return image @property def __SCREAMING_SNAKE_CASE ( self ) -> str: torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=A__ , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , ) return model @property def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __SCREAMING_SNAKE_CASE ( self ) -> str: torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) return CLIPTextModel(A__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = 'cpu' # ensure determinism for the device-dependent torch.Generator __a = self.dummy_cond_unet_upscale __a = DDPMScheduler() __a = DDIMScheduler(prediction_type='v_prediction' ) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(A__ ) ).convert('RGB' ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk __a = StableDiffusionUpscalePipeline( unet=A__ , low_res_scheduler=A__ , scheduler=A__ , vae=A__ , text_encoder=A__ , tokenizer=A__ , max_noise_level=3_5_0 , ) __a = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) __a = 'A painting of a squirrel eating a burger' __a = torch.Generator(device=A__ ).manual_seed(0 ) __a = sd_pipe( [prompt] , image=A__ , generator=A__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='np' , ) __a = output.images __a = torch.Generator(device=A__ ).manual_seed(0 ) __a = sd_pipe( [prompt] , image=A__ , generator=A__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='np' , return_dict=A__ , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] __a = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __a = np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = 'cpu' # ensure determinism for the device-dependent torch.Generator __a = self.dummy_cond_unet_upscale __a = DDPMScheduler() __a = DDIMScheduler(prediction_type='v_prediction' ) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(A__ ) ).convert('RGB' ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk __a = StableDiffusionUpscalePipeline( unet=A__ , low_res_scheduler=A__ , scheduler=A__ , vae=A__ , text_encoder=A__ , tokenizer=A__ , max_noise_level=3_5_0 , ) __a = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) __a = 'A painting of a squirrel eating a burger' __a = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='np' , ) __a = output.images assert image.shape[0] == 2 __a = torch.Generator(device=A__ ).manual_seed(0 ) __a = sd_pipe( [prompt] , image=A__ , generator=A__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='np' , ) __a = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: __a = self.dummy_cond_unet_upscale __a = DDPMScheduler() __a = DDIMScheduler(prediction_type='v_prediction' ) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(A__ ) ).convert('RGB' ).resize((6_4, 6_4) ) # put models in fp16, except vae as it overflows in fp16 __a = unet.half() __a = text_encoder.half() # make sure here that pndm scheduler skips prk __a = StableDiffusionUpscalePipeline( unet=A__ , low_res_scheduler=A__ , scheduler=A__ , vae=A__ , text_encoder=A__ , tokenizer=A__ , max_noise_level=3_5_0 , ) __a = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) __a = 'A painting of a squirrel eating a burger' __a = torch.manual_seed(0 ) __a = sd_pipe( [prompt] , image=A__ , generator=A__ , num_inference_steps=2 , output_type='np' , ).images __a = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) __a = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) __a = 'stabilityai/stable-diffusion-x4-upscaler' __a = StableDiffusionUpscalePipeline.from_pretrained(A__ ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing() __a = 'a cat sitting on a park bench' __a = torch.manual_seed(0 ) __a = pipe( prompt=A__ , image=A__ , generator=A__ , output_type='np' , ) __a = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-3 def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) __a = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) __a = 'stabilityai/stable-diffusion-x4-upscaler' __a = StableDiffusionUpscalePipeline.from_pretrained( A__ , torch_dtype=torch.floataa , ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing() __a = 'a cat sitting on a park bench' __a = torch.manual_seed(0 ) __a = pipe( prompt=A__ , image=A__ , generator=A__ , output_type='np' , ) __a = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) __a = 'stabilityai/stable-diffusion-x4-upscaler' __a = StableDiffusionUpscalePipeline.from_pretrained( A__ , torch_dtype=torch.floataa , ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a = 'a cat sitting on a park bench' __a = torch.manual_seed(0 ) __a = pipe( prompt=A__ , image=A__ , generator=A__ , num_inference_steps=5 , output_type='np' , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
359
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Tuple = logging.get_logger(__name__) lowerCamelCase_ : List[Any] = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class a__ ( __snake_case ): A__ : Dict = 'fnet' def __init__( self , UpperCAmelCase=3_2_0_0_0 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=4 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=False , UpperCAmelCase=5_1_2 , UpperCAmelCase=3 , UpperCAmelCase=1 , UpperCAmelCase=2 , **UpperCAmelCase , ) -> Dict: super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) __a = vocab_size __a = max_position_embeddings __a = hidden_size __a = num_hidden_layers __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = initializer_range __a = type_vocab_size __a = layer_norm_eps __a = use_tpu_fourier_optimizations __a = tpu_short_seq_length
197
0
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: snake_case_ = nn.functional.normalize(UpperCAmelCase ) snake_case_ = nn.functional.normalize(UpperCAmelCase ) return torch.mm(UpperCAmelCase , normalized_text_embeds.t() ) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = CLIPConfig SCREAMING_SNAKE_CASE_ = ["CLIPEncoderLayer"] def __init__( self, lowerCAmelCase__) -> Optional[int]: super().__init__(lowerCAmelCase__) snake_case_ = CLIPVisionModel(config.vision_config) snake_case_ = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=lowerCAmelCase__) snake_case_ = nn.Parameter(torch.ones(17, config.projection_dim), requires_grad=lowerCAmelCase__) snake_case_ = nn.Parameter(torch.ones(3, config.projection_dim), requires_grad=lowerCAmelCase__) snake_case_ = nn.Parameter(torch.ones(17), requires_grad=lowerCAmelCase__) snake_case_ = nn.Parameter(torch.ones(3), requires_grad=lowerCAmelCase__) @torch.no_grad() def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: snake_case_ = self.vision_model(lowerCAmelCase__)[1] # pooled_output snake_case_ = self.visual_projection(lowerCAmelCase__) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ = cosine_distance(lowerCAmelCase__, self.special_care_embeds).cpu().float().numpy() snake_case_ = cosine_distance(lowerCAmelCase__, self.concept_embeds).cpu().float().numpy() snake_case_ = [] snake_case_ = image_embeds.shape[0] for i in range(lowerCAmelCase__): snake_case_ = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ = 0.0 for concept_idx in range(len(special_cos_dist[0])): snake_case_ = special_cos_dist[i][concept_idx] snake_case_ = self.special_care_embeds_weights[concept_idx].item() snake_case_ = round(concept_cos - concept_threshold + adjustment, 3) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]}) snake_case_ = 0.01 for concept_idx in range(len(cos_dist[0])): snake_case_ = cos_dist[i][concept_idx] snake_case_ = self.concept_embeds_weights[concept_idx].item() snake_case_ = round(concept_cos - concept_threshold + adjustment, 3) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase__) result.append(lowerCAmelCase__) snake_case_ = [len(res['bad_concepts']) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Optional[int]: snake_case_ = self.vision_model(lowerCAmelCase__)[1] # pooled_output snake_case_ = self.visual_projection(lowerCAmelCase__) snake_case_ = cosine_distance(lowerCAmelCase__, self.special_care_embeds) snake_case_ = cosine_distance(lowerCAmelCase__, self.concept_embeds) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ = 0.0 snake_case_ = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) snake_case_ = torch.any(special_scores > 0, dim=1) snake_case_ = special_care * 0.01 snake_case_ = special_adjustment.unsqueeze(1).expand(-1, cos_dist.shape[1]) snake_case_ = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) snake_case_ = torch.any(concept_scores > 0, dim=1) return images, has_nsfw_concepts
69
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowerCAmelCase__ : str = set() # Replace all the whitespace in our sentence lowerCAmelCase__ : Tuple = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(UpperCamelCase ) == 26 def _SCREAMING_SNAKE_CASE ( UpperCamelCase = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowerCAmelCase__ : Any = [False] * 26 for char in input_str: if char.islower(): lowerCAmelCase__ : Optional[Any] = True elif char.isupper(): lowerCAmelCase__ : Any = True return all(UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" from timeit import timeit lowerCAmelCase__ : Union[str, Any] = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=UpperCamelCase ) ) print(timeit("""is_pangram_faster()""" , setup=UpperCamelCase ) ) print(timeit("""is_pangram_fastest()""" , setup=UpperCamelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
37
0
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( _a ): lowerCamelCase_ : List[Any] = (EulerDiscreteScheduler,) lowerCamelCase_ : Optional[Any] = 10 def lowerCamelCase (self , **__magic_name__ ) -> Optional[int]: '''simple docstring''' snake_case_ : List[Any] = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**__magic_name__ ) return config def lowerCamelCase (self ) -> int: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__magic_name__ ) def lowerCamelCase (self ) -> Tuple: '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=__magic_name__ , beta_end=__magic_name__ ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__magic_name__ ) def lowerCamelCase (self ) -> List[str]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__magic_name__ ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : List[str] = self.scheduler_classes[0] snake_case_ : Any = self.get_scheduler_config() snake_case_ : Tuple = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps ) snake_case_ : List[str] = torch.manual_seed(0 ) snake_case_ : str = self.dummy_model() snake_case_ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ : Optional[Any] = sample.to(__magic_name__ ) for i, t in enumerate(scheduler.timesteps ): snake_case_ : Optional[Any] = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) snake_case_ : Any = model(__magic_name__ , __magic_name__ ) snake_case_ : Optional[Any] = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ ) snake_case_ : Union[str, Any] = output.prev_sample snake_case_ : Any = torch.sum(torch.abs(__magic_name__ ) ) snake_case_ : str = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[Any] = self.scheduler_classes[0] snake_case_ : Optional[Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) snake_case_ : Tuple = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps ) snake_case_ : str = torch.manual_seed(0 ) snake_case_ : Tuple = self.dummy_model() snake_case_ : int = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ : List[str] = sample.to(__magic_name__ ) for i, t in enumerate(scheduler.timesteps ): snake_case_ : Union[str, Any] = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) snake_case_ : str = model(__magic_name__ , __magic_name__ ) snake_case_ : Optional[Any] = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ ) snake_case_ : Optional[int] = output.prev_sample snake_case_ : Optional[int] = torch.sum(torch.abs(__magic_name__ ) ) snake_case_ : List[str] = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 0.0_002 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : str = self.scheduler_classes[0] snake_case_ : Union[str, Any] = self.get_scheduler_config() snake_case_ : Any = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps , device=__magic_name__ ) snake_case_ : Optional[Any] = torch.manual_seed(0 ) snake_case_ : Optional[Any] = self.dummy_model() snake_case_ : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case_ : Union[str, Any] = sample.to(__magic_name__ ) for t in scheduler.timesteps: snake_case_ : Optional[int] = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) snake_case_ : Union[str, Any] = model(__magic_name__ , __magic_name__ ) snake_case_ : Dict = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ ) snake_case_ : Tuple = output.prev_sample snake_case_ : Optional[Any] = torch.sum(torch.abs(__magic_name__ ) ) snake_case_ : Optional[int] = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : List[str] = self.scheduler_classes[0] snake_case_ : Optional[int] = self.get_scheduler_config() snake_case_ : Any = scheduler_class(**__magic_name__ , use_karras_sigmas=__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps , device=__magic_name__ ) snake_case_ : List[Any] = torch.manual_seed(0 ) snake_case_ : List[str] = self.dummy_model() snake_case_ : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case_ : Tuple = sample.to(__magic_name__ ) for t in scheduler.timesteps: snake_case_ : Optional[int] = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) snake_case_ : Union[str, Any] = model(__magic_name__ , __magic_name__ ) snake_case_ : int = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ ) snake_case_ : List[str] = output.prev_sample snake_case_ : Tuple = torch.sum(torch.abs(__magic_name__ ) ) snake_case_ : List[str] = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
359
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase_ = TypeVar('''KEY''') lowerCAmelCase_ = TypeVar('''VAL''') @dataclass(frozen=_a, slots=_a ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowerCamelCase_ : KEY lowerCamelCase_ : VAL class __lowerCAmelCase ( _Item ): def __init__(self ) -> None: '''simple docstring''' super().__init__(__magic_name__ , __magic_name__ ) def __bool__(self ) -> bool: '''simple docstring''' return False lowerCAmelCase_ = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__(self , __magic_name__ = 8 , __magic_name__ = 0.75 ) -> None: '''simple docstring''' snake_case_ : List[Any] = initial_block_size snake_case_ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 snake_case_ : List[str] = capacity_factor snake_case_ : int = 0 def lowerCamelCase (self , __magic_name__ ) -> int: '''simple docstring''' return hash(__magic_name__ ) % len(self._buckets ) def lowerCamelCase (self , __magic_name__ ) -> int: '''simple docstring''' return (ind + 1) % len(self._buckets ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> bool: '''simple docstring''' snake_case_ : Optional[int] = self._buckets[ind] if not stored: snake_case_ : Optional[Any] = _Item(__magic_name__ , __magic_name__ ) self._len += 1 return True elif stored.key == key: snake_case_ : List[Any] = _Item(__magic_name__ , __magic_name__ ) return True else: return False def lowerCamelCase (self ) -> bool: '''simple docstring''' snake_case_ : Any = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__magic_name__ ) def lowerCamelCase (self ) -> bool: '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False snake_case_ : int = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def lowerCamelCase (self , __magic_name__ ) -> None: '''simple docstring''' snake_case_ : List[str] = self._buckets snake_case_ : int = [None] * new_size snake_case_ : Optional[int] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def lowerCamelCase (self ) -> None: '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def lowerCamelCase (self ) -> None: '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def lowerCamelCase (self , __magic_name__ ) -> Iterator[int]: '''simple docstring''' snake_case_ : Dict = self._get_bucket_index(__magic_name__ ) for _ in range(len(self._buckets ) ): yield ind snake_case_ : Tuple = self._get_next_ind(__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' for ind in self._iterate_buckets(__magic_name__ ): if self._try_set(__magic_name__ , __magic_name__ , __magic_name__ ): break def __setitem__(self , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__magic_name__ , __magic_name__ ) def __delitem__(self , __magic_name__ ) -> None: '''simple docstring''' for ind in self._iterate_buckets(__magic_name__ ): snake_case_ : Optional[Any] = self._buckets[ind] if item is None: raise KeyError(__magic_name__ ) if item is _deleted: continue if item.key == key: snake_case_ : Union[str, Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self , __magic_name__ ) -> VAL: '''simple docstring''' for ind in self._iterate_buckets(__magic_name__ ): snake_case_ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__magic_name__ ) def __len__(self ) -> int: '''simple docstring''' return self._len def __iter__(self ) -> Iterator[KEY]: '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ) -> str: '''simple docstring''' snake_case_ : List[str] = ''' ,'''.join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
279
0
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class UpperCAmelCase_ ( lowercase ): """simple docstring""" UpperCamelCase_ : Tuple ='align_text_model' def __init__( self , SCREAMING_SNAKE_CASE_=3_0522 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1e-12 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Any: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = vocab_size UpperCamelCase :List[Any] = hidden_size UpperCamelCase :Optional[int] = num_hidden_layers UpperCamelCase :int = num_attention_heads UpperCamelCase :Any = hidden_act UpperCamelCase :Any = intermediate_size UpperCamelCase :Tuple = hidden_dropout_prob UpperCamelCase :Optional[int] = attention_probs_dropout_prob UpperCamelCase :Union[str, Any] = max_position_embeddings UpperCamelCase :Tuple = type_vocab_size UpperCamelCase :Tuple = initializer_range UpperCamelCase :Union[str, Any] = layer_norm_eps UpperCamelCase :str = position_embedding_type UpperCamelCase :Union[str, Any] = use_cache UpperCamelCase :Tuple = pad_token_id @classmethod def UpperCAmelCase ( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase :Tuple = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": UpperCamelCase :Optional[Any] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class UpperCAmelCase_ ( lowercase ): """simple docstring""" UpperCamelCase_ : Tuple ='align_vision_model' def __init__( self , SCREAMING_SNAKE_CASE_ = 3 , SCREAMING_SNAKE_CASE_ = 600 , SCREAMING_SNAKE_CASE_ = 2.0 , SCREAMING_SNAKE_CASE_ = 3.1 , SCREAMING_SNAKE_CASE_ = 8 , SCREAMING_SNAKE_CASE_ = [3, 3, 5, 3, 5, 5, 3] , SCREAMING_SNAKE_CASE_ = [32, 16, 24, 40, 80, 112, 192] , SCREAMING_SNAKE_CASE_ = [16, 24, 40, 80, 112, 192, 320] , SCREAMING_SNAKE_CASE_ = [] , SCREAMING_SNAKE_CASE_ = [1, 2, 2, 2, 1, 2, 1] , SCREAMING_SNAKE_CASE_ = [1, 2, 2, 3, 3, 4, 1] , SCREAMING_SNAKE_CASE_ = [1, 6, 6, 6, 6, 6, 6] , SCREAMING_SNAKE_CASE_ = 0.25 , SCREAMING_SNAKE_CASE_ = "swish" , SCREAMING_SNAKE_CASE_ = 2560 , SCREAMING_SNAKE_CASE_ = "mean" , SCREAMING_SNAKE_CASE_ = 0.02 , SCREAMING_SNAKE_CASE_ = 0.001 , SCREAMING_SNAKE_CASE_ = 0.99 , SCREAMING_SNAKE_CASE_ = 0.2 , **SCREAMING_SNAKE_CASE_ , ) -> Optional[int]: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = num_channels UpperCamelCase :List[str] = image_size UpperCamelCase :List[str] = width_coefficient UpperCamelCase :Optional[Any] = depth_coefficient UpperCamelCase :Optional[Any] = depth_divisor UpperCamelCase :Tuple = kernel_sizes UpperCamelCase :Dict = in_channels UpperCamelCase :Optional[int] = out_channels UpperCamelCase :Optional[int] = depthwise_padding UpperCamelCase :Optional[int] = strides UpperCamelCase :Dict = num_block_repeats UpperCamelCase :Dict = expand_ratios UpperCamelCase :int = squeeze_expansion_ratio UpperCamelCase :List[str] = hidden_act UpperCamelCase :Dict = hidden_dim UpperCamelCase :str = pooling_type UpperCamelCase :List[Any] = initializer_range UpperCamelCase :Optional[Any] = batch_norm_eps UpperCamelCase :List[Any] = batch_norm_momentum UpperCamelCase :Tuple = drop_connect_rate UpperCamelCase :Dict = sum(SCREAMING_SNAKE_CASE_ ) * 4 @classmethod def UpperCAmelCase ( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase :Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": UpperCamelCase :Dict = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class UpperCAmelCase_ ( lowercase ): """simple docstring""" UpperCamelCase_ : Dict ='align' UpperCamelCase_ : Tuple =True def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=640 , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_=0.02 , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: super().__init__(**SCREAMING_SNAKE_CASE_ ) if text_config is None: UpperCamelCase :Union[str, Any] = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: UpperCamelCase :Optional[int] = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) UpperCamelCase :Optional[Any] = AlignTextConfig(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = AlignVisionConfig(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = projection_dim UpperCamelCase :Any = temperature_init_value UpperCamelCase :List[Any] = initializer_range @classmethod def UpperCAmelCase ( cls , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> List[str]: UpperCamelCase :Dict = copy.deepcopy(self.__dict__ ) UpperCamelCase :Dict = self.text_config.to_dict() UpperCamelCase :Optional[Any] = self.vision_config.to_dict() UpperCamelCase :Tuple = self.__class__.model_type return output
259
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _A ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple ): return params[F'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def _A ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any="attention" ): UpperCamelCase :str = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] ) UpperCamelCase :Optional[Any] = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) UpperCamelCase :Optional[int] = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] ) UpperCamelCase :List[Any] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) UpperCamelCase :Union[str, Any] = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] ) UpperCamelCase :Any = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) UpperCamelCase :str = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] ) UpperCamelCase :str = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def _A ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str]=False ): if split_mlp_wi: UpperCamelCase :List[Any] = params[F'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] UpperCamelCase :int = params[F'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] UpperCamelCase :str = (wi_a, wi_a) else: UpperCamelCase :Optional[Any] = params[F'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] UpperCamelCase :Optional[int] = params[F'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def _A ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] ): return params[F'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def _A ( SCREAMING_SNAKE_CASE__ : dict , *, SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool , SCREAMING_SNAKE_CASE__ : bool = False ): UpperCamelCase :Tuple = traverse_util.flatten_dict(variables['''target'''] ) UpperCamelCase :List[Any] = {'''/'''.join(SCREAMING_SNAKE_CASE__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCamelCase :int = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = collections.OrderedDict() # Shared embeddings. UpperCamelCase :int = old['''token_embedder/embedding'''] # Encoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). UpperCamelCase :str = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''encoder''' , '''pre_attention_layer_norm''' ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :List[str] = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''encoder''' , '''attention''' ) UpperCamelCase :str = layer_norm UpperCamelCase :Dict = k.T UpperCamelCase :Optional[Any] = o.T UpperCamelCase :int = q.T UpperCamelCase :Any = v.T # Block i, layer 1 (MLP). UpperCamelCase :Tuple = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''encoder''' , '''pre_mlp_layer_norm''' ) UpperCamelCase , UpperCamelCase :Any = tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''encoder''' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Tuple = layer_norm if split_mlp_wi: UpperCamelCase :List[Any] = wi[0].T UpperCamelCase :Tuple = wi[1].T else: UpperCamelCase :Optional[Any] = wi.T UpperCamelCase :Dict = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCamelCase :List[str] = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''encoder''' ).T UpperCamelCase :Optional[Any] = old['''encoder/encoder_norm/scale'''] if not scalable_attention: UpperCamelCase :str = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE__ , 0 , '''encoder''' ).T UpperCamelCase :Any = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE__ , 0 , '''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). UpperCamelCase :Union[str, Any] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''decoder''' , '''pre_self_attention_layer_norm''' ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Dict = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''decoder''' , '''self_attention''' ) UpperCamelCase :str = layer_norm UpperCamelCase :int = k.T UpperCamelCase :Optional[int] = o.T UpperCamelCase :Tuple = q.T UpperCamelCase :List[str] = v.T # Block i, layer 1 (Cross Attention). UpperCamelCase :str = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''decoder''' , '''pre_cross_attention_layer_norm''' ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :List[Any] = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''decoder''' , '''encoder_decoder_attention''' ) UpperCamelCase :Tuple = layer_norm UpperCamelCase :Optional[Any] = k.T UpperCamelCase :List[str] = o.T UpperCamelCase :List[str] = q.T UpperCamelCase :str = v.T # Block i, layer 2 (MLP). UpperCamelCase :List[str] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''decoder''' , '''pre_mlp_layer_norm''' ) UpperCamelCase , UpperCamelCase :Optional[int] = tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''decoder''' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Tuple = layer_norm if split_mlp_wi: UpperCamelCase :List[str] = wi[0].T UpperCamelCase :str = wi[1].T else: UpperCamelCase :Dict = wi.T UpperCamelCase :Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCamelCase :Tuple = tax_relpos_bias_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''decoder''' ).T UpperCamelCase :Union[str, Any] = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCamelCase :Union[str, Any] = old['''decoder/logits_dense/kernel'''].T return new def _A ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : bool ): UpperCamelCase :Optional[int] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCamelCase :Dict = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCamelCase :Dict = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) UpperCamelCase :List[Any] = state_dict['''shared.weight'''] return state_dict def _A ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): UpperCamelCase :Dict = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :str = convert_tax_to_pytorch( SCREAMING_SNAKE_CASE__ , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE__ , scalable_attention=SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Dict = make_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) def _A ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ): UpperCamelCase :Any = MTaConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCamelCase :List[str] = UMTaEncoderModel(SCREAMING_SNAKE_CASE__ ) else: UpperCamelCase :Any = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Verify that we can load the checkpoint. model.from_pretrained(SCREAMING_SNAKE_CASE__ ) print('''Done''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) __snake_case = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
259
1
"""simple docstring""" print((lambda quine: quine % quine)('''print((lambda quine: quine %% quine)(%r))'''))
38
"""simple docstring""" from math import sqrt def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> int: SCREAMING_SNAKE_CASE = 0 for i in range(1 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) ): if n % i == 0 and i != sqrt(SCREAMING_SNAKE_CASE_ ): total += i + n // i elif i == sqrt(SCREAMING_SNAKE_CASE_ ): total += i return total - n def lowercase (SCREAMING_SNAKE_CASE_ : int = 1_00_00 ) -> int: SCREAMING_SNAKE_CASE = sum( i for i in range(1 , SCREAMING_SNAKE_CASE_ ) if sum_of_divisors(sum_of_divisors(SCREAMING_SNAKE_CASE_ ) ) == i and sum_of_divisors(SCREAMING_SNAKE_CASE_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
38
1
"""simple docstring""" def lowercase ( _snake_case : str ) ->list: """simple docstring""" if n_term == "": return [] __snake_case : list = [] for temp in range(int(_snake_case ) ): series.append(f"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[str] = input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
102
"""simple docstring""" def lowercase ( _snake_case : int , _snake_case : int ) ->str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __snake_case : Tuple = str(bin(_snake_case ) )[2:] # remove the leading "0b" __snake_case : List[Any] = str(bin(_snake_case ) )[2:] __snake_case : Any = max(len(_snake_case ) , len(_snake_case ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(_snake_case ) , b_binary.zfill(_snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
102
1
UpperCamelCase__ : Optional[int] = { 0: """0""", 1: """1""", 2: """2""", 3: """3""", 4: """4""", 5: """5""", 6: """6""", 7: """7""", 8: """8""", 9: """9""", 10: """a""", 11: """b""", 12: """c""", 13: """d""", 14: """e""", 15: """f""", } def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" assert type(snake_case_ ) in (int, float) and decimal == int(snake_case_ ) a = int(snake_case_ ) a = '''''' a = False if decimal < 0: a = True decimal *= -1 while decimal > 0: a , a = divmod(snake_case_, 1_6 ) a = values[remainder] + hexadecimal a = '''0x''' + hexadecimal if negative: a = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
330
from __future__ import annotations import os from collections.abc import Mapping UpperCamelCase__ : Any = tuple[int, int] class lowerCamelCase_ : def __init__( self : Optional[Any] ,__lowerCamelCase : set[int] ,__lowerCamelCase : Mapping[EdgeT, int] ): '''simple docstring''' a = vertices a = { (min(__lowerCamelCase ), max(__lowerCamelCase )): weight for edge, weight in edges.items() } def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : EdgeT ,__lowerCamelCase : int ): '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) a = weight def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' a = Graph({min(self.vertices )} ,{} ) a = 42 a = 42 a = 42 a = 42 while len(subgraph.vertices ) < len(self.vertices ): a = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: a = edge a = weight subgraph.add_edge(__lowerCamelCase ,__lowerCamelCase ) return subgraph def SCREAMING_SNAKE_CASE__ ( snake_case_ = "p107_network.txt" ) -> int: """simple docstring""" a = os.path.abspath(os.path.dirname(snake_case_ ) ) a = os.path.join(snake_case_, snake_case_ ) a = {} a = 42 a = 42 a = 42 with open(snake_case_ ) as f: a = f.read().strip().split('''\n''' ) a = [line.split(''',''' ) for line in data] for edgea in range(1, len(snake_case_ ) ): for edgea in range(snake_case_ ): if adjaceny_matrix[edgea][edgea] != "-": a = int(adjaceny_matrix[edgea][edgea] ) a = Graph(set(range(len(snake_case_ ) ) ), snake_case_ ) a = graph.prims_algorithm() a = sum(graph.edges.values() ) a = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
330
1
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def A_ ( A__ , A__ , A__ ) -> int: def get_masked_lm_array(A__ ): a__ : Dict = F'masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE' a__ : List[str] = tf.train.load_variable(A__ , A__ ) if "kernel" in name: a__ : str = array.transpose() return torch.from_numpy(A__ ) def get_encoder_array(A__ ): a__ : Dict = F'encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE' a__ : str = tf.train.load_variable(A__ , A__ ) if "kernel" in name: a__ : Tuple = array.transpose() return torch.from_numpy(A__ ) def get_encoder_layer_array(A__ , A__ ): a__ : str = F'encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE' a__ : List[str] = tf.train.load_variable(A__ , A__ ) if "kernel" in name: a__ : str = array.transpose() return torch.from_numpy(A__ ) def get_encoder_attention_layer_array(A__ , A__ , A__ ): a__ : Tuple = F'encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE' a__ : Dict = tf.train.load_variable(A__ , A__ ) a__ : List[Any] = array.reshape(A__ ) if "kernel" in name: a__ : Tuple = array.transpose() return torch.from_numpy(A__ ) print(F'Loading model based on config from {config_path}...' ) a__ : List[str] = BertConfig.from_json_file(A__ ) a__ : str = BertForMaskedLM(A__ ) # Layers for layer_index in range(0 , config.num_hidden_layers ): a__ : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention a__ : BertSelfAttention = layer.attention.self a__ : List[Any] = get_encoder_attention_layer_array( A__ , '_query_dense/kernel' , self_attn.query.weight.data.shape ) a__ : Optional[Any] = get_encoder_attention_layer_array( A__ , '_query_dense/bias' , self_attn.query.bias.data.shape ) a__ : List[Any] = get_encoder_attention_layer_array( A__ , '_key_dense/kernel' , self_attn.key.weight.data.shape ) a__ : Union[str, Any] = get_encoder_attention_layer_array( A__ , '_key_dense/bias' , self_attn.key.bias.data.shape ) a__ : Dict = get_encoder_attention_layer_array( A__ , '_value_dense/kernel' , self_attn.value.weight.data.shape ) a__ : List[Any] = get_encoder_attention_layer_array( A__ , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output a__ : BertSelfOutput = layer.attention.output a__ : Optional[Any] = get_encoder_attention_layer_array( A__ , '_output_dense/kernel' , self_output.dense.weight.data.shape ) a__ : Any = get_encoder_attention_layer_array( A__ , '_output_dense/bias' , self_output.dense.bias.data.shape ) a__ : str = get_encoder_layer_array(A__ , '_attention_layer_norm/gamma' ) a__ : Optional[Any] = get_encoder_layer_array(A__ , '_attention_layer_norm/beta' ) # Intermediate a__ : BertIntermediate = layer.intermediate a__ : Tuple = get_encoder_layer_array(A__ , '_intermediate_dense/kernel' ) a__ : Tuple = get_encoder_layer_array(A__ , '_intermediate_dense/bias' ) # Output a__ : BertOutput = layer.output a__ : Optional[Any] = get_encoder_layer_array(A__ , '_output_dense/kernel' ) a__ : List[str] = get_encoder_layer_array(A__ , '_output_dense/bias' ) a__ : Optional[int] = get_encoder_layer_array(A__ , '_output_layer_norm/gamma' ) a__ : Optional[int] = get_encoder_layer_array(A__ , '_output_layer_norm/beta' ) # Embeddings a__ : List[str] = get_encoder_array('_position_embedding_layer/embeddings' ) a__ : Dict = get_encoder_array('_type_embedding_layer/embeddings' ) a__ : Dict = get_encoder_array('_embedding_norm_layer/gamma' ) a__ : List[Any] = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head a__ : Tuple = model.cls.predictions.transform a__ : List[Any] = get_masked_lm_array('dense/kernel' ) a__ : Tuple = get_masked_lm_array('dense/bias' ) a__ : List[str] = get_masked_lm_array('layer_norm/gamma' ) a__ : Optional[int] = get_masked_lm_array('layer_norm/beta' ) a__ : Union[str, Any] = get_masked_lm_array('embedding_table' ) # Pooling a__ : Any = BertPooler(config=A__ ) a__ : BertPooler = get_encoder_array('_pooler_layer/kernel' ) a__ : BertPooler = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(A__ ) # Integration test - should load without any errors ;) a__ : Any = BertForMaskedLM.from_pretrained(A__ ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": lowercase : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) lowercase : Optional[int] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
99
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={"vocab_file": "vocab.txt"} _lowerCamelCase ={ "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _lowerCamelCase ={ "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" with open(lowerCAmelCase_, 'r' ) as f: SCREAMING_SNAKE_CASE =f.read().splitlines() return [l.strip() for l in lines] class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ['input_ids', 'attention_mask'] def __init__( self : int ,snake_case : Dict ,snake_case : Dict="<unk>" ,snake_case : Optional[int]="<cls>" ,snake_case : Optional[int]="<pad>" ,snake_case : int="<mask>" ,snake_case : Optional[int]="<eos>" ,**snake_case : List[str] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =load_vocab_file(snake_case ) SCREAMING_SNAKE_CASE =dict(enumerate(self.all_tokens ) ) SCREAMING_SNAKE_CASE ={tok: ind for ind, tok in enumerate(self.all_tokens )} SCREAMING_SNAKE_CASE =unk_token SCREAMING_SNAKE_CASE =cls_token SCREAMING_SNAKE_CASE =pad_token SCREAMING_SNAKE_CASE =mask_token SCREAMING_SNAKE_CASE =eos_token SCREAMING_SNAKE_CASE =self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : Dict ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Tuple ,snake_case : List[str] ,**snake_case : Any ): return text.split() def _lowerCAmelCase ( self : Optional[int] ,snake_case : str=False ): return len(self._id_to_token ) def _lowerCAmelCase ( self : List[str] ): return {token: i for i, token in enumerate(self.all_tokens )} def _lowerCAmelCase ( self : List[Any] ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Any ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : List[str] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE =[self.cls_token_id] SCREAMING_SNAKE_CASE =[self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _lowerCAmelCase ( self : Optional[int] ,snake_case : List ,snake_case : Optional[List] = None ,snake_case : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] SCREAMING_SNAKE_CASE =[1] + ([0] * len(snake_case )) + [1] if token_ids_a is not None: mask += [0] * len(snake_case ) + [1] return mask def _lowerCAmelCase ( self : Optional[int] ,snake_case : Dict ,snake_case : Any ): SCREAMING_SNAKE_CASE =os.path.join(snake_case ,(filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(snake_case ,'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def _lowerCAmelCase ( self : int ): return self.get_vocab_size(with_added_tokens=snake_case ) def _lowerCAmelCase ( self : str ,snake_case : Union[List[str], List[AddedToken]] ,snake_case : bool = False ): return super()._add_tokens(snake_case ,special_tokens=snake_case )
334
0
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = get_activation('swish') self.assertIsInstance(_UpperCAmelCase , nn.SiLU) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = get_activation('silu') self.assertIsInstance(_UpperCAmelCase , nn.SiLU) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = get_activation('mish') self.assertIsInstance(_UpperCAmelCase , nn.Mish) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = get_activation('gelu') self.assertIsInstance(_UpperCAmelCase , nn.GELU) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20)
190
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
190
1
"""simple docstring""" class a__ : def __init__( self , _a , _a , _a ): lowercase : Optional[Any] = name lowercase : List[str] = value lowercase : List[str] = weight def __repr__( self ): return f"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def __magic_name__ ( self ): return self.value def __magic_name__ ( self ): return self.name def __magic_name__ ( self ): return self.weight def __magic_name__ ( self ): return self.value / self.weight def __magic_name__ ( __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : int ) -> str: lowercase : Union[str, Any] = [] for i in range(len(__snake_case ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __magic_name__ ( __snake_case : Optional[int] , __snake_case : Dict , __snake_case : int ) -> Dict: lowercase : Optional[int] = sorted(__snake_case , key=__snake_case , reverse=__snake_case ) lowercase : Dict = [] lowercase , lowercase : Optional[int] = 0.0, 0.0 for i in range(len(__snake_case ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __magic_name__ ( ) -> int: pass if __name__ == "__main__": import doctest doctest.testmod()
202
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _A : Optional[int] = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : int = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys _A : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
