code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ("""foo.json""",)] ) def snake_case_( self , A ) -> Dict: _SCREAMING_SNAKE_CASE = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A , config_name=A ) _SCREAMING_SNAKE_CASE = GenerationConfig.from_pretrained(A , config_name=A ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , A ) def snake_case_( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""gpt2""" ) _SCREAMING_SNAKE_CASE = GenerationConfig.from_model_config(A ) _SCREAMING_SNAKE_CASE = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(A , A ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def snake_case_( self ) -> Dict: _SCREAMING_SNAKE_CASE = GenerationConfig() _SCREAMING_SNAKE_CASE = { """max_new_tokens""": 1024, """foo""": """bar""", } _SCREAMING_SNAKE_CASE = copy.deepcopy(A ) _SCREAMING_SNAKE_CASE = generation_config.update(**A ) # update_kwargs was not modified (no side effects) self.assertEqual(A , A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(A , {"""foo""": """bar"""} ) def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = GenerationConfig() _SCREAMING_SNAKE_CASE = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(A ) _SCREAMING_SNAKE_CASE = GenerationConfig.from_pretrained(A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) _SCREAMING_SNAKE_CASE = GenerationConfig.from_model_config(A ) assert not hasattr(A , """foo""" ) # no new kwargs should be initialized if from config def snake_case_( self ) -> List[str]: _SCREAMING_SNAKE_CASE = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , A ) self.assertEqual(default_config.num_beams , 1 ) _SCREAMING_SNAKE_CASE = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , A ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A ) _SCREAMING_SNAKE_CASE = GenerationConfig.from_pretrained(A , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def snake_case_( cls ) -> Optional[int]: _SCREAMING_SNAKE_CASE = TOKEN HfFolder.save_token(A ) @classmethod def snake_case_( cls ) -> Optional[Any]: try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def snake_case_( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE = GenerationConfig.from_pretrained(f'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id="""test-generation-config""" , push_to_hub=A , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE = GenerationConfig.from_pretrained(f'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) def snake_case_( self ) -> Tuple: _SCREAMING_SNAKE_CASE = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=A , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) )
58
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ :Optional[Any] = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :str = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :int = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[str] = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys a_ :Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
277
0
from __future__ import annotations from math import pow, sqrt def __UpperCamelCase ( lowercase__ : float , lowercase__ : float , lowercase__ : float ) -> dict[str, float]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance == 0: return {"resistance": sqrt(pow(lowercase__ , 2 ) - pow(lowercase__ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(lowercase__ , 2 ) - pow(lowercase__ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(lowercase__ , 2 ) + pow(lowercase__ , 2 ) )} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
28
from __future__ import annotations from typing import Any class __a : def __init__( self : Dict , UpperCAmelCase : int = 6 ): lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None self.create_linked_list(UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : int = current_node lowerCAmelCase_ : str = current_node lowerCAmelCase_ : Union[str, Any] = current_node for _ in range(1 , UpperCAmelCase ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : Dict = current_node lowerCAmelCase_ : Optional[int] = previous_node lowerCAmelCase_ : Optional[Any] = current_node lowerCAmelCase_ : List[str] = self.front lowerCAmelCase_ : Optional[int] = previous_node def A ( self : Any ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A ( self : List[str] ): self.check_can_perform_operation() return self.front.data if self.front else None def A ( self : Optional[int] , UpperCAmelCase : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCAmelCase_ : int = self.rear.next if self.rear: lowerCAmelCase_ : Union[str, Any] = data def A ( self : List[Any] ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCAmelCase_ : int = self.front.data lowerCAmelCase_ : Optional[Any] = None return data lowerCAmelCase_ : Optional[int] = self.front lowerCAmelCase_ : Any = old_front.next lowerCAmelCase_ : Tuple = old_front.data lowerCAmelCase_ : str = None return data def A ( self : Tuple ): if self.is_empty(): raise Exception("""Empty Queue""" ) def A ( self : List[str] ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class __a : def __init__( self : Any ): lowerCAmelCase_ : Any | None = None lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
28
1
"""simple docstring""" def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : list[list[int]] = [[0 for _ in range(__UpperCamelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowercase : List[Any] = 1 for n in range(m + 1 ): for k in range(1 , __UpperCamelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: a_ = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: a_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
249
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin a_ = '\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n' class UpperCAmelCase_ ( unittest.TestCase , snake_case ): def _lowerCamelCase ( self ) -> int: __lowercase : List[Any] = load_tool('''text-question-answering''' ) self.tool.setup() __lowercase : Any = load_tool('''text-question-answering''' , remote=UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : Dict = self.tool(UpperCamelCase_ , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(UpperCamelCase_ , '''launched the BigScience Research Workshop''' ) def _lowerCamelCase ( self ) -> List[str]: __lowercase : Optional[int] = self.remote_tool(UpperCamelCase_ , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(UpperCamelCase_ , '''launched the BigScience Research Workshop''' ) def _lowerCamelCase ( self ) -> Any: __lowercase : Union[str, Any] = self.tool(text=UpperCamelCase_ , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(UpperCamelCase_ , '''launched the BigScience Research Workshop''' ) def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : Optional[int] = self.remote_tool(text=UpperCamelCase_ , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(UpperCamelCase_ , '''launched the BigScience Research Workshop''' )
249
1
import baseaa def UpperCAmelCase ( a_ ) -> bytes: """simple docstring""" return baseaa.baaencode(string.encode("utf-8" ) ) def UpperCAmelCase ( a_ ) -> str: """simple docstring""" return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = 'Hello World!' SCREAMING_SNAKE_CASE :Optional[int] = baseaa_encode(test) print(encoded) SCREAMING_SNAKE_CASE :str = baseaa_decode(encoded) print(decoded)
367
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = CTRLTokenizer snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Dict ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __A = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] __A = dict(zip(A ,range(len(A ) ) ) ) __A = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] __A = {"unk_token": "<unk>"} __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(A ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(A ) ) def UpperCamelCase_ ( self : List[str] ,**A : List[str] ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Optional[int] ,A : Tuple ): __A = "adapt react readapt apt" __A = "adapt react readapt apt" return input_text, output_text def UpperCamelCase_ ( self : Any ): __A = CTRLTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) __A = "adapt react readapt apt" __A = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() __A = tokenizer.tokenize(A ) self.assertListEqual(A ,A ) __A = tokens + [tokenizer.unk_token] __A = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,A )
124
0
'''simple docstring''' __lowerCamelCase = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' __lowerCamelCase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __lowerCamelCase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
162
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class A__ ( _snake_case ): lowercase = "roc_bert" def __init__( self , UpperCamelCase__=30522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-1_2 , UpperCamelCase__=True , UpperCamelCase__=0 , UpperCamelCase__="absolute" , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=768 , UpperCamelCase__=910 , UpperCamelCase__=512 , UpperCamelCase__=24858 , UpperCamelCase__=True , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' A_ = vocab_size A_ = max_position_embeddings A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = type_vocab_size A_ = layer_norm_eps A_ = use_cache A_ = enable_pronunciation A_ = enable_shape A_ = pronunciation_embed_dim A_ = pronunciation_vocab_size A_ = shape_embed_dim A_ = shape_vocab_size A_ = concat_input A_ = position_embedding_type A_ = classifier_dropout super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ )
162
1
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int ) -> List[str]: '''simple docstring''' def is_in_circle(_UpperCamelCase : float , _UpperCamelCase : float ) -> bool: UpperCamelCase__ = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCamelCase__ = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(_UpperCamelCase ) ) # The ratio of the area for circle to square is pi/4. UpperCamelCase__ = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Callable[[float], float] , _UpperCamelCase : float = 0.0 , _UpperCamelCase : float = 1.0 , ) -> float: '''simple docstring''' return mean( function_to_integrate(uniform(_UpperCamelCase , _UpperCamelCase ) ) for _ in range(_UpperCamelCase ) ) * (max_value - min_value) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : float = 0.0 , _UpperCamelCase : float = 1.0 ) -> None: '''simple docstring''' def identity_function(_UpperCamelCase : float ) -> float: return x UpperCamelCase__ = area_under_curve_estimator( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCamelCase__ = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("******************" ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int ) -> None: '''simple docstring''' def function_to_integrate(_UpperCamelCase : float ) -> float: return sqrt(4.0 - x * x ) UpperCamelCase__ = area_under_curve_estimator( _UpperCamelCase , _UpperCamelCase , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' import math import sys def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = "" try: with open(_UpperCamelCase , "rb" ) as binary_file: UpperCamelCase__ = binary_file.read() for dat in data: UpperCamelCase__ = F'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = {"0": "0", "1": "1"} UpperCamelCase__ , UpperCamelCase__ = "", "" UpperCamelCase__ = len(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase__ = lexicon[curr_string] result += last_match_id UpperCamelCase__ = last_match_id + "0" if math.loga(_UpperCamelCase ).is_integer(): UpperCamelCase__ = {} for curr_key in list(_UpperCamelCase ): UpperCamelCase__ = lexicon.pop(_UpperCamelCase ) UpperCamelCase__ = new_lex UpperCamelCase__ = last_match_id + "1" index += 1 UpperCamelCase__ = "" return result def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = 8 try: with open(_UpperCamelCase , "wb" ) as opened_file: UpperCamelCase__ = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCamelCase__ = data_bits[counter:] UpperCamelCase__ = data_bits[counter + 1 :] return data_bits def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = read_file_binary(_UpperCamelCase ) UpperCamelCase__ = remove_prefix(_UpperCamelCase ) UpperCamelCase__ = decompress_data(_UpperCamelCase ) write_file_binary(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
31
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'lxmert' lowercase__ = {} def __init__( self , __a=3_05_22 , __a=7_68 , __a=12 , __a=95_00 , __a=16_00 , __a=4_00 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=2 , __a=0.02 , __a=1e-12 , __a=9 , __a=5 , __a=5 , __a=20_48 , __a=4 , __a=6.67 , __a=True , __a=True , __a=True , __a=True , __a=True , __a=True , __a=True , **__a , ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = num_qa_labels _UpperCamelCase = num_object_labels _UpperCamelCase = num_attr_labels _UpperCamelCase = l_layers _UpperCamelCase = x_layers _UpperCamelCase = r_layers _UpperCamelCase = visual_feat_dim _UpperCamelCase = visual_pos_dim _UpperCamelCase = visual_loss_normalizer _UpperCamelCase = task_matched _UpperCamelCase = task_mask_lm _UpperCamelCase = task_obj_predict _UpperCamelCase = task_qa _UpperCamelCase = visual_obj_loss _UpperCamelCase = visual_attr_loss _UpperCamelCase = visual_feat_loss _UpperCamelCase = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**__a)
194
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _a = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _a = parser.parse_args() if args.model_type == "bert": _a = BertForMaskedLM.from_pretrained(args.model_name) _a = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _a = model.state_dict() _a = {} for w in ["word_embeddings", "position_embeddings"]: _a = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _a = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] _a = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _a = state_dict["""cls.predictions.decoder.weight"""] _a = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _a = state_dict[F"""cls.predictions.transform.dense.{w}"""] _a = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
194
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase = { '''configuration_vision_text_dual_encoder''': ['''VisionTextDualEncoderConfig'''], '''processing_vision_text_dual_encoder''': ['''VisionTextDualEncoderProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''VisionTextDualEncoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''FlaxVisionTextDualEncoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''TFVisionTextDualEncoderModel'''] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
101