202
1
def A__ ( lowerCamelCase ) -> list: return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(lowerCamelCase ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("""doctest""").testmod()
355
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) set_seed(7_70) lowerCamelCase_ : str = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } lowerCamelCase_ : Any = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } lowerCamelCase_ : str = os.path.dirname(os.path.abspath(__file__)) lowerCamelCase_ : Any = os.path.join(os.path.expanduser("""~"""), """.cache""") lowerCamelCase_ : Dict = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def A__ ( lowerCamelCase , lowerCamelCase=False ) -> int: UpperCamelCase_: Union[str, Any] = model_type if use_small: key += "_small" return os.path.join(lowerCamelCase , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def A__ ( lowerCamelCase , lowerCamelCase ) -> Tuple: os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) hf_hub_download(repo_id=lowerCamelCase , filename=lowerCamelCase , local_dir=lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=False , lowerCamelCase="text" ) -> Optional[int]: if model_type == "text": UpperCamelCase_: str = BarkSemanticModel UpperCamelCase_: Dict = BarkSemanticConfig UpperCamelCase_: int = BarkSemanticGenerationConfig elif model_type == "coarse": UpperCamelCase_: str = BarkCoarseModel UpperCamelCase_: int = BarkCoarseConfig UpperCamelCase_: Any = BarkCoarseGenerationConfig elif model_type == "fine": UpperCamelCase_: Optional[Any] = BarkFineModel UpperCamelCase_: int = BarkFineConfig UpperCamelCase_: Dict = BarkFineGenerationConfig else: raise NotImplementedError() UpperCamelCase_: str = F'''{model_type}_small''' if use_small else model_type UpperCamelCase_: List[Any] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowerCamelCase ): logger.info(F'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) UpperCamelCase_: int = torch.load(lowerCamelCase , map_location=lowerCamelCase ) # this is a hack UpperCamelCase_: Tuple = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: UpperCamelCase_: int = model_args["""vocab_size"""] UpperCamelCase_: Optional[int] = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments UpperCamelCase_: Tuple = model_args.pop("""n_head""" ) UpperCamelCase_: Dict = model_args.pop("""n_embd""" ) UpperCamelCase_: List[str] = model_args.pop("""n_layer""" ) UpperCamelCase_: Optional[Any] = ConfigClass(**checkpoint["""model_args"""] ) UpperCamelCase_: Optional[Any] = ModelClass(config=lowerCamelCase ) UpperCamelCase_: List[Any] = GenerationConfigClass() UpperCamelCase_: Optional[Any] = model_generation_config UpperCamelCase_: Optional[int] = checkpoint["""model"""] # fixup checkpoint UpperCamelCase_: Dict = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(lowerCamelCase ): # replace part of the key with corresponding layer name in HF implementation UpperCamelCase_: Optional[int] = k[len(lowerCamelCase ) :] for old_layer_name in new_layer_name_dict: UpperCamelCase_: Dict = new_k.replace(lowerCamelCase , new_layer_name_dict[old_layer_name] ) UpperCamelCase_: List[str] = state_dict.pop(lowerCamelCase ) UpperCamelCase_: Optional[int] = set(state_dict.keys() ) - set(model.state_dict().keys() ) UpperCamelCase_: Dict = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} UpperCamelCase_: Optional[Any] = set(model.state_dict().keys() ) - set(state_dict.keys() ) UpperCamelCase_: Union[str, Any] = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(lowerCamelCase ) != 0: raise ValueError(F'''extra keys found: {extra_keys}''' ) if len(lowerCamelCase ) != 0: raise ValueError(F'''missing keys: {missing_keys}''' ) model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) UpperCamelCase_: str = model.num_parameters(exclude_embeddings=lowerCamelCase ) UpperCamelCase_: int = checkpoint["""best_val_loss"""].item() logger.info(F'''model loaded: {round(n_params/1E6 , 1 )}M params, {round(lowerCamelCase , 3 )} loss''' ) model.eval() model.to(lowerCamelCase ) del checkpoint, state_dict return model def A__ ( lowerCamelCase , lowerCamelCase=False , lowerCamelCase="text" ) -> Any: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() UpperCamelCase_: Union[str, Any] = """cpu""" # do conversion on cpu UpperCamelCase_: int = _get_ckpt_path(lowerCamelCase , use_small=lowerCamelCase ) UpperCamelCase_: Dict = _load_model(lowerCamelCase , lowerCamelCase , model_type=lowerCamelCase , use_small=lowerCamelCase ) # load bark initial model UpperCamelCase_: List[Any] = _bark_load_model(lowerCamelCase , """cpu""" , model_type=lowerCamelCase , use_small=lowerCamelCase ) if model_type == "text": UpperCamelCase_: Tuple = bark_model["""model"""] if model.num_parameters(exclude_embeddings=lowerCamelCase ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model UpperCamelCase_: Optional[Any] = 5 UpperCamelCase_: List[str] = 10 if model_type in ["text", "coarse"]: UpperCamelCase_: int = torch.randint(2_56 , (batch_size, sequence_length) , dtype=torch.int ) UpperCamelCase_: Tuple = bark_model(lowerCamelCase )[0] UpperCamelCase_: Optional[Any] = model(lowerCamelCase ) # take last logits UpperCamelCase_: Union[str, Any] = output_new_model_total.logits[:, [-1], :] else: UpperCamelCase_: Tuple = 3 UpperCamelCase_: List[Any] = 8 UpperCamelCase_: List[str] = torch.randint(2_56 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) UpperCamelCase_: int = model(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Any = bark_model(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[int] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("""initial and new outputs are not equal""" ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> str: UpperCamelCase_: List[str] = os.path.join(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[int] = BarkSemanticConfig.from_pretrained(os.path.join(lowerCamelCase , """config.json""" ) ) UpperCamelCase_: List[Any] = BarkCoarseConfig.from_pretrained(os.path.join(lowerCamelCase , """config.json""" ) ) UpperCamelCase_: Optional[int] = BarkFineConfig.from_pretrained(os.path.join(lowerCamelCase , """config.json""" ) ) UpperCamelCase_: Any = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) UpperCamelCase_: Optional[Any] = BarkSemanticModel.from_pretrained(lowerCamelCase ) UpperCamelCase_: Tuple = BarkCoarseModel.from_pretrained(lowerCamelCase ) UpperCamelCase_: List[str] = BarkFineModel.from_pretrained(lowerCamelCase ) UpperCamelCase_: Tuple = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) UpperCamelCase_: int = BarkConfig.from_sub_model_configs( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[int] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) UpperCamelCase_: Optional[Any] = BarkModel(lowerCamelCase ) UpperCamelCase_: int = semantic UpperCamelCase_: Tuple = coarseAcoustic UpperCamelCase_: Optional[int] = fineAcoustic UpperCamelCase_: Any = codec UpperCamelCase_: Dict = bark_generation_config Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) bark.save_pretrained(lowerCamelCase , repo_id=lowerCamelCase , push_to_hub=lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") lowerCamelCase_ : Dict = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
223
0
'''simple docstring''' from __future__ import annotations def a ( __a ) -> list[int]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = 2 UpperCamelCase__ :Optional[Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__a ) if n > 1: factors.append(__a ) return factors if __name__ == "__main__": import doctest doctest.testmod()
97
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : Any ): with self.assertRaises(snake_case ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ,type=pa.intaa() ) def _lowerCAmelCase ( self : Union[str, Any] ): with self.assertRaises(snake_case ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('bool' ) ,type=Value('int64' ) ) ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : int ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=Value('int64' ) ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=Value('int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def _lowerCAmelCase ( self : Dict ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=ArrayaD((1, 3) ,'int64' ) ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) @require_pil def _lowerCAmelCase ( self : int ): import PIL.Image SCREAMING_SNAKE_CASE =PIL.Image.fromarray(np.arange(10 ,dtype=np.uinta ).reshape(2 ,5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' ,side_effect=snake_case ) as mock_cast_to_python_objects: SCREAMING_SNAKE_CASE =pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] ,type=Image() ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' ,snake_case ) self.assertFalse(kwargs['optimize_list_casting'] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferReader(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_, pa.Buffer ) else pa.memory_map(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=lowerCAmelCase_, features=lowerCAmelCase_ ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =f.read_all() SCREAMING_SNAKE_CASE =pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(lowerCAmelCase_ ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: with pytest.raises(lowerCAmelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1}, key=[1, 2] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() @pytest.mark.parametrize('writer_batch_size', [None, 2, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: with pytest.raises(lowerCAmelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1}, key=10 ) writer.write({'col_1': 'bar', 'col_2': 2}, key=10 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() @pytest.mark.parametrize('writer_batch_size', [None, 2, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: writer.write({'col_1': 'foo', 'col_2': 1}, key=1 ) writer.write({'col_1': 'bar', 'col_2': 2}, key=2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case__ ( ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, 'test.arrow' ) with ArrowWriter(path=lowerCAmelCase_, schema=pa.schema(lowerCAmelCase_ ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(lowerCAmelCase_, 1 ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" if pa.types.is_list(lowerCAmelCase_ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if isinstance(lst[0], lowerCAmelCase_ ): change_first_primitive_element_in_list(lst[0], lowerCAmelCase_ ) else: SCREAMING_SNAKE_CASE =value @pytest.mark.parametrize('optimized_int_type, expected_dtype', [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.array(TypedSequence(lowerCAmelCase_, optimized_int_type=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype', [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ], ) @pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications SCREAMING_SNAKE_CASE =copy.deepcopy(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(lowerCAmelCase_, lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception', [False, True] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=lowerCAmelCase_ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE ='mock://dataset-train.arrow' with ArrowWriter(path=lowerCAmelCase_, storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs, type(lowerCAmelCase_ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(lowerCAmelCase_ ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ParquetWriter(stream=lowerCAmelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files', [False, True] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" import PIL.Image SCREAMING_SNAKE_CASE =str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5), dtype=np.uinta ) ).save(lowerCAmelCase_, format='png' ) SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ParquetWriter( stream=lowerCAmelCase_, features=Features({'image': Image()} ), embed_local_files=lowerCAmelCase_ ) as writer: writer.write({'image': image_path} ) writer.finalize() SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'], lowerCAmelCase_ ) with open(lowerCAmelCase_, 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.schema([pa.field('col_1', pa.string(), nullable=lowerCAmelCase_ )] ) SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter(stream=lowerCAmelCase_ ) as writer: writer._build_writer(inferred_schema=lowerCAmelCase_ ) assert writer._schema == pa.schema([pa.field('col_1', pa.string() )] )
334
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : int = ["""image_processor""", """tokenizer"""] UpperCamelCase_ : str = """CLIPImageProcessor""" UpperCamelCase_ : int = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : str , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : Dict=None , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: '''simple docstring''' A: Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , SCREAMING_SNAKE_CASE_ , ) A: Union[str, Any] = kwargs.pop('''feature_extractor''' ) A: List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __call__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : int ) -> Optional[int]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: A: str = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if images is not None: A: List[str] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if text is not None and images is not None: A: Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_ ) , tensor_type=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Any , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def _snake_case ( self : Optional[int] ) -> str: '''simple docstring''' A: Any = self.tokenizer.model_input_names A: Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _snake_case ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , SCREAMING_SNAKE_CASE_ , ) return self.image_processor_class @property def _snake_case ( self : Any ) -> Optional[int]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , SCREAMING_SNAKE_CASE_ , ) return self.image_processor
334
'''simple docstring''' class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] ) -> int: '''simple docstring''' A: Tuple = None A: Dict = None A: Optional[int] = graph self._normalize_graph(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: str = len(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = None def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict ) -> str: '''simple docstring''' if sources is int: A: Union[str, Any] = [sources] if sinks is int: A: Tuple = [sinks] if len(SCREAMING_SNAKE_CASE_ ) == 0 or len(SCREAMING_SNAKE_CASE_ ) == 0: return A: List[str] = sources[0] A: Optional[int] = sinks[0] # make fake vertex if there are more # than one source or sink if len(SCREAMING_SNAKE_CASE_ ) > 1 or len(SCREAMING_SNAKE_CASE_ ) > 1: A: Any = 0 for i in sources: max_input_flow += sum(self.graph[i] ) A: Dict = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: A: Optional[Any] = max_input_flow A: Optional[Any] = 0 A: str = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: A: Optional[Any] = max_input_flow A: str = size - 1 def _snake_case ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple: '''simple docstring''' A: Optional[Any] = algorithm(self ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[Any]: '''simple docstring''' A: str = flow_network A: List[str] = flow_network.verticesCount A: Dict = flow_network.sourceIndex A: Any = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that A: str = flow_network.graph A: str = False def _snake_case ( self : int ) -> Union[str, Any]: '''simple docstring''' if not self.executed: self._algorithm() A: str = True def _snake_case ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) # use this to save your result A: Any = -1 def _snake_case ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[int]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) A: Optional[int] = [[0] * self.verticies_count for i in range(self.verticies_count )] A: Any = [0] * self.verticies_count A: Optional[Any] = [0] * self.verticies_count def _snake_case ( self : str ) -> Optional[Any]: '''simple docstring''' A: Any = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule A: str = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list A: Dict = 0 while i < len(SCREAMING_SNAKE_CASE_ ): A: Any = vertices_list[i] A: str = self.heights[vertex_index] self.process_vertex(SCREAMING_SNAKE_CASE_ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE_ ) ) A: Tuple = 0 else: i += 1 A: Tuple = sum(self.preflow[self.source_index] ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.relabel(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: '''simple docstring''' A: Optional[int] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> int: '''simple docstring''' A: Optional[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): A: List[Any] = self.heights[to_index] if min_height is not None: A: int = min_height + 1 if __name__ == "__main__": UpperCamelCase = [0] UpperCamelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCamelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCamelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCamelCase = flow_network.find_maximum_flow() print(f'maximum flow is {maximum_flow}')
334
1
'''simple docstring''' _lowercase : Optional[int] = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
93
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class _a : def __init__( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: Any=13 , UpperCamelCase_: Optional[Any]=7 , UpperCamelCase_: Optional[Any]=6 , UpperCamelCase_: Any=17 , UpperCamelCase_: str=23 , UpperCamelCase_: List[Any]=11 , UpperCamelCase_: Optional[int]=True , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = act_dim lowercase__ = state_dim lowercase__ = hidden_size lowercase__ = max_length lowercase__ = is_training def lowerCamelCase_ ( self: Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase__ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase__ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase__ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase__ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) lowercase__ = random_attention_mask((self.batch_size, self.seq_length) ) lowercase__ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: int , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: int , ) -> Dict: """simple docstring""" lowercase__ = DecisionTransformerModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class _a ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : str = (DecisionTransformerModel,) if is_torch_available() else () _lowercase : List[str] = () _lowercase : List[Any] = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids _lowercase : Any = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features _lowercase : Tuple = False _lowercase : str = False _lowercase : Tuple = False _lowercase : Optional[Any] = False _lowercase : Tuple = False _lowercase : Dict = False _lowercase : Tuple = False _lowercase : Optional[Any] = False _lowercase : Optional[int] = False def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = DecisionTransformerModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self: Any ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = DecisionTransformerModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(UpperCamelCase_ )] , UpperCamelCase_ ) @require_torch class _a ( unittest.TestCase ): @slow def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = 2 # number of steps of autoregressive prediction we will perform lowercase__ = 10 # defined by the RL environment, may be normalized lowercase__ = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) lowercase__ = model.to(UpperCamelCase_ ) lowercase__ = model.config torch.manual_seed(0 ) lowercase__ = torch.randn(1 , 1 , config.state_dim ).to(device=UpperCamelCase_ , dtype=torch.floataa ) # env.reset() lowercase__ = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=UpperCamelCase_ ) lowercase__ = torch.tensor(UpperCamelCase_ , device=UpperCamelCase_ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowercase__ = state lowercase__ = torch.zeros(1 , 0 , config.act_dim , device=UpperCamelCase_ , dtype=torch.floataa ) lowercase__ = torch.zeros(1 , 0 , device=UpperCamelCase_ , dtype=torch.floataa ) lowercase__ = torch.tensor(0 , device=UpperCamelCase_ , dtype=torch.long ).reshape(1 , 1 ) for step in range(UpperCamelCase_ ): lowercase__ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=UpperCamelCase_ )] , dim=1 ) lowercase__ = torch.cat([rewards, torch.zeros(1 , 1 , device=UpperCamelCase_ )] , dim=1 ) lowercase__ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowercase__ , lowercase__ , lowercase__ = model( states=UpperCamelCase_ , actions=UpperCamelCase_ , rewards=UpperCamelCase_ , returns_to_go=UpperCamelCase_ , timesteps=UpperCamelCase_ , attention_mask=UpperCamelCase_ , return_dict=UpperCamelCase_ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=UpperCamelCase_ , dtype=torch.floataa ), 1.0, False, {}, ) lowercase__ = action_pred[0, -1] lowercase__ = torch.cat([states, state] , dim=1 ) lowercase__ = returns_to_go[0, -1] - reward lowercase__ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowercase__ = torch.cat( [timesteps, torch.ones((1, 1) , device=UpperCamelCase_ , dtype=torch.long ) * (step + 1)] , dim=1 )
110
0
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __lowerCAmelCase : def __init__( self : Optional[Any] , A : Dict , A : List[str]=13 , A : List[str]=7 , A : Optional[Any]=True , A : Any=True , A : List[Any]=True , A : List[Any]=True , A : Dict=99 , A : Union[str, Any]=32 , A : Tuple=2 , A : Any=4 , A : Optional[int]=37 , A : Optional[int]="gelu" , A : Any=0.1 , A : Any=0.1 , A : Any=5_12 , A : str=16 , A : List[Any]=2 , A : Tuple=0.0_2 , A : str=3 , A : str=4 , A : str=None , ) -> List[str]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = 13 _UpperCAmelCase = 7 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = 99 _UpperCAmelCase = 3_84 _UpperCAmelCase = 2 _UpperCAmelCase = 4 _UpperCAmelCase = 37 _UpperCAmelCase = 'gelu' _UpperCAmelCase = 0.1 _UpperCAmelCase = 0.1 _UpperCAmelCase = 5_12 _UpperCAmelCase = 16 _UpperCAmelCase = 2 _UpperCAmelCase = 0.0_2 _UpperCAmelCase = 3 _UpperCAmelCase = 4 _UpperCAmelCase = 1_28 _UpperCAmelCase = 2 _UpperCAmelCase = 9 _UpperCAmelCase = 1 _UpperCAmelCase = None def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCAmelCase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Optional[int] , A : Dict , A : List[str] , A : Dict , A : List[str] , A : List[str] , A : Union[str, Any] , A : Union[str, Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = TFConvBertModel(config=A) _UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(A) _UpperCAmelCase = model(A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCamelCase ( self : Union[str, Any] , A : Optional[Any] , A : Tuple , A : Any , A : Optional[int] , A : Tuple , A : Any , A : Union[str, Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = TFConvBertForMaskedLM(config=A) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCamelCase ( self : List[str] , A : Optional[int] , A : Any , A : int , A : List[Any] , A : Optional[int] , A : List[Any] , A : int) -> Any: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFConvBertForSequenceClassification(config=A) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCamelCase ( self : int , A : str , A : List[str] , A : List[str] , A : Optional[Any] , A : int , A : str , A : List[Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFConvBertForMultipleChoice(config=A) _UpperCAmelCase = tf.tile(tf.expand_dims(A , 1) , (1, self.num_choices, 1)) _UpperCAmelCase = tf.tile(tf.expand_dims(A , 1) , (1, self.num_choices, 1)) _UpperCAmelCase = tf.tile(tf.expand_dims(A , 1) , (1, self.num_choices, 1)) _UpperCAmelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _UpperCAmelCase = model(A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _lowerCamelCase ( self : Optional[int] , A : Optional[Any] , A : Union[str, Any] , A : Optional[Any] , A : Dict , A : Optional[Any] , A : List[str] , A : List[Any]) -> str: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFConvBertForTokenClassification(config=A) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCamelCase ( self : Any , A : str , A : List[str] , A : Optional[int] , A : int , A : Optional[Any] , A : Optional[int] , A : List[Any]) -> Tuple: """simple docstring""" _UpperCAmelCase = TFConvBertForQuestionAnswering(config=A) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(A) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCamelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def _lowerCamelCase ( self : List[str]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = TFConvBertModelTester(self) _UpperCAmelCase = ConfigTester(self , config_class=A , hidden_size=37) def _lowerCamelCase ( self : List[Any]) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def _lowerCamelCase ( self : Union[str, Any]) -> int: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A) def _lowerCamelCase ( self : Any) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A) def _lowerCamelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A) def _lowerCamelCase ( self : Optional[int]) -> Any: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A) def _lowerCamelCase ( self : int) -> Dict: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A) def _lowerCamelCase ( self : str) -> str: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A) @slow def _lowerCamelCase ( self : Tuple) -> int: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True _UpperCAmelCase = True if hasattr(A , 'use_cache'): _UpperCAmelCase = True _UpperCAmelCase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) _UpperCAmelCase = getattr(self.model_tester , 'key_length' , A) for model_class in self.all_model_classes: _UpperCAmelCase = self._prepare_for_class(A , A) _UpperCAmelCase = model_class(A) _UpperCAmelCase = len(model(A)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A , saved_model=A) _UpperCAmelCase = os.path.join(A , 'saved_model' , '1') _UpperCAmelCase = tf.keras.models.load_model(A) _UpperCAmelCase = model(A) if self.is_encoder_decoder: _UpperCAmelCase = outputs['encoder_hidden_states'] _UpperCAmelCase = outputs['encoder_attentions'] else: _UpperCAmelCase = outputs['hidden_states'] _UpperCAmelCase = outputs['attentions'] self.assertEqual(len(A) , A) _UpperCAmelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(A) , A) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(A) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _lowerCamelCase ( self : List[str]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') self.assertIsNotNone(A) def _lowerCamelCase ( self : List[Any]) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True _UpperCAmelCase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length) _UpperCAmelCase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) _UpperCAmelCase = getattr(self.model_tester , 'key_length' , A) _UpperCAmelCase = getattr(self.model_tester , 'key_length' , A) def check_decoder_attentions_output(A : Optional[int]): _UpperCAmelCase = len(A) self.assertEqual(out_len % 2 , 0) _UpperCAmelCase = outputs.decoder_attentions self.assertEqual(len(A) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(A : List[str]): _UpperCAmelCase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(A) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = model_class(A) _UpperCAmelCase = model(self._prepare_for_class(A , A)) _UpperCAmelCase = len(A) self.assertEqual(config.output_hidden_states , A) check_encoder_attentions_output(A) if self.is_encoder_decoder: _UpperCAmelCase = model_class(A) _UpperCAmelCase = model(self._prepare_for_class(A , A)) self.assertEqual(config.output_hidden_states , A) check_decoder_attentions_output(A) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = model_class(A) _UpperCAmelCase = model(self._prepare_for_class(A , A)) self.assertEqual(config.output_hidden_states , A) check_encoder_attentions_output(A) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(A) _UpperCAmelCase = model(self._prepare_for_class(A , A)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(A)) self.assertEqual(model.config.output_hidden_states , A) check_encoder_attentions_output(A) @require_tf class __lowerCAmelCase ( unittest.TestCase ): @slow def _lowerCamelCase ( self : Tuple) -> Any: """simple docstring""" _UpperCAmelCase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]]) _UpperCAmelCase = model(A)[0] _UpperCAmelCase = [1, 6, 7_68] self.assertEqual(output.shape , A) _UpperCAmelCase = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ]) tf.debugging.assert_near(output[:, :3, :3] , A , atol=1E-4)
290
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } UpperCAmelCase__ = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } UpperCAmelCase__ = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = PRETRAINED_INIT_CONFIGURATION UpperCamelCase = RoFormerTokenizer def __init__( self : Dict , A : Any=None , A : Optional[Any]=None , A : Union[str, Any]=True , A : List[str]="[UNK]" , A : List[str]="[SEP]" , A : Union[str, Any]="[PAD]" , A : Any="[CLS]" , A : str="[MASK]" , A : Optional[int]=True , A : str=None , **A : Dict , ) -> Union[str, Any]: """simple docstring""" super().__init__( A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( pre_tok_state.get('lowercase' , A) != do_lower_case or pre_tok_state.get('strip_accents' , A) != strip_accents ): _UpperCAmelCase = getattr(A , pre_tok_state.pop('type')) _UpperCAmelCase = do_lower_case _UpperCAmelCase = strip_accents _UpperCAmelCase = pre_tok_class(**A) _UpperCAmelCase = do_lower_case def __getstate__( self : Optional[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = BertPreTokenizer() return state def __setstate__( self : List[Any] , A : Optional[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = d _UpperCAmelCase = self.__dict__['_tokenizer'].get_vocab() _UpperCAmelCase = PreTokenizer.custom(JiebaPreTokenizer(A)) def _lowerCamelCase ( self : List[Any] , A : Optional[int] , A : List[Any]=None) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self : List[str] , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _lowerCamelCase ( self : Union[str, Any] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" _UpperCAmelCase = self._tokenizer.model.save(A , name=A) return tuple(A) def _lowerCamelCase ( self : List[Any] , A : Tuple , A : str=None , A : Union[str, Any]=None , A : Union[str, Any]=False , **A : Tuple , ) -> str: """simple docstring""" _UpperCAmelCase = BertPreTokenizer() return super().save_pretrained(A , A , A , A , **A)
290
1
import re import string import numpy as np import datasets _snake_case = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' _snake_case = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' _snake_case = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _snake_case ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def _snake_case ( self , __A , __A , __A=None , __A=False , __A=False , __A=False , ): """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: lowerCamelCase : Any = np.array([re.sub(__A , "" , __A ) for x in predictions] ) lowerCamelCase : List[Any] = np.array([re.sub(__A , "" , __A ) for x in references] ) else: lowerCamelCase : Tuple = np.asarray(__A ) lowerCamelCase : Dict = np.asarray(__A ) if ignore_case: lowerCamelCase : Optional[Any] = np.char.lower(__A ) lowerCamelCase : List[str] = np.char.lower(__A ) if ignore_punctuation: lowerCamelCase : List[str] = string.punctuation.maketrans("" , "" , string.punctuation ) lowerCamelCase : Any = np.char.translate(__A , table=__A ) lowerCamelCase : List[Any] = np.char.translate(__A , table=__A ) if ignore_numbers: lowerCamelCase : Any = string.digits.maketrans("" , "" , string.digits ) lowerCamelCase : Optional[int] = np.char.translate(__A , table=__A ) lowerCamelCase : Any = np.char.translate(__A , table=__A ) lowerCamelCase : int = predictions == references return {"exact_match": np.mean(__A ) * 100}
283
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Dict = ["image_processor", "tokenizer"] __A : Dict = "BridgeTowerImageProcessor" __A : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , __A , __A ): """simple docstring""" super().__init__(__A , __A ) def __call__( self , __A , __A = None , __A = True , __A = False , __A = None , __A = None , __A = 0 , __A = None , __A = None , __A = None , __A = False , __A = False , __A = False , __A = False , __A = True , __A = None , **__A , ): """simple docstring""" lowerCamelCase : str = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_token_type_ids=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) # add pixel_values + pixel_mask lowerCamelCase : int = self.image_processor( __A , return_tensors=__A , do_normalize=__A , do_center_crop=__A , **__A ) encoding.update(__A ) return encoding def _snake_case ( self , *__A , **__A ): """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self , *__A , **__A ): """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.tokenizer.model_input_names lowerCamelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
283
1
"""simple docstring""" import argparse import struct import unittest class snake_case_ : def __init__( self : Tuple , lowercase_ : bytes ) -> None: lowercase__ : Optional[int] = data # Initialize hash values lowercase__ : Optional[Any] = [ 0x6A_09_E6_67, 0xBB_67_AE_85, 0x3C_6E_F3_72, 0xA5_4F_F5_3A, 0x51_0E_52_7F, 0x9B_05_68_8C, 0x1F_83_D9_AB, 0x5B_E0_CD_19, ] # Initialize round constants lowercase__ : Optional[Any] = [ 0x42_8A_2F_98, 0x71_37_44_91, 0xB5_C0_FB_CF, 0xE9_B5_DB_A5, 0x39_56_C2_5B, 0x59_F1_11_F1, 0x92_3F_82_A4, 0xAB_1C_5E_D5, 0xD8_07_AA_98, 0x12_83_5B_01, 0x24_31_85_BE, 0x55_0C_7D_C3, 0x72_BE_5D_74, 0x80_DE_B1_FE, 0x9B_DC_06_A7, 0xC1_9B_F1_74, 0xE4_9B_69_C1, 0xEF_BE_47_86, 0x0F_C1_9D_C6, 0x24_0C_A1_CC, 0x2D_E9_2C_6F, 0x4A_74_84_AA, 0x5C_B0_A9_DC, 0x76_F9_88_DA, 0x98_3E_51_52, 0xA8_31_C6_6D, 0xB0_03_27_C8, 0xBF_59_7F_C7, 0xC6_E0_0B_F3, 0xD5_A7_91_47, 0x06_CA_63_51, 0x14_29_29_67, 0x27_B7_0A_85, 0x2E_1B_21_38, 0x4D_2C_6D_FC, 0x53_38_0D_13, 0x65_0A_73_54, 0x76_6A_0A_BB, 0x81_C2_C9_2E, 0x92_72_2C_85, 0xA2_BF_E8_A1, 0xA8_1A_66_4B, 0xC2_4B_8B_70, 0xC7_6C_51_A3, 0xD1_92_E8_19, 0xD6_99_06_24, 0xF4_0E_35_85, 0x10_6A_A0_70, 0x19_A4_C1_16, 0x1E_37_6C_08, 0x27_48_77_4C, 0x34_B0_BC_B5, 0x39_1C_0C_B3, 0x4E_D8_AA_4A, 0x5B_9C_CA_4F, 0x68_2E_6F_F3, 0x74_8F_82_EE, 0x78_A5_63_6F, 0x84_C8_78_14, 0x8C_C7_02_08, 0x90_BE_FF_FA, 0xA4_50_6C_EB, 0xBE_F9_A3_F7, 0xC6_71_78_F2, ] lowercase__ : Optional[int] = self.preprocessing(self.data ) self.final_hash() @staticmethod def __UpperCamelCase ( lowercase_ : bytes ) -> bytes: lowercase__ : List[Any] = b"\x80" + (b"\x00" * (63 - (len(lowercase_ ) + 8) % 64)) lowercase__ : int = struct.pack(">Q" , (len(lowercase_ ) * 8) ) return data + padding + big_endian_integer def __UpperCamelCase ( self : Optional[Any] ) -> None: # Convert into blocks of 64 bytes lowercase__ : Tuple = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowercase__ : int = list(struct.unpack(">16L" , lowercase_ ) ) # add 48 0-ed integers words += [0] * 48 lowercase__ : Tuple = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowercase__ : Optional[int] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) lowercase__ : int = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) lowercase__ : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression lowercase__ : str = self.ror(lowercase_ , 6 ) ^ self.ror(lowercase_ , 11 ) ^ self.ror(lowercase_ , 25 ) lowercase__ : List[str] = (e & f) ^ ((~e & 0xFF_FF_FF_FF) & g) lowercase__ : Dict = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 lowercase__ : Union[str, Any] = self.ror(lowercase_ , 2 ) ^ self.ror(lowercase_ , 13 ) ^ self.ror(lowercase_ , 22 ) lowercase__ : List[Any] = (a & b) ^ (a & c) ^ (b & c) lowercase__ : Union[str, Any] = (sa + maj) % 0x1_00_00_00_00 lowercase__ : Optional[Any] = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) lowercase__ : int = [a, b, c, d, e, f, g, h] # Modify final values lowercase__ : Tuple = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] lowercase__ : List[Any] = "".join([hex(lowercase_ )[2:].zfill(8 ) for value in self.hashes] ) def __UpperCamelCase ( self : List[Any] , lowercase_ : int , lowercase_ : int ) -> int: return 0xFF_FF_FF_FF & (value << (32 - rotations)) | (value >> rotations) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[int] ) -> None: import hashlib lowercase__ : Optional[int] = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(lowercase_ ).hash , hashlib.shaaaa(lowercase_ ).hexdigest() ) def lowercase_ ( ): import doctest doctest.testmod() lowercase__ : Dict = argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file") lowercase__ : Union[str, Any] = parser.parse_args() lowercase__ : Optional[Any] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb") as f: lowercase__ : Optional[int] = f.read() else: lowercase__ : Union[str, Any] = bytes(_lowerCamelCase , "utf-8") print(SHAaaa(_lowerCamelCase).hash) if __name__ == "__main__": main()
368
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case_ ( __A ): __A : List[str] = "vit_mae" def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]: super().__init__(**lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Any = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Optional[Any] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Any = num_channels lowercase__ : str = qkv_bias lowercase__ : Optional[Any] = decoder_num_attention_heads lowercase__ : Any = decoder_hidden_size lowercase__ : Any = decoder_num_hidden_layers lowercase__ : Union[str, Any] = decoder_intermediate_size lowercase__ : int = mask_ratio lowercase__ : Tuple = norm_pix_loss
333
0