'''simple docstring''' import requests __lowerCamelCase = '''''' # <-- Put your OpenWeatherMap appid here! __lowerCamelCase = '''https://api.openweathermap.org/data/2.5/''' def UpperCAmelCase__ ( UpperCAmelCase__ = "Chicago", UpperCAmelCase__ = APPID ) -> dict: return requests.get(URL_BASE + """weather""", params=locals() ).json() def UpperCAmelCase__ ( UpperCAmelCase__ = "Kolkata, India", UpperCAmelCase__ = APPID ) -> dict: return requests.get(URL_BASE + """forecast""", params=locals() ).json() def UpperCAmelCase__ ( UpperCAmelCase__ = 55.68, UpperCAmelCase__ = 12.57, UpperCAmelCase__ = APPID ) -> dict: return requests.get(URL_BASE + """onecall""", params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: __lowerCamelCase = input('''Enter a location:''').strip() if location: pprint(current_weather(location)) else: break
101
1
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowercase_ ( *__UpperCAmelCase ) -> List[str]: with open(__UpperCAmelCase , """r""" ) as fh: fcntl.flock(__UpperCAmelCase , fcntl.LOCK_EX ) try: print(*__UpperCAmelCase ) finally: fcntl.flock(__UpperCAmelCase , fcntl.LOCK_UN ) _A = int(os.environ["""LOCAL_RANK"""]) torch.cuda.set_device(local_rank) _A = torch.device("""cuda""", local_rank) _A = socket.gethostname() _A = f"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("""nccl""") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank _A = dist.get_rank() _A = dist.get_world_size() printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(f"""{gpu} is broken""") raise
242
"""simple docstring""" from itertools import product def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> list[int]: lowerCAmelCase__ : Union[str, Any] = sides_number lowerCAmelCase__ : Optional[int] = max_face_number * dice_number lowerCAmelCase__ : List[str] = [0] * (max_total + 1) lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : Optional[int] = range(__UpperCAmelCase , max_face_number + 1 ) for dice_numbers in product(__UpperCAmelCase , repeat=__UpperCAmelCase ): lowerCAmelCase__ : str = sum(__UpperCAmelCase ) totals_frequencies[total] += 1 return totals_frequencies def lowercase_ ( ) -> float: lowerCAmelCase__ : Union[str, Any] = total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCAmelCase__ : Tuple = total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCAmelCase__ : str = 0 lowerCAmelCase__ : int = 9 lowerCAmelCase__ : Tuple = 4 * 9 lowerCAmelCase__ : Optional[int] = 6 for peter_total in range(__UpperCAmelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCAmelCase__ : Tuple = (4**9) * (6**6) lowerCAmelCase__ : Union[str, Any] = peter_wins_count / total_games_number lowerCAmelCase__ : Optional[int] = round(__UpperCAmelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
242
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase :Union[str, Any] = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :Tuple = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :Any = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :Tuple = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __UpperCAmelCase :Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
353
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class a : """simple docstring""" SCREAMING_SNAKE_CASE : torch.Tensor # [batch_size x 3] SCREAMING_SNAKE_CASE : torch.Tensor # [batch_size x 3] SCREAMING_SNAKE_CASE : torch.Tensor # [batch_size x 3] SCREAMING_SNAKE_CASE : torch.Tensor # [batch_size x 3] SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float SCREAMING_SNAKE_CASE : float SCREAMING_SNAKE_CASE : Tuple[int] def lowerCamelCase__ ( self : Any ) -> int: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def lowerCamelCase__ ( self : Union[str, Any] ) -> str: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def lowerCamelCase__ ( self : Any ) -> Optional[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def lowerCamelCase__ ( self : Any ) -> torch.Tensor: __UpperCAmelCase : Dict = torch.arange(self.height * self.width ) __UpperCAmelCase : Dict = torch.stack( [ pixel_indices % self.width, torch.div(snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def lowerCamelCase__ ( self : Any ) -> int: __UpperCAmelCase , *__UpperCAmelCase : str = self.shape __UpperCAmelCase : Dict = int(np.prod(snake_case ) ) __UpperCAmelCase : Tuple = self.get_image_coords() __UpperCAmelCase : List[Any] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) __UpperCAmelCase : Any = self.get_camera_rays(snake_case ) __UpperCAmelCase : List[str] = rays.view(snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def lowerCamelCase__ ( self : Union[str, Any] , snake_case : torch.Tensor ) -> torch.Tensor: __UpperCAmelCase , *__UpperCAmelCase , __UpperCAmelCase : List[str] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] __UpperCAmelCase : List[str] = coords.view(snake_case , -1 , 2 ) __UpperCAmelCase : Optional[Any] = self.resolution() __UpperCAmelCase : Tuple = self.fov() __UpperCAmelCase : Optional[int] = (flat.float() / (res - 1)) * 2 - 1 __UpperCAmelCase : Union[str, Any] = fracs * torch.tan(fov / 2 ) __UpperCAmelCase : str = fracs.view(snake_case , -1 , 2 ) __UpperCAmelCase : Any = ( self.z.view(snake_case , 1 , 3 ) + self.x.view(snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(snake_case , 1 , 3 ) * fracs[:, :, 1:] ) __UpperCAmelCase : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=snake_case ) __UpperCAmelCase : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(snake_case , *snake_case , 2 , 3 ) def lowerCamelCase__ ( self : Any , snake_case : int , snake_case : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=snake_case , height=snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def _a ( _lowercase : int ): '''simple docstring''' __UpperCAmelCase : str = [] __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : List[Any] = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): __UpperCAmelCase : Dict = np.array([np.sin(_lowercase ), np.cos(_lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) __UpperCAmelCase : Any = -z * 4 __UpperCAmelCase : Dict = np.array([np.cos(_lowercase ), -np.sin(_lowercase ), 0.0] ) __UpperCAmelCase : List[str] = np.cross(_lowercase , _lowercase ) origins.append(_lowercase ) xs.append(_lowercase ) ys.append(_lowercase ) zs.append(_lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , width=_lowercase , height=_lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(_lowercase )) , )
240
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self , lowercase) -> Dict: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss']): a__ : int = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(lowercase) def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : Tuple = 'sshleifer/tiny-gpt2' a__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=lowercase , multi_process=lowercase , ) a__ : List[Any] = TensorFlowBenchmark(lowercase) a__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Optional[Any] = 'sgugger/tiny-distilbert-classification' a__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , only_pretrain_model=lowercase , ) a__ : str = TensorFlowBenchmark(lowercase) a__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Union[str, Any] = 'sshleifer/tiny-gpt2' a__ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) a__ : List[str] = TensorFlowBenchmark(lowercase) a__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : str = 'sshleifer/tiny-gpt2' a__ : str = AutoConfig.from_pretrained(lowercase) a__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=lowercase , multi_process=lowercase , ) a__ : Optional[Any] = TensorFlowBenchmark(lowercase , [config]) a__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> str: '''simple docstring''' a__ : Dict = 'sshleifer/tiny-gpt2' a__ : Union[str, Any] = AutoConfig.from_pretrained(lowercase) a__ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) a__ : str = TensorFlowBenchmark(lowercase , [config]) a__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : Optional[int] = 'sshleifer/tiny-gpt2' a__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) a__ : Tuple = TensorFlowBenchmark(lowercase) a__ : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def __lowercase ( self) -> int: '''simple docstring''' a__ : Optional[Any] = 'sshleifer/tiny-gpt2' a__ : List[Any] = AutoConfig.from_pretrained(lowercase) a__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) a__ : Optional[Any] = TensorFlowBenchmark(lowercase , [config]) a__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def __lowercase ( self) -> int: '''simple docstring''' a__ : Optional[int] = 'patrickvonplaten/t5-tiny-random' a__ : Optional[int] = AutoConfig.from_pretrained(lowercase) a__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) a__ : List[Any] = TensorFlowBenchmark(lowercase , configs=[config]) a__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU')) == 0 , 'Cannot do xla on CPU.') def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : Optional[int] = 'sshleifer/tiny-gpt2' a__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=lowercase , multi_process=lowercase , ) a__ : int = TensorFlowBenchmark(lowercase) a__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : str = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: a__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=lowercase , save_to_csv=lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowercase , 'inf_time.csv') , inference_memory_csv_file=os.path.join(lowercase , 'inf_mem.csv') , env_info_csv_file=os.path.join(lowercase , 'env.csv') , multi_process=lowercase , ) a__ : List[str] = TensorFlowBenchmark(lowercase) benchmark.run() self.assertTrue(Path(os.path.join(lowercase , 'inf_time.csv')).exists()) self.assertTrue(Path(os.path.join(lowercase , 'inf_mem.csv')).exists()) self.assertTrue(Path(os.path.join(lowercase , 'env.csv')).exists()) def __lowercase ( self) -> str: '''simple docstring''' a__ : Union[str, Any] = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(lowercase): self.assertTrue(hasattr(lowercase , 'sequential')) self.assertTrue(hasattr(lowercase , 'cumulative')) self.assertTrue(hasattr(lowercase , 'current')) self.assertTrue(hasattr(lowercase , 'total')) with tempfile.TemporaryDirectory() as tmp_dir: a__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowercase , 'log.txt') , log_print=lowercase , trace_memory_line_by_line=lowercase , eager_mode=lowercase , multi_process=lowercase , ) a__ : List[str] = TensorFlowBenchmark(lowercase) a__ : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary) self.assertTrue(Path(os.path.join(lowercase , 'log.txt')).exists())
99
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Optional[int] = ShapEImgaImgPipeline __A : Tuple = ['''image'''] __A : Any = ['''image'''] __A : Optional[Any] = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] __A : Dict = False @property def __lowercase ( self) -> Any: '''simple docstring''' return 32 @property def __lowercase ( self) -> Optional[int]: '''simple docstring''' return 32 @property def __lowercase ( self) -> Optional[Any]: '''simple docstring''' return self.time_input_dim * 4 @property def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' return 8 @property def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0) a__ : Any = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) a__ : Dict = CLIPVisionModel(lowercase) return model @property def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : str = CLIPImageProcessor( crop_size=224 , do_center_crop=lowercase , do_normalize=lowercase , do_resize=lowercase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def __lowercase ( self) -> str: '''simple docstring''' torch.manual_seed(0) a__ : str = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } a__ : Any = PriorTransformer(**lowercase) return model @property def __lowercase ( self) -> Any: '''simple docstring''' torch.manual_seed(0) a__ : List[Any] = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } a__ : List[str] = ShapERenderer(**lowercase) return model def __lowercase ( self) -> str: '''simple docstring''' a__ : Dict = self.dummy_prior a__ : List[str] = self.dummy_image_encoder a__ : int = self.dummy_image_processor a__ : str = self.dummy_renderer a__ : Optional[int] = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=lowercase , clip_sample=lowercase , clip_sample_range=1.0 , ) a__ : List[Any] = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def __lowercase ( self , lowercase , lowercase=0) -> List[str]: '''simple docstring''' a__ : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase)).to(lowercase) if str(lowercase).startswith('mps'): a__ : List[str] = torch.manual_seed(lowercase) else: a__ : str = torch.Generator(device=lowercase).manual_seed(lowercase) a__ : Tuple = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def __lowercase ( self) -> Any: '''simple docstring''' a__ : int = 'cpu' a__ : List[str] = self.get_dummy_components() a__ : Dict = self.pipeline_class(**lowercase) a__ : Optional[int] = pipe.to(lowercase) pipe.set_progress_bar_config(disable=lowercase) a__ : Tuple = pipe(**self.get_dummy_inputs(lowercase)) a__ : Any = output.images[0] a__ : Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) a__ : List[str] = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __lowercase ( self) -> Any: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2]) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : str = torch_device == 'cpu' a__ : Tuple = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowercase , relax_max_difference=lowercase , ) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : List[str] = self.get_dummy_components() a__ : str = self.pipeline_class(**lowercase) a__ : List[str] = pipe.to(lowercase) pipe.set_progress_bar_config(disable=lowercase) a__ : Optional[Any] = 1 a__ : List[str] = 2 a__ : Optional[Any] = self.get_dummy_inputs(lowercase) for key in inputs.keys(): if key in self.batch_params: a__ : Any = batch_size * [inputs[key]] a__ : int = pipe(**lowercase , num_images_per_prompt=lowercase)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self) -> Dict: '''simple docstring''' a__ : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png') a__ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy') a__ : List[str] = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img') a__ : Tuple = pipe.to(lowercase) pipe.set_progress_bar_config(disable=lowercase) a__ : List[Any] = torch.Generator(device=lowercase).manual_seed(0) a__ : Optional[int] = pipe( lowercase , generator=lowercase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowercase , lowercase)
99