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __UpperCamelCase ( lowercase__ : str, lowercase__ : List[Any]=0.999, lowercase__ : List[Any]="cosine", ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ : List[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ : int ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __lowercase =[] for i in range(lowercase__ ): __lowercase =i / num_diffusion_timesteps __lowercase =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ), lowercase__ ) ) return torch.tensor(lowercase__, dtype=torch.floataa ) class lowerCAmelCase ( A , A ): lowerCAmelCase_ = [e.name for e in KarrasDiffusionSchedulers] lowerCAmelCase_ = 2 @register_to_config def __init__( self : List[str] , __lowercase : int = 1000 , __lowercase : float = 0.0_0_0_8_5 , __lowercase : float = 0.0_1_2 , __lowercase : str = "linear" , __lowercase : Optional[Union[np.ndarray, List[float]]] = None , __lowercase : str = "epsilon" , __lowercase : str = "linspace" , __lowercase : int = 0 , ): """simple docstring""" if trained_betas is not None: __lowercase =torch.tensor(__lowercase , dtype=torch.floataa ) elif beta_schedule == "linear": __lowercase =torch.linspace(__lowercase , __lowercase , __lowercase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowercase =( torch.linspace(beta_start**0.5 , beta_end**0.5 , __lowercase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowercase =betas_for_alpha_bar(__lowercase ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __lowercase =1.0 - self.betas __lowercase =torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__lowercase , __lowercase , __lowercase ) def snake_case ( self : List[str] , __lowercase : str , __lowercase : List[str]=None ): """simple docstring""" if schedule_timesteps is None: __lowercase =self.timesteps __lowercase =(schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowercase =1 if len(__lowercase ) > 1 else 0 else: __lowercase =timestep.cpu().item() if torch.is_tensor(__lowercase ) else timestep __lowercase =self._index_counter[timestep_int] return indices[pos].item() @property def snake_case ( self : str ): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def snake_case ( self : Optional[Any] , __lowercase : torch.FloatTensor , __lowercase : Union[float, torch.FloatTensor] , ): """simple docstring""" __lowercase =self.index_for_timestep(__lowercase ) if self.state_in_first_order: __lowercase =self.sigmas[step_index] else: __lowercase =self.sigmas_interpol[step_index] __lowercase =sample / ((sigma**2 + 1) ** 0.5) return sample def snake_case ( self : Dict , __lowercase : int , __lowercase : Union[str, torch.device] = None , __lowercase : Optional[int] = None , ): """simple docstring""" __lowercase =num_inference_steps __lowercase =num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowercase =np.linspace(0 , num_train_timesteps - 1 , __lowercase , dtype=__lowercase )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowercase =num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowercase =(np.arange(0 , __lowercase ) * step_ratio).round()[::-1].copy().astype(__lowercase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowercase =num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowercase =(np.arange(__lowercase , 0 , -step_ratio )).round().copy().astype(__lowercase ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __lowercase =np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowercase =torch.from_numpy(np.log(__lowercase ) ).to(__lowercase ) __lowercase =np.interp(__lowercase , np.arange(0 , len(__lowercase ) ) , __lowercase ) __lowercase =np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowercase =torch.from_numpy(__lowercase ).to(device=__lowercase ) # interpolate sigmas __lowercase =sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __lowercase =torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __lowercase =torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(__lowercase ).startswith('mps' ): # mps does not support float64 __lowercase =torch.from_numpy(__lowercase ).to(__lowercase , dtype=torch.floataa ) else: __lowercase =torch.from_numpy(__lowercase ).to(__lowercase ) # interpolate timesteps __lowercase =self.sigma_to_t(__lowercase ).to(__lowercase , dtype=timesteps.dtype ) __lowercase =torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __lowercase =torch.cat([timesteps[:1], interleaved_timesteps] ) __lowercase =None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowercase =defaultdict(__lowercase ) def snake_case ( self : List[Any] , __lowercase : Optional[Any] ): """simple docstring""" __lowercase =sigma.log() # get distribution __lowercase =log_sigma - self.log_sigmas[:, None] # get sigmas range __lowercase =dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __lowercase =low_idx + 1 __lowercase =self.log_sigmas[low_idx] __lowercase =self.log_sigmas[high_idx] # interpolate sigmas __lowercase =(low - log_sigma) / (low - high) __lowercase =w.clamp(0 , 1 ) # transform interpolation to time range __lowercase =(1 - w) * low_idx + w * high_idx __lowercase =t.view(sigma.shape ) return t @property def snake_case ( self : Optional[Any] ): """simple docstring""" return self.sample is None def snake_case ( self : Union[str, Any] , __lowercase : Union[torch.FloatTensor, np.ndarray] , __lowercase : Union[float, torch.FloatTensor] , __lowercase : Union[torch.FloatTensor, np.ndarray] , __lowercase : bool = True , ): """simple docstring""" __lowercase =self.index_for_timestep(__lowercase ) # advance index counter by 1 __lowercase =timestep.cpu().item() if torch.is_tensor(__lowercase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowercase =self.sigmas[step_index] __lowercase =self.sigmas_interpol[step_index + 1] __lowercase =self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __lowercase =self.sigmas[step_index - 1] __lowercase =self.sigmas_interpol[step_index] __lowercase =self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowercase =0 __lowercase =sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowercase =sigma_hat if self.state_in_first_order else sigma_interpol __lowercase =sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowercase =sigma_hat if self.state_in_first_order else sigma_interpol __lowercase =model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowercase =(sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowercase =sigma_interpol - sigma_hat # store for 2nd order step __lowercase =sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __lowercase =(sample - pred_original_sample) / sigma_interpol # 3. delta timestep __lowercase =sigma_next - sigma_hat __lowercase =self.sample __lowercase =None __lowercase =sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowercase ) def snake_case ( self : Dict , __lowercase : torch.FloatTensor , __lowercase : torch.FloatTensor , __lowercase : torch.FloatTensor , ): """simple docstring""" __lowercase =self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__lowercase ): # mps does not support float64 __lowercase =self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowercase =timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowercase =self.timesteps.to(original_samples.device ) __lowercase =timesteps.to(original_samples.device ) __lowercase =[self.index_for_timestep(__lowercase , __lowercase ) for t in timesteps] __lowercase =sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowercase =sigma.unsqueeze(-1 ) __lowercase =original_samples + noise * sigma return noisy_samples def __len__( self : str ): """simple docstring""" return self.config.num_train_timesteps
141
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase ( A , unittest.TestCase ): lowerCAmelCase_ = KandinskyVaaImgaImgPipeline lowerCAmelCase_ = ["image_embeds", "negative_image_embeds", "image"] lowerCAmelCase_ = [ "image_embeds", "negative_image_embeds", "image", ] lowerCAmelCase_ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] lowerCAmelCase_ = False @property def snake_case ( self : List[str] ): """simple docstring""" return 32 @property def snake_case ( self : Any ): """simple docstring""" return 32 @property def snake_case ( self : List[str] ): """simple docstring""" return self.time_input_dim @property def snake_case ( self : str ): """simple docstring""" return self.time_input_dim * 4 @property def snake_case ( self : Union[str, Any] ): """simple docstring""" return 100 @property def snake_case ( self : str ): """simple docstring""" torch.manual_seed(0 ) __lowercase ={ 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __lowercase =UNetaDConditionModel(**__lowercase ) return model @property def snake_case ( self : Any ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case ( self : str ): """simple docstring""" torch.manual_seed(0 ) __lowercase =VQModel(**self.dummy_movq_kwargs ) return model def snake_case ( self : Tuple ): """simple docstring""" __lowercase =self.dummy_unet __lowercase =self.dummy_movq __lowercase ={ 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } __lowercase =DDIMScheduler(**__lowercase ) __lowercase ={ 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def snake_case ( self : Optional[int] , __lowercase : Optional[int] , __lowercase : int=0 ): """simple docstring""" __lowercase =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowercase =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowercase ) # create init_image __lowercase =floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowercase =image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowercase =Image.fromarray(np.uinta(__lowercase ) ).convert('RGB' ).resize((256, 256) ) if str(__lowercase ).startswith('mps' ): __lowercase =torch.manual_seed(__lowercase ) else: __lowercase =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowercase ={ 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def snake_case ( self : List[str] ): """simple docstring""" __lowercase ='cpu' __lowercase =self.get_dummy_components() __lowercase =self.pipeline_class(**__lowercase ) __lowercase =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowercase =pipe(**self.get_dummy_inputs(__lowercase ) ) __lowercase =output.images __lowercase =pipe( **self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0] __lowercase =image[0, -3:, -3:, -1] __lowercase =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowercase =np.array( [0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self : Any ): """simple docstring""" __lowercase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_img2img_frog.npy' ) __lowercase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __lowercase ='A red cartoon frog, 4k' __lowercase =KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(__lowercase ) __lowercase =KandinskyVaaImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) __lowercase =pipeline.to(__lowercase ) pipeline.set_progress_bar_config(disable=__lowercase ) __lowercase =torch.Generator(device='cpu' ).manual_seed(0 ) __lowercase , __lowercase =pipe_prior( __lowercase , generator=__lowercase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __lowercase =pipeline( image=__lowercase , image_embeds=__lowercase , negative_image_embeds=__lowercase , generator=__lowercase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) __lowercase =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowercase , __lowercase )
141
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _a (__magic_name__ ): '''simple docstring''' def __init__( self , A__ , A__=13 , A__=7 , A__=True , A__=True , A__=True , A__=True , A__=True , A__=False , A__=False , A__=False , A__=2 , A__=99 , A__=0 , A__=32 , A__=5 , A__=4 , A__=0.1 , A__=0.1 , A__=512 , A__=12 , A__=2 , A__=0.0_2 , A__=3 , A__=4 , A__="last" , A__=None , A__=None , ): A__ : List[str] = parent A__ : int = batch_size A__ : Optional[int] = seq_length A__ : int = is_training A__ : Union[str, Any] = use_input_lengths A__ : Dict = use_token_type_ids A__ : Dict = use_labels A__ : Any = gelu_activation A__ : Union[str, Any] = sinusoidal_embeddings A__ : Dict = causal A__ : str = asm A__ : List[Any] = n_langs A__ : Any = vocab_size A__ : Dict = n_special A__ : Union[str, Any] = hidden_size A__ : Dict = num_hidden_layers A__ : str = num_attention_heads A__ : Union[str, Any] = hidden_dropout_prob A__ : List[Any] = attention_probs_dropout_prob A__ : Optional[Any] = max_position_embeddings A__ : Union[str, Any] = type_vocab_size A__ : Optional[int] = type_sequence_label_size A__ : Union[str, Any] = initializer_range A__ : Union[str, Any] = num_labels A__ : Tuple = num_choices A__ : Optional[Any] = summary_type A__ : List[Any] = use_proj A__ : Any = scope def __A ( self ): A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Optional[Any] = None if self.use_input_lengths: A__ : Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A__ : int = None if self.use_token_type_ids: A__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A__ : Dict = None A__ : Dict = None A__ : Dict = None if self.use_labels: A__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Union[str, Any] = ids_tensor([self.batch_size] , 2 ).float() A__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __A ( self ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): A__ : List[Any] = FlaubertModel(config=A__ ) model.to(A__ ) model.eval() A__ : Tuple = model(A__ , lengths=A__ , langs=A__ ) A__ : str = model(A__ , langs=A__ ) A__ : Tuple = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): A__ : Any = FlaubertWithLMHeadModel(A__ ) model.to(A__ ) model.eval() A__ : Union[str, Any] = model(A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): A__ : Union[str, Any] = FlaubertForQuestionAnsweringSimple(A__ ) model.to(A__ ) model.eval() A__ : int = model(A__ ) A__ : List[Any] = model(A__ , start_positions=A__ , end_positions=A__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): A__ : List[str] = FlaubertForQuestionAnswering(A__ ) model.to(A__ ) model.eval() A__ : str = model(A__ ) A__ : int = model( A__ , start_positions=A__ , end_positions=A__ , cls_index=A__ , is_impossible=A__ , p_mask=A__ , ) A__ : Optional[int] = model( A__ , start_positions=A__ , end_positions=A__ , cls_index=A__ , is_impossible=A__ , ) (A__ ) : int = result_with_labels.to_tuple() A__ : Union[str, Any] = model(A__ , start_positions=A__ , end_positions=A__ ) (A__ ) : List[str] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): A__ : Any = FlaubertForSequenceClassification(A__ ) model.to(A__ ) model.eval() A__ : Optional[int] = model(A__ ) A__ : Tuple = model(A__ , labels=A__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): A__ : str = self.num_labels A__ : Any = FlaubertForTokenClassification(A__ ) model.to(A__ ) model.eval() A__ : Dict = model(A__ , attention_mask=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): A__ : Optional[int] = self.num_choices A__ : List[Any] = FlaubertForMultipleChoice(config=A__ ) model.to(A__ ) model.eval() A__ : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str = model( A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ): A__ : Union[str, Any] = self.prepare_config_and_inputs() ( A__ ) : Any = config_and_inputs A__ : Optional[Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class _a (__magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Optional[Any] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase__: Optional[int] = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def __A ( self , A__ , A__ , A__ , A__ , A__ ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __A ( self , A__ , A__ , A__=False ): A__ : Optional[int] = super()._prepare_for_class(A__ , A__ , return_labels=A__ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": A__ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A__ ) A__ : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A__ ) return inputs_dict def __A ( self ): A__ : int = FlaubertModelTester(self ) A__ : Union[str, Any] = ConfigTester(self , config_class=A__ , emb_dim=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): A__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A__ ) def __A ( self ): A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A__ ) def __A ( self ): A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*A__ ) def __A ( self ): A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A__ ) def __A ( self ): A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A__ ) def __A ( self ): A__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*A__ ) def __A ( self ): A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*A__ ) @slow def __A ( self ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Dict = FlaubertModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) @slow @require_torch_gpu def __A ( self ): A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return A__ : Optional[Any] = True A__ : List[str] = model_class(config=A__ ) A__ : List[Any] = self._prepare_for_class(A__ , A__ ) A__ : int = torch.jit.trace( A__ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(A__ , os.path.join(A__ , """traced_model.pt""" ) ) A__ : Optional[int] = torch.jit.load(os.path.join(A__ , """traced_model.pt""" ) , map_location=A__ ) loaded(inputs_dict["""input_ids"""].to(A__ ) , inputs_dict["""attention_mask"""].to(A__ ) ) @require_torch class _a (unittest.TestCase ): '''simple docstring''' @slow def __A ( self ): A__ : List[Any] = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) A__ : List[Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): A__ : Optional[int] = model(A__ )[0] A__ : Any = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , A__ ) A__ : int = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A__ , atol=1e-4 ) )
354
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _a (__magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Any = KandinskyVaaImgaImgPipeline UpperCAmelCase__: Optional[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image'''] UpperCAmelCase__: str = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] UpperCAmelCase__: int = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCAmelCase__: Union[str, Any] = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 100 @property def __A ( self ): torch.manual_seed(0 ) A__ : Dict = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A__ : List[str] = UNetaDConditionModel(**A__ ) return model @property def __A ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __A ( self ): torch.manual_seed(0 ) A__ : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def __A ( self ): A__ : Optional[int] = self.dummy_unet A__ : Dict = self.dummy_movq A__ : List[Any] = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } A__ : List[str] = DDIMScheduler(**A__ ) A__ : List[str] = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __A ( self , A__ , A__=0 ): A__ : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A__ ) ).to(A__ ) A__ : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A__ ) # create init_image A__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(A__ ) ).to(A__ ) A__ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ : Dict = Image.fromarray(np.uinta(A__ ) ).convert("""RGB""" ).resize((256, 256) ) if str(A__ ).startswith("""mps""" ): A__ : Any = torch.manual_seed(A__ ) else: A__ : List[Any] = torch.Generator(device=A__ ).manual_seed(A__ ) A__ : Optional[int] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def __A ( self ): A__ : str = """cpu""" A__ : Any = self.get_dummy_components() A__ : Union[str, Any] = self.pipeline_class(**A__ ) A__ : List[str] = pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) A__ : Dict = pipe(**self.get_dummy_inputs(A__ ) ) A__ : Any = output.images A__ : List[str] = pipe( **self.get_dummy_inputs(A__ ) , return_dict=A__ , )[0] A__ : Optional[int] = image[0, -3:, -3:, -1] A__ : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ : str = np.array( [0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _a (unittest.TestCase ): '''simple docstring''' def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): A__ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) A__ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) A__ : str = """A red cartoon frog, 4k""" A__ : int = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(A__ ) A__ : List[Any] = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) A__ : List[str] = pipeline.to(A__ ) pipeline.set_progress_bar_config(disable=A__ ) A__ : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) A__ , A__ : Optional[Any] = pipe_prior( A__ , generator=A__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() A__ : str = pipeline( image=A__ , image_embeds=A__ , negative_image_embeds=A__ , generator=A__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) A__ : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A__ , A__ )
141
0
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =ProphetNetTokenizer UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Dict: super().setUp() SCREAMING_SNAKE_CASE_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _UpperCamelCase ( self , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = '''UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = '''unwanted, running''' return input_text, output_text def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [9, 6, 7, 12, 10, 11] ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] SCREAMING_SNAKE_CASE_ = {} for i, token in enumerate(_A ): SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = WordpieceTokenizer(vocab=_A , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) @require_torch def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE_ = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102] SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def _UpperCamelCase ( self ) -> List[Any]: self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def _UpperCamelCase ( self ) -> str: self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def _UpperCamelCase ( self ) -> Optional[int]: self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) @slow def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) SCREAMING_SNAKE_CASE_ = tokenizer.encode('''sequence builders''' , add_special_tokens=_A ) SCREAMING_SNAKE_CASE_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_A ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
299
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="Wav2Vec2FeatureExtractor" UpperCAmelCase_ ="AutoTokenizer" def __init__( self , _A , _A ) -> Dict: super().__init__(_A , _A ) SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False @classmethod def _UpperCamelCase ( cls , _A , **_A ) -> List[str]: try: return super().from_pretrained(_A , **_A ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _A , ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = WavaVecaCTCTokenizer.from_pretrained(_A , **_A ) return cls(feature_extractor=_A , tokenizer=_A ) def __call__( self , *_A , **_A ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE_ = kwargs.pop('''audio''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''sampling_rate''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''text''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ = encodings['''input_ids'''] return inputs def _UpperCamelCase ( self , *_A , **_A ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''input_features''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''labels''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor.pad(_A , *_A , **_A ) if labels is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad(_A , **_A ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE_ = labels['''input_ids'''] return input_features def _UpperCamelCase ( self , *_A , **_A ) -> Any: return self.tokenizer.batch_decode(*_A , **_A ) def _UpperCamelCase ( self , *_A , **_A ) -> Optional[Any]: return self.tokenizer.decode(*_A , **_A ) @contextmanager def _UpperCamelCase ( self ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer yield SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False
299
1
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : """simple docstring""" def __init__( self : int , __magic_name__ : Dict , __magic_name__ : Any=13 , __magic_name__ : Any=30 , __magic_name__ : List[str]=2 , __magic_name__ : Tuple=3 , __magic_name__ : str=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=32 , __magic_name__ : Optional[int]=2 , __magic_name__ : Dict=4 , __magic_name__ : str=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : Tuple=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : Dict=3 , __magic_name__ : Union[str, Any]=0.6 , __magic_name__ : Optional[Any]=None , ) -> List[str]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = mask_ratio SCREAMING_SNAKE_CASE_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_ = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __A ( self : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels def __A ( self : List[Any] ) -> int: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __A ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : List[str] , __magic_name__ : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = TFViTMAEModel(config=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : Optional[int] , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = TFViTMAEForPreTraining(__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , training=__magic_name__ ) # expected sequence length = num_patches SCREAMING_SNAKE_CASE_ = (self.image_size // self.patch_size) ** 2 SCREAMING_SNAKE_CASE_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = TFViTMAEForPreTraining(__magic_name__ ) SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , training=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __A ( self : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) = config_and_inputs SCREAMING_SNAKE_CASE_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () lowerCamelCase__ = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __A ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE_ = TFViTMAEModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def __A ( self : str ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def __A ( self : List[Any] ) -> Dict: pass def __A ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) SCREAMING_SNAKE_CASE_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , tf.keras.layers.Layer ) ) def __A ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __magic_name__ ) def __A ( self : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __A ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__magic_name__ ) def __A ( self : List[Any] ) -> List[str]: # make the mask reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , noise=__magic_name__ ) SCREAMING_SNAKE_CASE_ = copy.deepcopy(self._prepare_for_class(__magic_name__ , __magic_name__ ) ) SCREAMING_SNAKE_CASE_ = model(**__magic_name__ , noise=__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs_dict[0].numpy() SCREAMING_SNAKE_CASE_ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 ) def __A ( self : Tuple ) -> Union[str, Any]: # make the mask reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__magic_name__ : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = {} for k, v in inputs_dict.items(): if tf.is_tensor(__magic_name__ ): SCREAMING_SNAKE_CASE_ = v.numpy() else: SCREAMING_SNAKE_CASE_ = np.array(__magic_name__ ) return inputs_np_dict for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = prepare_numpy_arrays(__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , noise=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(**__magic_name__ , noise=__magic_name__ ) self.assert_outputs_same(__magic_name__ , __magic_name__ ) def __A ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Any ) -> Optional[int]: # make masks reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE_ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) SCREAMING_SNAKE_CASE_ = tf.constant(__magic_name__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument SCREAMING_SNAKE_CASE_ = tf_noise super().check_pt_tf_models(__magic_name__ , __magic_name__ , __magic_name__ ) def __A ( self : int ) -> List[str]: # make mask reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__magic_name__ ) if module_member_name.endswith("MainLayer" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("MainLayer" )] == model_class.__name__[: -len("Model" )] for module_member in (getattr(__magic_name__ , __magic_name__ ),) if isinstance(__magic_name__ , __magic_name__ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__magic_name__ , "_keras_serializable" , __magic_name__ ) } SCREAMING_SNAKE_CASE_ = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor(__magic_name__ ) inputs_dict.update({"noise": noise} ) for main_layer_class in tf_main_layer_classes: SCREAMING_SNAKE_CASE_ = main_layer_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } SCREAMING_SNAKE_CASE_ = tf.keras.Model(__magic_name__ , outputs=main_layer(__magic_name__ ) ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = os.path.join(__magic_name__ , "keras_model.h5" ) model.save(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tf.keras.models.load_model( __magic_name__ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__magic_name__ , tf.keras.Model ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.assert_outputs_same(__magic_name__ , __magic_name__ ) @slow def __A ( self : Any ) -> str: # make mask reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , noise=__magic_name__ ) if model_class.__name__ == "TFViTMAEModel": SCREAMING_SNAKE_CASE_ = outputs.last_hidden_state.numpy() SCREAMING_SNAKE_CASE_ = 0 else: SCREAMING_SNAKE_CASE_ = outputs.logits.numpy() SCREAMING_SNAKE_CASE_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__magic_name__ , saved_model=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model_class.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , noise=__magic_name__ ) if model_class.__name__ == "TFViTMAEModel": SCREAMING_SNAKE_CASE_ = after_outputs["last_hidden_state"].numpy() SCREAMING_SNAKE_CASE_ = 0 else: SCREAMING_SNAKE_CASE_ = after_outputs["logits"].numpy() SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__magic_name__ , 1e-5 ) def __A ( self : Optional[int] ) -> Dict: # make mask reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , noise=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__magic_name__ ) SCREAMING_SNAKE_CASE_ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config SCREAMING_SNAKE_CASE_ = model_class.from_config(model.config ) SCREAMING_SNAKE_CASE_ = new_model(__magic_name__ ) # Build model new_model.set_weights(model.get_weights() ) SCREAMING_SNAKE_CASE_ = new_model(__magic_name__ , noise=__magic_name__ ) self.assert_outputs_same(__magic_name__ , __magic_name__ ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def __A ( self : str ) -> Optional[Any]: pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def __A ( self : List[str] ) -> Tuple: pass @slow def __A ( self : int ) -> Any: SCREAMING_SNAKE_CASE_ = TFViTMAEModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(__magic_name__ ) def a__ ( ): SCREAMING_SNAKE_CASE_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : List[Any] ) -> int: return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def __A ( self : str ) -> Union[str, Any]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) SCREAMING_SNAKE_CASE_ = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="tf" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) SCREAMING_SNAKE_CASE_ = ViTMAEConfig() SCREAMING_SNAKE_CASE_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE_ = np.random.uniform(size=(1, num_patches) ) # forward pass SCREAMING_SNAKE_CASE_ = model(**__magic_name__ , noise=__magic_name__ ) # verify the logits SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , __magic_name__ , atol=1e-4 )
305
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : int ) -> Any: SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = BlipImageProcessor() SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) SCREAMING_SNAKE_CASE_ = BlipaProcessor(__magic_name__ , __magic_name__ ) processor.save_pretrained(self.tmpdirname ) def __A ( self : str , **__magic_name__ : int ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer def __A ( self : Dict , **__magic_name__ : List[Any] ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor def __A ( self : int ) -> Any: shutil.rmtree(self.tmpdirname ) def __A ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE_ = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__magic_name__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __magic_name__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __magic_name__ ) def __A ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = image_processor(__magic_name__ , return_tensors="np" ) SCREAMING_SNAKE_CASE_ = processor(images=__magic_name__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def __A ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ = processor.batch_decode(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def __A ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ , images=__magic_name__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
305
1
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _UpperCamelCase = datasets.utils.logging.get_logger(__name__) @dataclass class __lowercase (datasets.BuilderConfig ): _UpperCamelCase = None _UpperCamelCase = "utf-8" _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = True # deprecated _UpperCamelCase = None # deprecated _UpperCamelCase = 10 << 20 # 10MB _UpperCamelCase = None class __lowercase (datasets.ArrowBasedBuilder ): _UpperCamelCase = JsonConfig def UpperCamelCase__ ( self ) ->int: '''simple docstring''' if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) __lowerCAmelCase : Dict = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase__ ( self , A_ ) ->Optional[Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowerCAmelCase : Optional[int] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__snake_case , (str, list, tuple) ): __lowerCAmelCase : Tuple = data_files if isinstance(__snake_case , __snake_case ): __lowerCAmelCase : List[str] = [files] __lowerCAmelCase : Any = [dl_manager.iter_files(__snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __lowerCAmelCase : Optional[int] = [] for split_name, files in data_files.items(): if isinstance(__snake_case , __snake_case ): __lowerCAmelCase : Tuple = [files] __lowerCAmelCase : Optional[int] = [dl_manager.iter_files(__snake_case ) for file in files] splits.append(datasets.SplitGenerator(name=__snake_case , gen_kwargs={'''files''': files} ) ) return splits def UpperCamelCase__ ( self , A_ ) ->pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): __lowerCAmelCase : Tuple = self.config.features.arrow_schema.field(__snake_case ).type __lowerCAmelCase : List[Any] = pa_table.append_column(__snake_case , pa.array([None] * len(__snake_case ) , type=__snake_case ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example __lowerCAmelCase : List[str] = table_cast(__snake_case , self.config.features.arrow_schema ) return pa_table def UpperCamelCase__ ( self , A_ ) ->List[str]: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(__snake_case ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__snake_case , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __lowerCAmelCase : Dict = json.load(__snake_case ) # We keep only the field we are interested in __lowerCAmelCase : Tuple = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__snake_case , (list, tuple) ): __lowerCAmelCase : Tuple = set().union(*[row.keys() for row in dataset] ) __lowerCAmelCase : Tuple = {col: [row.get(__snake_case ) for row in dataset] for col in keys} else: __lowerCAmelCase : Dict = dataset __lowerCAmelCase : Dict = pa.Table.from_pydict(__snake_case ) yield file_idx, self._cast_table(__snake_case ) # If the file has one json object per line else: with open(__snake_case , '''rb''' ) as f: __lowerCAmelCase : Optional[Any] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small __lowerCAmelCase : Tuple = max(self.config.chunksize // 32 , 16 << 10 ) __lowerCAmelCase : Tuple = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: __lowerCAmelCase : Any = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__snake_case ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": __lowerCAmelCase : str = batch.decode(self.config.encoding , errors=__snake_case ).encode('''utf-8''' ) try: while True: try: __lowerCAmelCase : List[str] = paj.read_json( io.BytesIO(__snake_case ) , read_options=paj.ReadOptions(block_size=__snake_case ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__snake_case , pa.ArrowInvalid ) and "straddling" not in str(__snake_case ) or block_size > len(__snake_case ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"""Batch of {len(__snake_case )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __snake_case , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __lowerCAmelCase : Any = json.load(__snake_case ) except json.JSONDecodeError: logger.error(f"""Failed to read file '{file}' with error {type(__snake_case )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__snake_case , __snake_case ): # list is the only sequence type supported in JSON try: __lowerCAmelCase : List[Any] = set().union(*[row.keys() for row in dataset] ) __lowerCAmelCase : Dict = {col: [row.get(__snake_case ) for row in dataset] for col in keys} __lowerCAmelCase : str = pa.Table.from_pydict(__snake_case ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"""Failed to read file '{file}' with error {type(__snake_case )}: {e}""" ) raise ValueError(f"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(__snake_case ) break else: logger.error(f"""Failed to read file '{file}' with error {type(__snake_case )}: {e}""" ) raise ValueError( f"""Not able to read records in the JSON file at {file}. """ f"""You should probably indicate the field of the JSON file containing your records. """ f"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__snake_case ) batch_idx += 1
275
'''simple docstring''' import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class UpperCAmelCase ( snake_case_ ): def lowercase__ ( self : List[Any] ) -> Union[str, Any]: _lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__snake_case , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__snake_case , """num_attention_heads""" ) ) self.parent.assertTrue(hasattr(__snake_case , """num_encoder_blocks""" ) ) class UpperCAmelCase : def __init__( self : Optional[int] , __snake_case : str , __snake_case : Dict=13 , __snake_case : str=64 , __snake_case : Dict=3 , __snake_case : Dict=4 , __snake_case : Tuple=[2, 2, 2, 2] , __snake_case : int=[8, 4, 2, 1] , __snake_case : List[str]=[16, 32, 64, 1_28] , __snake_case : Optional[Any]=[1, 4, 8, 16] , __snake_case : Dict=[1, 2, 4, 8] , __snake_case : Optional[Any]=True , __snake_case : List[str]=True , __snake_case : int="gelu" , __snake_case : Optional[Any]=0.1 , __snake_case : Any=0.1 , __snake_case : Tuple=0.02 , __snake_case : Union[str, Any]=3 , __snake_case : Tuple=None , ) -> List[str]: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_encoder_blocks _lowerCAmelCase = sr_ratios _lowerCAmelCase = depths _lowerCAmelCase = hidden_sizes _lowerCAmelCase = downsampling_rates _lowerCAmelCase = num_attention_heads _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = scope def lowercase__ ( self : int ) -> Union[str, Any]: _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[Any] ) -> List[str]: return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowercase__ ( self : Tuple , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[int] ) -> Tuple: _lowerCAmelCase = SegformerModel(config=__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = _lowerCAmelCase = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def lowercase__ ( self : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> List[str]: _lowerCAmelCase = self.num_labels _lowerCAmelCase = SegformerForSemanticSegmentation(__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model(__snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) _lowerCAmelCase = model(__snake_case , labels=__snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def lowercase__ ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Dict ) -> List[str]: _lowerCAmelCase = 1 _lowerCAmelCase = SegformerForSemanticSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(__snake_case ) _lowerCAmelCase = model(__snake_case , labels=__snake_case ) self.parent.assertGreater(result.loss , 0.0 ) def lowercase__ ( self : Optional[int] ) -> int: _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): _lowercase: Any = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) _lowercase: Tuple = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) _lowercase: Tuple = True _lowercase: Union[str, Any] = False _lowercase: Dict = False _lowercase: Optional[Any] = False def lowercase__ ( self : Tuple ) -> Any: _lowerCAmelCase = SegformerModelTester(self ) _lowerCAmelCase = SegformerConfigTester(self , config_class=__snake_case ) def lowercase__ ( self : Optional[Any] ) -> Dict: self.config_tester.run_common_tests() def lowercase__ ( self : int ) -> Union[str, Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowercase__ ( self : Dict ) -> int: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*__snake_case ) def lowercase__ ( self : Dict ) -> Dict: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*__snake_case ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def lowercase__ ( self : int ) -> Union[str, Any]: pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def lowercase__ ( self : Optional[int] ) -> int: pass def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__snake_case ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) def lowercase__ ( self : Tuple ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True for model_class in self.all_model_classes: _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) _lowerCAmelCase = outputs.attentions _lowerCAmelCase = sum(self.model_tester.depths ) self.assertEqual(len(__snake_case ) , __snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCAmelCase = True _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__snake_case ) , __snake_case ) # verify the first attentions (first block, first layer) _lowerCAmelCase = (self.model_tester.image_size // 4) ** 2 _lowerCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) _lowerCAmelCase = (self.model_tester.image_size // 32) ** 2 _lowerCAmelCase = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) _lowerCAmelCase = len(__snake_case ) # Check attention is always last and order is fine _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) self.assertEqual(out_len + 1 , len(__snake_case ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__snake_case ) , __snake_case ) # verify the first attentions (first block, first layer) _lowerCAmelCase = (self.model_tester.image_size // 4) ** 2 _lowerCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def lowercase__ ( self : int ) -> List[str]: def check_hidden_states_output(__snake_case : str , __snake_case : Tuple , __snake_case : Optional[int] ): _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) _lowerCAmelCase = outputs.hidden_states _lowerCAmelCase = self.model_tester.num_encoder_blocks self.assertEqual(len(__snake_case ) , __snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def lowercase__ ( self : Optional[Any] ) -> Any: if not self.model_tester.is_training: return _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(__snake_case ): continue _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.train() _lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) _lowerCAmelCase = model(**__snake_case ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : Tuple ) -> Dict: pass @slow def lowercase__ ( self : str ) -> Optional[int]: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = SegformerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def lowercase__ ( self : Union[str, Any] ) -> Any: # only resize + normalize _lowerCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case ) _lowerCAmelCase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( __snake_case ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=__snake_case , return_tensors="""pt""" ) _lowerCAmelCase = encoded_inputs.pixel_values.to(__snake_case ) with torch.no_grad(): _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , __snake_case ) _lowerCAmelCase = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def lowercase__ ( self : Optional[Any] ) -> Any: # only resize + normalize _lowerCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case ) _lowerCAmelCase = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(__snake_case ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=__snake_case , return_tensors="""pt""" ) _lowerCAmelCase = encoded_inputs.pixel_values.to(__snake_case ) with torch.no_grad(): _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , __snake_case ) _lowerCAmelCase = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __snake_case , atol=1E-1 ) ) @slow def lowercase__ ( self : Any ) -> str: # only resize + normalize _lowerCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case ) _lowerCAmelCase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( __snake_case ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=__snake_case , return_tensors="""pt""" ) _lowerCAmelCase = encoded_inputs.pixel_values.to(__snake_case ) with torch.no_grad(): _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = outputs.logits.detach().cpu() _lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=__snake_case , target_sizes=[(5_00, 3_00)] ) _lowerCAmelCase = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , __snake_case ) _lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=__snake_case ) _lowerCAmelCase = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , __snake_case )
70
0
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: _UpperCAmelCase : Any = None try: import msvcrt except ImportError: _UpperCAmelCase : Any = None try: import fcntl except ImportError: _UpperCAmelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _UpperCAmelCase : str = OSError # Data # ------------------------------------------------ _UpperCAmelCase : Any = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] _UpperCAmelCase : int = """3.0.12""" _UpperCAmelCase : Optional[int] = None def __magic_name__( ): global _logger __lowerCAmelCase = _logger or logging.getLogger(__name__) return _logger class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase ): __lowerCAmelCase = lock_file return None def __str__(self ): __lowerCAmelCase = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class a__ : """simple docstring""" def __init__(self , __lowercase ): __lowerCAmelCase = lock return None def __enter__(self ): return self.lock def __exit__(self , __lowercase , __lowercase , __lowercase ): self.lock.release() return None class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase=-1 , __lowercase=None ): __lowerCAmelCase = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long __lowerCAmelCase = self.hash_filename_if_too_long(__lowercase , __lowercase ) # The path to the lock file. __lowerCAmelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowerCAmelCase = None # The default timeout value. __lowerCAmelCase = timeout # We use this lock primarily for the lock counter. __lowerCAmelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowerCAmelCase = 0 return None @property def _snake_case (self ): return self._lock_file @property def _snake_case (self ): return self._timeout @timeout.setter def _snake_case (self , __lowercase ): __lowerCAmelCase = float(__lowercase ) return None def _snake_case (self ): raise NotImplementedError() def _snake_case (self ): raise NotImplementedError() @property def _snake_case (self ): return self._lock_file_fd is not None def _snake_case (self , __lowercase=None , __lowercase=0.0_5 ): # Use the default timeout, if no timeout is provided. if timeout is None: __lowerCAmelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowerCAmelCase = id(self ) __lowerCAmelCase = self._lock_file __lowerCAmelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(__lowercase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowerCAmelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def _snake_case (self , __lowercase=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowerCAmelCase = id(self ) __lowerCAmelCase = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __lowerCAmelCase = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__(self ): self.acquire() return self def __exit__(self , __lowercase , __lowercase , __lowercase ): self.release() return None def __del__(self ): self.release(force=__lowercase ) return None def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = os.path.basename(__lowercase ) if len(__lowercase ) > max_length and max_length > 0: __lowerCAmelCase = os.path.dirname(__lowercase ) __lowerCAmelCase = str(hash(__lowercase ) ) __lowerCAmelCase = filename[: max_length - len(__lowercase ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(__lowercase , __lowercase ) else: return path class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=-1 , __lowercase=None ): from .file_utils import relative_to_absolute_path super().__init__(__lowercase , timeout=__lowercase , max_filename_length=__lowercase ) __lowerCAmelCase = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def _snake_case (self ): __lowerCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowerCAmelCase = os.open(self._lock_file , __lowercase ) except OSError: pass else: try: msvcrt.locking(__lowercase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__lowercase ) else: __lowerCAmelCase = fd return None def _snake_case (self ): __lowerCAmelCase = self._lock_file_fd __lowerCAmelCase = None msvcrt.locking(__lowercase , msvcrt.LK_UNLCK , 1 ) os.close(__lowercase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=-1 , __lowercase=None ): __lowerCAmelCase = os.statvfs(os.path.dirname(__lowercase ) ).f_namemax super().__init__(__lowercase , timeout=__lowercase , max_filename_length=__lowercase ) def _snake_case (self ): __lowerCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowerCAmelCase = os.open(self._lock_file , __lowercase ) try: fcntl.flock(__lowercase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__lowercase ) else: __lowerCAmelCase = fd return None def _snake_case (self ): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition __lowerCAmelCase = self._lock_file_fd __lowerCAmelCase = None fcntl.flock(__lowercase , fcntl.LOCK_UN ) os.close(__lowercase ) return None class a__ ( __A ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowerCAmelCase = os.open(self._lock_file , __lowercase ) except OSError: pass else: __lowerCAmelCase = fd return None def _snake_case (self ): os.close(self._lock_file_fd ) __lowerCAmelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _UpperCAmelCase : Any = None if msvcrt: _UpperCAmelCase : Any = WindowsFileLock elif fcntl: _UpperCAmelCase : List[Any] = UnixFileLock else: _UpperCAmelCase : List[Any] = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
371
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : str = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = 'roberta' def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class a__ ( __A ): """simple docstring""" @property def _snake_case (self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
9
0
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging A: str = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> int: '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=_SCREAMING_SNAKE_CASE , speech_processor=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE = "auto" ) -> Optional[Any]: '''simple docstring''' if slice_size == "auto": UpperCAmelCase : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' self.enable_attention_slicing(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=16000 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> Any: '''simple docstring''' UpperCAmelCase : Any = self.speech_processor.feature_extractor( _SCREAMING_SNAKE_CASE , return_tensors="""pt""" , sampling_rate=_SCREAMING_SNAKE_CASE ).input_features.to(self.device ) UpperCAmelCase : Union[str, Any] = self.speech_model.generate(_SCREAMING_SNAKE_CASE , max_length=480000 ) UpperCAmelCase : Union[str, Any] = self.speech_processor.tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , normalize=_SCREAMING_SNAKE_CASE )[ 0 ] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Tuple = 1 elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : int = len(_SCREAMING_SNAKE_CASE ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(_SCREAMING_SNAKE_CASE )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(_SCREAMING_SNAKE_CASE )}." ) # get prompt text embeddings UpperCAmelCase : Union[str, Any] = self.tokenizer( _SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) UpperCAmelCase : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase : Optional[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) UpperCAmelCase : Optional[int] = text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase : List[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = text_embeddings.shape UpperCAmelCase : Optional[Any] = text_embeddings.repeat(1 , _SCREAMING_SNAKE_CASE , 1 ) UpperCAmelCase : Optional[Any] = text_embeddings.view(bs_embed * num_images_per_prompt , _SCREAMING_SNAKE_CASE , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase : List[Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase : List[str] if negative_prompt is None: UpperCAmelCase : str = [""""""] * batch_size elif type(_SCREAMING_SNAKE_CASE ) is not type(_SCREAMING_SNAKE_CASE ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(_SCREAMING_SNAKE_CASE )} !=" F" {type(_SCREAMING_SNAKE_CASE )}." ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(_SCREAMING_SNAKE_CASE ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(_SCREAMING_SNAKE_CASE )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" """ the batch size of `prompt`.""" ) else: UpperCAmelCase : Any = negative_prompt UpperCAmelCase : Dict = text_input_ids.shape[-1] UpperCAmelCase : str = self.tokenizer( _SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" , ) UpperCAmelCase : Optional[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase : int = uncond_embeddings.shape[1] UpperCAmelCase : Dict = uncond_embeddings.repeat(1 , _SCREAMING_SNAKE_CASE , 1 ) UpperCAmelCase : int = uncond_embeddings.view(batch_size * num_images_per_prompt , _SCREAMING_SNAKE_CASE , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : Optional[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase : str = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase : Tuple = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCAmelCase : List[str] = torch.randn(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device="""cpu""" , dtype=_SCREAMING_SNAKE_CASE ).to( self.device ) else: UpperCAmelCase : Optional[int] = torch.randn(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=self.device , dtype=_SCREAMING_SNAKE_CASE ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) UpperCAmelCase : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase : List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase : Optional[Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase : Optional[int] = {} if accepts_eta: UpperCAmelCase : Dict = eta for i, t in enumerate(self.progress_bar(_SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase : Dict = self.scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # predict the noise residual UpperCAmelCase : Tuple = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE ).sample # perform guidance if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : Optional[int] = noise_pred.chunk(2 ) UpperCAmelCase : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : Tuple = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = 1 / 0.1_8215 * latents UpperCAmelCase : Optional[Any] = self.vae.decode(_SCREAMING_SNAKE_CASE ).sample UpperCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase : List[Any] = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_SCREAMING_SNAKE_CASE , nsfw_content_detected=_SCREAMING_SNAKE_CASE )
109
"""simple docstring""" A: int = range(2, 2_0 + 1) A: Any = [1_0**k for k in range(ks[-1] + 1)] A: dict[int, dict[int, list[list[int]]]] = {} def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : Any , UpperCamelCase : Any , UpperCamelCase : int ): UpperCAmelCase : List[str] = sum(a_i[j] for j in range(UpperCamelCase , len(UpperCamelCase ) ) ) UpperCAmelCase : str = sum(a_i[j] * base[j] for j in range(min(len(UpperCamelCase ) , UpperCamelCase ) ) ) UpperCAmelCase , UpperCAmelCase : str = 0, 0 UpperCAmelCase : Optional[Any] = n - i UpperCAmelCase : Optional[int] = memo.get(UpperCamelCase ) if sub_memo is not None: UpperCAmelCase : str = sub_memo.get(UpperCamelCase ) if jumps is not None and len(UpperCamelCase ) > 0: # find and make the largest jump without going over UpperCAmelCase : Tuple = -1 for _k in range(len(UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCAmelCase : int = _k break if max_jump >= 0: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = jumps[max_jump] # since the difference between jumps is cached, add c UpperCAmelCase : List[str] = diff + c for j in range(min(UpperCamelCase , len(UpperCamelCase ) ) ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = divmod(UpperCamelCase , 10 ) if new_c > 0: add(UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: UpperCAmelCase : int = [] else: UpperCAmelCase : List[str] = {c: []} UpperCAmelCase : str = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCAmelCase , UpperCAmelCase : List[str] = next_term(UpperCamelCase , k - 1 , i + dn , UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCAmelCase , UpperCAmelCase : int = compute(UpperCamelCase , UpperCamelCase , i + dn , UpperCamelCase ) diff += _diff dn += terms_jumped UpperCAmelCase : Dict = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCAmelCase : str = 0 while j < len(UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCamelCase , (diff, dn, k) ) return (diff, dn) def _snake_case ( UpperCamelCase : int , UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any ): if i >= n: return 0, i if k > len(UpperCamelCase ): a_i.extend([0 for _ in range(k - len(UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCAmelCase : List[str] = i UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = 0, 0, 0 for j in range(len(UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCAmelCase : Optional[int] = ds_c + ds_b diff += addend UpperCAmelCase : str = 0 for j in range(UpperCamelCase ): UpperCAmelCase : Any = a_i[j] + addend UpperCAmelCase , UpperCAmelCase : Any = divmod(UpperCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return diff, i - start_i def _snake_case ( UpperCamelCase : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[int] ): for j in range(UpperCamelCase , len(UpperCamelCase ) ): UpperCAmelCase : Optional[int] = digits[j] + addend if s >= 10: UpperCAmelCase , UpperCAmelCase : int = divmod(UpperCamelCase , 10 ) UpperCAmelCase : str = addend // 10 + quotient else: UpperCAmelCase : Any = s UpperCAmelCase : Union[str, Any] = addend // 10 if addend == 0: break while addend > 0: UpperCAmelCase , UpperCAmelCase : Any = divmod(UpperCamelCase , 10 ) digits.append(UpperCamelCase ) def _snake_case ( UpperCamelCase : int = 10**15 ): UpperCAmelCase : Dict = [1] UpperCAmelCase : int = 1 UpperCAmelCase : Tuple = 0 while True: UpperCAmelCase , UpperCAmelCase : Tuple = next_term(UpperCamelCase , 20 , i + dn , UpperCamelCase ) dn += terms_jumped if dn == n - i: break UpperCAmelCase : Any = 0 for j in range(len(UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
109
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __lowerCAmelCase = None __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCAmelCase = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } __lowerCAmelCase = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off __lowerCAmelCase = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : List[str] = VOCAB_FILES_NAMES lowerCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Dict = ['input_ids', 'attention_mask'] lowerCAmelCase : List[str] = MBartTokenizer lowerCAmelCase : List[int] = [] lowerCAmelCase : List[int] = [] def __init__( self : Union[str, Any] ,_UpperCAmelCase : List[Any]=None ,_UpperCAmelCase : Any=None ,_UpperCAmelCase : Optional[int]="<s>" ,_UpperCAmelCase : List[Any]="</s>" ,_UpperCAmelCase : int="</s>" ,_UpperCAmelCase : Union[str, Any]="<s>" ,_UpperCAmelCase : List[str]="<unk>" ,_UpperCAmelCase : str="<pad>" ,_UpperCAmelCase : int="<mask>" ,_UpperCAmelCase : int=None ,_UpperCAmelCase : int=None ,_UpperCAmelCase : Tuple=None ,**_UpperCAmelCase : int ,): # Mask token behave like a normal word, i.e. include the space before it _a : List[Any] = AddedToken(_UpperCAmelCase ,lstrip=_UpperCAmelCase ,rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else mask_token super().__init__( vocab_file=_UpperCAmelCase ,tokenizer_file=_UpperCAmelCase ,bos_token=_UpperCAmelCase ,eos_token=_UpperCAmelCase ,sep_token=_UpperCAmelCase ,cls_token=_UpperCAmelCase ,unk_token=_UpperCAmelCase ,pad_token=_UpperCAmelCase ,mask_token=_UpperCAmelCase ,src_lang=_UpperCAmelCase ,tgt_lang=_UpperCAmelCase ,additional_special_tokens=_UpperCAmelCase ,**_UpperCAmelCase ,) _a : str = vocab_file _a : Dict = False if not self.vocab_file else True _a : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) _a : Dict = { lang_code: self.convert_tokens_to_ids(_UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _a : Dict = src_lang if src_lang is not None else 'en_XX' _a : Any = self.convert_tokens_to_ids(self._src_lang ) _a : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowercase ( self : Tuple ): return self._src_lang @src_lang.setter def __lowercase ( self : Any ,_UpperCAmelCase : str ): _a : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : List[int] ,_UpperCAmelCase : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowercase ( self : Tuple ,_UpperCAmelCase : List[int] ,_UpperCAmelCase : Optional[List[int]] = None ): _a : Any = [self.sep_token_id] _a : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowercase ( self : Optional[int] ,_UpperCAmelCase : Dict ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[str] ,_UpperCAmelCase : Optional[str] ,**_UpperCAmelCase : List[Any] ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _a : Tuple = src_lang _a : Dict = self(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ,return_tensors=_UpperCAmelCase ,**_UpperCAmelCase ) _a : Optional[int] = self.convert_tokens_to_ids(_UpperCAmelCase ) _a : List[str] = tgt_lang_id return inputs def __lowercase ( self : List[Any] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : str = "en_XX" ,_UpperCAmelCase : Optional[List[str]] = None ,_UpperCAmelCase : str = "ro_RO" ,**_UpperCAmelCase : List[Any] ,): _a : Optional[int] = src_lang _a : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(_UpperCAmelCase ,_UpperCAmelCase ,**_UpperCAmelCase ) def __lowercase ( self : Any ): return self.set_src_lang_special_tokens(self.src_lang ) def __lowercase ( self : Dict ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : List[str] ): _a : Union[str, Any] = self.convert_tokens_to_ids(_UpperCAmelCase ) _a : Any = [] _a : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] _a : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _a : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) _a : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str ,pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def __lowercase ( self : List[Any] ,_UpperCAmelCase : str ): _a : List[Any] = self.convert_tokens_to_ids(_UpperCAmelCase ) _a : List[str] = [] _a : int = [self.eos_token_id, self.cur_lang_code] _a : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens ) _a : Any = self.convert_ids_to_tokens(self.suffix_tokens ) _a : int = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str ,pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def __lowercase ( self : Tuple ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return _a : Dict = os.path.join( _UpperCAmelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file ,_UpperCAmelCase ) return (out_vocab_file,)
107
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class __magic_name__ : def __init__( self : Dict ,_UpperCAmelCase : Any ): _a : Any = data _a : Node | None = None class __magic_name__ : def __init__( self : Any ): _a : int = None _a : Optional[int] = None def __iter__( self : Optional[int] ): _a : List[Any] = self.head while self.head: yield node.data _a : str = node.next if node == self.head: break def __len__( self : Any ): return sum(1 for _ in self ) def __repr__( self : int ): return "->".join(str(_UpperCAmelCase ) for item in iter(self ) ) def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : Any ): self.insert_nth(len(self ) ,_UpperCAmelCase ) def __lowercase ( self : str ,_UpperCAmelCase : Any ): self.insert_nth(0 ,_UpperCAmelCase ) def __lowercase ( self : List[str] ,_UpperCAmelCase : int ,_UpperCAmelCase : Any ): if index < 0 or index > len(self ): raise IndexError('list index out of range.' ) _a : List[str] = Node(_UpperCAmelCase ) if self.head is None: _a : Tuple = new_node # first node points itself _a : int = new_node elif index == 0: # insert at head _a : Any = self.head _a : Tuple = new_node else: _a : Any = self.head for _ in range(index - 1 ): _a : int = temp.next _a : Optional[int] = temp.next _a : int = new_node if index == len(self ) - 1: # insert at tail _a : Optional[int] = new_node def __lowercase ( self : List[Any] ): return self.delete_nth(0 ) def __lowercase ( self : Dict ): return self.delete_nth(len(self ) - 1 ) def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : int = 0 ): if not 0 <= index < len(self ): raise IndexError('list index out of range.' ) _a : Optional[int] = self.head if self.head == self.tail: # just one node _a : Optional[int] = None elif index == 0: # delete head node _a : Dict = self.tail.next.next _a : Dict = self.head.next else: _a : List[Any] = self.head for _ in range(index - 1 ): _a : Union[str, Any] = temp.next _a : Optional[int] = temp.next _a : List[str] = temp.next.next if index == len(self ) - 1: # delete at tail _a : int = temp return delete_node.data def __lowercase ( self : int ): return len(self ) == 0 def __lowerCamelCase ( ) -> None: _a : int = CircularLinkedList() assert len(lowerCAmelCase_ ) == 0 assert circular_linked_list.is_empty() is True assert str(lowerCAmelCase_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(lowerCAmelCase_ ) == i circular_linked_list.insert_nth(lowerCAmelCase_ , i + 1 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
107
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase__ : str = logging.get_logger(__name__) lowercase__ : Optional[int] = {"vocab_file": "spiece.model"} lowercase__ : int = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } lowercase__ : Any = { "albert-base-v1": 5_1_2, "albert-large-v1": 5_1_2, "albert-xlarge-v1": 5_1_2, "albert-xxlarge-v1": 5_1_2, "albert-base-v2": 5_1_2, "albert-large-v2": 5_1_2, "albert-xlarge-v2": 5_1_2, "albert-xxlarge-v2": 5_1_2, } lowercase__ : Dict = "▁" class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> None: '''simple docstring''' __UpperCamelCase = ( AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ , normalized=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token ) __UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=SCREAMING_SNAKE_CASE_ , remove_space=SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = do_lower_case __UpperCamelCase = remove_space __UpperCamelCase = keep_accents __UpperCamelCase = vocab_file __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE_ ) @property def A__ ( self )-> List[str]: '''simple docstring''' return len(self.sp_model ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self )-> List[Any]: '''simple docstring''' __UpperCamelCase = self.__dict__.copy() __UpperCamelCase = None return state def __setstate__( self , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __UpperCamelCase = {} __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' if self.remove_space: __UpperCamelCase = ''' '''.join(inputs.strip().split() ) else: __UpperCamelCase = inputs __UpperCamelCase = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: __UpperCamelCase = unicodedata.normalize('''NFKD''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(SCREAMING_SNAKE_CASE_ )] ) if self.do_lower_case: __UpperCamelCase = outputs.lower() return outputs def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' __UpperCamelCase = self.preprocess_text(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = [] for piece in pieces: if len(SCREAMING_SNAKE_CASE_ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): __UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(SCREAMING_SNAKE_CASE_ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __UpperCamelCase = cur_pieces[1:] else: __UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(SCREAMING_SNAKE_CASE_ ) else: new_pieces.append(SCREAMING_SNAKE_CASE_ ) return new_pieces def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = '''''' __UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token __UpperCamelCase = True __UpperCamelCase = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) return out_string.strip() def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None )-> List[int]: '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False )-> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is not None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None )-> List[int]: '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None )-> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __UpperCamelCase = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as fi: __UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
328
from __future__ import annotations import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowercase__ : int = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def A_ ( snake_case : int ) -> list[int]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) __UpperCamelCase = [] for num in range(len(snake_case ) ): __UpperCamelCase = 0 while 2 * i * i <= odd_composites[num]: __UpperCamelCase = odd_composites[num] - 2 * i * i if is_prime(snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case ) == n: return list_nums return [] def A_ ( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
328
1
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(A ) , """Tatoeba directory does not exist.""" ) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =tempfile.mkdtemp() return TatoebaConverter(save_dir=_lowerCAmelCase) @slow def __lowerCamelCase ( self : Tuple): '''simple docstring''' self.resolver.convert_models(['heb-eng']) @slow def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase , __lowercase =self.resolver.write_model_card('opus-mt-he-en' , dry_run=_lowerCAmelCase) assert mmeta["long_pair"] == "heb-eng"
48
'''simple docstring''' from math import factorial def _A ( _lowerCAmelCase = 20 ): """simple docstring""" __lowercase =2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... __lowercase =n // 2 return int(factorial(_lowerCAmelCase ) / (factorial(_lowerCAmelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: lowerCamelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
48
1
"""simple docstring""" from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): """simple docstring""" super().__init__( features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) snake_case = Generator( cache_dir=lowerCAmelCase , features=lowerCAmelCase , generator=lowerCAmelCase , gen_kwargs=lowerCAmelCase , **lowerCAmelCase , ) def snake_case ( self ): """simple docstring""" if self.streaming: snake_case = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: snake_case = None snake_case = None snake_case = None snake_case = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) snake_case = self.builder.as_dataset( split='train' , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset
150
"""simple docstring""" def lowerCAmelCase__ ( _UpperCamelCase : list[int] ) -> int: """simple docstring""" if not numbers: return 0 if not isinstance(_UpperCamelCase , (list, tuple) ) or not all( isinstance(_UpperCamelCase , _UpperCamelCase ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) snake_case = snake_case = snake_case = numbers[0] for i in range(1 , len(_UpperCamelCase ) ): # update the maximum and minimum subarray products snake_case = numbers[i] if number < 0: snake_case ,snake_case = min_till_now, max_till_now snake_case = max(_UpperCamelCase , max_till_now * number ) snake_case = min(_UpperCamelCase , min_till_now * number ) # update the maximum product found till now snake_case = max(_UpperCamelCase , _UpperCamelCase ) return max_prod
150
1
import sys from collections import defaultdict class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self: Optional[int] ) -> Union[str, Any]: _A = [] def __A ( self: Any , __A: Tuple ) -> str: return self.node_position[vertex] def __A ( self: Any , __A: List[Any] , __A: str ) -> List[str]: _A = pos def __A ( self: int , __A: Dict , __A: str , __A: Any , __A: List[Any] ) -> int: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _A = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _A = 2 * start + 1 else: _A = 2 * start + 2 if heap[smallest_child] < heap[start]: _A = heap[smallest_child], positions[smallest_child] _A = ( heap[start], positions[start], ) _A = temp, tempa _A = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowerCAmelCase__ ) self.top_to_bottom(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __A ( self: int , __A: Any , __A: Any , __A: Optional[int] , __A: List[Any] ) -> List[Any]: _A = position[index] while index != 0: _A = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _A = heap[parent] _A = position[parent] self.set_position(position[parent] , lowerCAmelCase__ ) else: _A = val _A = temp self.set_position(lowerCAmelCase__ , lowerCAmelCase__ ) break _A = parent else: _A = val _A = temp self.set_position(lowerCAmelCase__ , 0 ) def __A ( self: Optional[Any] , __A: Dict , __A: List[str] ) -> Any: _A = len(lowerCAmelCase__ ) // 2 - 1 for i in range(lowerCAmelCase__ , -1 , -1 ): self.top_to_bottom(lowerCAmelCase__ , lowerCAmelCase__ , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __A ( self: List[Any] , __A: str , __A: Union[str, Any] ) -> Union[str, Any]: _A = positions[0] _A = sys.maxsize self.top_to_bottom(lowerCAmelCase__ , 0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) return temp def __A ( _lowercase ) -> Optional[int]: '''simple docstring''' _A = Heap() _A = [0] * len(a_ ) _A = [-1] * len(a_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _A = [] # Heap of Distance of vertices from their neighboring vertex _A = [] for vertex in range(len(a_ ) ): distance_tv.append(sys.maxsize ) positions.append(a_ ) heap.node_position.append(a_ ) _A = [] _A = 1 _A = sys.maxsize for neighbor, distance in adjacency_list[0]: _A = 0 _A = distance heap.heapify(a_ , a_ ) for _ in range(1 , len(a_ ) ): _A = heap.delete_minimum(a_ , a_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _A = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(a_ )] ): _A = distance heap.bottom_to_top( a_ , heap.get_position(a_ ) , a_ , a_ ) _A = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A = int(input('Enter number of edges: ').strip()) __A = defaultdict(list) for _ in range(edges_number): __A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
367
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "facebook/bart-large-mnli" A_ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) A_ = "text_classifier" A_ = AutoTokenizer A_ = AutoModelForSequenceClassification A_ = ["text", ["text"]] A_ = ["text"] def __A ( self: int ) -> str: super().setup() _A = self.model.config _A = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): _A = int(__A ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def __A ( self: Union[str, Any] , __A: Union[str, Any] , __A: List[str] ) -> int: _A = labels return self.pre_processor( [text] * len(__A ) , [f"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def __A ( self: str , __A: List[Any] ) -> Union[str, Any]: _A = outputs.logits _A = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
75
0
from collections import deque from math import floor from random import random from time import time class __lowerCamelCase : """simple docstring""" def __init__( self ): """simple docstring""" _UpperCAmelCase = {} def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1 ): """simple docstring""" if self.graph.get(UpperCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _UpperCAmelCase = [[w, v]] if not self.graph.get(UpperCAmelCase ): _UpperCAmelCase = [] def UpperCamelCase ( self ): """simple docstring""" return list(self.graph ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" if self.graph.get(UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase=-2 , UpperCAmelCase=-1 ): """simple docstring""" if s == d: return [] _UpperCAmelCase = [] _UpperCAmelCase = [] if s == -2: _UpperCAmelCase = list(self.graph )[0] stack.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) _UpperCAmelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(UpperCAmelCase ) != 0: _UpperCAmelCase = stack[len(UpperCAmelCase ) - 1] else: _UpperCAmelCase = ss # check if se have reached the starting point if len(UpperCAmelCase ) == 0: return visited def UpperCamelCase ( self , UpperCAmelCase=-1 ): """simple docstring""" if c == -1: _UpperCAmelCase = floor(random() * 1_0000 ) + 10 for i in range(UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _UpperCAmelCase = floor(random() * c ) + 1 if n != i: self.add_pair(UpperCAmelCase , UpperCAmelCase , 1 ) def UpperCamelCase ( self , UpperCAmelCase=-2 ): """simple docstring""" _UpperCAmelCase = deque() _UpperCAmelCase = [] if s == -2: _UpperCAmelCase = list(self.graph )[0] d.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) while d: _UpperCAmelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return len(self.graph[u] ) def UpperCamelCase ( self , UpperCAmelCase=-2 ): """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = [] if s == -2: _UpperCAmelCase = list(self.graph )[0] stack.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) _UpperCAmelCase = s _UpperCAmelCase = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(UpperCAmelCase ) != 0: _UpperCAmelCase = stack[len(UpperCAmelCase ) - 1] else: _UpperCAmelCase = ss # check if se have reached the starting point if len(UpperCAmelCase ) == 0: return sorted_nodes def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = list(self.graph )[0] stack.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) _UpperCAmelCase = -2 _UpperCAmelCase = [] _UpperCAmelCase = s _UpperCAmelCase = False _UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase = len(UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase = True if len(UpperCAmelCase ) != 0: _UpperCAmelCase = stack[len(UpperCAmelCase ) - 1] else: _UpperCAmelCase = False indirect_parents.append(UpperCAmelCase ) _UpperCAmelCase = s _UpperCAmelCase = ss # check if se have reached the starting point if len(UpperCAmelCase ) == 0: return list(UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = list(self.graph )[0] stack.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) _UpperCAmelCase = -2 _UpperCAmelCase = [] _UpperCAmelCase = s _UpperCAmelCase = False _UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase = len(UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase = True if len(UpperCAmelCase ) != 0: _UpperCAmelCase = stack[len(UpperCAmelCase ) - 1] else: _UpperCAmelCase = False indirect_parents.append(UpperCAmelCase ) _UpperCAmelCase = s _UpperCAmelCase = ss # check if se have reached the starting point if len(UpperCAmelCase ) == 0: return False def UpperCamelCase ( self , UpperCAmelCase=-2 , UpperCAmelCase=-1 ): """simple docstring""" _UpperCAmelCase = time() self.dfs(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = time() return end - begin def UpperCamelCase ( self , UpperCAmelCase=-2 ): """simple docstring""" _UpperCAmelCase = time() self.bfs(UpperCAmelCase ) _UpperCAmelCase = time() return end - begin class __lowerCamelCase : """simple docstring""" def __init__( self ): """simple docstring""" _UpperCAmelCase = {} def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1 ): """simple docstring""" if self.graph.get(UpperCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _UpperCAmelCase = [[w, v]] # add the other way if self.graph.get(UpperCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _UpperCAmelCase = [[w, u]] def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" if self.graph.get(UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(UpperCAmelCase ) # the other way round if self.graph.get(UpperCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase=-2 , UpperCAmelCase=-1 ): """simple docstring""" if s == d: return [] _UpperCAmelCase = [] _UpperCAmelCase = [] if s == -2: _UpperCAmelCase = list(self.graph )[0] stack.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) _UpperCAmelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(UpperCAmelCase ) != 0: _UpperCAmelCase = stack[len(UpperCAmelCase ) - 1] else: _UpperCAmelCase = ss # check if se have reached the starting point if len(UpperCAmelCase ) == 0: return visited def UpperCamelCase ( self , UpperCAmelCase=-1 ): """simple docstring""" if c == -1: _UpperCAmelCase = floor(random() * 1_0000 ) + 10 for i in range(UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _UpperCAmelCase = floor(random() * c ) + 1 if n != i: self.add_pair(UpperCAmelCase , UpperCAmelCase , 1 ) def UpperCamelCase ( self , UpperCAmelCase=-2 ): """simple docstring""" _UpperCAmelCase = deque() _UpperCAmelCase = [] if s == -2: _UpperCAmelCase = list(self.graph )[0] d.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) while d: _UpperCAmelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return len(self.graph[u] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = list(self.graph )[0] stack.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) _UpperCAmelCase = -2 _UpperCAmelCase = [] _UpperCAmelCase = s _UpperCAmelCase = False _UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase = len(UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase = True if len(UpperCAmelCase ) != 0: _UpperCAmelCase = stack[len(UpperCAmelCase ) - 1] else: _UpperCAmelCase = False indirect_parents.append(UpperCAmelCase ) _UpperCAmelCase = s _UpperCAmelCase = ss # check if se have reached the starting point if len(UpperCAmelCase ) == 0: return list(UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = list(self.graph )[0] stack.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) _UpperCAmelCase = -2 _UpperCAmelCase = [] _UpperCAmelCase = s _UpperCAmelCase = False _UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase = len(UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase = True if len(UpperCAmelCase ) != 0: _UpperCAmelCase = stack[len(UpperCAmelCase ) - 1] else: _UpperCAmelCase = False indirect_parents.append(UpperCAmelCase ) _UpperCAmelCase = s _UpperCAmelCase = ss # check if se have reached the starting point if len(UpperCAmelCase ) == 0: return False def UpperCamelCase ( self ): """simple docstring""" return list(self.graph ) def UpperCamelCase ( self , UpperCAmelCase=-2 , UpperCAmelCase=-1 ): """simple docstring""" _UpperCAmelCase = time() self.dfs(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = time() return end - begin def UpperCamelCase ( self , UpperCAmelCase=-2 ): """simple docstring""" _UpperCAmelCase = time() self.bfs(UpperCAmelCase ) _UpperCAmelCase = time() return end - begin