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> int: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_attention_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_choices def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_attention_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = FlaxRoFormerModelTester(self ) @slow def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase__ = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=__a ) UpperCAmelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a ) @require_flax class lowercase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) UpperCAmelCase__ = jnp.array([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__a )[0] UpperCAmelCase__ = 50000 UpperCAmelCase__ = (1, 6, vocab_size) self.assertEqual(output.shape , __a ) UpperCAmelCase__ = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
335
# flake8: noqa # Lint as: python3 _UpperCamelCase = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
335
1
def _SCREAMING_SNAKE_CASE ( a ) -> int: if not isinstance(a , a ): raise ValueError('Input must be an integer' ) if input_num <= 0: raise ValueError('Input must be positive' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
280
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : Optional[Any] = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def _SCREAMING_SNAKE_CASE ( a , a ) -> Optional[Any]: __A : Any = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 10_24, 'hidden_size': 7_68, 'max_length': 5_12, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 10_24, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1e-5, 'token_type_vocab_size': 2, } __A : str = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __A : Optional[int] = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=a , output_all_encodings=a , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , a ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __A : Union[str, Any] = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab __A : Any = os.path.join(get_home_dir() , 'models' ) __A : List[Any] = _load_vocab(a , a , a , cls=a ) __A : Dict = nlp.model.BERTModel( a , len(a ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=a , use_token_type_embed=a , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=a , use_decoder=a , ) original_bort.load_parameters(a , cast_dtype=a , ignore_extra=a ) __A : Union[str, Any] = original_bort._collect_params_with_prefix() # Build our config 🤗 __A : Any = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(a ), } __A : int = BertConfig.from_dict(a ) __A : Union[str, Any] = BertForMaskedLM(a ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(a ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(a , a ): __A : Tuple = hf_param.shape __A : str = to_torch(params[gluon_param] ) __A : Union[str, Any] = gluon_param.shape assert ( shape_hf == shape_gluon ), F"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param __A : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) __A : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) __A : List[str] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) __A : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __A : Tuple = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __A : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention __A : BertSelfAttention = layer.attention.self __A : Optional[Any] = check_and_map_params( self_attn.key.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) __A : Optional[int] = check_and_map_params( self_attn.key.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) __A : Union[str, Any] = check_and_map_params( self_attn.query.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) __A : Optional[Any] = check_and_map_params( self_attn.query.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) __A : Union[str, Any] = check_and_map_params( self_attn.value.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) __A : Optional[int] = check_and_map_params( self_attn.value.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output __A : BertSelfOutput = layer.attention.output __A : Tuple = check_and_map_params( self_output.dense.bias , F"""encoder.transformer_cells.{i}.proj.bias""" ) __A : int = check_and_map_params( self_output.dense.weight , F"""encoder.transformer_cells.{i}.proj.weight""" ) __A : List[Any] = check_and_map_params( self_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.layer_norm.beta""" ) __A : str = check_and_map_params( self_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate __A : BertIntermediate = layer.intermediate __A : int = check_and_map_params( intermediate.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) __A : List[Any] = check_and_map_params( intermediate.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output __A : BertOutput = layer.output __A : List[Any] = check_and_map_params( bert_output.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) __A : Dict = check_and_map_params( bert_output.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) __A : Optional[int] = check_and_map_params( bert_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) __A : Dict = check_and_map_params( bert_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __A : Any = RobertaTokenizer.from_pretrained('roberta-base' ) __A : List[str] = tokenizer.encode_plus(a )['input_ids'] # Get gluon output __A : List[str] = mx.nd.array([input_ids] ) __A : Union[str, Any] = original_bort(inputs=a , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(a ) __A : Optional[Any] = BertModel.from_pretrained(a ) hf_bort_model.eval() __A : Tuple = tokenizer.encode_plus(a , return_tensors='pt' ) __A : Any = hf_bort_model(**a )[0] __A : Union[str, Any] = output_gluon[0].asnumpy() __A : Tuple = output_hf[0].detach().numpy() __A : int = np.max(np.abs(hf_layer - gluon_layer ) ).item() __A : int = np.allclose(a , a , atol=1e-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , a ) if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase : Dict = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
280
1
"""simple docstring""" import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case=10_24, __snake_case=10_24, __snake_case=False, **__snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = AutoTokenizer.from_pretrained(__snake_case ) _UpperCamelCase = SeqaSeqDataset(__snake_case, __snake_case, __snake_case, __snake_case, type_path='''train''', **__snake_case ) _UpperCamelCase = tok.pad_token_id def get_lens(__snake_case ): _UpperCamelCase = tqdm( DataLoader(__snake_case, batch_size=5_12, num_workers=8, shuffle=__snake_case, collate_fn=ds.collate_fn ), desc=str(ds.len_file ), ) _UpperCamelCase = [] for batch in dl: _UpperCamelCase = batch['''input_ids'''].ne(__snake_case ).sum(1 ).tolist() _UpperCamelCase = batch['''labels'''].ne(__snake_case ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__snake_case, __snake_case ): max_lens.append(max(__snake_case, __snake_case ) ) else: max_lens.extend(__snake_case ) return max_lens _UpperCamelCase = get_lens(__snake_case ) _UpperCamelCase = SeqaSeqDataset(__snake_case, __snake_case, __snake_case, __snake_case, type_path='''val''', **__snake_case ) _UpperCamelCase = get_lens(__snake_case ) pickle_save(__snake_case, train_ds.len_file ) pickle_save(__snake_case, val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
100
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 _a = get_tests_dir("""fixtures/dummy-config.json""") class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = 0 def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__) self.assertIsNotNone(importlib.util.find_spec('''transformers.models.auto''')) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = AutoConfig.from_pretrained('''bert-base-uncased''') self.assertIsInstance(__a , __a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = AutoConfig.from_pretrained(__a) self.assertIsInstance(__a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = AutoConfig.from_pretrained(__a) self.assertIsInstance(__a , __a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = AutoConfig.for_model('''roberta''') self.assertIsInstance(__a , __a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _UpperCamelCase = os.path.join(__a , '''fake-roberta''') os.makedirs(__a , exist_ok=__a) with open(os.path.join(__a , '''config.json''') , '''w''') as f: f.write(json.dumps({})) _UpperCamelCase = AutoConfig.from_pretrained(__a) self.assertEqual(type(__a) , __a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' try: AutoConfig.register('''custom''' , __a) # Wrong model type will raise an error with self.assertRaises(__a): AutoConfig.register('''model''' , __a) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a): AutoConfig.register('''bert''' , __a) # Now that the config is registered, it can be used as any other config with the auto-API _UpperCamelCase = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a) _UpperCamelCase = AutoConfig.from_pretrained(__a) self.assertIsInstance(__a , __a) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex( __a , '''bert-base is not a local folder and is not a valid model identifier'''): _UpperCamelCase = AutoConfig.from_pretrained('''bert-base''') def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex( __a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''): _UpperCamelCase = AutoConfig.from_pretrained(__a , revision='''aaaaaa''') def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( __a , '''hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.''' , ): _UpperCamelCase = AutoConfig.from_pretrained('''hf-internal-testing/no-config-test-repo''') def UpperCAmelCase ( self) -> int: '''simple docstring''' # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__a): _UpperCamelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''') # If remote code is disabled, we can't load this config. with self.assertRaises(__a): _UpperCamelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__a) _UpperCamelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__a) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''') # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a) _UpperCamelCase = AutoConfig.from_pretrained(__a , trust_remote_code=__a) self.assertEqual(reloaded_config.__class__.__name__ , '''NewModelConfig''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'new-model' try: AutoConfig.register('''new-model''' , __a) # If remote code is not set, the default is to use local _UpperCamelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''') self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''') # If remote code is disabled, we load the local one. _UpperCamelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__a) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''') # If remote is enabled, we load from the Hub _UpperCamelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__a) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''') finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
100
1
from __future__ import annotations import math import random from typing import Any class UpperCAmelCase_ : '''simple docstring''' def __init__( self ): """simple docstring""" lowerCamelCase : list[Any] = [] lowerCamelCase : int = 0 lowerCamelCase : int = 0 def _snake_case ( self ): """simple docstring""" return self.head == self.tail def _snake_case ( self , __A ): """simple docstring""" self.data.append(__A ) lowerCamelCase : str = self.tail + 1 def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = self.data[self.head] lowerCamelCase : List[Any] = self.head + 1 return ret def _snake_case ( self ): """simple docstring""" return self.tail - self.head def _snake_case ( self ): """simple docstring""" print(self.data ) print("**************" ) print(self.data[self.head : self.tail] ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __A ): """simple docstring""" lowerCamelCase : Dict = data lowerCamelCase : MyNode | None = None lowerCamelCase : MyNode | None = None lowerCamelCase : int = 1 def _snake_case ( self ): """simple docstring""" return self.data def _snake_case ( self ): """simple docstring""" return self.left def _snake_case ( self ): """simple docstring""" return self.right def _snake_case ( self ): """simple docstring""" return self.height def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : Dict = data def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : Any = node def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : Tuple = node def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : Optional[Any] = height def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if node is None: return 0 return node.get_height() def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if a > b: return a return b def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' print("left rotation node:" , node.get_data() ) lowerCamelCase : Union[str, Any] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(__lowerCamelCase ) lowerCamelCase : Any = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__lowerCamelCase ) lowerCamelCase : Any = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__lowerCamelCase ) return ret def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' print("right rotation node:" , node.get_data() ) lowerCamelCase : Tuple = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(__lowerCamelCase ) lowerCamelCase : str = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__lowerCamelCase ) lowerCamelCase : List[str] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__lowerCamelCase ) return ret def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Any = node.get_left() assert left_child is not None node.set_left(left_rotation(__lowerCamelCase ) ) return right_rotation(__lowerCamelCase ) def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Optional[int] = node.get_right() assert right_child is not None node.set_right(right_rotation(__lowerCamelCase ) ) return left_rotation(__lowerCamelCase ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if node is None: return MyNode(__lowerCamelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , __lowerCamelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected lowerCamelCase : Any = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child lowerCamelCase : Any = right_rotation(__lowerCamelCase ) else: lowerCamelCase : Tuple = lr_rotation(__lowerCamelCase ) else: node.set_right(insert_node(node.get_right() , __lowerCamelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: lowerCamelCase : str = node.get_right() assert right_child is not None if data < right_child.get_data(): lowerCamelCase : List[str] = rl_rotation(__lowerCamelCase ) else: lowerCamelCase : str = left_rotation(__lowerCamelCase ) lowerCamelCase : List[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__lowerCamelCase ) return node def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' while True: lowerCamelCase : Optional[Any] = root.get_right() if right_child is None: break lowerCamelCase : Any = right_child return root.get_data() def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' while True: lowerCamelCase : Dict = root.get_left() if left_child is None: break lowerCamelCase : Any = left_child return root.get_data() def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Optional[Any] = root.get_left() lowerCamelCase : Dict = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: lowerCamelCase : Tuple = get_left_most(__lowerCamelCase ) root.set_data(__lowerCamelCase ) root.set_right(del_node(__lowerCamelCase , __lowerCamelCase ) ) elif left_child is not None: lowerCamelCase : Optional[int] = left_child elif right_child is not None: lowerCamelCase : Tuple = right_child else: return None elif root.get_data() > data: if left_child is None: print("No such data" ) return root else: root.set_left(del_node(__lowerCamelCase , __lowerCamelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(__lowerCamelCase , __lowerCamelCase ) ) if get_height(__lowerCamelCase ) - get_height(__lowerCamelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): lowerCamelCase : str = left_rotation(__lowerCamelCase ) else: lowerCamelCase : List[Any] = rl_rotation(__lowerCamelCase ) elif get_height(__lowerCamelCase ) - get_height(__lowerCamelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): lowerCamelCase : Tuple = right_rotation(__lowerCamelCase ) else: lowerCamelCase : Optional[int] = lr_rotation(__lowerCamelCase ) lowerCamelCase : Dict = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(__lowerCamelCase ) return root class UpperCAmelCase_ : '''simple docstring''' def __init__( self ): """simple docstring""" lowerCamelCase : MyNode | None = None def _snake_case ( self ): """simple docstring""" return get_height(self.root ) def _snake_case ( self , __A ): """simple docstring""" print("insert:" + str(__A ) ) lowerCamelCase : List[str] = insert_node(self.root , __A ) def _snake_case ( self , __A ): """simple docstring""" print("delete:" + str(__A ) ) if self.root is None: print("Tree is empty!" ) return lowerCamelCase : Optional[Any] = del_node(self.root , __A ) def __str__( self , ): # a level traversale, gives a more intuitive look on the tree """simple docstring""" lowerCamelCase : str = "" lowerCamelCase : Optional[Any] = MyQueue() q.push(self.root ) lowerCamelCase : Any = self.get_height() if layer == 0: return output lowerCamelCase : List[Any] = 0 while not q.is_empty(): lowerCamelCase : List[str] = q.pop() lowerCamelCase : Optional[Any] = " " * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(__A ) q.push(__A ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space lowerCamelCase : Optional[Any] = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , __A ) - 1: lowerCamelCase : Any = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def lowercase_( ): '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() _snake_case = AVLtree() _snake_case = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
283
from importlib import import_module from .logging import get_logger _snake_case : Optional[int] = get_logger(__name__) class a : """simple docstring""" def __init__( self : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[str]=None ) -> Any: __snake_case : Dict = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase ) ) __snake_case : int = module._original_module if isinstance(lowerCamelCase , _PatchedModuleObj ) else module class a : """simple docstring""" __UpperCAmelCase : List[Any] = [] def __init__( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : Optional[Any]=None ) -> List[Any]: __snake_case : Union[str, Any] = obj __snake_case : Dict = target __snake_case : Any = new __snake_case : List[str] = target.split("." )[0] __snake_case : Union[str, Any] = {} __snake_case : int = attrs or [] def __enter__( self : List[Any] ) -> Tuple: *__snake_case , __snake_case : int = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCamelCase ) ): try: __snake_case : Any = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __snake_case : Union[str, Any] = getattr(self.obj , lowerCamelCase ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCamelCase , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __snake_case : List[Any] = obj_attr # patch at top level setattr(self.obj , lowerCamelCase , _PatchedModuleObj(lowerCamelCase , attrs=self.attrs ) ) __snake_case : Optional[int] = getattr(self.obj , lowerCamelCase ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCamelCase , lowerCamelCase , _PatchedModuleObj(getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) , attrs=self.attrs ) ) __snake_case : List[Any] = getattr(lowerCamelCase , lowerCamelCase ) # finally set the target attribute setattr(lowerCamelCase , lowerCamelCase , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __snake_case : Union[str, Any] = getattr(import_module(".".join(lowerCamelCase ) ) , lowerCamelCase ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCamelCase ) is attr_value: __snake_case : Tuple = getattr(self.obj , lowerCamelCase ) setattr(self.obj , lowerCamelCase , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __snake_case : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCamelCase , self.new ) else: raise RuntimeError(F'Tried to patch attribute {target_attr} instead of a submodule.' ) def __exit__( self : Any , *lowerCamelCase : Any ) -> Optional[int]: for attr in list(self.original ): setattr(self.obj , lowerCamelCase , self.original.pop(lowerCamelCase ) ) def __snake_case ( self : Optional[Any] ) -> Optional[int]: self.__enter__() self._active_patches.append(self ) def __snake_case ( self : Any ) -> List[str]: try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
123
0
def lowerCamelCase__ ( a__ : int ) -> list: UpperCamelCase_ = int(snake_case__ ) if n_element < 1: UpperCamelCase_ = ValueError("""a should be a positive number""" ) raise my_error UpperCamelCase_ = [1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = (0, 0, 0) UpperCamelCase_ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _A = input('''Enter the last number (nth term) of the Hamming Number Series: ''') print('''Formula of Hamming Number Series => 2^i * 3^j * 5^k''') _A = hamming(int(n)) print('''-----------------------------------------------------''') print(F'''The list with nth numbers is: {hamming_numbers}''') print('''-----------------------------------------------------''')
365
from __future__ import annotations def lowerCamelCase__ ( a__ : list[list[int]] ) -> int: # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(a__ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(a__ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
261
0
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __A = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["input_features", "attention_mask"] def __init__(self : List[Any] , UpperCAmelCase_ : Dict=80 , UpperCAmelCase_ : Optional[Any]=16_000 , UpperCAmelCase_ : str=80 , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=True , **UpperCAmelCase_ : List[str] , ) ->Optional[Any]: '''simple docstring''' super().__init__(feature_size=UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , padding_value=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Dict =num_mel_bins lowerCamelCase__: int =do_ceptral_normalize lowerCamelCase__: int =normalize_means lowerCamelCase__: Optional[Any] =normalize_vars lowerCamelCase__: Optional[int] =True def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : np.ndarray , ) ->np.ndarray: '''simple docstring''' lowerCamelCase__: Optional[Any] =waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowerCamelCase__: Tuple =torch.from_numpy(UpperCAmelCase_).unsqueeze(0) lowerCamelCase__: Any =ta_kaldi.fbank(UpperCAmelCase_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate) return features.numpy() @staticmethod def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[bool] = True , UpperCAmelCase_ : Optional[bool] = True , UpperCAmelCase_ : float = 0.0 , ) ->np.ndarray: '''simple docstring''' if normalize_means: lowerCamelCase__: Tuple =x[:input_length].mean(axis=0) lowerCamelCase__: List[Any] =np.subtract(UpperCAmelCase_ , UpperCAmelCase_) if normalize_vars: lowerCamelCase__: int =x[:input_length].std(axis=0) lowerCamelCase__: List[str] =np.divide(UpperCAmelCase_ , UpperCAmelCase_) if input_length < x.shape[0]: lowerCamelCase__: List[Any] =padding_value # make sure array is in float32 lowerCamelCase__: List[str] =x.astype(np.floataa) return x def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : List[np.ndarray] , UpperCAmelCase_ : Optional[np.ndarray] = None) ->List[np.ndarray]: '''simple docstring''' lowerCamelCase__: Tuple =attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(UpperCAmelCase_ , UpperCAmelCase_ , self.normalize_means , self.normalize_vars , self.padding_value) for x, n in zip(UpperCAmelCase_ , UpperCAmelCase_) ] def __call__(self : str , UpperCAmelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , **UpperCAmelCase_ : List[str] , ) ->BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""") else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug.") lowerCamelCase__: Optional[Any] =isinstance(UpperCAmelCase_ , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""") lowerCamelCase__: int =is_batched_numpy or ( isinstance(UpperCAmelCase_ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: lowerCamelCase__: str =[np.asarray(UpperCAmelCase_ , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase_ , np.ndarray): lowerCamelCase__: str =np.asarray(UpperCAmelCase_ , dtype=np.floataa) elif isinstance(UpperCAmelCase_ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): lowerCamelCase__: Union[str, Any] =raw_speech.astype(np.floataa) # always return batch if not is_batched: lowerCamelCase__: List[str] =[raw_speech] # extract fbank features lowerCamelCase__: str =[self._extract_fbank_features(UpperCAmelCase_) for waveform in raw_speech] # convert into correct format for padding lowerCamelCase__: Any =BatchFeature({"input_features": features}) lowerCamelCase__: Union[str, Any] =self.pad( UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , ) # make sure list is in array format lowerCamelCase__: Optional[Any] =padded_inputs.get("input_features") if isinstance(input_features[0] , UpperCAmelCase_): lowerCamelCase__: Tuple =[np.asarray(UpperCAmelCase_ , dtype=np.floataa) for feature in input_features] lowerCamelCase__: Union[str, Any] =padded_inputs.get("attention_mask") if attention_mask is not None: lowerCamelCase__: Optional[int] =[np.asarray(UpperCAmelCase_ , dtype=np.intaa) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowerCamelCase__: Any =( np.array(UpperCAmelCase_ , dtype=np.intaa) if self._get_padding_strategies(UpperCAmelCase_ , max_length=UpperCAmelCase_) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCamelCase__: Any =self.normalize( padded_inputs["input_features"] , attention_mask=UpperCAmelCase_) if return_tensors is not None: lowerCamelCase__: str =padded_inputs.convert_to_tensors(UpperCAmelCase_) return padded_inputs
10
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" try: with open(a_ , """rb""" ) as flax_state_f: A_ : Tuple = from_bytes(a_ , flax_state_f.read() ) except UnpicklingError as e: try: with open(a_ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(a_ , a_ ) def UpperCAmelCase ( a_ , a_ ) -> Any: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights A_ : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda a_ : x.dtype == jnp.bfloataa , a_ ) ).values() if any(a_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) A_ : str = jax.tree_util.tree_map( lambda a_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , a_ ) A_ : Any = """""" A_ : Optional[int] = flatten_dict(a_ , sep=""".""" ) A_ : List[str] = pt_model.state_dict() # keep track of unexpected & missing keys A_ : Union[str, Any] = [] A_ : Dict = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A_ : List[Any] = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: A_ : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""] A_ : Optional[Any] = jnp.transpose(a_ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": A_ : int = flax_key_tuple_array[:-1] + ["""weight"""] A_ : Optional[int] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": A_ : Any = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(a_ ): A_ : Tuple = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) A_ : Dict = """.""".join(a_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict A_ : Optional[Any] = np.asarray(a_ ) if not isinstance(a_ , np.ndarray ) else flax_tensor A_ : Tuple = torch.from_numpy(a_ ) # remove from missing keys missing_keys.remove(a_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(a_ ) pt_model.load_state_dict(a_ ) # re-transform missing_keys to list A_ : Dict = list(a_ ) if len(a_ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(a_ ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" """ use it for predictions and inference.""" ) return pt_model
344
0
"""simple docstring""" import numpy # List of input, output pairs a__ : int = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) a__ : str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) a__ : List[Any] = [2, 4, 1, 5] a__ : Union[str, Any] = len(train_data) a__ : Tuple = 0.0_09 def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_="train" ): '''simple docstring''' return calculate_hypothesis_value(lowerCAmelCase_ , lowerCAmelCase_ ) - output( lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 for i in range(len(lowerCAmelCase_ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_=m ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 for i in range(lowerCAmelCase_ ): if index == -1: summation_value += _error(lowerCAmelCase_ ) else: summation_value += _error(lowerCAmelCase_ ) * train_data[i][0][index] return summation_value def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = summation_of_cost_derivative(lowerCAmelCase_ , lowerCAmelCase_ ) / m return cost_derivative_value def UpperCAmelCase__ (): '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output __SCREAMING_SNAKE_CASE = 0.000002 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while True: j += 1 __SCREAMING_SNAKE_CASE = [0, 0, 0, 0] for i in range(0 , len(lowerCAmelCase_ ) ): __SCREAMING_SNAKE_CASE = get_cost_derivative(i - 1 ) __SCREAMING_SNAKE_CASE = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCAmelCase_ , lowerCAmelCase_ , atol=lowerCAmelCase_ , rtol=lowerCAmelCase_ , ): break __SCREAMING_SNAKE_CASE = temp_parameter_vector print(("Number of iterations:", j) ) def UpperCAmelCase__ (): '''simple docstring''' for i in range(len(lowerCAmelCase_ ) ): print(("Actual output value:", output(lowerCAmelCase_ , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(lowerCAmelCase_ , "test" )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