39
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _UpperCAmelCase = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=UpperCAmelCase , cache_dir=UpperCAmelCase ) _UpperCAmelCase = [t[-1] for t in os.walk(os.path.join(UpperCAmelCase , os.listdir(UpperCAmelCase )[0] , 'snapshots' ) )] _UpperCAmelCase = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=UpperCAmelCase ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 4 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1e-3 assert np.abs(np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5e-1 _UpperCAmelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(UpperCAmelCase ) == num_samples def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=UpperCAmelCase ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase , ) _UpperCAmelCase = scheduler.create_state() _UpperCAmelCase = scheduler_state _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = jax.random.split(jax.random.PRNGKey(0 ) , UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase , ) _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # With memory efficient attention _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase , use_memory_efficient_attention=UpperCAmelCase , ) _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
39
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
352
"""simple docstring""" def __lowerCAmelCase ( lowercase : int ) -> int: """simple docstring""" if not isinstance(lowercase , lowercase ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
112
0
lowerCAmelCase__ = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } lowerCAmelCase__ = {value: key for key, value in encode_dict.items()} def _UpperCAmelCase (UpperCamelCase__ : str ): _A : Union[str, Any] = "" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("encode() accepts only letters of the alphabet and spaces" ) return encoded def _UpperCAmelCase (UpperCamelCase__ : str ): if set(UpperCamelCase__ ) - {"A", "B", " "} != set(): raise Exception("decode() accepts only 'A', 'B' and spaces" ) _A : Optional[int] = "" for word in coded.split(): while len(UpperCamelCase__ ) != 0: decoded += decode_dict[word[:5]] _A : Optional[int] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
11
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"] __SCREAMING_SNAKE_CASE = "OwlViTImageProcessor" __SCREAMING_SNAKE_CASE = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase) -> Union[str, Any]: _A : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __lowerCamelCase , ) _A : List[Any] = kwargs.pop("feature_extractor") _A : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(__lowerCamelCase , __lowerCamelCase) def __call__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="max_length" , __lowerCamelCase="np" , **__lowerCamelCase) -> Any: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none.") if text is not None: if isinstance(__lowerCamelCase , __lowerCamelCase) or (isinstance(__lowerCamelCase , __lowerCamelCase) and not isinstance(text[0] , __lowerCamelCase)): _A : Union[str, Any] = [self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)] elif isinstance(__lowerCamelCase , __lowerCamelCase) and isinstance(text[0] , __lowerCamelCase): _A : Optional[Any] = [] # Maximum number of queries across batch _A : str = max([len(__lowerCamelCase) for t in text]) # Pad all batch samples to max number of text queries for t in text: if len(__lowerCamelCase) != max_num_queries: _A : Optional[int] = t + [" "] * (max_num_queries - len(__lowerCamelCase)) _A : List[Any] = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) encodings.append(__lowerCamelCase) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings") if return_tensors == "np": _A : Tuple = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Optional[Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _A : Optional[int] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Optional[int] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0) elif return_tensors == "pt" and is_torch_available(): import torch _A : Optional[Any] = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0) _A : Union[str, Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _A : Any = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Tuple = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0) else: raise ValueError("Target return tensor type could not be returned") _A : Optional[Any] = BatchEncoding() _A : Tuple = input_ids _A : Dict = attention_mask if query_images is not None: _A : Optional[Any] = BatchEncoding() _A : List[str] = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase).pixel_values _A : Union[str, Any] = query_pixel_values if images is not None: _A : int = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) if text is not None and images is not None: _A : Tuple = image_features.pixel_values return encoding elif query_images is not None and images is not None: _A : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCamelCase) , tensor_type=__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> str: return self.image_processor.post_process(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> List[str]: return self.image_processor.post_process_object_detection(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return self.image_processor.post_process_image_guided_detection(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> int: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase) @property def _lowerCamelCase ( self) -> int: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , ) return self.image_processor_class @property def _lowerCamelCase ( self) -> List[str]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , ) return self.image_processor
11
1
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__=7 ): """simple docstring""" A__ = None if token is not None: A__ = {'Accept': 'application/vnd.github+json', 'Authorization': F'''Bearer {token}'''} # The id of a workflow (not of a workflow run) A__ = '636036' A__ = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' A__ = requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).json() return result["workflow_runs"] def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = get_daily_ci_runs(UpperCamelCase__ ) A__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": A__ = workflow_run['id'] break return workflow_run_id def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = get_last_daily_ci_runs(UpperCamelCase__ ) if workflow_run_id is not None: A__ = get_artifacts_links(worflow_run_id=UpperCamelCase__ , token=UpperCamelCase__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: A__ = artifacts_links[artifact_name] download_artifact( artifact_name=UpperCamelCase__ , artifact_url=UpperCamelCase__ , output_dir=UpperCamelCase__ , token=UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" get_last_daily_ci_artifacts(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ = {} for artifact_name in artifact_names: A__ = os.path.join(UpperCamelCase__ , F'''{artifact_name}.zip''' ) if os.path.isfile(UpperCamelCase__ ): A__ = {} with zipfile.ZipFile(UpperCamelCase__ ) as z: for filename in z.namelist(): if not os.path.isdir(UpperCamelCase__ ): # read the file with z.open(UpperCamelCase__ ) as f: A__ = f.read().decode('UTF-8' ) return results
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
154
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class _lowercase ( unittest.TestCase): """simple docstring""" def __init__( self : Any , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any]=7 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Union[str, Any]=30 , __lowerCamelCase : Union[str, Any]=400 , __lowerCamelCase : Dict=True , __lowerCamelCase : Tuple=None , __lowerCamelCase : str=True , __lowerCamelCase : List[str]=[0.5, 0.5, 0.5] , __lowerCamelCase : str=[0.5, 0.5, 0.5] , __lowerCamelCase : Any=True , __lowerCamelCase : Union[str, Any]=1 / 255 , __lowerCamelCase : Optional[Any]=True , ): '''simple docstring''' lowerCamelCase__ : List[Any] = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} lowerCamelCase__ : Dict = parent lowerCamelCase__ : Optional[int] = batch_size lowerCamelCase__ : str = num_channels lowerCamelCase__ : Optional[Any] = min_resolution lowerCamelCase__ : List[Any] = max_resolution lowerCamelCase__ : int = do_resize lowerCamelCase__ : Union[str, Any] = size lowerCamelCase__ : Union[str, Any] = do_normalize lowerCamelCase__ : int = image_mean lowerCamelCase__ : Optional[int] = image_std lowerCamelCase__ : List[Any] = do_rescale lowerCamelCase__ : Optional[Any] = rescale_factor lowerCamelCase__ : Any = do_pad def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : List[str]=False ): '''simple docstring''' if not batched: lowerCamelCase__ : Tuple = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): lowerCamelCase__ , lowerCamelCase__ : Tuple = image.size else: lowerCamelCase__ , lowerCamelCase__ : List[str] = image.shape[1], image.shape[2] if w < h: lowerCamelCase__ : List[Any] = int(self.size["shortest_edge"] * h / w ) lowerCamelCase__ : Optional[Any] = self.size["shortest_edge"] elif w > h: lowerCamelCase__ : List[Any] = self.size["shortest_edge"] lowerCamelCase__ : List[str] = int(self.size["shortest_edge"] * w / h ) else: lowerCamelCase__ : Optional[int] = self.size["shortest_edge"] lowerCamelCase__ : Union[str, Any] = self.size["shortest_edge"] else: lowerCamelCase__ : Dict = [] for image in image_inputs: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase__ : str = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] lowerCamelCase__ : Optional[Any] = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = DetaImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : str = DetaImageProcessingTester(self ) @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_rescale" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_pad" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size" ) ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' pass def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input lowerCamelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__ , lowerCamelCase__ : List[str] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) lowerCamelCase__ : List[Any] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input lowerCamelCase__ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase__ , lowerCamelCase__ : Any = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__ : Optional[Any] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input lowerCamelCase__ : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase__ , lowerCamelCase__ : Any = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__ : Union[str, Any] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values lowerCamelCase__ , lowerCamelCase__ : Dict = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: lowerCamelCase__ : Dict = json.loads(f.read() ) lowerCamelCase__ : Any = {"image_id": 39769, "annotations": target} # encode them lowerCamelCase__ : Union[str, Any] = DetaImageProcessor() lowerCamelCase__ : List[str] = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors="pt" ) # verify pixel values lowerCamelCase__ : List[str] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , __lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify area lowerCamelCase__ : Tuple = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __lowerCamelCase ) ) # verify boxes lowerCamelCase__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __lowerCamelCase ) lowerCamelCase__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __lowerCamelCase , atol=1E-3 ) ) # verify image_id lowerCamelCase__ : Optional[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __lowerCamelCase ) ) # verify is_crowd lowerCamelCase__ : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __lowerCamelCase ) ) # verify class_labels lowerCamelCase__ : int = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __lowerCamelCase ) ) # verify orig_size lowerCamelCase__ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __lowerCamelCase ) ) # verify size lowerCamelCase__ : Optional[int] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __lowerCamelCase ) ) @slow def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: lowerCamelCase__ : Tuple = json.loads(f.read() ) lowerCamelCase__ : List[str] = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} lowerCamelCase__ : Union[str, Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them lowerCamelCase__ : Tuple = DetaImageProcessor(format="coco_panoptic" ) lowerCamelCase__ : Dict = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors="pt" ) # verify pixel values lowerCamelCase__ : List[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , __lowerCamelCase ) lowerCamelCase__ : Dict = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify area lowerCamelCase__ : List[Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __lowerCamelCase ) ) # verify boxes lowerCamelCase__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __lowerCamelCase ) lowerCamelCase__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __lowerCamelCase , atol=1E-3 ) ) # verify image_id lowerCamelCase__ : Optional[int] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __lowerCamelCase ) ) # verify is_crowd lowerCamelCase__ : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __lowerCamelCase ) ) # verify class_labels lowerCamelCase__ : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __lowerCamelCase ) ) # verify masks lowerCamelCase__ : Union[str, Any] = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __lowerCamelCase ) # verify orig_size lowerCamelCase__ : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __lowerCamelCase ) ) # verify size lowerCamelCase__ : Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __lowerCamelCase ) )
184
0
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = analyze_text(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. SCREAMING_SNAKE_CASE_ = sum(single_char_strings.values() ) # one length string SCREAMING_SNAKE_CASE_ = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: SCREAMING_SNAKE_CASE_ = single_char_strings[ch] SCREAMING_SNAKE_CASE_ = my_str / all_sum my_fir_sum += prob * math.loga(__UpperCAmelCase ) # entropy formula. # print entropy print(f"{round(-1 * my_fir_sum ):.1f}" ) # two len string SCREAMING_SNAKE_CASE_ = sum(two_char_strings.values() ) SCREAMING_SNAKE_CASE_ = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: SCREAMING_SNAKE_CASE_ = cha + cha if sequence in two_char_strings: SCREAMING_SNAKE_CASE_ = two_char_strings[sequence] SCREAMING_SNAKE_CASE_ = int(__UpperCAmelCase ) / all_sum my_sec_sum += prob * math.loga(__UpperCAmelCase ) # print second entropy print(f"{round(-1 * my_sec_sum ):.1f}" ) # print the difference between them print(f"{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}" ) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> tuple[dict, dict]: SCREAMING_SNAKE_CASE_ = Counter() # type: ignore SCREAMING_SNAKE_CASE_ = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__UpperCAmelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def UpperCAmelCase_ ( ) -> int: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
210
import random from typing import Any def UpperCAmelCase_ ( __UpperCAmelCase : list ) -> list[Any]: for _ in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = random.randint(0 , len(__UpperCAmelCase ) - 1 ) SCREAMING_SNAKE_CASE_ = random.randint(0 , len(__UpperCAmelCase ) - 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = data[b], data[a] return data if __name__ == "__main__": lowerCamelCase__ : Union[str, Any] = [0, 1, 2, 3, 4, 5, 6, 7] lowerCamelCase__ : Optional[int] = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
210
1
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __a ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=400 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Dict: '''simple docstring''' lowercase__: str = parent lowercase__: Any = batch_size lowercase__: int = num_channels lowercase__: str = image_size lowercase__: Optional[int] = min_resolution lowercase__: Optional[int] = max_resolution lowercase__: Any = do_resize lowercase__: Any = size if size is not None else {'height': 18, 'width': 20} lowercase__: Any = do_thumbnail lowercase__: Tuple = do_align_axis lowercase__: Optional[Any] = do_pad lowercase__: Optional[int] = do_normalize lowercase__: Tuple = image_mean lowercase__: Union[str, Any] = image_std def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a ( __UpperCamelCase , unittest.TestCase ): __lowercase : List[str] = DonutImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: List[str] = DonutImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'size' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_thumbnail' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_align_long_axis' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_pad' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'image_std' ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) lowercase__: Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order lowercase__: Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' pass @is_flaky() def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' # Initialize image_processing lowercase__: Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__: Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input lowercase__: str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__: int = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' # Initialize image_processing lowercase__: int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__: List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input lowercase__: str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__: Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' # Initialize image_processing lowercase__: str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__: Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input lowercase__: Tuple = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__: str = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
196
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig __lowerCAmelCase = logging.get_logger(__name__) # General docstring __lowerCAmelCase = '''RegNetConfig''' # Base docstring __lowerCAmelCase = '''facebook/regnet-y-040''' __lowerCAmelCase = [1, 10_88, 7, 7] # Image classification docstring __lowerCAmelCase = '''facebook/regnet-y-040''' __lowerCAmelCase = '''tabby, tabby cat''' __lowerCAmelCase = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __a ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 3 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = "relu" , ) -> Optional[Any]: '''simple docstring''' super().__init__() lowercase__: Any = nn.Convad( lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=kernel_size // 2 , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , ) lowercase__: str = nn.BatchNormad(lowerCAmelCase__ ) lowercase__: Union[str, Any] = ACTaFN[activation] if activation is not None else nn.Identity() def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Dict: '''simple docstring''' lowercase__: List[str] = self.convolution(lowerCAmelCase__ ) lowercase__: Optional[Any] = self.normalization(lowerCAmelCase__ ) lowercase__: Union[str, Any] = self.activation(lowerCAmelCase__ ) return hidden_state class __a ( nn.Module ): def __init__( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowercase__: Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) lowercase__: Dict = config.num_channels def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: Tuple = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) lowercase__: Optional[int] = self.embedder(lowerCAmelCase__ ) return hidden_state class __a ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 2 ) -> Optional[Any]: '''simple docstring''' super().__init__() lowercase__: Optional[Any] = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , stride=lowerCAmelCase__ , bias=lowerCAmelCase__ ) lowercase__: Union[str, Any] = nn.BatchNormad(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Tensor: '''simple docstring''' lowercase__: Any = self.convolution(lowerCAmelCase__ ) lowercase__: str = self.normalization(lowerCAmelCase__ ) return hidden_state class __a ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' super().__init__() lowercase__: Any = nn.AdaptiveAvgPoolad((1, 1) ) lowercase__: str = nn.Sequential( nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 ) , nn.ReLU() , nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 ) , nn.Sigmoid() , ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' # b c h w -> b c 1 1 lowercase__: str = self.pooler(lowerCAmelCase__ ) lowercase__: List[str] = self.attention(lowerCAmelCase__ ) lowercase__: List[Any] = hidden_state * attention return hidden_state class __a ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 ) -> Dict: '''simple docstring''' super().__init__() lowercase__: str = in_channels != out_channels or stride != 1 lowercase__: Optional[int] = max(1 , out_channels // config.groups_width ) lowercase__: Union[str, Any] = ( RegNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) lowercase__: Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ , groups=lowerCAmelCase__ , activation=config.hidden_act ) , RegNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=lowerCAmelCase__ ) , ) lowercase__: Tuple = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: Dict = hidden_state lowercase__: Union[str, Any] = self.layer(lowerCAmelCase__ ) lowercase__: int = self.shortcut(lowerCAmelCase__ ) hidden_state += residual lowercase__: Optional[int] = self.activation(lowerCAmelCase__ ) return hidden_state class __a ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 ) -> Dict: '''simple docstring''' super().__init__() lowercase__: Optional[int] = in_channels != out_channels or stride != 1 lowercase__: List[str] = max(1 , out_channels // config.groups_width ) lowercase__: Any = ( RegNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) lowercase__: str = nn.Sequential( RegNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ , groups=lowerCAmelCase__ , activation=config.hidden_act ) , RegNetSELayer(lowerCAmelCase__ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=lowerCAmelCase__ ) , ) lowercase__: Union[str, Any] = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' lowercase__: Optional[Any] = hidden_state lowercase__: Optional[int] = self.layer(lowerCAmelCase__ ) lowercase__: str = self.shortcut(lowerCAmelCase__ ) hidden_state += residual lowercase__: Optional[int] = self.activation(lowerCAmelCase__ ) return hidden_state class __a ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 2 , ) -> Tuple: '''simple docstring''' super().__init__() lowercase__: Optional[int] = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer lowercase__: str = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ , ) , *[layer(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for _ in range(depth - 1 )] , ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__: str = self.layers(lowerCAmelCase__ ) return hidden_state class __a ( nn.Module ): def __init__( self , lowerCAmelCase__ ) -> Dict: '''simple docstring''' super().__init__() lowercase__: int = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) lowercase__: int = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCAmelCase__ , config.depths[1:] ): self.stages.append(RegNetStage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , depth=lowerCAmelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = True ) -> BaseModelOutputWithNoAttention: '''simple docstring''' lowercase__: List[str] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__: Optional[Any] = hidden_states + (hidden_state,) lowercase__: List[Any] = stage_module(lowerCAmelCase__ ) if output_hidden_states: lowercase__: Optional[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ ) class __a ( __UpperCamelCase ): __lowercase : Dict = RegNetConfig __lowercase : Dict = 'regnet' __lowercase : str = 'pixel_values' __lowercase : List[str] = True def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowerCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase__: Any = value __lowerCAmelCase = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __lowerCAmelCase = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , __UpperCamelCase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __a ( __UpperCamelCase ): def __init__( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' super().__init__(lowerCAmelCase__ ) lowercase__: Tuple = config lowercase__: List[str] = RegNetEmbeddings(lowerCAmelCase__ ) lowercase__: Optional[int] = RegNetEncoder(lowerCAmelCase__ ) lowercase__: Optional[Any] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None ) -> BaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' lowercase__: List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__: Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict lowercase__: Any = self.embedder(lowerCAmelCase__ ) lowercase__: List[Any] = self.encoder( lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) lowercase__: Optional[Any] = encoder_outputs[0] lowercase__: Optional[int] = self.pooler(lowerCAmelCase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __UpperCamelCase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __a ( __UpperCamelCase ): def __init__( self , lowerCAmelCase__ ) -> str: '''simple docstring''' super().__init__(lowerCAmelCase__ ) lowercase__: Dict = config.num_labels lowercase__: Dict = RegNetModel(lowerCAmelCase__ ) # classification head lowercase__: str = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> ImageClassifierOutputWithNoAttention: '''simple docstring''' lowercase__: str = return_dict if return_dict is not None else self.config.use_return_dict lowercase__: Optional[int] = self.regnet(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) lowercase__: Dict = outputs.pooler_output if return_dict else outputs[1] lowercase__: List[str] = self.classifier(lowerCAmelCase__ ) lowercase__: Optional[Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__: Dict = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__: Optional[int] = 'single_label_classification' else: lowercase__: Tuple = 'multi_label_classification' if self.config.problem_type == "regression": lowercase__: List[Any] = MSELoss() if self.num_labels == 1: lowercase__: Optional[int] = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowercase__: int = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config.problem_type == "single_label_classification": lowercase__: Dict = CrossEntropyLoss() lowercase__: Optional[int] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__: List[Any] = BCEWithLogitsLoss() lowercase__: Any = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) if not return_dict: lowercase__: int = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states )
196
1
from datetime import datetime import matplotlib.pyplot as plt import torch def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' for param in module.parameters(): lowercase = False def UpperCamelCase ( ): '''simple docstring''' lowercase = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = plt.imshow(lowerCAmelCase__ ) fig.axes.get_xaxis().set_visible(lowerCAmelCase__ ) fig.axes.get_yaxis().set_visible(lowerCAmelCase__ ) plt.show() def UpperCamelCase ( ): '''simple docstring''' lowercase = datetime.now() lowercase = current_time.strftime('''%H:%M:%S''' ) return timestamp
350
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = torch.exp(lowerCAmelCase__ ) lowercase = torch.sum(lowerCAmelCase__ , dim=1 ) # sum of exp(x_i) lowercase = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(lowerCAmelCase__ ) - B / A class lowercase ( nn.Module ): def __init__( self ,A__): super().__init__() lowercase = config.output_attentions lowercase = config.output_hidden_states lowercase = nn.ModuleList([BertLayer(A__) for _ in range(config.num_hidden_layers)]) lowercase = nn.ModuleList([BertHighway(A__) for _ in range(config.num_hidden_layers)]) lowercase = [-1 for _ in range(config.num_hidden_layers)] def A__ ( self ,A__): if (type(A__) is float) or (type(A__) is int): for i in range(len(self.early_exit_entropy)): lowercase = x else: lowercase = x def A__ ( self ,A__): lowercase = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name]) def A__ ( self ,A__ ,A__=None ,A__=None ,A__=None ,A__=None ,): lowercase = () lowercase = () lowercase = () for i, layer_module in enumerate(self.layer): if self.output_hidden_states: lowercase = all_hidden_states + (hidden_states,) lowercase = layer_module( A__ ,A__ ,head_mask[i] ,A__ ,A__) lowercase = layer_outputs[0] if self.output_attentions: lowercase = all_attentions + (layer_outputs[1],) lowercase = (hidden_states,) if self.output_hidden_states: lowercase = current_outputs + (all_hidden_states,) if self.output_attentions: lowercase = current_outputs + (all_attentions,) lowercase = self.highway[i](A__) # logits, pooled_output if not self.training: lowercase = highway_exit[0] lowercase = entropy(A__) lowercase = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy lowercase = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: lowercase = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(A__ ,i + 1) else: lowercase = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: lowercase = all_hidden_states + (hidden_states,) lowercase = (hidden_states,) if self.output_hidden_states: lowercase = outputs + (all_hidden_states,) if self.output_attentions: lowercase = outputs + (all_attentions,) lowercase = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( '''The Bert Model transformer with early exiting (DeeBERT). ''' , SCREAMING_SNAKE_CASE__ , ) class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self ,A__): super().__init__(A__) lowercase = config lowercase = BertEmbeddings(A__) lowercase = DeeBertEncoder(A__) lowercase = BertPooler(A__) self.init_weights() def A__ ( self): self.encoder.init_highway_pooler(self.pooler) def A__ ( self): return self.embeddings.word_embeddings def A__ ( self ,A__): lowercase = value def A__ ( self ,A__): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(A__) @add_start_docstrings_to_model_forward(A__) def A__ ( self ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,): if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''') elif input_ids is not None: lowercase = input_ids.size() elif inputs_embeds is not None: lowercase = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''') lowercase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowercase = torch.ones(A__ ,device=A__) if encoder_attention_mask is None: lowercase = torch.ones(A__ ,device=A__) if token_type_ids is None: lowercase = torch.zeros(A__ ,dtype=torch.long ,device=A__) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowercase = self.get_extended_attention_mask(A__ ,A__ ,A__) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: lowercase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: lowercase = encoder_attention_mask[:, None, None, :] lowercase = encoder_extended_attention_mask.to( dtype=next(self.parameters()).dtype) # fp16 compatibility lowercase = (1.0 - encoder_extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowercase = self.get_head_mask(A__ ,self.config.num_hidden_layers) lowercase = self.embeddings( input_ids=A__ ,position_ids=A__ ,token_type_ids=A__ ,inputs_embeds=A__) lowercase = self.encoder( A__ ,attention_mask=A__ ,head_mask=A__ ,encoder_hidden_states=A__ ,encoder_attention_mask=A__ ,) lowercase = encoder_outputs[0] lowercase = self.pooler(A__) lowercase = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self ,A__ ,A__): lowercase = message lowercase = exit_layer # start from 1! class lowercase ( nn.Module ): def __init__( self ,A__): super().__init__() lowercase = BertPooler(A__) lowercase = nn.Dropout(config.hidden_dropout_prob) lowercase = nn.Linear(config.hidden_size ,config.num_labels) def A__ ( self ,A__): # Pooler lowercase = encoder_outputs[0] lowercase = self.pooler(A__) # "return" pooler_output # BertModel lowercase = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification lowercase = bmodel_output[1] lowercase = self.dropout(A__) lowercase = self.classifier(A__) return logits, pooled_output @add_start_docstrings( '''Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. ''' , SCREAMING_SNAKE_CASE__ , ) class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self ,A__): super().__init__(A__) lowercase = config.num_labels lowercase = config.num_hidden_layers lowercase = DeeBertModel(A__) lowercase = nn.Dropout(config.hidden_dropout_prob) lowercase = nn.Linear(config.hidden_size ,self.config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(A__) def A__ ( self ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=-1 ,A__=False ,): lowercase = self.num_layers try: lowercase = self.bert( A__ ,attention_mask=A__ ,token_type_ids=A__ ,position_ids=A__ ,head_mask=A__ ,inputs_embeds=A__ ,) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits lowercase = outputs[1] lowercase = self.dropout(A__) lowercase = self.classifier(A__) lowercase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowercase = e.message lowercase = e.exit_layer lowercase = outputs[0] if not self.training: lowercase = entropy(A__) lowercase = [] lowercase = [] if labels is not None: if self.num_labels == 1: # We are doing regression lowercase = MSELoss() lowercase = loss_fct(logits.view(-1) ,labels.view(-1)) else: lowercase = CrossEntropyLoss() lowercase = loss_fct(logits.view(-1 ,self.num_labels) ,labels.view(-1)) # work with highway exits lowercase = [] for highway_exit in outputs[-1]: lowercase = highway_exit[0] if not self.training: highway_logits_all.append(A__) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression lowercase = MSELoss() lowercase = loss_fct(highway_logits.view(-1) ,labels.view(-1)) else: lowercase = CrossEntropyLoss() lowercase = loss_fct(highway_logits.view(-1 ,self.num_labels) ,labels.view(-1)) highway_losses.append(A__) if train_highway: lowercase = (sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: lowercase = (loss,) + outputs if not self.training: lowercase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowercase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
97
0
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = CLIPTokenizer __magic_name__ = CLIPTokenizerFast __magic_name__ = True __magic_name__ = {} __magic_name__ = False def a_ ( self ): super().setUp() # fmt: off snake_case = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on snake_case = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) snake_case = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] snake_case = {'''unk_token''': '''<unk>'''} snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def a_ ( self , **__snake_case ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def a_ ( self , **__snake_case ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case ) def a_ ( self , __snake_case ): snake_case = '''lower newer''' snake_case = '''lower newer''' return input_text, output_text def a_ ( self ): snake_case = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case = '''lower newer''' snake_case = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] snake_case = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokens + [tokenizer.unk_token] snake_case = [1_0, 2, 1_6, 9, 3, 2, 1_6, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) @require_ftfy def a_ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) snake_case = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) snake_case = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' snake_case = tokenizer_s.tokenize(__snake_case ) snake_case = tokenizer_r.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways snake_case = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' snake_case = tokenizer_s.tokenize(__snake_case ) snake_case = tokenizer_r.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Test that the tokenization is identical on unicode of space type snake_case = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: snake_case = tokenizer_s.tokenize(__snake_case ) snake_case = tokenizer_r.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Test that the tokenization is identical on unicode of line break type snake_case = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: snake_case = tokenizer_s.tokenize(__snake_case ) snake_case = tokenizer_r.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def a_ ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` snake_case = F'''{text_of_1_token} {text_of_1_token}''' snake_case = self.rust_tokenizer_class.from_pretrained( __snake_case , use_fast=__snake_case , ) snake_case = tokenizer_r(__snake_case , return_offsets_mapping=__snake_case , add_special_tokens=__snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__snake_case ) + 1, len(__snake_case ) + 1 + len(__snake_case )) , ) snake_case = F''' {text}''' snake_case = self.rust_tokenizer_class.from_pretrained( __snake_case , use_fast=__snake_case , ) snake_case = tokenizer_r(__snake_case , return_offsets_mapping=__snake_case , add_special_tokens=__snake_case ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__snake_case ) + 1, 1 + len(__snake_case ) + 1 + len(__snake_case )) , ) def a_ ( self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(__snake_case ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def a_ ( self ): super().test_tokenization_python_rust_equals() def a_ ( self ): # CLIP always lower cases letters pass
127