351
"""simple docstring""" from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if dataset.ndim != value_array.ndim: __SCREAMING_SNAKE_CASE = ( "Wrong input data's dimensions... " f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(lowerCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: __SCREAMING_SNAKE_CASE = ( "Wrong input data's shape... " f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(lowerCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: __SCREAMING_SNAKE_CASE = ( "Input data have different datatype... " f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = [] for value in value_array: __SCREAMING_SNAKE_CASE = euclidean(lowerCAmelCase_ , dataset[0] ) __SCREAMING_SNAKE_CASE = dataset[0].tolist() for dataset_value in dataset[1:]: __SCREAMING_SNAKE_CASE = euclidean(lowerCAmelCase_ , lowerCAmelCase_ ) if dist > temp_dist: __SCREAMING_SNAKE_CASE = temp_dist __SCREAMING_SNAKE_CASE = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' return np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) / (norm(lowerCAmelCase_ ) * norm(lowerCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
195
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCAmelCase__ (snake_case__ : str , snake_case__ : float | Decimal , snake_case__ : float = 10**-10 ): """simple docstring""" _snake_case : Optional[Any] = a while True: _snake_case : Optional[Any] = Decimal(snake_case__ ) - ( Decimal(eval(snake_case__ ) ) / Decimal(eval(str(diff(snake_case__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(snake_case__ ) ) < precision: # noqa: S307 return float(snake_case__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
64
'''simple docstring''' import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class _a ( unittest.TestCase ): '''simple docstring''' A : List[Any] = inspect.getfile(accelerate.test_utils ) A : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) A : List[str] = ['''accelerate''', '''launch'''] A : List[Any] = Path.home() / '''.cache/huggingface/accelerate''' A : Any = '''default_config.yaml''' A : Dict = config_folder / config_file A : Union[str, Any] = config_folder / '''_default_config.yaml''' A : int = Path('''tests/test_configs''' ) @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path], env=os.environ.copy() ) def UpperCamelCase_ ( self ): '''simple docstring''' for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=A ): execute_subprocess_async( self.base_cmd + ['--config_file', str(A ), self.test_file_path], env=os.environ.copy() ) def UpperCamelCase_ ( self ): '''simple docstring''' execute_subprocess_async(['accelerate', 'test'], env=os.environ.copy() ) class _a ( unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = '''test-tpu''' A : List[str] = '''us-central1-a''' A : List[str] = '''ls''' A : List[str] = ['''accelerate''', '''tpu-config'''] A : List[str] = '''cd /usr/share''' A : Optional[int] = '''tests/test_samples/test_command_file.sh''' A : Optional[int] = '''Running gcloud compute tpus tpu-vm ssh''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'], return_stdout=A ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all", A, )
251
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def lowerCAmelCase (__UpperCamelCase : str ): """simple docstring""" __UpperCamelCase =SwinvaConfig() __UpperCamelCase =swinva_name.split('''_''' ) __UpperCamelCase =name_split[1] if "to" in name_split[3]: __UpperCamelCase =int(name_split[3][-3:] ) else: __UpperCamelCase =int(name_split[3] ) if "to" in name_split[2]: __UpperCamelCase =int(name_split[2][-2:] ) else: __UpperCamelCase =int(name_split[2][6:] ) if model_size == "tiny": __UpperCamelCase =9_6 __UpperCamelCase =(2, 2, 6, 2) __UpperCamelCase =(3, 6, 1_2, 2_4) elif model_size == "small": __UpperCamelCase =9_6 __UpperCamelCase =(2, 2, 1_8, 2) __UpperCamelCase =(3, 6, 1_2, 2_4) elif model_size == "base": __UpperCamelCase =1_2_8 __UpperCamelCase =(2, 2, 1_8, 2) __UpperCamelCase =(4, 8, 1_6, 3_2) else: __UpperCamelCase =1_9_2 __UpperCamelCase =(2, 2, 1_8, 2) __UpperCamelCase =(6, 1_2, 2_4, 4_8) if "to" in swinva_name: __UpperCamelCase =(1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __UpperCamelCase =2_1_8_4_1 __UpperCamelCase ='''huggingface/label-files''' __UpperCamelCase ='''imagenet-22k-id2label.json''' __UpperCamelCase =json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) __UpperCamelCase ={int(__UpperCamelCase ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} else: __UpperCamelCase =1_0_0_0 __UpperCamelCase ='''huggingface/label-files''' __UpperCamelCase ='''imagenet-1k-id2label.json''' __UpperCamelCase =json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) __UpperCamelCase ={int(__UpperCamelCase ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} __UpperCamelCase =img_size __UpperCamelCase =num_classes __UpperCamelCase =embed_dim __UpperCamelCase =depths __UpperCamelCase =num_heads __UpperCamelCase =window_size return config def lowerCAmelCase (__UpperCamelCase : Union[str, Any] ): """simple docstring""" if "patch_embed.proj" in name: __UpperCamelCase =name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __UpperCamelCase =name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: __UpperCamelCase ='''encoder.''' + name if "attn.proj" in name: __UpperCamelCase =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __UpperCamelCase =name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __UpperCamelCase =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __UpperCamelCase =name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __UpperCamelCase =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __UpperCamelCase =name.replace('''mlp.fc2''' , '''output.dense''' ) if "q_bias" in name: __UpperCamelCase =name.replace('''q_bias''' , '''query.bias''' ) if "k_bias" in name: __UpperCamelCase =name.replace('''k_bias''' , '''key.bias''' ) if "v_bias" in name: __UpperCamelCase =name.replace('''v_bias''' , '''value.bias''' ) if "cpb_mlp" in name: __UpperCamelCase =name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' ) if name == "norm.weight": __UpperCamelCase ='''layernorm.weight''' if name == "norm.bias": __UpperCamelCase ='''layernorm.bias''' if "head" in name: __UpperCamelCase =name.replace('''head''' , '''classifier''' ) else: __UpperCamelCase ='''swinv2.''' + name return name def lowerCAmelCase (__UpperCamelCase : str , __UpperCamelCase : Union[str, Any] ): """simple docstring""" for key in orig_state_dict.copy().keys(): __UpperCamelCase =orig_state_dict.pop(__UpperCamelCase ) if "mask" in key: continue elif "qkv" in key: __UpperCamelCase =key.split('''.''' ) __UpperCamelCase =int(key_split[1] ) __UpperCamelCase =int(key_split[3] ) __UpperCamelCase =model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __UpperCamelCase =val[:dim, :] __UpperCamelCase =val[dim : dim * 2, :] __UpperCamelCase =val[-dim:, :] else: __UpperCamelCase =val[:dim] __UpperCamelCase =val[ dim : dim * 2 ] __UpperCamelCase =val[-dim:] else: __UpperCamelCase =val return orig_state_dict def lowerCAmelCase (__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any ): """simple docstring""" __UpperCamelCase =timm.create_model(__UpperCamelCase , pretrained=__UpperCamelCase ) timm_model.eval() __UpperCamelCase =get_swinva_config(__UpperCamelCase ) __UpperCamelCase =SwinvaForImageClassification(__UpperCamelCase ) model.eval() __UpperCamelCase =convert_state_dict(timm_model.state_dict() , __UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) __UpperCamelCase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCamelCase =AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swinva_name.replace('''_''' , '''-''' ) ) ) __UpperCamelCase =Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) __UpperCamelCase =image_processor(images=__UpperCamelCase , return_tensors='''pt''' ) __UpperCamelCase =timm_model(inputs['''pixel_values'''] ) __UpperCamelCase =model(**__UpperCamelCase ).logits assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__UpperCamelCase ) model.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization='''nandwalritik''' , commit_message='''Add model''' , ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowercase = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
85
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __lowercase = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class _lowercase ( __a ): """simple docstring""" lowercase__ = '''albert''' def __init__( self : List[Any] , UpperCamelCase__ : List[Any]=30000 , UpperCamelCase__ : int=128 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Optional[Any]=12 , UpperCamelCase__ : Dict=1 , UpperCamelCase__ : Union[str, Any]=64 , UpperCamelCase__ : Any=16384 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : Optional[int]="gelu_new" , UpperCamelCase__ : int=0 , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : Dict=512 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : Tuple=1E-12 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Dict="absolute" , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : int=2 , UpperCamelCase__ : Optional[Any]=3 , **UpperCamelCase__ : List[str] , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase =vocab_size __UpperCamelCase =embedding_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_hidden_groups __UpperCamelCase =num_attention_heads __UpperCamelCase =inner_group_num __UpperCamelCase =hidden_act __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps __UpperCamelCase =classifier_dropout_prob __UpperCamelCase =position_embedding_type class _lowercase ( __a ): """simple docstring""" @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCamelCase ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
85
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: a__ : Union[str, Any] = None a__ : Optional[Any] = logging.get_logger(__name__) a__ : Optional[int] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Optional[int] = { '''vocab_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/spiece.model''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json''', }, } a__ : List[str] = { '''google/fnet-base''': 5_1_2, '''google/fnet-large''': 5_1_2, } a__ : Union[str, Any] = '''▁''' class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : List[Any] = VOCAB_FILES_NAMES snake_case__ : int = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : List[str] = ["input_ids", "token_type_ids"] snake_case__ : Tuple = FNetTokenizer def __init__( self : str , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : List[Any]="<unk>" , UpperCAmelCase__ : Dict="[SEP]" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : Any="[CLS]" , UpperCAmelCase__ : List[Any]="[MASK]" , **UpperCAmelCase__ : Union[str, Any] , ) -> str: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __SCREAMING_SNAKE_CASE = ( AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ , normalized=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token ) super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , remove_space=UpperCAmelCase__ , keep_accents=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , **UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = do_lower_case __SCREAMING_SNAKE_CASE = remove_space __SCREAMING_SNAKE_CASE = keep_accents __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = False if not self.vocab_file else True def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file , UpperCAmelCase__ ) return (out_vocab_file,)
54
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Any ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : List[str] ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : int , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Optional[int] ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Any ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Optional[Any] ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : int , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : List[str] ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[Any] , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : List[Any] ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : List[str] ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[Any] , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : List[str] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[str] ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[str] , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Any , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : str , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Any ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Optional[Any] ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : int , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Dict , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : List[Any] ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Optional[Any] ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Any ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : List[str] ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : Optional[int] ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(cls , ['flax'] )
224
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a: List[str] = logging.get_logger(__name__) __a: str = { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""", """google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""", """google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "big_bird" def __init__( self , __lowerCAmelCase=50358 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu_new" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=4096 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=True , __lowerCAmelCase=0 , __lowerCAmelCase=1 , __lowerCAmelCase=2 , __lowerCAmelCase=66 , __lowerCAmelCase="block_sparse" , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=64 , __lowerCAmelCase=3 , __lowerCAmelCase=None , **__lowerCAmelCase , ) -> Optional[int]: super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , sep_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase__ : Tuple = vocab_size lowercase__ : List[str] = max_position_embeddings lowercase__ : Any = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Union[str, Any] = intermediate_size lowercase__ : int = hidden_act lowercase__ : Tuple = hidden_dropout_prob lowercase__ : Optional[int] = attention_probs_dropout_prob lowercase__ : Optional[int] = initializer_range lowercase__ : Optional[int] = type_vocab_size lowercase__ : int = layer_norm_eps lowercase__ : Dict = use_cache lowercase__ : Optional[Any] = rescale_embeddings lowercase__ : List[Any] = attention_type lowercase__ : Tuple = use_bias lowercase__ : Union[str, Any] = block_size lowercase__ : Optional[Any] = num_random_blocks lowercase__ : Union[str, Any] = classifier_dropout class UpperCAmelCase ( a__ ): '''simple docstring''' @property def _lowerCAmelCase( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowercase__ : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__ : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