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = int(UpperCamelCase_ ) snake_case , snake_case , snake_case = t // 36_00, (t // 60) % 60, t % 60 return F'''{h}:{m:02d}:{s:02d}''' if h != 0 else F'''{m:02d}:{s:02d}''' def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_=3_00 ): """simple docstring""" return F''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: snake_case = F'''{elt:.6f}''' if isinstance(UpperCamelCase_ ,UpperCamelCase_ ) else str(UpperCamelCase_ ) html_code += F''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class A__ : """simple docstring""" __magic_name__ = 5 __magic_name__ = 0.2 def __init__( self , __snake_case , __snake_case = None , __snake_case = True , __snake_case = None , __snake_case = 3_0_0 , ): snake_case = total snake_case = '''''' if prefix is None else prefix snake_case = leave snake_case = parent snake_case = width snake_case = None snake_case = None snake_case = None def a_ ( self , __snake_case , __snake_case = False , __snake_case = None ): snake_case = value if comment is not None: snake_case = comment if self.last_value is None: snake_case = snake_case = time.time() snake_case = snake_case = value snake_case = snake_case = None snake_case = self.warmup snake_case = 1 self.update_bar(__snake_case ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 snake_case = time.time() snake_case = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: snake_case = self.elapsed_time / (value - self.start_value) else: snake_case = None if value >= self.total: snake_case = self.total snake_case = None if not self.leave: self.close() elif self.average_time_per_item is not None: snake_case = self.average_time_per_item * (self.total - value) self.update_bar(__snake_case ) snake_case = value snake_case = current_time if self.average_time_per_item is None: snake_case = 1 else: snake_case = max(int(self.update_every / self.average_time_per_item ) , 1 ) def a_ ( self , __snake_case , __snake_case=None ): snake_case = ''' ''' * (len(str(self.total ) ) - len(str(__snake_case ) )) + str(__snake_case ) if self.elapsed_time is None: snake_case = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: snake_case = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: snake_case = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def a_ ( self ): snake_case = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: snake_case = disp.display(disp.HTML(self.html_code ) , display_id=__snake_case ) else: self.output.update(disp.HTML(self.html_code ) ) def a_ ( self ): if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class A__ ( snake_case__ ): """simple docstring""" def __init__( self , __snake_case , __snake_case=None ): super().__init__(__snake_case ) snake_case = None if column_names is None else [column_names] snake_case = None def a_ ( self ): snake_case = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: snake_case = disp.display(disp.HTML(self.html_code ) , display_id=__snake_case ) else: self.output.update(disp.HTML(self.html_code ) ) def a_ ( self , __snake_case ): if self.inner_table is None: snake_case = [list(values.keys() ), list(values.values() )] else: snake_case = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(__snake_case ) snake_case = columns self.inner_table.append([values[c] for c in columns] ) def a_ ( self , __snake_case , __snake_case=None , __snake_case=3_0_0 ): snake_case = NotebookProgressBar(__snake_case , prefix=__snake_case , parent=self , width=__snake_case ) return self.child_bar def a_ ( self ): snake_case = None self.display() class A__ ( snake_case__ ): """simple docstring""" def __init__( self ): snake_case = None snake_case = None snake_case = False def a_ ( self , __snake_case , __snake_case , __snake_case , **__snake_case ): snake_case = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' snake_case = 0 snake_case = 0 snake_case = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) snake_case = NotebookTrainingTracker(state.max_steps , __snake_case ) def a_ ( self , __snake_case , __snake_case , __snake_case , **__snake_case ): snake_case = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) snake_case = False def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case=None , **__snake_case ): if not has_length(__snake_case ): return if self.prediction_bar is None: if self.training_tracker is not None: snake_case = self.training_tracker.add_child(len(__snake_case ) ) else: snake_case = NotebookProgressBar(len(__snake_case ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def a_ ( self , __snake_case , __snake_case , __snake_case , **__snake_case ): if self.prediction_bar is not None: self.prediction_bar.close() snake_case = None def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case=None , **__snake_case ): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: snake_case = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy snake_case = state.global_step self.training_tracker.write_line(__snake_case ) def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case=None , **__snake_case ): if self.training_tracker is not None: snake_case = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: snake_case = log['''loss'''] break if self.first_column == "Epoch": snake_case = int(state.epoch ) else: snake_case = state.global_step snake_case = '''eval''' for k in metrics: if k.endswith('''_loss''' ): snake_case = re.sub(R'''\_loss$''' , '''''' , __snake_case ) snake_case = metrics.pop('''total_flos''' , __snake_case ) snake_case = metrics.pop('''epoch''' , __snake_case ) snake_case = metrics.pop(F'''{metric_key_prefix}_runtime''' , __snake_case ) snake_case = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , __snake_case ) snake_case = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , __snake_case ) snake_case = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , __snake_case ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': snake_case = v else: snake_case = k.split('''_''' ) snake_case = ''' '''.join([part.capitalize() for part in splits[1:]] ) snake_case = v self.training_tracker.write_line(__snake_case ) self.training_tracker.remove_child() snake_case = None # Evaluation takes a long time so we should force the next update. snake_case = True def a_ ( self , __snake_case , __snake_case , __snake_case , **__snake_case ): self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=__snake_case ) snake_case = None
127
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : int = {'''vocab_file''': '''sentencepiece.model'''} lowerCAmelCase_ : Dict = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, } lowerCAmelCase_ : List[Any] = { '''google/rembert''': 2_5_6, } class UpperCamelCase_ ( a__ ): _A : Optional[int] = VOCAB_FILES_NAMES _A : str = PRETRAINED_VOCAB_FILES_MAP _A : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , snake_case__ , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__="[CLS]" , snake_case__="[SEP]" , snake_case__="[UNK]" , snake_case__="[SEP]" , snake_case__="[PAD]" , snake_case__="[CLS]" , snake_case__="[MASK]" , **snake_case__ , ) -> Optional[int]: """simple docstring""" super().__init__( do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , **_lowerCamelCase , ) UpperCAmelCase = do_lower_case UpperCAmelCase = remove_space UpperCAmelCase = keep_accents UpperCAmelCase = vocab_file UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(_lowerCamelCase ) @property def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" return len(self.sp_model ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self , snake_case__ ) -> Tuple: """simple docstring""" UpperCAmelCase = d UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self , snake_case__ , snake_case__=False ) -> Dict: """simple docstring""" UpperCAmelCase = self.sp_model.EncodeAsPieces(_lowerCamelCase ) return pieces def UpperCamelCase_ ( self , snake_case__ ) -> int: """simple docstring""" return self.sp_model.PieceToId(_lowerCamelCase ) def UpperCamelCase_ ( self , snake_case__ ) -> List[Any]: """simple docstring""" return self.sp_model.IdToPiece(_lowerCamelCase ) def UpperCamelCase_ ( self , snake_case__ ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.sp_model.decode_pieces(_lowerCamelCase ) return out_string def UpperCamelCase_ ( self , snake_case__ , snake_case__ = None ) -> List[int]: """simple docstring""" UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1] def UpperCamelCase_ ( self , snake_case__ , snake_case__ = None ) -> List[int]: """simple docstring""" UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_lowerCamelCase ): logger.error("""Vocabulary path ({}) should be a directory""".format(_lowerCamelCase ) ) return UpperCAmelCase = os.path.join( _lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
369
"""simple docstring""" from __future__ import annotations import math def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = str(lowerCAmelCase ) UpperCAmelCase = [n] for i in range(1 , len(lowerCAmelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' if len(str(lowerCAmelCase ) ) > 3: if not is_prime(int(str(lowerCAmelCase )[-3:] ) ) or not is_prime(int(str(lowerCAmelCase )[:3] ) ): return False return True def _lowerCAmelCase ( lowerCAmelCase = 11 ): '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = 13 while len(lowerCAmelCase ) != count: if validate(lowerCAmelCase ): UpperCAmelCase = list_truncated_nums(lowerCAmelCase ) if all(is_prime(lowerCAmelCase ) for i in list_nums ): list_truncated_primes.append(lowerCAmelCase ) num += 2 return list_truncated_primes def _lowerCAmelCase ( ): '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'{sum(compute_truncated_primes(1_1)) = }')
248
0
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def a__ ( a__ , a__ , a__ , a__ = 1_00 , ): """simple docstring""" __SCREAMING_SNAKE_CASE = x_start __SCREAMING_SNAKE_CASE = fnc(a__ ) __SCREAMING_SNAKE_CASE = 0.0 for _ in range(a__ ): # Approximates curve as a sequence of linear lines and sums their length __SCREAMING_SNAKE_CASE = (x_end - x_start) / steps + xa __SCREAMING_SNAKE_CASE = fnc(a__ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step __SCREAMING_SNAKE_CASE = xa __SCREAMING_SNAKE_CASE = fxa return length if __name__ == "__main__": def a__ ( a__ ): """simple docstring""" return math.sin(10 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') UpperCAmelCase : Union[str, Any] = 1_0 while i <= 1_0_0_0_0_0: print(f"""With {i} steps: {line_length(f, -1_0, 1_0, i)}""") i *= 1_0
267
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu UpperCAmelCase : Any = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def a__ ( a__ , a__=None , a__=None , a__=None ): """simple docstring""" __SCREAMING_SNAKE_CASE = True while ask_again: __SCREAMING_SNAKE_CASE = input(a__ ) try: if default is not None and len(a__ ) == 0: return default return convert_value(a__ ) if convert_value is not None else result except Exception: if error_message is not None: print(a__ ) def a__ ( a__ , a__=[] , a__=None , a__=0 ): """simple docstring""" __SCREAMING_SNAKE_CASE = BulletMenu(a__ , a__ ) __SCREAMING_SNAKE_CASE = menu.run(default_choice=a__ ) return convert_value(a__ ) if convert_value is not None else result def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(a__ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(a__ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(a__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(a__ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(a__ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def a__ ( a__ ): """simple docstring""" return {"yes": True, "no": False}[value.lower()] class lowerCAmelCase__ ( argparse.RawDescriptionHelpFormatter ): """simple docstring""" def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = super()._format_usage(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = usage.replace("""<command> [<args>] """ , """""" ) return usage
267
1
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class a : """simple docstring""" def __init__( self : int , lowerCamelCase : Dict , lowerCamelCase : Optional[Any]=100 , lowerCamelCase : Any=13 , lowerCamelCase : Optional[int]=30 , lowerCamelCase : Tuple=2 , lowerCamelCase : int=3 , lowerCamelCase : List[Any]=True , lowerCamelCase : Any=True , lowerCamelCase : Optional[Any]=32 , lowerCamelCase : Any=4 , lowerCamelCase : Optional[int]=4 , lowerCamelCase : str=37 , lowerCamelCase : Dict="gelu" , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : Any=10 , lowerCamelCase : Optional[int]=0.02 , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Tuple=None , lowerCamelCase : str=[0, 1, 2, 3] , ) -> int: __snake_case : List[Any] = parent __snake_case : int = 100 __snake_case : str = batch_size __snake_case : Optional[int] = image_size __snake_case : Tuple = patch_size __snake_case : int = num_channels __snake_case : List[Any] = is_training __snake_case : Optional[Any] = use_labels __snake_case : Tuple = hidden_size __snake_case : List[Any] = num_hidden_layers __snake_case : Optional[Any] = num_attention_heads __snake_case : int = intermediate_size __snake_case : str = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : int = attention_probs_dropout_prob __snake_case : int = type_sequence_label_size __snake_case : Tuple = initializer_range __snake_case : Dict = scope __snake_case : int = out_indices __snake_case : Any = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __snake_case : Optional[Any] = (image_size // patch_size) ** 2 __snake_case : Union[str, Any] = num_patches + 1 def __snake_case ( self : Optional[Any] ) -> Any: __snake_case : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : str = None __snake_case : List[Any] = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def __snake_case ( self : Any ) -> Any: return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __snake_case ( self : List[str] , lowerCamelCase : List[str] , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : Tuple ) -> Dict: __snake_case : Optional[int] = BeitModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Dict = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any] , lowerCamelCase : str , lowerCamelCase : Tuple ) -> List[str]: __snake_case : Union[str, Any] = BeitForMaskedImageModeling(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : int = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __snake_case ( self : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : Dict ) -> int: __snake_case : Tuple = self.type_sequence_label_size __snake_case : Optional[int] = BeitForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Optional[Any] = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __snake_case : str = 1 __snake_case : Any = BeitForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case : List[str] = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __snake_case ( self : Any , lowerCamelCase : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : List[Any] ) -> str: __snake_case : Tuple = self.num_labels __snake_case : Tuple = BeitForSemanticSegmentation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[Any] = model(lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __snake_case : int = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __snake_case ( self : List[str] ) -> Any: __snake_case : int = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Any = config_and_inputs __snake_case : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase : Tuple = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : Tuple = False def __snake_case ( self : Optional[int] ) -> Union[str, Any]: __snake_case : Tuple = BeitModelTester(self ) __snake_case : str = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def __snake_case ( self : List[Any] ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def __snake_case ( self : List[str] ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __snake_case ( self : Union[str, Any] ) -> Optional[Any]: pass def __snake_case ( self : Dict ) -> Optional[int]: __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Tuple = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def __snake_case ( self : Optional[Any] ) -> Dict: __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = model_class(lowerCamelCase ) __snake_case : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Union[str, Any] = [*signature.parameters.keys()] __snake_case : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def __snake_case ( self : Union[str, Any] ) -> Optional[int]: __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __snake_case ( self : Tuple ) -> Tuple: __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase ) def __snake_case ( self : int ) -> Union[str, Any]: __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def __snake_case ( self : Union[str, Any] ) -> Any: __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase ) def __snake_case ( self : Optional[int] ) -> Optional[Any]: if not self.model_tester.is_training: return __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : str = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(lowerCamelCase ), BeitForMaskedImageModeling]: continue __snake_case : str = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() __snake_case : Tuple = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) __snake_case : Optional[Any] = model(**lowerCamelCase ).loss loss.backward() def __snake_case ( self : List[Any] ) -> Optional[int]: __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __snake_case : int = False __snake_case : Dict = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(lowerCamelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __snake_case : int = model_class(lowerCamelCase ) model.gradient_checkpointing_enable() model.to(lowerCamelCase ) model.train() __snake_case : str = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) __snake_case : Any = model(**lowerCamelCase ).loss loss.backward() def __snake_case ( self : Union[str, Any] ) -> List[str]: __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Tuple = _config_zero_init(lowerCamelCase ) for model_class in self.all_model_classes: __snake_case : Optional[int] = model_class(config=lowerCamelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __snake_case ( self : str ) -> List[str]: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Dict = BeitModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def lowerCAmelCase_ ( ): __snake_case : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a (unittest.TestCase ): """simple docstring""" @cached_property def __snake_case ( self : str ) -> Dict: return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def __snake_case ( self : Union[str, Any] ) -> List[str]: __snake_case : List[Any] = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(lowerCamelCase ) __snake_case : List[str] = self.default_image_processor __snake_case : Tuple = prepare_img() __snake_case : Any = image_processor(images=lowerCamelCase , return_tensors="pt" ).pixel_values.to(lowerCamelCase ) # prepare bool_masked_pos __snake_case : str = torch.ones((1, 196) , dtype=torch.bool ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(pixel_values=lowerCamelCase , bool_masked_pos=lowerCamelCase ) __snake_case : Optional[int] = outputs.logits # verify the logits __snake_case : List[Any] = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , lowerCamelCase ) __snake_case : Union[str, Any] = torch.tensor( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , lowerCamelCase , atol=1E-2 ) ) @slow def __snake_case ( self : Any ) -> Optional[int]: __snake_case : List[Any] = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(lowerCamelCase ) __snake_case : int = self.default_image_processor __snake_case : Dict = prepare_img() __snake_case : List[Any] = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __snake_case : Tuple = model(**lowerCamelCase ) __snake_case : int = outputs.logits # verify the logits __snake_case : str = torch.Size((1, 1000) ) self.assertEqual(logits.shape , lowerCamelCase ) __snake_case : Any = torch.tensor([-1.23_85, -1.09_87, -1.01_08] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCamelCase , atol=1E-4 ) ) __snake_case : Tuple = 281 self.assertEqual(logits.argmax(-1 ).item() , lowerCamelCase ) @slow def __snake_case ( self : List[Any] ) -> Union[str, Any]: __snake_case : Dict = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( lowerCamelCase ) __snake_case : Optional[int] = self.default_image_processor __snake_case : Dict = prepare_img() __snake_case : Tuple = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __snake_case : Dict = model(**lowerCamelCase ) __snake_case : str = outputs.logits # verify the logits __snake_case : int = torch.Size((1, 21841) ) self.assertEqual(logits.shape , lowerCamelCase ) __snake_case : int = torch.tensor([1.68_81, -0.27_87, 0.59_01] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCamelCase , atol=1E-4 ) ) __snake_case : int = 2396 self.assertEqual(logits.argmax(-1 ).item() , lowerCamelCase ) @slow def __snake_case ( self : List[str] ) -> Optional[int]: __snake_case : Tuple = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) __snake_case : List[str] = model.to(lowerCamelCase ) __snake_case : Optional[int] = BeitImageProcessor(do_resize=lowerCamelCase , size=640 , do_center_crop=lowerCamelCase ) __snake_case : List[str] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __snake_case : str = Image.open(ds[0]["file"] ) __snake_case : Optional[int] = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __snake_case : List[str] = model(**lowerCamelCase ) __snake_case : str = outputs.logits # verify the logits __snake_case : str = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , lowerCamelCase ) __snake_case : List[Any] = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: __snake_case : Optional[int] = torch.tensor( [ [[-4.92_25, -2.39_54, -3.05_22], [-2.88_22, -1.00_46, -1.75_61], [-2.95_49, -1.32_28, -2.13_47]], [[-5.81_68, -3.41_29, -4.07_78], [-3.86_51, -2.22_14, -3.02_77], [-3.83_56, -2.46_43, -3.35_35]], [[-0.00_78, 3.99_52, 4.07_54], [2.98_56, 4.69_44, 5.00_35], [3.24_13, 4.78_13, 4.99_69]], ] , device=lowerCamelCase , ) else: __snake_case : List[Any] = torch.tensor( [ [[-4.89_60, -2.36_88, -3.03_55], [-2.84_78, -0.98_36, -1.74_18], [-2.94_49, -1.33_32, -2.14_56]], [[-5.80_81, -3.41_24, -4.10_06], [-3.85_61, -2.20_81, -3.03_23], [-3.83_65, -2.46_01, -3.36_69]], [[-0.03_09, 3.98_68, 4.05_40], [2.96_40, 4.68_77, 4.99_76], [3.20_81, 4.76_90, 4.99_42]], ] , device=lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1E-4 ) ) @slow def __snake_case ( self : List[str] ) -> List[Any]: __snake_case : Tuple = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) __snake_case : List[Any] = model.to(lowerCamelCase ) __snake_case : Dict = BeitImageProcessor(do_resize=lowerCamelCase , size=640 , do_center_crop=lowerCamelCase ) __snake_case : List[Any] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __snake_case : int = Image.open(ds[0]["file"] ) __snake_case : List[Any] = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __snake_case : Optional[int] = model(**lowerCamelCase ) __snake_case : str = outputs.logits.detach().cpu() __snake_case : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase , target_sizes=[(500, 300)] ) __snake_case : Tuple = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , lowerCamelCase ) __snake_case : Dict = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase ) __snake_case : Optional[Any] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , lowerCamelCase )
134
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[str] = ["image_processor", "tokenizer"] __UpperCAmelCase : str = "OwlViTImageProcessor" __UpperCAmelCase : Dict = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : str , lowerCamelCase : Any=None , lowerCamelCase : Any=None , **lowerCamelCase : Union[str, Any] ) -> List[Any]: __snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase , ) __snake_case : List[Any] = kwargs.pop("feature_extractor" ) __snake_case : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCamelCase , lowerCamelCase ) def __call__( self : Union[str, Any] , lowerCamelCase : Tuple=None , lowerCamelCase : int=None , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : List[str]="max_length" , lowerCamelCase : Dict="np" , **lowerCamelCase : str ) -> List[Any]: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(lowerCamelCase , lowerCamelCase ) or (isinstance(lowerCamelCase , lowerCamelCase ) and not isinstance(text[0] , lowerCamelCase )): __snake_case : Union[str, Any] = [self.tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase )] elif isinstance(lowerCamelCase , lowerCamelCase ) and isinstance(text[0] , lowerCamelCase ): __snake_case : Tuple = [] # Maximum number of queries across batch __snake_case : str = max([len(lowerCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCamelCase ) != max_num_queries: __snake_case : Dict = t + [" "] * (max_num_queries - len(lowerCamelCase )) __snake_case : int = self.tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) encodings.append(lowerCamelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": __snake_case : Any = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __snake_case : Tuple = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __snake_case : List[Any] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __snake_case : Any = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __snake_case : int = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) __snake_case : int = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __snake_case : int = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) __snake_case : Dict = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) __snake_case : Any = BatchEncoding() __snake_case : Tuple = input_ids __snake_case : int = attention_mask if query_images is not None: __snake_case : List[Any] = BatchEncoding() __snake_case : Union[str, Any] = self.image_processor( lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ).pixel_values __snake_case : str = query_pixel_values if images is not None: __snake_case : Optional[int] = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if text is not None and images is not None: __snake_case : List[str] = image_features.pixel_values return encoding elif query_images is not None and images is not None: __snake_case : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase ) , tensor_type=lowerCamelCase ) def __snake_case ( self : Dict , *lowerCamelCase : List[Any] , **lowerCamelCase : Union[str, Any] ) -> str: return self.image_processor.post_process(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Union[str, Any] , *lowerCamelCase : str , **lowerCamelCase : List[str] ) -> Tuple: return self.image_processor.post_process_object_detection(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Optional[Any] , *lowerCamelCase : Optional[Any] , **lowerCamelCase : Optional[Any] ) -> Any: return self.image_processor.post_process_image_guided_detection(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : List[Any] , *lowerCamelCase : Tuple , **lowerCamelCase : Optional[int] ) -> str: return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Union[str, Any] , *lowerCamelCase : Tuple , **lowerCamelCase : List[Any] ) -> Tuple: return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property def __snake_case ( self : Any ) -> Dict: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCamelCase , ) return self.image_processor_class @property def __snake_case ( self : List[str] ) -> Union[str, Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCamelCase , ) return self.image_processor
134
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule a :List[str] = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a :Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
132
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ : List[Any] = logging.get_logger(__name__) a_ : str = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class _snake_case ( A__ ): _lowercase : Any = '''deberta-v2''' def __init__( self , a=12_8100 , a=1536 , a=24 , a=24 , a=6144 , a="gelu" , a=0.1 , a=0.1 , a=512 , a=0 , a=0.02 , a=1E-7 , a=False , a=-1 , a=0 , a=True , a=None , a=0 , a="gelu" , **a , ) -> List[Any]: super().__init__(**a) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = relative_attention SCREAMING_SNAKE_CASE = max_relative_positions SCREAMING_SNAKE_CASE = pad_token_id SCREAMING_SNAKE_CASE = position_biased_input # Backwards compatibility if type(a) == str: SCREAMING_SNAKE_CASE = [x.strip() for x in pos_att_type.lower().split('|')] SCREAMING_SNAKE_CASE = pos_att_type SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = kwargs.get('pooler_hidden_size' , a) SCREAMING_SNAKE_CASE = pooler_dropout SCREAMING_SNAKE_CASE = pooler_hidden_act class _snake_case ( A__ ): @property def SCREAMING_SNAKE_CASE__ ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)]) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)]) @property def SCREAMING_SNAKE_CASE__ ( self) -> int: return 12 def SCREAMING_SNAKE_CASE__ ( self , a , a = -1 , a = -1 , a = -1 , a = False , a = None , a = 3 , a = 40 , a = 40 , a = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE = super().generate_dummy_inputs(preprocessor=a , framework=a) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
137
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
354
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''spiece.model'''} __UpperCAmelCase = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } __UpperCAmelCase = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 class lowerCamelCase__ ( _a ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = '''left''' def __init__( self : Dict , _a : List[Any] , _a : Any=False , _a : int=True , _a : Union[str, Any]=False , _a : Dict="<s>" , _a : str="</s>" , _a : Optional[int]="<unk>" , _a : Union[str, Any]="<sep>" , _a : List[Any]="<pad>" , _a : Optional[Any]="<cls>" , _a : str="<mask>" , _a : Any=["<eop>", "<eod>"] , _a : Optional[Dict[str, Any]] = None , **_a : Optional[int] , ): # Mask token behave like a normal word, i.e. include the space before it a__: Dict =AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token a__: Optional[int] ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) a__: Dict =3 a__: Tuple =do_lower_case a__: int =remove_space a__: List[Any] =keep_accents a__: List[str] =vocab_file a__: Union[str, Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) @property def _lowerCamelCase ( self : Any ): return len(self.sp_model ) def _lowerCamelCase ( self : List[Any] ): a__: Dict ={self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): a__: Dict =self.__dict__.copy() a__: List[Any] =None return state def __setstate__( self : Optional[Any] , _a : Tuple ): a__: List[Any] =d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a__: List[str] ={} a__: int =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self : Dict , _a : str ): if self.remove_space: a__: Optional[int] =" ".join(inputs.strip().split() ) else: a__: Optional[int] =inputs a__: Dict =outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: a__: Optional[int] =unicodedata.normalize("NFKD" , _a ) a__: int ="".join([c for c in outputs if not unicodedata.combining(_a )] ) if self.do_lower_case: a__: Dict =outputs.lower() return outputs def _lowerCamelCase ( self : List[Any] , _a : str ): a__: Dict =self.preprocess_text(_a ) a__: Dict =self.sp_model.encode(_a , out_type=_a ) a__: str =[] for piece in pieces: if len(_a ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): a__: Optional[Any] =self.sp_model.EncodeAsPieces(piece[:-1].replace(_a , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a__: Optional[int] =cur_pieces[1:] else: a__: Tuple =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_a ) else: new_pieces.append(_a ) return new_pieces def _lowerCamelCase ( self : Dict , _a : Dict ): return self.sp_model.PieceToId(_a ) def _lowerCamelCase ( self : Dict , _a : Optional[Any] ): return self.sp_model.IdToPiece(_a ) def _lowerCamelCase ( self : Optional[Any] , _a : Tuple ): a__: Tuple ="".join(_a ).replace(_a , " " ).strip() return out_string def _lowerCamelCase ( self : Optional[int] , _a : List[int] , _a : bool = False , _a : bool = None , _a : bool = True , **_a : Union[str, Any] , ): a__: Optional[int] =kwargs.pop("use_source_tokenizer" , _a ) a__: Any =self.convert_ids_to_tokens(_a , skip_special_tokens=_a ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 a__: List[str] =[] a__: Any =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_a ) ) a__: List[str] =[] sub_texts.append(_a ) else: current_sub_text.append(_a ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_a ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens a__: Union[str, Any] ="".join(_a ) a__: List[Any] =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: a__: Optional[int] =self.clean_up_tokenization(_a ) return clean_text else: return text def _lowerCamelCase ( self : Tuple , _a : List[int] , _a : Optional[List[int]] = None ): a__: Dict =[self.sep_token_id] a__: Optional[Any] =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Dict , _a : List[int] , _a : Optional[List[int]] = None , _a : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is not None: return ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1, 1] return ([0] * len(_a )) + [1, 1] def _lowerCamelCase ( self : Dict , _a : List[int] , _a : Optional[List[int]] = None ): a__: Any =[self.sep_token_id] a__: List[Any] =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , _a : str , _a : Optional[str] = None ): if not os.path.isdir(_a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return a__: List[Any] =os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , "wb" ) as fi: a__: Optional[Any] =self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
42
0
import random def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =num - 1 __UpperCamelCase =0 while s % 2 == 0: __UpperCamelCase =s // 2 t += 1 for _ in range(5 ): __UpperCamelCase =random.randrange(2 , num - 1 ) __UpperCamelCase =pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if v != 1: __UpperCamelCase =0 while v != (num - 1): if i == t - 1: return False else: __UpperCamelCase =i + 1 __UpperCamelCase =(v**2) % num return True def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): if num < 2: return False __UpperCamelCase =[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int = 10_24 ): while True: __UpperCamelCase =random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE__ ): return num if __name__ == "__main__": _A = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
62
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) __A : Union[str, Any] = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
273
0
class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any], UpperCAmelCase__ : str = "", UpperCAmelCase__ : bool = False ): __lowercase = {} # A node will be a leaf if the tree contains its word __lowercase = is_leaf __lowercase = prefix def _lowercase ( self : List[Any], UpperCAmelCase__ : str ): __lowercase = 0 for q, w in zip(self.prefix, snake_case__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def _lowercase ( self : Tuple, UpperCAmelCase__ : list[str] ): for word in words: self.insert(snake_case__ ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : str ): if self.prefix == word: __lowercase = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: __lowercase = RadixNode(prefix=snake_case__, is_leaf=snake_case__ ) else: __lowercase = self.nodes[word[0]] __lowercase = incoming_node.match( snake_case__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(snake_case__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: __lowercase = remaining_prefix __lowercase = self.nodes[matching_string[0]] __lowercase = RadixNode(snake_case__, snake_case__ ) __lowercase = aux_node if remaining_word == "": __lowercase = True else: self.nodes[matching_string[0]].insert(snake_case__ ) def _lowercase ( self : Any, UpperCAmelCase__ : str ): __lowercase = self.nodes.get(word[0], snake_case__ ) if not incoming_node: return False else: __lowercase = incoming_node.match( snake_case__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(snake_case__ ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : str ): __lowercase = self.nodes.get(word[0], snake_case__ ) if not incoming_node: return False else: __lowercase = incoming_node.match( snake_case__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(snake_case__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: __lowercase = list(self.nodes.values() )[0] __lowercase = merging_node.is_leaf self.prefix += merging_node.prefix __lowercase = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: __lowercase = False # If there is 1 edge, we merge it with its child else: __lowercase = list(incoming_node.nodes.values() )[0] __lowercase = merging_node.is_leaf incoming_node.prefix += merging_node.prefix __lowercase = merging_node.nodes return True def _lowercase ( self : str, UpperCAmelCase__ : int = 0 ): if self.prefix != "": print("-" * height, self.prefix, " (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def _A ( ) -> Any: '''simple docstring''' __lowercase = "banana bananas bandana band apple all beast".split() __lowercase = RadixNode() root.insert_many(__lowerCamelCase) assert all(root.find(__lowerCamelCase) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def _A ( ) -> int: '''simple docstring''' assert test_trie() def _A ( ) -> Dict: '''simple docstring''' __lowercase = RadixNode() __lowercase = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(__lowerCamelCase) print("Words:", __lowerCamelCase) print("Tree:") root.print_tree() if __name__ == "__main__": main()
360
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Any = "audio-spectrogram-transformer" def __init__( self : Optional[Any], UpperCAmelCase__ : Dict=7_6_8, UpperCAmelCase__ : Optional[Any]=1_2, UpperCAmelCase__ : Optional[int]=1_2, UpperCAmelCase__ : List[str]=3_0_7_2, UpperCAmelCase__ : List[str]="gelu", UpperCAmelCase__ : Dict=0.0, UpperCAmelCase__ : str=0.0, UpperCAmelCase__ : Any=0.02, UpperCAmelCase__ : Any=1E-12, UpperCAmelCase__ : Dict=1_6, UpperCAmelCase__ : Optional[int]=True, UpperCAmelCase__ : Union[str, Any]=1_0, UpperCAmelCase__ : List[Any]=1_0, UpperCAmelCase__ : Optional[int]=1_0_2_4, UpperCAmelCase__ : List[str]=1_2_8, **UpperCAmelCase__ : List[Any], ): super().__init__(**UpperCAmelCase__ ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = patch_size __lowercase = qkv_bias __lowercase = frequency_stride __lowercase = time_stride __lowercase = max_length __lowercase = num_mel_bins
144
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu UpperCamelCase = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def __lowerCamelCase ( snake_case__ ,snake_case__=None ,snake_case__=None ,snake_case__=None ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = True while ask_again: _SCREAMING_SNAKE_CASE = input(a_ ) try: if default is not None and len(a_ ) == 0: return default return convert_value(a_ ) if convert_value is not None else result except Exception: if error_message is not None: print(a_ ) def __lowerCamelCase ( snake_case__ ,snake_case__=[] ,snake_case__=None ,snake_case__=0 ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = BulletMenu(a_ ,a_ ) _SCREAMING_SNAKE_CASE = menu.run(default_choice=a_ ) return convert_value(a_ ) if convert_value is not None else result def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = int(a_ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = int(a_ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = int(a_ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = int(a_ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = int(a_ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" return {"yes": True, "no": False}[value.lower()] class __UpperCAmelCase (argparse.RawDescriptionHelpFormatter ): def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = super()._format_usage(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = usage.replace("""<command> [<args>] """ , """""" ) return usage
306
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class UpperCamelCase_ : '''simple docstring''' def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=99 , a=32 , a=5 , a=4 , a=4 , a="gelu" , a=0.0 , a=0.1 , a=True , a=5_12 , a=16 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> Optional[Any]: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_multiple_size snake_case_ = hidden_act snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = weight_tying snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def _UpperCamelCase ( self ) -> List[Any]: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self ) -> Dict: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self ) -> int: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.prepare_config_and_inputs() snake_case_ = True return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self , a , a , a ) -> Any: snake_case_ = GPTNeoXJapaneseModel(config=a ) model.to(a ) model.eval() snake_case_ = model(a , attention_mask=a ) snake_case_ = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , a , a , a ) -> Union[str, Any]: snake_case_ = True snake_case_ = GPTNeoXJapaneseModel(a ) model.to(a ) model.eval() snake_case_ = model(a , attention_mask=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , a , a , a , a ) -> int: snake_case_ = GPTNeoXJapaneseForCausalLM(config=a ) model.to(a ) model.eval() snake_case_ = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self , a , a , a ) -> Tuple: snake_case_ = True snake_case_ = GPTNeoXJapaneseForCausalLM(config=a ) model.to(a ) model.eval() # first forward pass snake_case_ = model(a , attention_mask=a , use_cache=a ) snake_case_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case_ = model(a , attention_mask=a , output_hidden_states=a ) snake_case_ = output_from_no_past['hidden_states'][0] snake_case_ = model( a , attention_mask=a , past_key_values=a , output_hidden_states=a , )['hidden_states'][0] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1E-3 ) ) def _UpperCamelCase ( self ) -> Dict: snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCAmelCase = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': GPTNeoXJapaneseModel, '''text-generation''': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def _UpperCamelCase ( self ) -> List[Any]: snake_case_ = GPTNeoXJapaneseModelTester(self ) snake_case_ = ConfigTester(self , config_class=a , hidden_size=37 ) def _UpperCamelCase ( self ) -> str: self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> Optional[Any]: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(a , a , a ) def _UpperCamelCase ( self ) -> Union[str, Any]: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(a , a , a ) def _UpperCamelCase ( self ) -> Optional[int]: # This regression test was failing with PyTorch < 1.3 snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case_ = None self.model_tester.create_and_check_model_as_decoder(a , a , a ) def _UpperCamelCase ( self ) -> Dict: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(a , a , a ) def _UpperCamelCase ( self ) -> List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*a ) @slow def _UpperCamelCase ( self ) -> Any: snake_case_ = 'abeja/gpt-neox-japanese-2.7b' snake_case_ = ['データサイエンティストとは、', '100年後に必要とされる会社は、', 'フルリモートの環境で働くために必要なことは、', '国境の長いトンネルを抜けると', '美味しい日本食といえば、'] snake_case_ = [ 'データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。', '100年後に必要とされる会社は、「人」が中心の会社です。', 'フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。', '国境の長いトンネルを抜けると、そこは雪国だった。', '美味しい日本食といえば、やっぱりお寿司ですよね。', ] snake_case_ = GPTNeoXJapaneseTokenizer.from_pretrained(a ) snake_case_ = GPTNeoXJapaneseForCausalLM.from_pretrained(a ) snake_case_ = [] for prompt in prompts: snake_case_ = tokenizer(a , return_tensors='pt' ).input_ids snake_case_ = model.generate(a , max_length=50 ) snake_case_ = tokenizer.batch_decode(a , skip_special_tokens=a ) predicted_outputs += generated_string self.assertListEqual(a , a )