214
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = DDIMPipeline SCREAMING_SNAKE_CASE = UNCONDITIONAL_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } SCREAMING_SNAKE_CASE = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowercase__ : Optional[int] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) lowercase__ : Any = DDIMScheduler() lowercase__ : Union[str, Any] = {'''unet''': unet, '''scheduler''': scheduler} return components def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=0 ) -> int: if str(__lowerCAmelCase ).startswith('''mps''' ): lowercase__ : Optional[Any] = torch.manual_seed(__lowerCAmelCase ) else: lowercase__ : int = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase__ : List[Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : int = '''cpu''' lowercase__ : Optional[Any] = self.get_dummy_components() lowercase__ : str = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : str = self.get_dummy_inputs(__lowerCAmelCase ) lowercase__ : str = pipe(**__lowerCAmelCase ).images lowercase__ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) lowercase__ : Optional[int] = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) lowercase__ : Optional[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCAmelCase , 1E-3 ) def _lowerCAmelCase( self ) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _lowerCAmelCase( self ) -> List[str]: super().test_save_load_local(expected_max_difference=3E-3 ) def _lowerCAmelCase( self ) -> Tuple: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _lowerCAmelCase( self ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : List[str] = '''google/ddpm-cifar10-32''' lowercase__ : List[Any] = UNetaDModel.from_pretrained(__lowerCAmelCase ) lowercase__ : str = DDIMScheduler() lowercase__ : List[Any] = DDIMPipeline(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) ddim.to(__lowerCAmelCase ) ddim.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : Dict = torch.manual_seed(0 ) lowercase__ : Optional[int] = ddim(generator=__lowerCAmelCase , eta=0.0 , output_type='''numpy''' ).images lowercase__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ : Optional[int] = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : Optional[Any] = '''google/ddpm-ema-bedroom-256''' lowercase__ : Tuple = UNetaDModel.from_pretrained(__lowerCAmelCase ) lowercase__ : Union[str, Any] = DDIMScheduler.from_pretrained(__lowerCAmelCase ) lowercase__ : List[Any] = DDIMPipeline(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) ddpm.to(__lowerCAmelCase ) ddpm.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : Union[str, Any] = torch.manual_seed(0 ) lowercase__ : Optional[Any] = ddpm(generator=__lowerCAmelCase , output_type='''numpy''' ).images lowercase__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__ : Union[str, Any] = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
214
1
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging A__ : Tuple =logging.get_logger(__name__) class UpperCAmelCase : _lowercase: str _lowercase: str = None @staticmethod def lowercase__ ( ) -> Dict: raise NotImplementedError def lowercase__ ( self : List[str] , __snake_case : List[Any] , __snake_case : int , __snake_case : str , **__snake_case : str ) -> str: raise NotImplementedError def lowercase__ ( self : Any , __snake_case : Any ) -> str: raise NotImplementedError def lowercase__ ( self : Dict ) -> Tuple: if not self.is_available(): raise RuntimeError( f"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}." ) @classmethod def lowercase__ ( cls : Optional[Any] ) -> str: return f"`pip install {cls.pip_package or cls.name}`" class UpperCAmelCase ( snake_case_ ): _lowercase: Union[str, Any] = '''optuna''' @staticmethod def lowercase__ ( ) -> List[str]: return is_optuna_available() def lowercase__ ( self : Tuple , __snake_case : Optional[Any] , __snake_case : int , __snake_case : str , **__snake_case : Dict ) -> Tuple: return run_hp_search_optuna(__snake_case , __snake_case , __snake_case , **__snake_case ) def lowercase__ ( self : List[str] , __snake_case : List[Any] ) -> Optional[Any]: return default_hp_space_optuna(__snake_case ) class UpperCAmelCase ( snake_case_ ): _lowercase: List[Any] = '''ray''' _lowercase: Union[str, Any] = '''\'ray[tune]\'''' @staticmethod def lowercase__ ( ) -> Any: return is_ray_available() def lowercase__ ( self : Dict , __snake_case : Dict , __snake_case : int , __snake_case : str , **__snake_case : List[str] ) -> List[str]: return run_hp_search_ray(__snake_case , __snake_case , __snake_case , **__snake_case ) def lowercase__ ( self : int , __snake_case : Dict ) -> Union[str, Any]: return default_hp_space_ray(__snake_case ) class UpperCAmelCase ( snake_case_ ): _lowercase: str = '''sigopt''' @staticmethod def lowercase__ ( ) -> List[Any]: return is_sigopt_available() def lowercase__ ( self : Optional[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : str , **__snake_case : Union[str, Any] ) -> str: return run_hp_search_sigopt(__snake_case , __snake_case , __snake_case , **__snake_case ) def lowercase__ ( self : Union[str, Any] , __snake_case : str ) -> Union[str, Any]: return default_hp_space_sigopt(__snake_case ) class UpperCAmelCase ( snake_case_ ): _lowercase: List[Any] = '''wandb''' @staticmethod def lowercase__ ( ) -> int: return is_wandb_available() def lowercase__ ( self : List[str] , __snake_case : Optional[Any] , __snake_case : int , __snake_case : str , **__snake_case : List[str] ) -> Optional[int]: return run_hp_search_wandb(__snake_case , __snake_case , __snake_case , **__snake_case ) def lowercase__ ( self : int , __snake_case : Optional[Any] ) -> Any: return default_hp_space_wandb(__snake_case ) A__ : int ={ HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowerCAmelCase ) > 0: _lowerCAmelCase = available_backends[0].name if len(lowerCAmelCase ) > 1: logger.info( f"{len(lowerCAmelCase )} hyperparameter search backends available. Using {name} as the default." ) return name raise RuntimeError( """No hyperparameter search backend available.\n""" + """\n""".join( f" - To install {backend.name} run {backend.pip_install()}" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
70
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=6 , _UpperCAmelCase=17 , _UpperCAmelCase=23 , _UpperCAmelCase=11 , _UpperCAmelCase=True , ): __a : str = parent __a : Any = batch_size __a : Any = seq_length __a : Optional[int] = act_dim __a : Any = state_dim __a : str = hidden_size __a : List[str] = max_length __a : Dict = is_training def _lowerCamelCase ( self ): __a : Dict = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) __a : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) __a : int = floats_tensor((self.batch_size, self.seq_length, 1) ) __a : List[str] = floats_tensor((self.batch_size, self.seq_length, 1) ) __a : Optional[Any] = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) __a : str = random_attention_mask((self.batch_size, self.seq_length) ) __a : Dict = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def _lowerCamelCase ( self ): return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __a : Union[str, Any] = DecisionTransformerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : int = model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def _lowerCamelCase ( self ): __a : Optional[Any] = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : List[str] = config_and_inputs __a : Dict = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class __lowercase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = (DecisionTransformerModel,) if is_torch_available() else () __lowerCAmelCase = () __lowerCAmelCase = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __lowerCAmelCase = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def _lowerCamelCase ( self ): __a : str = DecisionTransformerModelTester(self ) __a : Any = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() def _lowerCamelCase ( self ): __a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Dict = DecisionTransformerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _lowerCamelCase ( self ): __a , __a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Optional[int] = model_class(_UpperCAmelCase ) __a : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : Optional[int] = [*signature.parameters.keys()] __a : Union[str, Any] = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(_UpperCAmelCase )] , _UpperCAmelCase ) @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): __a : Dict = 2 # number of steps of autoregressive prediction we will perform __a : List[str] = 10 # defined by the RL environment, may be normalized __a : Union[str, Any] = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) __a : str = model.to(_UpperCAmelCase ) __a : str = model.config torch.manual_seed(0 ) __a : List[str] = torch.randn(1 , 1 , config.state_dim ).to(device=_UpperCAmelCase , dtype=torch.floataa ) # env.reset() __a : List[str] = torch.tensor( [[0.2_4_2_7_9_3, -0.2_8_6_9_3_0_7_4, 0.8_7_4_2_6_1_3], [0.6_7_8_1_5_2_7_4, -0.0_8_1_0_1_0_8_5, -0.1_2_9_5_2_1_4_7]] , device=_UpperCAmelCase ) __a : str = torch.tensor(_UpperCAmelCase , device=_UpperCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) __a : str = state __a : List[Any] = torch.zeros(1 , 0 , config.act_dim , device=_UpperCAmelCase , dtype=torch.floataa ) __a : List[Any] = torch.zeros(1 , 0 , device=_UpperCAmelCase , dtype=torch.floataa ) __a : int = torch.tensor(0 , device=_UpperCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(_UpperCAmelCase ): __a : Optional[int] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_UpperCAmelCase )] , dim=1 ) __a : Any = torch.cat([rewards, torch.zeros(1 , 1 , device=_UpperCAmelCase )] , dim=1 ) __a : Any = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): __a , __a , __a : int = model( states=_UpperCAmelCase , actions=_UpperCAmelCase , rewards=_UpperCAmelCase , returns_to_go=_UpperCAmelCase , timesteps=_UpperCAmelCase , attention_mask=_UpperCAmelCase , return_dict=_UpperCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) __a , __a , __a , __a : Dict = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=_UpperCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) __a : int = action_pred[0, -1] __a : int = torch.cat([states, state] , dim=1 ) __a : Any = returns_to_go[0, -1] - reward __a : Dict = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) __a : Optional[Any] = torch.cat( [timesteps, torch.ones((1, 1) , device=_UpperCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
160
0
def lowerCAmelCase__ ( a__: list ) -> list: '''simple docstring''' if any(not isinstance(a__ , a__ ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(a__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(a__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
364
from __future__ import annotations from PIL import Image # Define glider example lowerCAmelCase__ :str = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example lowerCAmelCase__ :Any = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowerCAmelCase__ ( a__: list[list[int]] ) -> list[list[int]]: '''simple docstring''' _UpperCAmelCase = [] for i in range(len(a__ ) ): _UpperCAmelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours _UpperCAmelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(a__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(a__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(a__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. _UpperCAmelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(a__ ) return next_generation def lowerCAmelCase__ ( a__: list[list[int]] , a__: int ) -> list[Image.Image]: '''simple docstring''' _UpperCAmelCase = [] for _ in range(a__ ): # Create output image _UpperCAmelCase = Image.new('RGB' , (len(cells[0] ), len(a__ )) ) _UpperCAmelCase = img.load() # Save cells to image for x in range(len(a__ ) ): for y in range(len(cells[0] ) ): _UpperCAmelCase = 2_5_5 - cells[y][x] * 2_5_5 _UpperCAmelCase = (colour, colour, colour) # Save image images.append(a__ ) _UpperCAmelCase = new_generation(a__ ) return images if __name__ == "__main__": lowerCAmelCase__ :Tuple = generate_images(GLIDER, 1_6) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
185
0
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def UpperCAmelCase_ ( __snake_case , __snake_case=False ) -> Optional[Any]: """simple docstring""" _lowercase =OmegaConf.load(_UpperCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_UpperCamelCase ) ) ) return config def UpperCAmelCase_ ( __snake_case , __snake_case=None , __snake_case=None ) -> Optional[Any]: """simple docstring""" if conf_path is None: _lowercase ='''./model_checkpoints/vqgan_only.yaml''' _lowercase =load_config(_UpperCamelCase , display=_UpperCamelCase ) _lowercase =VQModel(**config.model.params ) if ckpt_path is None: _lowercase ='''./model_checkpoints/vqgan_only.pt''' _lowercase =torch.load(_UpperCamelCase , map_location=_UpperCamelCase ) if ".ckpt" in ckpt_path: _lowercase =sd['''state_dict'''] model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) model.to(_UpperCamelCase ) del sd return model def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Dict: """simple docstring""" _lowercase , _lowercase , _lowercase =model.encode(_UpperCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _lowercase =model.decode(_UpperCamelCase ) return xrec def UpperCAmelCase_ ( __snake_case , __snake_case=False ) -> int: """simple docstring""" _lowercase , _lowercase =string.rsplit('''.''' , 1 ) if reload: _lowercase =importlib.import_module(_UpperCamelCase ) importlib.reload(_UpperCamelCase ) return getattr(importlib.import_module(_UpperCamelCase , package=_UpperCamelCase ) , cls ) def UpperCAmelCase_ ( __snake_case ) -> List[str]: """simple docstring""" if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=True , __snake_case=True ) -> Union[str, Any]: """simple docstring""" _lowercase =instantiate_from_config(_UpperCamelCase ) if sd is not None: model.load_state_dict(_UpperCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> List[Any]: """simple docstring""" if ckpt: _lowercase =torch.load(_UpperCamelCase , map_location='''cpu''' ) _lowercase =pl_sd['''global_step'''] print(F"loaded model from global step {global_step}." ) else: _lowercase ={'''state_dict''': None} _lowercase =None _lowercase =load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=_UpperCamelCase , eval_mode=_UpperCamelCase )['''model'''] return model, global_step
5
'''simple docstring''' from __future__ import annotations import math def _lowerCAmelCase ( _UpperCamelCase : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( _UpperCamelCase : int ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =str(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =[n] for i in range(1 , len(_UpperCamelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def _lowerCAmelCase ( _UpperCamelCase : int ) -> bool: """simple docstring""" if len(str(_UpperCamelCase ) ) > 3: if not is_prime(int(str(_UpperCamelCase )[-3:] ) ) or not is_prime(int(str(_UpperCamelCase )[:3] ) ): return False return True def _lowerCAmelCase ( _UpperCamelCase : int = 11 ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =13 while len(_UpperCamelCase ) != count: if validate(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =list_truncated_nums(_UpperCamelCase ) if all(is_prime(_UpperCamelCase ) for i in list_nums ): list_truncated_primes.append(_UpperCamelCase ) num += 2 return list_truncated_primes def _lowerCAmelCase ( ) -> int: """simple docstring""" return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f'''{sum(compute_truncated_primes(1_1)) = }''')
47
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A : Dict = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
362
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __UpperCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ (self : Dict): A = tempfile.mkdtemp() A = BlipImageProcessor() A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model") A = BlipaProcessor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) processor.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE__ (self : Dict , **__SCREAMING_SNAKE_CASE : Any): return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE).tokenizer def SCREAMING_SNAKE_CASE__ (self : Tuple , **__SCREAMING_SNAKE_CASE : int): return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE).image_processor def SCREAMING_SNAKE_CASE__ (self : Optional[int]): shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE__ (self : Any): A = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta)] A = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1)) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ (self : Any): A = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) A = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)") A = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0) A = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , __SCREAMING_SNAKE_CASE) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = self.prepare_image_inputs() A = image_processor(__SCREAMING_SNAKE_CASE , return_tensors="np") A = processor(images=__SCREAMING_SNAKE_CASE , return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def SCREAMING_SNAKE_CASE__ (self : Tuple): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = "lower newer" A = processor(text=__SCREAMING_SNAKE_CASE) A = tokenizer(__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = "lower newer" A = self.prepare_image_inputs() A = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE) self.assertListEqual(list(inputs.keys()) , ["pixel_values", "input_ids", "attention_mask"]) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE): processor() def SCREAMING_SNAKE_CASE__ (self : List[Any]): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A = processor.batch_decode(__SCREAMING_SNAKE_CASE) A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = "lower newer" A = self.prepare_image_inputs() A = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ["pixel_values", "input_ids", "attention_mask"])
57
0
"""simple docstring""" from __future__ import annotations _a = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = graph # mapping node to its parent in resulting breadth first tree UpperCAmelCase_ : dict[str, str | None] = {} UpperCAmelCase_ : Optional[Any] = source_vertex def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = {self.source_vertex} UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = [self.source_vertex] # first in first out queue while queue: UpperCAmelCase_ : int = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowercase_ ) UpperCAmelCase_ : Dict = vertex queue.append(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex UpperCAmelCase_ : List[str] = self.parent.get(lowercase_ ) if target_vertex_parent is None: UpperCAmelCase_ : str = ( F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(lowercase_ ) return self.shortest_path(lowercase_ ) + F"""->{target_vertex}""" if __name__ == "__main__": _a = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
61
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: _a = None _a = logging.get_logger(__name__) _a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _a = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } _a = { 'google/fnet-base': 512, 'google/fnet-large': 512, } _a = '▁' class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""input_ids""", """token_type_ids"""] SCREAMING_SNAKE_CASE__ : Tuple = FNetTokenizer def __init__( self , lowercase_=None , lowercase_=None , lowercase_=False , lowercase_=True , lowercase_=True , lowercase_="<unk>" , lowercase_="[SEP]" , lowercase_="<pad>" , lowercase_="[CLS]" , lowercase_="[MASK]" , **lowercase_ , ): """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCAmelCase_ : int = ( AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ , normalized=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token ) super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , ) UpperCAmelCase_ : Any = do_lower_case UpperCAmelCase_ : Tuple = remove_space UpperCAmelCase_ : str = keep_accents UpperCAmelCase_ : Any = vocab_file UpperCAmelCase_ : List[Any] = False if not self.vocab_file else True def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Tuple = [self.sep_token_id] UpperCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Any = [self.sep_token_id] UpperCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : List[str] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
61
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase__( __lowercase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCamelCase , "tf_padding" ) ) self.parent.assertTrue(hasattr(__lowerCamelCase , "depth_multiplier" ) ) class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=3 , __lowerCamelCase=3_2 , __lowerCamelCase=0.25 , __lowerCamelCase=8 , __lowerCamelCase=8 , __lowerCamelCase=6 , __lowerCamelCase=3_2 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase="relu6" , __lowerCamelCase=1_2_8_0 , __lowerCamelCase=0.1 , __lowerCamelCase=0.02 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=1_0 , __lowerCamelCase=None , ) -> int: _SCREAMING_SNAKE_CASE : Dict = parent _SCREAMING_SNAKE_CASE : Optional[Any] = batch_size _SCREAMING_SNAKE_CASE : str = num_channels _SCREAMING_SNAKE_CASE : Any = image_size _SCREAMING_SNAKE_CASE : List[str] = depth_multiplier _SCREAMING_SNAKE_CASE : Tuple = depth_divisible_by _SCREAMING_SNAKE_CASE : Tuple = min_depth _SCREAMING_SNAKE_CASE : int = expand_ratio _SCREAMING_SNAKE_CASE : int = tf_padding _SCREAMING_SNAKE_CASE : List[str] = output_stride _SCREAMING_SNAKE_CASE : Union[str, Any] = first_layer_is_expansion _SCREAMING_SNAKE_CASE : Optional[int] = finegrained_output _SCREAMING_SNAKE_CASE : int = hidden_act _SCREAMING_SNAKE_CASE : List[str] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) _SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout_prob _SCREAMING_SNAKE_CASE : int = use_labels _SCREAMING_SNAKE_CASE : str = is_training _SCREAMING_SNAKE_CASE : Dict = num_labels _SCREAMING_SNAKE_CASE : Any = initializer_range _SCREAMING_SNAKE_CASE : Dict = scope def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE : List[str] = None _SCREAMING_SNAKE_CASE : int = None if self.use_labels: _SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) _SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _SCREAMING_SNAKE_CASE : Optional[int] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self ) -> Optional[int]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: _SCREAMING_SNAKE_CASE : int = MobileNetVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : Union[str, Any] = model(__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : str = self.num_labels _SCREAMING_SNAKE_CASE : List[Any] = MobileNetVaForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : Tuple = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Any = self.num_labels _SCREAMING_SNAKE_CASE : Optional[int] = MobileNetVaForSemanticSegmentation(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : str = model(__lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE : List[Any] = config_and_inputs _SCREAMING_SNAKE_CASE : List[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) __snake_case = ( { 'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification, 'image-segmentation': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) __snake_case = False __snake_case = False __snake_case = False __snake_case = False def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Tuple = MobileNetVaModelTester(self ) _SCREAMING_SNAKE_CASE : List[Any] = MobileNetVaConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV2 does not use inputs_embeds" ) def UpperCamelCase_ ( self ) -> Union[str, Any]: pass @unittest.skip(reason="MobileNetV2 does not support input and output embeddings" ) def UpperCamelCase_ ( self ) -> int: pass @unittest.skip(reason="MobileNetV2 does not output attentions" ) def UpperCamelCase_ ( self ) -> Any: pass def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Dict = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE : List[str] = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> List[str]: def check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE : List[Any] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : str = outputs.hidden_states _SCREAMING_SNAKE_CASE : str = 1_6 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : List[str] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE : int = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCamelCase ) @slow def UpperCamelCase_ ( self ) -> List[Any]: for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> Tuple: return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v2_1.0_224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : List[str] = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224" ).to(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.default_image_processor _SCREAMING_SNAKE_CASE : List[str] = prepare_img() _SCREAMING_SNAKE_CASE : int = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE : Optional[Any] = model(**__lowerCamelCase ) # verify the logits _SCREAMING_SNAKE_CASE : Optional[int] = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Tuple = MobileNetVaForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) _SCREAMING_SNAKE_CASE : Dict = model.to(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = MobileNetVaImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_img() _SCREAMING_SNAKE_CASE : Any = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE : Optional[int] = model(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = outputs.logits # verify the logits _SCREAMING_SNAKE_CASE : int = torch.Size((1, 2_1, 6_5, 6_5) ) self.assertEqual(logits.shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowerCamelCase , atol=1E-4 ) )
371
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowerCAmelCase__( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , __lowerCamelCase = 1_2_8 , __lowerCamelCase = 2_5_6 , __lowerCamelCase = 2000.0 , __lowerCamelCase = 7_6_8 , __lowerCamelCase = 1_2 , __lowerCamelCase = 1_2 , __lowerCamelCase = 6_4 , __lowerCamelCase = 2_0_4_8 , __lowerCamelCase = 0.1 , ) -> int: super().__init__() _SCREAMING_SNAKE_CASE : Optional[int] = nn.Sequential( nn.Linear(__lowerCamelCase , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , ) _SCREAMING_SNAKE_CASE : str = nn.Embedding(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(p=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList() for lyr_num in range(__lowerCamelCase ): # FiLM conditional T5 decoder _SCREAMING_SNAKE_CASE : Optional[int] = DecoderLayer(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) self.decoders.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = TaLayerNorm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = nn.Dropout(p=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _SCREAMING_SNAKE_CASE : Tuple = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _SCREAMING_SNAKE_CASE : str = self.conditioning_emb(__lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _SCREAMING_SNAKE_CASE : Tuple = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _SCREAMING_SNAKE_CASE : Optional[int] = torch.broadcast_to( torch.arange(__lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.position_encoding(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.continuous_inputs_projection(__lowerCamelCase ) inputs += position_encodings _SCREAMING_SNAKE_CASE : Any = self.dropout(__lowerCamelCase ) # decoder: No padding present. _SCREAMING_SNAKE_CASE : Any = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _SCREAMING_SNAKE_CASE : List[str] = [(x, self.encoder_decoder_mask(__lowerCamelCase , __lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings _SCREAMING_SNAKE_CASE : Tuple = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _SCREAMING_SNAKE_CASE : Optional[Any] = lyr( __lowerCamelCase , conditioning_emb=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , )[0] _SCREAMING_SNAKE_CASE : int = self.decoder_norm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self.post_dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = self.spec_out(__lowerCamelCase ) return spec_out class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=1E-6 ) -> Dict: super().__init__() _SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase ) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : int = self.layer[0]( __lowerCamelCase , conditioning_emb=__lowerCamelCase , attention_mask=__lowerCamelCase , ) if encoder_hidden_states is not None: _SCREAMING_SNAKE_CASE : str = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _SCREAMING_SNAKE_CASE : Tuple = self.layer[1]( __lowerCamelCase , key_value_states=__lowerCamelCase , attention_mask=__lowerCamelCase , ) # Apply Film Conditional Feed Forward layer _SCREAMING_SNAKE_CASE : Optional[Any] = self.layer[-1](__lowerCamelCase , __lowerCamelCase ) return (hidden_states,) class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]: # pre_self_attention_layer_norm _SCREAMING_SNAKE_CASE : int = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: _SCREAMING_SNAKE_CASE : Any = self.FiLMLayer(__lowerCamelCase , __lowerCamelCase ) # Self-attention block _SCREAMING_SNAKE_CASE : Optional[int] = self.attention(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: super().