178
0
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : List[str] = 0 A_ : str = len(SCREAMING_SNAKE_CASE ) for i in range(n - 1 ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): if len(SCREAMING_SNAKE_CASE ) <= 1: return arr, 0 A_ : List[Any] = len(SCREAMING_SNAKE_CASE ) // 2 A_ : str = arr[0:mid] A_ : str = arr[mid:] A_ : Union[str, Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) A_ : Any = _count_cross_inversions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = inversion_p + inversions_q + cross_inversions return c, num_inversions def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : int = [] A_ : List[str] = 0 while i < len(SCREAMING_SNAKE_CASE ) and j < len(SCREAMING_SNAKE_CASE ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(SCREAMING_SNAKE_CASE ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(SCREAMING_SNAKE_CASE ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _SCREAMING_SNAKE_CASE ( ): A_ : List[str] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) A_ : List[Any] = count_inversions_bf(SCREAMING_SNAKE_CASE ) A_ : List[str] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , SCREAMING_SNAKE_CASE ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() A_ : str = count_inversions_bf(SCREAMING_SNAKE_CASE ) A_ : Any = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , SCREAMING_SNAKE_CASE ) # an empty list should also have zero inversions A_ : Union[str, Any] = [] A_ : str = count_inversions_bf(SCREAMING_SNAKE_CASE ) A_ : Optional[int] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
363
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->None: '''simple docstring''' warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
65
0
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : dict[int, list[int]] ): """simple docstring""" __a = 0 __a = len(_SCREAMING_SNAKE_CASE ) # No of vertices in graph __a = [0] * n __a = [False] * n def dfs(_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str ): __a = True __a = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , id_ ) __a = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge __a = min(low[at] , low[to] ) __a = [] for i in range(_SCREAMING_SNAKE_CASE ): if not visited[i]: dfs(_SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
302
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
302
1
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowercase__ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase = namedtuple("""CoinsDistribResult""", """moves excess""") def a__ ( lowerCAmelCase__ ): if root is None: return 0 # Validation def count_nodes(lowerCAmelCase__ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowerCAmelCase__ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowerCAmelCase__ ) != count_coins(lowerCAmelCase__ ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(lowerCAmelCase__ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) UpperCAmelCase_ , UpperCAmelCase_ = get_distrib(node.left ) UpperCAmelCase_ , UpperCAmelCase_ = get_distrib(node.right ) UpperCAmelCase_ = 1 - left_distrib_excess UpperCAmelCase_ = 1 - right_distrib_excess UpperCAmelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowerCAmelCase__ ) + abs(lowerCAmelCase__ ) ) UpperCAmelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowerCAmelCase__ , lowerCAmelCase__ ) return get_distrib(lowerCAmelCase__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
351
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ) -> None: '''simple docstring''' warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
241
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Optional[int] = AltDiffusionPipeline _UpperCamelCase : Optional[int] = TEXT_TO_IMAGE_PARAMS _UpperCamelCase : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCamelCase : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : int = TEXT_TO_IMAGE_IMAGE_PARAMS def __a ( self : Optional[int] ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase : List[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) lowercase : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) lowercase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) lowercase : Union[str, Any] = CLIPTextModel(_A ) lowercase : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowercase : Optional[int] = 77 lowercase : List[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __a ( self : Union[str, Any] , _A : int , _A : Dict=0 ) -> Any: """simple docstring""" if str(_A ).startswith('''mps''' ): lowercase : str = torch.manual_seed(_A ) else: lowercase : Union[str, Any] = torch.Generator(device=_A ).manual_seed(_A ) lowercase : Any = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __a ( self : Dict ) -> Dict: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def __a ( self : Dict ) -> List[str]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __a ( self : str ) -> Any: """simple docstring""" lowercase : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : List[str] = self.get_dummy_components() torch.manual_seed(0 ) lowercase : int = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder lowercase : Any = RobertaSeriesModelWithTransformation(_A ) lowercase : List[Any] = text_encoder lowercase : Optional[Any] = AltDiffusionPipeline(**_A ) lowercase : Optional[Any] = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) lowercase : Union[str, Any] = self.get_dummy_inputs(_A ) lowercase : int = '''A photo of an astronaut''' lowercase : List[str] = alt_pipe(**_A ) lowercase : int = output.images lowercase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase : Optional[Any] = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self : Optional[int] ) -> List[str]: """simple docstring""" lowercase : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : Tuple = self.get_dummy_components() lowercase : Union[str, Any] = PNDMScheduler(skip_prk_steps=_A ) torch.manual_seed(0 ) lowercase : List[str] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder lowercase : int = RobertaSeriesModelWithTransformation(_A ) lowercase : str = text_encoder lowercase : Dict = AltDiffusionPipeline(**_A ) lowercase : Union[str, Any] = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) lowercase : Union[str, Any] = self.get_dummy_inputs(_A ) lowercase : Union[str, Any] = alt_pipe(**_A ) lowercase : Optional[Any] = output.images lowercase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase : Union[str, Any] = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _A ( unittest.TestCase ): def __a ( self : Tuple ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Optional[int] ) -> List[str]: """simple docstring""" lowercase : Optional[Any] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_A ) lowercase : Any = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) lowercase : Any = '''A painting of a squirrel eating a burger''' lowercase : Dict = torch.manual_seed(0 ) lowercase : int = alt_pipe([prompt] , generator=_A , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) lowercase : Union[str, Any] = output.images lowercase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase : Dict = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self : Optional[Any] ) -> Dict: """simple docstring""" lowercase : Union[str, Any] = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) lowercase : str = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_A , safety_checker=_A ) lowercase : Dict = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) lowercase : Dict = '''A painting of a squirrel eating a burger''' lowercase : str = torch.manual_seed(0 ) lowercase : Optional[int] = alt_pipe([prompt] , generator=_A , num_inference_steps=2 , output_type='''numpy''' ) lowercase : Tuple = output.images lowercase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase : List[Any] = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
308
from __future__ import annotations from typing import Any def snake_case( __magic_name__ ) -> None: '''simple docstring''' create_state_space_tree(__magic_name__ , [] , 0 ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' if index == len(__magic_name__ ): print(__magic_name__ ) return create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCAmelCase_ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
308
1
"""simple docstring""" def _snake_case ( lowerCamelCase__ : list[list] ) -> list[list]: lowerCamelCase_ : Optional[Any] =current_set.copy() for row_index, row in enumerate(lowerCamelCase__ ): lowerCamelCase_ : List[str] =row[0] for column_index, column in enumerate(lowerCamelCase__ ): if magnitude == 0: lowerCamelCase_ : Union[str, Any] =column continue lowerCamelCase_ : List[Any] =column / magnitude # Subtract to cancel term lowerCamelCase_ : Any =current_set[0] lowerCamelCase_ : Optional[Any] =[first_row] lowerCamelCase_ : str =current_set[1::] for row in current_set: lowerCamelCase_ : str =[] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase__ ) continue for column_index in range(len(lowerCamelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowerCamelCase_ : str =final_set[0] lowerCamelCase_ : Optional[Any] =[] lowerCamelCase_ : List[Any] =[] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowerCamelCase_ : Dict =simplify(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCamelCase__ ) lowerCamelCase_ : Union[str, Any] =resultant return final_set def _snake_case ( lowerCamelCase__ : list[list] ) -> list: if len(lowerCamelCase__ ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) lowerCamelCase_ : List[str] =len(lowerCamelCase__ ) + 1 if any(len(lowerCamelCase__ ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(lowerCamelCase__ , (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(lowerCamelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] lowerCamelCase_ : List[Any] =equations.copy() if any(0 in row for row in data_set ): lowerCamelCase_ : Optional[int] =data_set.copy() lowerCamelCase_ : Union[str, Any] =[] for row_index, row in enumerate(lowerCamelCase__ ): if 0 not in row: lowerCamelCase_ : Optional[int] =data_set.pop(lowerCamelCase__ ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0 , lowerCamelCase__ ) lowerCamelCase_ : Optional[Any] =data_set.copy() lowerCamelCase_ : List[str] =simplify(lowerCamelCase__ ) lowerCamelCase_ : Optional[Any] =simplified[::-1] lowerCamelCase_ : list =[] for row in simplified: lowerCamelCase_ : List[str] =row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowerCamelCase_ : Any =row.copy()[: len(lowerCamelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase__ ) == 0: solutions.append(0 ) continue lowerCamelCase_ : int =temp_row[1::] lowerCamelCase_ : List[Any] =temp_row[::-1] for column_index, column in enumerate(lowerCamelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase__ ) lowerCamelCase_ : Tuple =[] for item in solutions: final.append(float(round(lowerCamelCase__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() A__ : Optional[int] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
209
"""simple docstring""" import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline A__ : int = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": A__ : str = 'hopper-medium-v2' A__ : Dict = gym.make(env_name) A__ : List[Any] = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) A__ : Dict = env.reset() A__ : Optional[int] = 0 A__ : str = 0 A__ : List[Any] = 1_000 A__ : Tuple = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy A__ : Union[str, Any] = pipeline(obs, planning_horizon=32) # execute action in environment A__ , A__ , A__ , A__ : Any = env.step(denorm_actions) A__ : List[Any] = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:' f' {total_score}' ) # save observations for rendering rollout.append(next_observation.copy()) A__ : Optional[Any] = next_observation except KeyboardInterrupt: pass print(f'Total reward: {total_reward}')
209
1
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def A_ ( snake_case : Dict , snake_case : Tuple , snake_case : List[Any] , snake_case : Any ) -> int: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})" def A_ ( snake_case : Optional[Any] , snake_case : int , snake_case : List[Any] , snake_case : str , snake_case : List[Any]=True ) -> Optional[Any]: '''simple docstring''' model.train() __UpperCamelCase = model(snake_case ) __UpperCamelCase = F.mse_loss(snake_case , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(snake_case ) def A_ ( snake_case : Optional[Any] , snake_case : str=False ) -> Tuple: '''simple docstring''' set_seed(42 ) __UpperCamelCase = RegressionModel() __UpperCamelCase = deepcopy(snake_case ) __UpperCamelCase = RegressionDataset(length=80 ) __UpperCamelCase = DataLoader(snake_case , batch_size=16 ) model.to(accelerator.device ) if sched: __UpperCamelCase = AdamW(params=model.parameters() , lr=1e-3 ) __UpperCamelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __UpperCamelCase = LambdaLR(snake_case , lr_lambda=lambda snake_case : epoch**0.65 ) __UpperCamelCase = LambdaLR(snake_case , lr_lambda=lambda snake_case : epoch**0.65 ) # Make a copy of `model` if sched: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(snake_case , snake_case , snake_case , snake_case ) else: __UpperCamelCase , __UpperCamelCase = accelerator.prepare(snake_case , snake_case ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def A_ ( snake_case : str ) -> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = get_training_setup(snake_case ) # Use a single batch __UpperCamelCase , __UpperCamelCase = next(iter(snake_case ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCamelCase , __UpperCamelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCamelCase , __UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case , snake_case , snake_case , snake_case ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case ): step_model(snake_case , snake_case , snake_case , snake_case ) else: # Sync grads step_model(snake_case , snake_case , snake_case , snake_case ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(snake_case , snake_case , snake_case , snake_case ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __UpperCamelCase = ddp_input[torch.randperm(len(snake_case ) )] def A_ ( snake_case : str ) -> Any: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = get_training_setup(snake_case ) # Use a single batch __UpperCamelCase , __UpperCamelCase = next(iter(snake_case ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCamelCase , __UpperCamelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCamelCase , __UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case , snake_case , snake_case , snake_case ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case ): step_model(snake_case , snake_case , snake_case , snake_case ) else: # Sync grads step_model(snake_case , snake_case , snake_case , snake_case ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __UpperCamelCase = ddp_input[torch.randperm(len(snake_case ) )] def A_ ( snake_case : Optional[int]=False , snake_case : Tuple=False ) -> Tuple: '''simple docstring''' __UpperCamelCase = Accelerator( split_batches=snake_case , dispatch_batches=snake_case , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = get_training_setup(snake_case ) for iteration, batch in enumerate(snake_case ): __UpperCamelCase , __UpperCamelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCamelCase , __UpperCamelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCamelCase , __UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case , snake_case , snake_case , snake_case , snake_case ) # Do "gradient accumulation" (noop) with accelerator.accumulate(snake_case ): step_model(snake_case , snake_case , snake_case , snake_case ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(snake_case ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __UpperCamelCase = ddp_input[torch.randperm(len(snake_case ) )] GradientState._reset_state() def A_ ( snake_case : str=False , snake_case : Tuple=False ) -> List[Any]: '''simple docstring''' __UpperCamelCase = Accelerator( split_batches=snake_case , dispatch_batches=snake_case , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = get_training_setup(snake_case , snake_case ) for iteration, batch in enumerate(snake_case ): __UpperCamelCase , __UpperCamelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCamelCase , __UpperCamelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCamelCase , __UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(snake_case , snake_case , snake_case , snake_case , snake_case ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(snake_case )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(snake_case ): step_model(snake_case , snake_case , snake_case , snake_case ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n" __UpperCamelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(snake_case )) if accelerator.num_processes > 1: check_model_parameters(snake_case , snake_case , snake_case , snake_case ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def A_ ( ) -> int: '''simple docstring''' __UpperCamelCase = Accelerator() __UpperCamelCase = RegressionDataset(length=80 ) __UpperCamelCase = DataLoader(snake_case , batch_size=16 ) __UpperCamelCase = RegressionDataset(length=96 ) __UpperCamelCase = DataLoader(snake_case , batch_size=16 ) __UpperCamelCase , __UpperCamelCase = accelerator.prepare(snake_case , snake_case ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(snake_case ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case ) if iteration < len(snake_case ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(snake_case ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case ) if batch_num < len(snake_case ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def A_ ( ) -> List[Any]: '''simple docstring''' __UpperCamelCase = Accelerator() __UpperCamelCase = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(snake_case ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(snake_case ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation(snake_case , snake_case ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation_with_opt_and_scheduler(snake_case , snake_case ) def A_ ( snake_case : Tuple ) -> int: '''simple docstring''' main() if __name__ == "__main__": main()
328
import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' return math.sqrt(snake_case ) * math.sqrt(snake_case ) == num def A_ ( snake_case : int ) -> bool: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = n while left <= right: __UpperCamelCase = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
328
1
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def __UpperCamelCase ( _A=32 , _A=10 , _A=100 , _A=1026 , _A=True , _A="data/tokenized_stories_train_wikitext103.jbl" , _A="igf_context_pairs.jbl" , ): set_seed(3 ) # generate train_data and objective_set lowerCAmelCase_ = generate_datasets( _lowercase , _lowercase , number=_lowercase , min_len=1026 , trim=_lowercase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowerCAmelCase_ = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model lowerCAmelCase_ = load_gpta('''gpt2''' ).to(_lowercase ) print('''computing perplexity on objective set''' ) lowerCAmelCase_ = compute_perplexity(_lowercase , _lowercase , _lowercase ).item() print('''perplexity on objective set:''' , _lowercase ) # collect igf pairs and save to file demo.jbl collect_objective_set(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def __UpperCamelCase ( _A , _A=15 , _A=128 , _A=100 , _A="igf_model.pt" , ): set_seed(42 ) # Load pre-trained model lowerCAmelCase_ = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model lowerCAmelCase_ = SecondaryLearner(_lowercase ) # Train secondary learner lowerCAmelCase_ = train_secondary_learner( _lowercase , _lowercase , max_epochs=_lowercase , batch_size=_lowercase , eval_freq=100 , igf_model_path=_lowercase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def __UpperCamelCase ( _A , _A , _A , _A=32 , _A=1000 , _A=16 , _A=1.0 , _A=recopy_gpta , _A=None , _A=10 , _A="gpt2_finetuned.pt" , ): lowerCAmelCase_ = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) lowerCAmelCase_ = RandomSampler(_lowercase ) lowerCAmelCase_ = DataLoader(_lowercase , sampler=_lowercase ) lowerCAmelCase_ = max_steps // (len(_lowercase )) + 1 lowerCAmelCase_ = 0 lowerCAmelCase_ = torch.zeros((1, context_len) , dtype=torch.long , device=_lowercase ) lowerCAmelCase_ = recopy_model(_lowercase , _lowercase , _lowercase ) model.train() if secondary_learner is not None: secondary_learner.to(_lowercase ) secondary_learner.eval() lowerCAmelCase_ = [] lowerCAmelCase_ = 0 lowerCAmelCase_ = [] lowerCAmelCase_ = [] # Compute the performance of the transformer model at the beginning lowerCAmelCase_ = compute_perplexity(_lowercase , _lowercase , _lowercase ) test_perps.append(_lowercase ) print('''Test perplexity, step''' , _lowercase , ''':''' , _lowercase ) for epoch in range(int(_lowercase ) ): for step, example in enumerate(_lowercase ): torch.cuda.empty_cache() lowerCAmelCase_ = random.randint(0 , example.size(2 ) - context_len - 1 ) lowerCAmelCase_ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowerCAmelCase_ = model(_lowercase , labels=_lowercase ) lowerCAmelCase_ = True if secondary_learner is not None: lowerCAmelCase_ = secondary_learner.forward( torch.tensor(_lowercase , dtype=torch.long , device=_lowercase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_lowercase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: lowerCAmelCase_ = -1 if predicted_q < threshold: lowerCAmelCase_ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) lowerCAmelCase_ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowerCAmelCase_ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowerCAmelCase_ = compute_perplexity(_lowercase , _lowercase , _lowercase ) test_perps.append(_lowercase ) print('''Test perplexity, step''' , _lowercase , ''':''' , _lowercase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _lowercase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def __UpperCamelCase ( ): lowerCAmelCase_ = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=_lowercase , type=_lowercase , required=_lowercase , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=_lowercase , type=_lowercase , required=_lowercase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=_lowercase , default=_lowercase , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=_lowercase , default=_lowercase , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=_lowercase , type=_lowercase , required=_lowercase , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=_lowercase , type=_lowercase , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=_lowercase , default=_lowercase , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=_lowercase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=100 , type=_lowercase , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=100 , type=_lowercase , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1000 , type=_lowercase , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=128 , type=_lowercase , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=_lowercase , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=_lowercase , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=100 , type=_lowercase , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1026 , type=_lowercase , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=_lowercase , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=_lowercase , type=_lowercase , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=_lowercase , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=_lowercase , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=_lowercase , type=_lowercase , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=_lowercase , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner lowerCAmelCase_ = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner lowerCAmelCase_ = training_secondary_learner( _lowercase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model lowerCAmelCase_ = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model lowerCAmelCase_ = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1026 , trim=_lowercase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _lowercase , _lowercase , _lowercase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=_lowercase , secondary_learner=_lowercase , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
363
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = { '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
167
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : List[Any] = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys _lowerCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
258
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCamelCase : str = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = 42 class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : str , _lowerCAmelCase : PriorTransformer , _lowerCAmelCase : CLIPVisionModel , _lowerCAmelCase : CLIPImageProcessor , _lowerCAmelCase : HeunDiscreteScheduler , _lowerCAmelCase : ShapERenderer , ): super().__init__() self.register_modules( prior=_lowerCAmelCase , image_encoder=_lowerCAmelCase , image_processor=_lowerCAmelCase , scheduler=_lowerCAmelCase , renderer=_lowerCAmelCase , ) def A (self : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): if latents is None: A = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase , dtype=_lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) A = latents.to(_lowerCAmelCase ) A = latents * scheduler.init_noise_sigma return latents def A (self : Union[str, Any] , _lowerCAmelCase : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) A = torch.device(F"""cuda:{gpu_id}""" ) A = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCAmelCase , _lowerCAmelCase ) @property def A (self : Optional[Any] ): if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_lowerCAmelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def A (self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(image[0] , torch.Tensor ): A = torch.cat(_lowerCAmelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_lowerCAmelCase , axis=0 ) if not isinstance(_lowerCAmelCase , torch.Tensor ): A = self.image_processor(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) A = image.to(dtype=self.image_encoder.dtype , device=_lowerCAmelCase ) A = self.image_encoder(_lowerCAmelCase )["""last_hidden_state"""] A = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 A = image_embeds.repeat_interleave(_lowerCAmelCase , dim=0 ) if do_classifier_free_guidance: A = torch.zeros_like(_lowerCAmelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_lowerCAmelCase ) def __call__(self : List[Any] , _lowerCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 25 , _lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCAmelCase : Optional[torch.FloatTensor] = None , _lowerCAmelCase : float = 4.0 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : Optional[str] = "pil" , _lowerCAmelCase : bool = True , ): if isinstance(_lowerCAmelCase , PIL.Image.Image ): A = 1 elif isinstance(_lowerCAmelCase , torch.Tensor ): A = image.shape[0] elif isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): A = len(_lowerCAmelCase ) else: raise ValueError( F"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_lowerCAmelCase )}""" ) A = self._execution_device A = batch_size * num_images_per_prompt A = guidance_scale > 1.0 A = self._encode_image(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # prior self.scheduler.set_timesteps(_lowerCAmelCase , device=_lowerCAmelCase ) A = self.scheduler.timesteps A = self.prior.config.num_embeddings A = self.prior.config.embedding_dim A = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim A = latents.reshape(latents.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) for i, t in enumerate(self.progress_bar(_lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A = self.scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) A = self.prior( _lowerCAmelCase , timestep=_lowerCAmelCase , proj_embedding=_lowerCAmelCase , ).predicted_image_embedding # remove the variance A , A = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: A , A = noise_pred.chunk(2 ) A = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) A = self.scheduler.step( _lowerCAmelCase , timestep=_lowerCAmelCase , sample=_lowerCAmelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_lowerCAmelCase ) A = [] for i, latent in enumerate(_lowerCAmelCase ): print() A = self.renderer.decode( latent[None, :] , _lowerCAmelCase , size=_lowerCAmelCase , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(_lowerCAmelCase ) A = torch.stack(_lowerCAmelCase ) if output_type not in ["np", "pil"]: raise ValueError(F"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) A = images.cpu().numpy() if output_type == "pil": A = [self.numpy_to_pil(_lowerCAmelCase ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_lowerCAmelCase )
258
1
class _UpperCAmelCase : """simple docstring""" def __init__( self : Dict ) -> str: __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = {} def lowercase ( self : List[Any] , lowerCAmelCase_ : Dict ) -> str: if vertex not in self.adjacency: __lowerCAmelCase = {} self.num_vertices += 1 def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict ) -> int: self.add_vertex(SCREAMING_SNAKE_CASE_ ) self.add_vertex(SCREAMING_SNAKE_CASE_ ) if head == tail: return __lowerCAmelCase = weight __lowerCAmelCase = weight def lowercase ( self : str ) -> Tuple: __lowerCAmelCase = self.get_edges() for edge in edges: __lowerCAmelCase = edge edges.remove((tail, head, weight) ) for i in range(len(SCREAMING_SNAKE_CASE_ ) ): __lowerCAmelCase = list(edges[i] ) edges.sort(key=lambda lowerCAmelCase_ : e[2] ) for i in range(len(SCREAMING_SNAKE_CASE_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __lowerCAmelCase = edges[i][2] + 1 for edge in edges: __lowerCAmelCase = edge __lowerCAmelCase = weight __lowerCAmelCase = weight def __str__( self : Optional[int] ) -> str: __lowerCAmelCase = """""" for tail in self.adjacency: for head in self.adjacency[tail]: __lowerCAmelCase = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowercase ( self : str ) -> Optional[int]: return self.adjacency.keys() @staticmethod def lowercase ( lowerCAmelCase_ : int=None , lowerCAmelCase_ : Dict=None ) -> Optional[int]: __lowerCAmelCase = Graph() if vertices is None: __lowerCAmelCase = [] if edges is None: __lowerCAmelCase = [] for vertex in vertices: g.add_vertex(SCREAMING_SNAKE_CASE_ ) for edge in edges: g.add_edge(*SCREAMING_SNAKE_CASE_ ) return g class _UpperCAmelCase : """simple docstring""" def __init__( self : int ) -> Any: __lowerCAmelCase = {} __lowerCAmelCase = {} def __len__( self : Tuple ) -> List[Any]: return len(self.parent ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Optional[int] ) -> List[Any]: if item in self.parent: return self.find(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = item __lowerCAmelCase = 0 return item def lowercase ( self : Dict , lowerCAmelCase_ : Tuple ) -> Union[str, Any]: if item not in self.parent: return self.make_set(SCREAMING_SNAKE_CASE_ ) if item != self.parent[item]: __lowerCAmelCase = self.find(self.parent[item] ) return self.parent[item] def lowercase ( self : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any ) -> Optional[int]: __lowerCAmelCase = self.find(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = self.find(SCREAMING_SNAKE_CASE_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __lowerCAmelCase = roota return roota if self.rank[roota] < self.rank[roota]: __lowerCAmelCase = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __lowerCAmelCase = roota return roota return None @staticmethod def lowercase ( lowerCAmelCase_ : int ) -> Tuple: __lowerCAmelCase = graph.num_vertices __lowerCAmelCase = Graph.UnionFind() __lowerCAmelCase = [] while num_components > 1: __lowerCAmelCase = {} for vertex in graph.get_vertices(): __lowerCAmelCase = -1 __lowerCAmelCase = graph.get_edges() for edge in edges: __lowerCAmelCase = edge edges.remove((tail, head, weight) ) for edge in edges: __lowerCAmelCase = edge __lowerCAmelCase = union_find.find(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = union_find.find(SCREAMING_SNAKE_CASE_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __lowerCAmelCase = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __lowerCAmelCase = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __lowerCAmelCase = cheap_edge[vertex] if union_find.find(SCREAMING_SNAKE_CASE_ ) != union_find.find(SCREAMING_SNAKE_CASE_ ): union_find.union(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) mst_edges.append(cheap_edge[vertex] ) __lowerCAmelCase = num_components - 1 __lowerCAmelCase = Graph.build(edges=SCREAMING_SNAKE_CASE_ ) return mst
366
import mpmath # for roots of unity import numpy as np class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None ) -> List[Any]: # Input as list __lowerCAmelCase = list(poly_a or [0] )[:] __lowerCAmelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __lowerCAmelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() __lowerCAmelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 __lowerCAmelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform __lowerCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product __lowerCAmelCase = self.__multiply() def lowercase ( self : Optional[int] , lowerCAmelCase_ : str ) -> Optional[int]: __lowerCAmelCase = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(lowerCAmelCase_ ) <= 1: return dft[0] # __lowerCAmelCase = self.c_max_length // 2 while next_ncol > 0: __lowerCAmelCase = [[] for i in range(lowerCAmelCase_ )] __lowerCAmelCase = self.root**next_ncol # First half of next step __lowerCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowerCAmelCase_ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step __lowerCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowerCAmelCase_ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update __lowerCAmelCase = new_dft __lowerCAmelCase = next_ncol // 2 return dft[0] def lowercase ( self : Optional[int] ) -> Any: __lowerCAmelCase = self.__dft('A' ) __lowerCAmelCase = self.__dft('B' ) __lowerCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT __lowerCAmelCase = 2 while next_ncol <= self.c_max_length: __lowerCAmelCase = [[] for i in range(lowerCAmelCase_ )] __lowerCAmelCase = self.root ** (next_ncol // 2) __lowerCAmelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update __lowerCAmelCase = new_inverse_c next_ncol *= 2 # Unpack __lowerCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> int: __lowerCAmelCase = 'A = ' + ' + '.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A] ) ) __lowerCAmelCase = 'B = ' + ' + '.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B] ) ) __lowerCAmelCase = 'A*B = ' + ' + '.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.product ) ) return f"""{a}\n{b}\n{c}""" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
207
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. a_ = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class lowercase__ ( unittest.TestCase ): a_ =MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a_ =TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a_ ={config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a_ ={ config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" ) lowerCAmelCase__ = text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.504}] ) lowerCAmelCase__ = text_classifier("This is great !" , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}] ) lowerCAmelCase__ = text_classifier(["This is great !", "This is bad"] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ] , ) lowerCAmelCase__ = text_classifier("This is great !" , top_k=1 ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.504}] ) # Legacy behavior lowerCAmelCase__ = text_classifier("This is great !" , return_all_scores=lowerCAmelCase__ ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.504}] ) lowerCAmelCase__ = text_classifier("This is great !" , return_all_scores=lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]] ) lowerCAmelCase__ = text_classifier(["This is great !", "Something else"] , return_all_scores=lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ] , ) lowerCAmelCase__ = text_classifier(["This is great !", "Something else"] , return_all_scores=lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ {"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_0", "score": 0.504}, ] , ) @require_torch def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' import torch lowerCAmelCase__ = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" , device=torch.device("cpu" ) , ) lowerCAmelCase__ = text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.504}] ) @require_tf def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="tf" ) lowerCAmelCase__ = text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.504}] ) @slow @require_torch def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = pipeline("text-classification" ) lowerCAmelCase__ = text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "POSITIVE", "score": 1.0}] ) lowerCAmelCase__ = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "NEGATIVE", "score": 1.0}] ) lowerCAmelCase__ = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "POSITIVE", "score": 0.988}] ) @slow @require_tf def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = pipeline("text-classification" , framework="tf" ) lowerCAmelCase__ = text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "POSITIVE", "score": 1.0}] ) lowerCAmelCase__ = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "NEGATIVE", "score": 1.0}] ) lowerCAmelCase__ = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "POSITIVE", "score": 0.988}] ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> Any: '''simple docstring''' lowerCAmelCase__ = TextClassificationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 lowerCAmelCase__ = "HuggingFace is in" lowerCAmelCase__ = text_classifier(lowerCAmelCase__ ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}] ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) lowerCAmelCase__ = ["HuggingFace is in ", "Paris is in France"] lowerCAmelCase__ = text_classifier(lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [{"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}, {"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["label"] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format lowerCAmelCase__ = text_classifier(lowerCAmelCase__ , top_k=lowerCAmelCase__ ) lowerCAmelCase__ = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [[{"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}] * N, [{"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}] * N] , ) lowerCAmelCase__ = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"} lowerCAmelCase__ = text_classifier(lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , {"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )} , ) self.assertTrue(outputs["label"] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. lowerCAmelCase__ = [["HuggingFace is in ", "Paris is in France"]] with self.assertRaises(lowerCAmelCase__ ): text_classifier(lowerCAmelCase__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility lowerCAmelCase__ = text_classifier([[["HuggingFace is in ", "Paris is in France"]]] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [{"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
340
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __a = logging.get_logger(__name__) __a = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = '''instructblip_vision_model''' def __init__( self : str , lowerCAmelCase__ : Dict=1_4_0_8 , lowerCAmelCase__ : int=6_1_4_4 , lowerCAmelCase__ : List[str]=3_9 , lowerCAmelCase__ : int=1_6 , lowerCAmelCase__ : Tuple=2_2_4 , lowerCAmelCase__ : Tuple=1_4 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Union[str, Any]=1e-6 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : Optional[int]=1e-10 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : str , ) -> Optional[int]: """simple docstring""" super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : List[str] = intermediate_size _UpperCAmelCase : Optional[int] = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : str = patch_size _UpperCAmelCase : List[Any] = image_size _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : int = attention_dropout _UpperCAmelCase : Optional[int] = layer_norm_eps _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : Tuple = qkv_bias @classmethod def _lowerCAmelCase ( cls : Optional[int] , lowerCAmelCase__ : Union[str, os.PathLike] , **lowerCAmelCase__ : Any ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase__ ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": _UpperCAmelCase : int = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = '''instructblip_qformer''' def __init__( self : List[str] , lowerCAmelCase__ : Union[str, Any]=3_0_5_2_2 , lowerCAmelCase__ : Dict=7_6_8 , lowerCAmelCase__ : Tuple=1_2 , lowerCAmelCase__ : Optional[Any]=1_2 , lowerCAmelCase__ : Union[str, Any]=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Dict=5_1_2 , lowerCAmelCase__ : Tuple=0.02 , lowerCAmelCase__ : Optional[int]=1e-12 , lowerCAmelCase__ : Dict=0 , lowerCAmelCase__ : Union[str, Any]="absolute" , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : int=1_4_0_8 , **lowerCAmelCase__ : List[str] , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = vocab_size _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : Dict = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : List[Any] = intermediate_size _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : List[str] = layer_norm_eps _UpperCAmelCase : Tuple = position_embedding_type _UpperCAmelCase : Tuple = cross_attention_frequency _UpperCAmelCase : Any = encoder_hidden_size @classmethod def _lowerCAmelCase ( cls : Dict , lowerCAmelCase__ : Union[str, os.PathLike] , **lowerCAmelCase__ : Optional[int] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase__ ) _UpperCAmelCase , _UpperCAmelCase : List[str] = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": _UpperCAmelCase : Tuple = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : List[str] = '''instructblip''' UpperCamelCase_ : Dict = True def __init__( self : Tuple , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Union[str, Any]=3_2 , **lowerCAmelCase__ : Dict ) -> Any: """simple docstring""" super().__init__(**lowerCAmelCase__ ) if vision_config is None: _UpperCAmelCase : List[str] = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: _UpperCAmelCase : Tuple = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: _UpperCAmelCase : int = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) _UpperCAmelCase : List[str] = InstructBlipVisionConfig(**lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = InstructBlipQFormerConfig(**lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = text_config["model_type"] if "model_type" in text_config else "opt" _UpperCAmelCase : Optional[int] = CONFIG_MAPPING[text_model_type](**lowerCAmelCase__ ) _UpperCAmelCase : Dict = self.text_config.tie_word_embeddings _UpperCAmelCase : List[Any] = self.text_config.is_encoder_decoder _UpperCAmelCase : List[str] = num_query_tokens _UpperCAmelCase : int = self.vision_config.hidden_size _UpperCAmelCase : Tuple = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _UpperCAmelCase : int = 1.0 _UpperCAmelCase : Dict = 0.02 @classmethod def _lowerCAmelCase ( cls : Dict , lowerCAmelCase__ : InstructBlipVisionConfig , lowerCAmelCase__ : InstructBlipQFormerConfig , lowerCAmelCase__ : PretrainedConfig , **lowerCAmelCase__ : Union[str, Any] , ) -> Tuple: """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCAmelCase__ , ) def _lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Optional[int] = self.vision_config.to_dict() _UpperCAmelCase : List[Any] = self.qformer_config.to_dict() _UpperCAmelCase : List[Any] = self.text_config.to_dict() _UpperCAmelCase : Dict = self.__class__.model_type return output
145
0
def snake_case( __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' while b: lowercase , lowercase : Optional[int] = b, a % b return a def snake_case( __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(_lowercase , a % b ) def snake_case( ) -> int: '''simple docstring''' print(F"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(F"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(F"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(F"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(F"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(F"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(F"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(F"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(F"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(F"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
359
def snake_case( __magic_name__ , __magic_name__ ) -> bool: '''simple docstring''' lowercase : List[Any] = len(__magic_name__ ) lowercase : str = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowercase : List[str] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowercase : str = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowercase : Optional[Any] = subset[i - 1][j] if arr[i - 1] <= j: lowercase : Dict = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
116
0
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __lowercase (unittest.TestCase ): def __init__( self , A_ , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , ) ->int: '''simple docstring''' __lowerCAmelCase : List[Any] = parent __lowerCAmelCase : Optional[Any] = batch_size __lowerCAmelCase : Dict = image_size __lowerCAmelCase : Optional[Any] = patch_size __lowerCAmelCase : Dict = num_channels __lowerCAmelCase : Union[str, Any] = is_training __lowerCAmelCase : Optional[int] = use_labels __lowerCAmelCase : int = hidden_size __lowerCAmelCase : Tuple = num_hidden_layers __lowerCAmelCase : Any = num_attention_heads __lowerCAmelCase : Union[str, Any] = intermediate_size __lowerCAmelCase : Optional[Any] = hidden_act __lowerCAmelCase : Optional[Any] = hidden_dropout_prob __lowerCAmelCase : str = attention_probs_dropout_prob __lowerCAmelCase : str = type_sequence_label_size __lowerCAmelCase : List[str] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCAmelCase : Union[str, Any] = (image_size // patch_size) ** 2 __lowerCAmelCase : Optional[int] = num_patches + 1 def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase : Any = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , ) return config, pixel_values def UpperCamelCase__ ( self , A_ , A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[int] = FlaxViTModel(config=A_ ) __lowerCAmelCase : Tuple = model(A_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __lowerCAmelCase : Tuple = (self.image_size, self.image_size) __lowerCAmelCase : Optional[Any] = (self.patch_size, self.patch_size) __lowerCAmelCase : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCamelCase__ ( self , A_ , A_ ) ->Dict: '''simple docstring''' __lowerCAmelCase : List[Any] = self.type_sequence_label_size __lowerCAmelCase : Optional[Any] = FlaxViTForImageClassification(config=A_ ) __lowerCAmelCase : Any = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCAmelCase : Dict = 1 __lowerCAmelCase : Union[str, Any] = FlaxViTForImageClassification(A_ ) __lowerCAmelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase : Dict = model(A_ ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : int = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ), ( __lowerCAmelCase ), ) : Optional[Any] = config_and_inputs __lowerCAmelCase : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __lowercase (_UpperCAmelCase , unittest.TestCase ): _UpperCamelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCamelCase__ ( self ) ->None: '''simple docstring''' __lowerCAmelCase : List[Any] = FlaxViTModelTester(self ) __lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Union[str, Any] = model_class(A_ ) __lowerCAmelCase : Tuple = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] __lowerCAmelCase : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A_ ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase : List[Any] = self._prepare_for_class(A_ , A_ ) __lowerCAmelCase : Optional[Any] = model_class(A_ ) @jax.jit def model_jitted(A_ , **A_ ): return model(pixel_values=A_ , **A_ ) with self.subTest('''JIT Enabled''' ): __lowerCAmelCase : List[Any] = model_jitted(**A_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __lowerCAmelCase : Any = model_jitted(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) ) for jitted_output, output in zip(A_ , A_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCamelCase__ ( self ) ->int: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCAmelCase : Union[str, Any] = model_class_name.from_pretrained('''google/vit-base-patch16-224''' ) __lowerCAmelCase : List[str] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(A_ )
275
from ....configuration_utils import PretrainedConfig from ....utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __lowercase (_UpperCAmelCase ): _UpperCamelCase = """trajectory_transformer""" _UpperCamelCase = ["""past_key_values"""] _UpperCamelCase = { """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , A_=100 , A_=5 , A_=1 , A_=1 , A_=249 , A_=6 , A_=17 , A_=25 , A_=4 , A_=4 , A_=128 , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0_006 , A_=512 , A_=0.02 , A_=1e-12 , A_=1 , A_=True , A_=1 , A_=5_0256 , A_=5_0256 , **A_ , ) ->int: '''simple docstring''' __lowerCAmelCase : Any = vocab_size __lowerCAmelCase : Tuple = action_weight __lowerCAmelCase : Tuple = reward_weight __lowerCAmelCase : Union[str, Any] = value_weight __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : str = block_size __lowerCAmelCase : Optional[Any] = action_dim __lowerCAmelCase : Union[str, Any] = observation_dim __lowerCAmelCase : Union[str, Any] = transition_dim __lowerCAmelCase : Dict = learning_rate __lowerCAmelCase : Any = n_layer __lowerCAmelCase : Any = n_head __lowerCAmelCase : Optional[int] = n_embd __lowerCAmelCase : str = embd_pdrop __lowerCAmelCase : Dict = attn_pdrop __lowerCAmelCase : Optional[int] = resid_pdrop __lowerCAmelCase : Union[str, Any] = initializer_range __lowerCAmelCase : Optional[int] = layer_norm_eps __lowerCAmelCase : Any = kaiming_initializer_range __lowerCAmelCase : List[str] = use_cache super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ )
275
1
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _lowercase : """simple docstring""" __A = XGLMConfig __A = {} __A = "gelu" def __init__(self , lowerCamelCase_ , lowerCamelCase_=14 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=99 , lowerCamelCase_=32 , lowerCamelCase_=2 , lowerCamelCase_=4 , lowerCamelCase_=37 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=512 , lowerCamelCase_=0.02 , ): """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_input_mask a = use_labels a = vocab_size a = d_model a = num_hidden_layers a = num_attention_heads a = ffn_dim a = activation_function a = activation_dropout a = attention_dropout a = max_position_embeddings a = initializer_range a = None a = 0 a = 2 a = 1 def UpperCamelCase_ (self ): """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def UpperCamelCase_ (self ): """simple docstring""" a = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = self.get_config() a = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def UpperCamelCase_ (self ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCamelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCamelCase_ , ) def UpperCamelCase_ (self ): """simple docstring""" a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class _lowercase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): """simple docstring""" __A = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __A = (TFXGLMForCausalLM,) if is_tf_available() else () __A = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __A = False __A = False __A = False def UpperCamelCase_ (self ): """simple docstring""" a = TFXGLMModelTester(self ) a = ConfigTester(self , config_class=lowerCamelCase_ , n_embd=37 ) def UpperCamelCase_ (self ): """simple docstring""" self.config_tester.run_common_tests() @slow def UpperCamelCase_ (self ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = TFXGLMModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def UpperCamelCase_ (self ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class _lowercase ( unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase_ (self , lowerCamelCase_=True ): """simple docstring""" a = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) a = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off a = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on a = model.generate(lowerCamelCase_ , do_sample=lowerCamelCase_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCamelCase_ ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) a = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) a = tokenizer("Today is a nice day and" , return_tensors="tf" ) a = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): a = model.generate(lowerCamelCase_ , do_sample=lowerCamelCase_ , seed=[7, 0] ) a = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCamelCase_ ) a = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) a = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) a = "left" # use different length sentences to test batching a = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] a = tokenizer(lowerCamelCase_ , return_tensors="tf" , padding=lowerCamelCase_ ) a = inputs["input_ids"] a = model.generate(input_ids=lowerCamelCase_ , attention_mask=inputs["attention_mask"] , max_new_tokens=12 ) a = tokenizer(sentences[0] , return_tensors="tf" ).input_ids a = model.generate(input_ids=lowerCamelCase_ , max_new_tokens=12 ) a = tokenizer(sentences[1] , return_tensors="tf" ).input_ids a = model.generate(input_ids=lowerCamelCase_ , max_new_tokens=12 ) a = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) a = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCamelCase_ ) a = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCamelCase_ ) a = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , [non_padded_sentence, padded_sentence] )
364
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _lowercase: List[Any] = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def a( A : List[str] ) -> Union[str, Any]: """simple docstring""" a = ["layers", "blocks"] for k in ignore_keys: state_dict.pop(A , A ) _lowercase: Optional[int] = { "blocks": "layers", "mlp.0": "fc1", "mlp.2": "fc2", "mlp_ln": "final_layer_norm", ".attn.query": ".self_attn.q_proj", ".attn.key": ".self_attn.k_proj", ".attn.value": ".self_attn.v_proj", ".attn_ln": ".self_attn_layer_norm", ".attn.out": ".self_attn.out_proj", ".cross_attn.query": ".encoder_attn.q_proj", ".cross_attn.key": ".encoder_attn.k_proj", ".cross_attn.value": ".encoder_attn.v_proj", ".cross_attn_ln": ".encoder_attn_layer_norm", ".cross_attn.out": ".encoder_attn.out_proj", "decoder.ln.": "decoder.layer_norm.", "encoder.ln.": "encoder.layer_norm.", "token_embedding": "embed_tokens", "encoder.positional_embedding": "encoder.embed_positions.weight", "decoder.positional_embedding": "decoder.embed_positions.weight", "ln_post": "layer_norm", } def a( A : str ) -> Union[str, Any]: """simple docstring""" a = list(s_dict.keys() ) for key in keys: a = key for k, v in WHISPER_MAPPING.items(): if k in key: a = new_key.replace(A , A ) print(f'''{key} -> {new_key}''' ) a = s_dict.pop(A ) return s_dict def a( A : Union[str, Any] ) -> Tuple: """simple docstring""" a , a = emb.weight.shape a = nn.Linear(A , A , bias=A ) a = emb.weight.data return lin_layer def a( A : str , A : str ) -> bytes: """simple docstring""" os.makedirs(A , exist_ok=A ) a = os.path.basename(A ) a = url.split("/" )[-2] a = os.path.join(A , A ) if os.path.exists(A ) and not os.path.isfile(A ): raise RuntimeError(f'''{download_target} exists and is not a regular file''' ) if os.path.isfile(A ): a = open(A , "rb" ).read() if hashlib.shaaaa(A ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(A ) as source, open(A , "wb" ) as output: with tqdm( total=int(source.info().get("Content-Length" ) ) , ncols=80 , unit="iB" , unit_scale=A , unit_divisor=1024 ) as loop: while True: a = source.read(8192 ) if not buffer: break output.write(A ) loop.update(len(A ) ) a = open(A , "rb" ).read() if hashlib.shaaaa(A ).hexdigest() != expected_shaaaa: raise RuntimeError( "Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." ) return model_bytes def a( A : List[str] , A : Union[str, Any] ) -> str: """simple docstring""" if ".pt" not in checkpoint_path: a = _download(_MODELS[checkpoint_path] ) else: a = torch.load(A , map_location="cpu" ) a = original_checkpoint["dims"] a = original_checkpoint["model_state_dict"] a = state_dict["decoder.token_embedding.weight"] remove_ignore_keys_(A ) rename_keys(A ) a = True a = state_dict["decoder.layers.0.fc1.weight"].shape[0] a = WhisperConfig( vocab_size=dimensions["n_vocab"] , encoder_ffn_dim=A , decoder_ffn_dim=A , num_mel_bins=dimensions["n_mels"] , d_model=dimensions["n_audio_state"] , max_target_positions=dimensions["n_text_ctx"] , encoder_layers=dimensions["n_audio_layer"] , encoder_attention_heads=dimensions["n_audio_head"] , decoder_layers=dimensions["n_text_layer"] , decoder_attention_heads=dimensions["n_text_state"] , max_source_positions=dimensions["n_audio_ctx"] , ) a = WhisperForConditionalGeneration(A ) a , a = model.model.load_state_dict(A , strict=A ) if len(A ) > 0 and not set(A ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," f''' but all the following weights are missing {missing}''' ) if tie_embeds: a = make_linear_from_emb(model.model.decoder.embed_tokens ) else: a = proj_out_weights model.save_pretrained(A ) if __name__ == "__main__": _lowercase: Dict = argparse.ArgumentParser() # # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") _lowercase: List[str] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
71
0
class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = n __lowerCamelCase = [None] * self.n __lowerCamelCase = 0 # index of the first element __lowerCamelCase = 0 __lowerCamelCase = 0 def __len__( self ) -> int: '''simple docstring''' return self.size def lowercase_ ( self ) -> bool: '''simple docstring''' return self.size == 0 def lowercase_ ( self ) -> str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def lowercase_ ( self , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' if self.size >= self.n: raise Exception('QUEUE IS FULL' ) __lowerCamelCase = data __lowerCamelCase = (self.rear + 1) % self.n self.size += 1 return self def lowercase_ ( self ) -> Tuple: '''simple docstring''' if self.size == 0: raise Exception('UNDERFLOW' ) __lowerCamelCase = self.array[self.front] __lowerCamelCase = None __lowerCamelCase = (self.front + 1) % self.n self.size -= 1 return temp
90
import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE : Union[str, Any] = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" _SCREAMING_SNAKE_CASE : Tuple = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" _SCREAMING_SNAKE_CASE : Any = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): """simple docstring""" def a_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def a_ ( self , __snake_case , __snake_case , __snake_case=None , __snake_case=False , __snake_case=False , __snake_case=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case = np.array([re.sub(__snake_case , '''''' , __snake_case ) for x in predictions] ) snake_case = np.array([re.sub(__snake_case , '''''' , __snake_case ) for x in references] ) else: snake_case = np.asarray(__snake_case ) snake_case = np.asarray(__snake_case ) if ignore_case: snake_case = np.char.lower(__snake_case ) snake_case = np.char.lower(__snake_case ) if ignore_punctuation: snake_case = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) snake_case = np.char.translate(__snake_case , table=__snake_case ) snake_case = np.char.translate(__snake_case , table=__snake_case ) if ignore_numbers: snake_case = string.digits.maketrans('''''' , '''''' , string.digits ) snake_case = np.char.translate(__snake_case , table=__snake_case ) snake_case = np.char.translate(__snake_case , table=__snake_case ) snake_case = predictions == references return {"exact_match": np.mean(__snake_case ) * 1_0_0}
127
0
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __a ( lowerCAmelCase_ : int ) -> List[str]: '''simple docstring''' if "model" in orig_key: UpperCAmelCase_= orig_key.replace("""model.""" ,"""""" ) if "norm1" in orig_key: UpperCAmelCase_= orig_key.replace("""norm1""" ,"""attention.output.LayerNorm""" ) if "norm2" in orig_key: UpperCAmelCase_= orig_key.replace("""norm2""" ,"""output.LayerNorm""" ) if "norm" in orig_key: UpperCAmelCase_= orig_key.replace("""norm""" ,"""LayerNorm""" ) if "transformer" in orig_key: UpperCAmelCase_= orig_key.split(""".""" )[0].split("""_""" )[-1] UpperCAmelCase_= orig_key.replace(F"""transformer_{layer_num}""" ,F"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: UpperCAmelCase_= orig_key.replace("""mha.attn""" ,"""attention.self""" ) if "mha" in orig_key: UpperCAmelCase_= orig_key.replace("""mha""" ,"""attention""" ) if "W_q" in orig_key: UpperCAmelCase_= orig_key.replace("""W_q""" ,"""self.query""" ) if "W_k" in orig_key: UpperCAmelCase_= orig_key.replace("""W_k""" ,"""self.key""" ) if "W_v" in orig_key: UpperCAmelCase_= orig_key.replace("""W_v""" ,"""self.value""" ) if "ff1" in orig_key: UpperCAmelCase_= orig_key.replace("""ff1""" ,"""intermediate.dense""" ) if "ff2" in orig_key: UpperCAmelCase_= orig_key.replace("""ff2""" ,"""output.dense""" ) if "ff" in orig_key: UpperCAmelCase_= orig_key.replace("""ff""" ,"""output.dense""" ) if "mlm_class" in orig_key: UpperCAmelCase_= orig_key.replace("""mlm.mlm_class""" ,"""cls.predictions.decoder""" ) if "mlm" in orig_key: UpperCAmelCase_= orig_key.replace("""mlm""" ,"""cls.predictions.transform""" ) if "cls" not in orig_key: UpperCAmelCase_= """yoso.""" + orig_key return orig_key def __a ( lowerCAmelCase_ : Optional[int] ,lowerCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_= orig_state_dict.pop(lowerCAmelCase_ ) if ("pooler" in key) or ("sen_class" in key): continue else: UpperCAmelCase_= val UpperCAmelCase_= orig_state_dict["""cls.predictions.decoder.bias"""] UpperCAmelCase_= torch.arange(lowerCAmelCase_ ).expand((1, -1) ) + 2 return orig_state_dict def __a ( lowerCAmelCase_ : List[Any] ,lowerCAmelCase_ : Optional[Any] ,lowerCAmelCase_ : List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_= torch.load(lowerCAmelCase_ ,map_location="""cpu""" )["""model_state_dict"""] UpperCAmelCase_= YosoConfig.from_json_file(lowerCAmelCase_ ) UpperCAmelCase_= YosoForMaskedLM(lowerCAmelCase_ ) UpperCAmelCase_= convert_checkpoint_helper(config.max_position_embeddings ,lowerCAmelCase_ ) print(model.load_state_dict(lowerCAmelCase_ ) ) model.eval() model.save_pretrained(lowerCAmelCase_ ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for YOSO model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __A = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
356
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( snake_case__): """simple docstring""" def __init__( self : int , __UpperCAmelCase : pyspark.sql.DataFrame , __UpperCAmelCase : Optional[NamedSplit] = None , __UpperCAmelCase : Optional[Features] = None , __UpperCAmelCase : bool = True , __UpperCAmelCase : str = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : str = None , __UpperCAmelCase : bool = True , __UpperCAmelCase : str = "arrow" , **__UpperCAmelCase : str , ) -> Dict: super().__init__( split=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase_= load_from_cache_file UpperCAmelCase_= file_format UpperCAmelCase_= Spark( df=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , working_dir=__UpperCAmelCase , **__UpperCAmelCase , ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) UpperCAmelCase_= None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__UpperCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
277
0
from __future__ import annotations def _lowercase ( UpperCamelCase_ ) -> list[int]: # This function is recursive '''simple docstring''' SCREAMING_SNAKE_CASE__ = len(UpperCamelCase_ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else SCREAMING_SNAKE_CASE__ = array[0] SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = [] while not is_found and i < array_length: if array[i] < pivot: SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = [element for element in array[i:] if element >= array[i]] SCREAMING_SNAKE_CASE__ = longest_subsequence(UpperCamelCase_ ) if len(UpperCamelCase_ ) > len(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = temp_array else: i += 1 SCREAMING_SNAKE_CASE__ = [element for element in array[1:] if element >= pivot] SCREAMING_SNAKE_CASE__ = [pivot, *longest_subsequence(UpperCamelCase_ )] if len(UpperCamelCase_ ) > len(UpperCamelCase_ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
176
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } __snake_case = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' for attribute in key.split('.' ): SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase_ , UpperCamelCase_ ) if weight_type is not None: SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase_ , UpperCamelCase_ ).shape else: SCREAMING_SNAKE_CASE__ = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE__ = value elif weight_type == "bias": SCREAMING_SNAKE_CASE__ = value else: SCREAMING_SNAKE_CASE__ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = fairseq_model.state_dict() SCREAMING_SNAKE_CASE__ = hf_model.feature_extractor SCREAMING_SNAKE_CASE__ = hf_model.adapter for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE__ = False if "conv_layers" in name: load_conv_layer( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) SCREAMING_SNAKE_CASE__ = True elif any(x in name for x in ['adaptor', 'w2v_encoder.proj.', 'w2v_proj_ln.'] ): load_adapter(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: SCREAMING_SNAKE_CASE__ = True if "*" in mapped_key: SCREAMING_SNAKE_CASE__ = name.split(UpperCamelCase_ )[0].split('.' )[-2] SCREAMING_SNAKE_CASE__ = mapped_key.replace('*' , UpperCamelCase_ ) if "weight_g" in name: SCREAMING_SNAKE_CASE__ = 'weight_g' elif "weight_v" in name: SCREAMING_SNAKE_CASE__ = 'weight_v' elif "bias" in name: SCREAMING_SNAKE_CASE__ = 'bias' elif "weight" in name: SCREAMING_SNAKE_CASE__ = 'weight' else: SCREAMING_SNAKE_CASE__ = None set_recursively(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) continue if not is_used: unused_weights.append(UpperCamelCase_ ) logger.warning(F'Unused weights: {unused_weights}' ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = full_name.split('conv_layers.' )[-1] SCREAMING_SNAKE_CASE__ = name.split('.' ) SCREAMING_SNAKE_CASE__ = int(items[0] ) SCREAMING_SNAKE_CASE__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) SCREAMING_SNAKE_CASE__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) SCREAMING_SNAKE_CASE__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) SCREAMING_SNAKE_CASE__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) SCREAMING_SNAKE_CASE__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ = full_name.split('adaptor.' )[-1] SCREAMING_SNAKE_CASE__ = name.split('.' ) if items[1].isdigit(): SCREAMING_SNAKE_CASE__ = int(items[1] ) else: SCREAMING_SNAKE_CASE__ = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' SCREAMING_SNAKE_CASE__ = value logger.info(F'Adapter proj layer norm bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' SCREAMING_SNAKE_CASE__ = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' SCREAMING_SNAKE_CASE__ = value logger.info(F'Adapter proj layer bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' SCREAMING_SNAKE_CASE__ = value logger.info(F'Adapter proj layer weight was initialized from {full_name}.' ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' SCREAMING_SNAKE_CASE__ = value logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' SCREAMING_SNAKE_CASE__ = value logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.' ) else: unused_weights.append(UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = emb.weight.shape SCREAMING_SNAKE_CASE__ = nn.Linear(UpperCamelCase_ , UpperCamelCase_ , bias=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = emb.weight.data return lin_layer @torch.no_grad() def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ = WavaVecaConfig.from_pretrained( UpperCamelCase_ , add_adapter=UpperCamelCase_ , adapter_stride=UpperCamelCase_ , adapter_kernel_size=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , output_hidden_size=UpperCamelCase_ , ) SCREAMING_SNAKE_CASE__ = MBartConfig.from_pretrained(UpperCamelCase_ ) # load model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ 'config_yaml': config_yaml_path, 'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path, 'load_pretrained_decoder_from': None, } , ) SCREAMING_SNAKE_CASE__ = model[0].eval() # load feature extractor SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ , use_auth_token=UpperCamelCase_ ) # set weights for wav2vec2 encoder SCREAMING_SNAKE_CASE__ = WavaVecaModel(UpperCamelCase_ ) recursively_load_weights_wavaveca(model.encoder , UpperCamelCase_ ) # load decoder weights SCREAMING_SNAKE_CASE__ = MBartForCausalLM(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCamelCase_ ) logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) SCREAMING_SNAKE_CASE__ = SpeechEncoderDecoderModel(encoder=UpperCamelCase_ , decoder=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = MBartaaTokenizer(UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = hf_wavavec.config.to_dict() SCREAMING_SNAKE_CASE__ = tokenizer.pad_token_id SCREAMING_SNAKE_CASE__ = tokenizer.bos_token_id SCREAMING_SNAKE_CASE__ = tokenizer.eos_token_id SCREAMING_SNAKE_CASE__ = 'mbart50' SCREAMING_SNAKE_CASE__ = 'wav2vec2' SCREAMING_SNAKE_CASE__ = tokenizer.eos_token_id SCREAMING_SNAKE_CASE__ = 250004 SCREAMING_SNAKE_CASE__ = tokenizer.eos_token_id SCREAMING_SNAKE_CASE__ = SpeechEncoderDecoderConfig.from_dict(UpperCamelCase_ ) hf_wavavec.save_pretrained(UpperCamelCase_ ) feature_extractor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=10_24, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=25_00_04, type=int, help="""`decoder_start_token_id` of model config""") __snake_case = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
176
1
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> Union[str, Any]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E_00 and cp <= 0x9F_FF) or (cp >= 0x34_00 and cp <= 0x4D_BF) # or (cp >= 0x2_00_00 and cp <= 0x2_A6_DF) # or (cp >= 0x2_A7_00 and cp <= 0x2_B7_3F) # or (cp >= 0x2_B7_40 and cp <= 0x2_B8_1F) # or (cp >= 0x2_B8_20 and cp <= 0x2_CE_AF) # or (cp >= 0xF9_00 and cp <= 0xFA_FF) or (cp >= 0x2_F8_00 and cp <= 0x2_FA_1F) # ): # return True return False def _UpperCAmelCase ( _UpperCamelCase : str ) -> str: # word like '180' or '身高' or '神' for char in word: A_ = ord(_UpperCamelCase ) if not _is_chinese_char(_UpperCamelCase ): return 0 return 1 def _UpperCAmelCase ( _UpperCamelCase : List[str] ) -> Any: A_ = set() for token in tokens: A_ = len(_UpperCamelCase ) > 1 and is_chinese(_UpperCamelCase ) if chinese_word: word_set.add(_UpperCamelCase ) A_ = list(_UpperCamelCase ) return word_list def _UpperCAmelCase ( _UpperCamelCase : List[str], _UpperCamelCase : set() ) -> Tuple: if not chinese_word_set: return bert_tokens A_ = max([len(_UpperCamelCase ) for w in chinese_word_set] ) A_ = bert_tokens A_ ,A_ = 0, len(_UpperCamelCase ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start, _UpperCamelCase ) for i in range(_UpperCamelCase, 1, -1 ): A_ = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A_ = '''##''' + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def _UpperCAmelCase ( _UpperCamelCase : List[str], _UpperCamelCase : LTP, _UpperCamelCase : BertTokenizer ) -> Dict: A_ = [] for i in range(0, len(_UpperCamelCase ), 1_00 ): A_ = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] A_ = [get_chinese_word(_UpperCamelCase ) for r in res] ltp_res.extend(_UpperCamelCase ) assert len(_UpperCamelCase ) == len(_UpperCamelCase ) A_ = [] for i in range(0, len(_UpperCamelCase ), 1_00 ): A_ = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=_UpperCamelCase, truncation=_UpperCamelCase, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(_UpperCamelCase ) == len(_UpperCamelCase ) A_ = [] for input_ids, chinese_word in zip(_UpperCamelCase, _UpperCamelCase ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(_UpperCamelCase ) input_tokens.append(_UpperCamelCase ) A_ = add_sub_symbol(_UpperCamelCase, _UpperCamelCase ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_UpperCamelCase ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(_UpperCamelCase ) == 1 and _is_chinese_char(ord(_UpperCamelCase ) ): ref_id.append(_UpperCamelCase ) ref_ids.append(_UpperCamelCase ) assert len(_UpperCamelCase ) == len(_UpperCamelCase ) return ref_ids def _UpperCAmelCase ( _UpperCamelCase : Tuple ) -> Any: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(_UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: A_ = [json.dumps(_UpperCamelCase ) + '''\n''' for ref in ref_ids] f.writelines(_UpperCamelCase ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') __snake_case : Any = parser.parse_args() main(args)
366
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class __UpperCAmelCase : '''simple docstring''' pass
18
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.26.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('''>=''', '''0.0.12''') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
106
"""simple docstring""" from __future__ import annotations class snake_case : '''simple docstring''' def __init__( self : int, _lowerCamelCase : List[Any]=None ): '''simple docstring''' __A = data __A = None def __repr__( self : Union[str, Any] ): '''simple docstring''' __A = [] __A = self while temp: string_rep.append(f'{temp.data}' ) __A = temp.next return "->".join(_lowerCamelCase ) def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if not elements_list: raise Exception('''The Elements List is empty''' ) __A = __A = Node(elements_list[0] ) for i in range(1 , len(__UpperCamelCase ) ): __A = Node(elements_list[i] ) __A = current.next return head def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if head_node is not None and isinstance(__UpperCamelCase , __UpperCamelCase ): print_reverse(head_node.next ) print(head_node.data ) def lowerCAmelCase ( ): """simple docstring""" from doctest import testmod testmod() __A = make_linked_list([1_4, 5_2, 1_4, 1_2, 4_3] ) print('''Linked List:''' ) print(__UpperCamelCase ) print('''Elements in Reverse:''' ) print_reverse(__UpperCamelCase ) if __name__ == "__main__": main()
266
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F'{test_file} instead.' ) __a =components[-1] if not test_fn.endswith('py' ): raise ValueError(F'`test_file` should be a python file. Got {test_fn} instead.' ) if not test_fn.startswith('test_modeling_' ): raise ValueError( F'`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.' ) __a =components[:-1] + [test_fn.replace('.py' , '' )] __a ='.'.join(_snake_case ) return test_module_path def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_module_path(_snake_case ) __a =importlib.import_module(_snake_case ) return test_module def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" __a =[] __a =get_test_module(_snake_case ) for attr in dir(_snake_case ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(_snake_case , _snake_case ) ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def UpperCamelCase_( _snake_case : Dict ): """simple docstring""" __a =[] __a =get_test_module(_snake_case ) for attr in dir(_snake_case ): __a =getattr(_snake_case , _snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __a =getattr(_snake_case , 'all_model_classes' , [] ) if len(_snake_case ) > 0: test_classes.append(_snake_case ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def UpperCamelCase_( _snake_case : int ): """simple docstring""" __a =get_test_classes(_snake_case ) __a =set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" __a =test_class() if hasattr(_snake_case , 'setUp' ): test.setUp() __a =None if hasattr(_snake_case , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __a =test.model_tester.__class__ return model_tester def UpperCamelCase_( _snake_case : int , _snake_case : Tuple ): """simple docstring""" __a =get_test_classes(_snake_case ) __a =[] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_snake_case ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def UpperCamelCase_( _snake_case : List[str] , _snake_case : Optional[int] ): """simple docstring""" __a =get_test_classes_for_model(_snake_case , _snake_case ) __a =[] for test_class in test_classes: __a =get_model_tester_from_test_class(_snake_case ) if tester_class is not None: tester_classes.append(_snake_case ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" __a =get_test_classes(_snake_case ) __a ={test_class: get_model_tester_from_test_class(_snake_case ) for test_class in test_classes} return test_tester_mapping def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" __a =get_model_classes(_snake_case ) __a ={ model_class: get_test_classes_for_model(_snake_case , _snake_case ) for model_class in model_classes } return model_test_mapping def UpperCamelCase_( _snake_case : Dict ): """simple docstring""" __a =get_model_classes(_snake_case ) __a ={ model_class: get_tester_classes_for_model(_snake_case , _snake_case ) for model_class in model_classes } return model_to_tester_mapping def UpperCamelCase_( _snake_case : Optional[int] ): """simple docstring""" if isinstance(_snake_case , _snake_case ): return o elif isinstance(_snake_case , _snake_case ): return o.__name__ elif isinstance(_snake_case , (list, tuple) ): return [to_json(_snake_case ) for x in o] elif isinstance(_snake_case , _snake_case ): return {to_json(_snake_case ): to_json(_snake_case ) for k, v in o.items()} else: return o
308
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def __magic_name__ ( *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : Image ): """simple docstring""" __a =hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' __a =DepthEstimationPipeline(model=__snake_case , image_processor=__snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __magic_name__ ( self , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , __snake_case ) import datasets __a =datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) __a =depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , __snake_case , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass @slow @require_torch def __magic_name__ ( self ) -> int: '''simple docstring''' __a ='Intel/dpt-large' __a =pipeline('depth-estimation' , model=__snake_case ) __a =depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) __a =hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def __magic_name__ ( self ) -> Any: '''simple docstring''' # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
308
1