__init__() _SCREAMING_SNAKE_CASE : Optional[Any] = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> List[Any]: _SCREAMING_SNAKE_CASE : Tuple = self.layer_norm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.attention( __lowerCamelCase , encoder_hidden_states=__lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + self.dropout(__lowerCamelCase ) return layer_output class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Tuple = TaDenseGatedActDense(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.film(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = self.DenseReluDense(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = NewGELUActivation() def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any: _SCREAMING_SNAKE_CASE : Dict = self.act(self.wi_a(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Dict = self.wi_a(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = hidden_gelu * hidden_linear _SCREAMING_SNAKE_CASE : Optional[int] = self.dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = self.wo(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1E-6 ) -> int: super().__init__() _SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.ones(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : str = eps def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[Any]: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _SCREAMING_SNAKE_CASE : Tuple = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _SCREAMING_SNAKE_CASE : str = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def UpperCamelCase_ ( self , __lowerCamelCase ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(__lowerCamelCase , 3.0 )) )) class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Any = nn.Linear(__lowerCamelCase , out_features * 2 , bias=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : List[Any] = self.scale_bias(__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = torch.chunk(__lowerCamelCase , 2 , -1 ) _SCREAMING_SNAKE_CASE : Optional[int] = x * (1 + scale) + shift return x
325
0
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset a ="""bert-base-cased""" a ="""google/pegasus-xsum""" a =[""" Sam ate lunch today.""", """Sams lunch ingredients."""] a =["""A very interesting story about what I ate for lunch.""", """Avocado, celery, turkey, coffee"""] a ="""patrickvonplaten/t5-tiny-random""" a ="""sshleifer/bart-tiny-random""" a ="""sshleifer/tiny-mbart""" a ="""sshleifer/tiny-marian-en-de""" def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> int: __lowerCamelCase : str = '\n'.join(lowerCamelCase__ ) Path(lowerCamelCase__ ).open('w' ).writelines(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Union[str, Any]: for split in ["train", "val", "test"]: _dump_articles(os.path.join(lowerCamelCase__ , F"{split}.source" ) , lowerCamelCase__ ) _dump_articles(os.path.join(lowerCamelCase__ , F"{split}.target" ) , lowerCamelCase__ ) return tmp_dir class A_ ( SCREAMING_SNAKE_CASE ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] ,) @slow def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Tuple): __lowerCamelCase : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) __lowerCamelCase : Union[str, Any] = max(len(tokenizer.encode(SCREAMING_SNAKE_CASE__)) for a in ARTICLES) __lowerCamelCase : List[str] = max(len(tokenizer.encode(SCREAMING_SNAKE_CASE__)) for a in SUMMARIES) __lowerCamelCase : str = 4 __lowerCamelCase : List[str] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __lowerCamelCase , __lowerCamelCase : Dict = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. __lowerCamelCase : Dict = SeqaSeqDataset( SCREAMING_SNAKE_CASE__ ,data_dir=SCREAMING_SNAKE_CASE__ ,type_path='train' ,max_source_length=SCREAMING_SNAKE_CASE__ ,max_target_length=SCREAMING_SNAKE_CASE__ ,src_lang=SCREAMING_SNAKE_CASE__ ,tgt_lang=SCREAMING_SNAKE_CASE__ ,) __lowerCamelCase : Any = DataLoader(SCREAMING_SNAKE_CASE__ ,batch_size=2 ,collate_fn=train_dataset.collate_fn) for batch in dataloader: assert isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __lowerCamelCase : Union[str, Any] = shift_tokens_right(batch['labels'] ,tokenizer.pad_token_id) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED]) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Any): __lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) __lowerCamelCase : List[Any] = max(len(tokenizer.encode(SCREAMING_SNAKE_CASE__)) for a in ARTICLES) __lowerCamelCase : List[Any] = max(len(tokenizer.encode(SCREAMING_SNAKE_CASE__)) for a in SUMMARIES) __lowerCamelCase : Dict = 4 __lowerCamelCase : List[Any] = LegacySeqaSeqDataset( SCREAMING_SNAKE_CASE__ ,data_dir=SCREAMING_SNAKE_CASE__ ,type_path='train' ,max_source_length=2_0 ,max_target_length=SCREAMING_SNAKE_CASE__ ,) __lowerCamelCase : Optional[Any] = DataLoader(SCREAMING_SNAKE_CASE__ ,batch_size=2 ,collate_fn=train_dataset.collate_fn) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 2_0 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def lowerCAmelCase ( self : List[str]): __lowerCamelCase : int = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25') __lowerCamelCase : int = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) __lowerCamelCase : Union[str, Any] = tmp_dir.joinpath('train.source').open().readlines() __lowerCamelCase : str = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) pack_data_dir(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,1_2_8 ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = {x.name for x in tmp_dir.iterdir()} __lowerCamelCase : Optional[int] = {x.name for x in save_dir.iterdir()} __lowerCamelCase : int = save_dir.joinpath('train.source').open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(SCREAMING_SNAKE_CASE__) < len(SCREAMING_SNAKE_CASE__) assert len(SCREAMING_SNAKE_CASE__) == 1 assert len(packed_examples[0]) == sum(len(SCREAMING_SNAKE_CASE__) for x in orig_examples) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE ,reason='This test requires fairseq') def lowerCAmelCase ( self : str): if not FAIRSEQ_AVAILABLE: return __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = self._get_dataset(max_len=6_4) __lowerCamelCase : Dict = 6_4 __lowerCamelCase : str = ds.make_dynamic_sampler(SCREAMING_SNAKE_CASE__ ,required_batch_size_multiple=SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = [len(SCREAMING_SNAKE_CASE__) for x in batch_sampler] assert len(set(SCREAMING_SNAKE_CASE__)) > 1 # it's not dynamic batch size if every batch is the same length assert sum(SCREAMING_SNAKE_CASE__) == len(SCREAMING_SNAKE_CASE__) # no dropped or added examples __lowerCamelCase : Union[str, Any] = DataLoader(SCREAMING_SNAKE_CASE__ ,batch_sampler=SCREAMING_SNAKE_CASE__ ,collate_fn=ds.collate_fn ,num_workers=2) __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : Tuple = [] for batch in data_loader: __lowerCamelCase : Tuple = batch['input_ids'].shape __lowerCamelCase : Dict = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __lowerCamelCase : int = np.product(batch['input_ids'].shape) num_src_per_batch.append(SCREAMING_SNAKE_CASE__) if num_src_tokens > (max_tokens * 1.1): failures.append(SCREAMING_SNAKE_CASE__) assert num_src_per_batch[0] == max(SCREAMING_SNAKE_CASE__) if failures: raise AssertionError(F"too many tokens in {len(SCREAMING_SNAKE_CASE__)} batches") def lowerCAmelCase ( self : Any): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = self._get_dataset(max_len=5_1_2) __lowerCamelCase : Optional[int] = 2 __lowerCamelCase : Dict = ds.make_sortish_sampler(SCREAMING_SNAKE_CASE__ ,shuffle=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = DataLoader(SCREAMING_SNAKE_CASE__ ,batch_size=SCREAMING_SNAKE_CASE__ ,collate_fn=ds.collate_fn ,num_workers=2) __lowerCamelCase : Any = DataLoader(SCREAMING_SNAKE_CASE__ ,batch_size=SCREAMING_SNAKE_CASE__ ,collate_fn=ds.collate_fn ,num_workers=2 ,sampler=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = tokenizer.pad_token_id def count_pad_tokens(SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Dict="input_ids"): return [batch[k].eq(SCREAMING_SNAKE_CASE__).sum().item() for batch in data_loader] assert sum(count_pad_tokens(SCREAMING_SNAKE_CASE__ ,k='labels')) < sum(count_pad_tokens(SCREAMING_SNAKE_CASE__ ,k='labels')) assert sum(count_pad_tokens(SCREAMING_SNAKE_CASE__)) < sum(count_pad_tokens(SCREAMING_SNAKE_CASE__)) assert len(SCREAMING_SNAKE_CASE__) == len(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : str=1_0_0_0 ,SCREAMING_SNAKE_CASE__ : Dict=1_2_8): if os.getenv('USE_REAL_DATA' ,SCREAMING_SNAKE_CASE__): __lowerCamelCase : int = 'examples/seq2seq/wmt_en_ro' __lowerCamelCase : str = max_len * 2 * 6_4 if not Path(SCREAMING_SNAKE_CASE__).joinpath('train.len').exists(): save_len_file(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) else: __lowerCamelCase : Dict = 'examples/seq2seq/test_data/wmt_en_ro' __lowerCamelCase : Any = max_len * 4 save_len_file(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = SeqaSeqDataset( SCREAMING_SNAKE_CASE__ ,data_dir=SCREAMING_SNAKE_CASE__ ,type_path='train' ,max_source_length=SCREAMING_SNAKE_CASE__ ,max_target_length=SCREAMING_SNAKE_CASE__ ,n_obs=SCREAMING_SNAKE_CASE__ ,) return ds, max_tokens, tokenizer def lowerCAmelCase ( self : str): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[str] = self._get_dataset() __lowerCamelCase : List[str] = set(DistributedSortishSampler(SCREAMING_SNAKE_CASE__ ,2_5_6 ,num_replicas=2 ,rank=0 ,add_extra_examples=SCREAMING_SNAKE_CASE__)) __lowerCamelCase : Any = set(DistributedSortishSampler(SCREAMING_SNAKE_CASE__ ,2_5_6 ,num_replicas=2 ,rank=1 ,add_extra_examples=SCREAMING_SNAKE_CASE__)) assert idsa.intersection(SCREAMING_SNAKE_CASE__) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] ,) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Optional[Any]): __lowerCamelCase : str = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ,use_fast=SCREAMING_SNAKE_CASE__) if tok_name == MBART_TINY: __lowerCamelCase : List[str] = SeqaSeqDataset( SCREAMING_SNAKE_CASE__ ,data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) ,type_path='train' ,max_source_length=4 ,max_target_length=8 ,src_lang='EN' ,tgt_lang='FR' ,) __lowerCamelCase : List[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __lowerCamelCase : Union[str, Any] = SeqaSeqDataset( SCREAMING_SNAKE_CASE__ ,data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) ,type_path='train' ,max_source_length=4 ,max_target_length=8 ,) __lowerCamelCase : Dict = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(SCREAMING_SNAKE_CASE__) == 1 if tok_name == BART_TINY else len(SCREAMING_SNAKE_CASE__) == 0
73
from __future__ import annotations from scipy.special import comb # type: ignore class A_ : def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : list[tuple[float, float]]): __lowerCamelCase : Union[str, Any] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowerCamelCase : int = len(SCREAMING_SNAKE_CASE__) - 1 def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : float): assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points)): # basis function for each i output_values.append( comb(self.degree ,SCREAMING_SNAKE_CASE__) * ((1 - t) ** (self.degree - i)) * (t**i)) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(SCREAMING_SNAKE_CASE__) ,5) == 1 return output_values def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : float): assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowerCamelCase : Tuple = self.basis_function(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = 0.0 __lowerCamelCase : Optional[Any] = 0.0 for i in range(len(self.list_of_points)): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : float = 0.01): from matplotlib import pyplot as plt # type: ignore __lowerCamelCase : list[float] = [] # x coordinates of points to plot __lowerCamelCase : list[float] = [] # y coordinates of points to plot __lowerCamelCase : Any = 0.0 while t <= 1: __lowerCamelCase : List[Any] = self.bezier_curve_function(SCREAMING_SNAKE_CASE__) to_plot_x.append(value[0]) to_plot_y.append(value[1]) t += step_size __lowerCamelCase : Optional[Any] = [i[0] for i in self.list_of_points] __lowerCamelCase : List[str] = [i[1] for i in self.list_of_points] plt.plot( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,color='blue' ,label='Curve of Degree ' + str(self.degree) ,) plt.scatter(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,color='red' ,label='Control Points') plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
73
1
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor lowercase : Any = logging.get_logger(__name__) class A__ ( __UpperCAmelCase ): """simple docstring""" def __init__( self , *lowercase , **lowercase) -> None: '''simple docstring''' warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , lowercase , ) super().__init__(*lowercase , **lowercase)
225
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowercase : str = logging.get_logger(__name__) lowercase : Optional[int] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowercase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A__ : """simple docstring""" __A : str = field( default=__UpperCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__UpperCAmelCase )} ) __A : str = field( default=__UpperCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) __A : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A : int = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) __A : int = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) __A : int = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) __A : bool = field( default=__UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) __A : bool = field( default=__UpperCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) __A : float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) __A : int = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) __A : int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) __A : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Dict = '''train''' __A : Tuple = '''dev''' class A__ ( __UpperCAmelCase ): """simple docstring""" __A : SquadDataTrainingArguments __A : List[SquadFeatures] __A : Split __A : bool def __init__( self , lowercase , lowercase , lowercase = None , lowercase = Split.train , lowercase = False , lowercase = None , lowercase = "pt" , ) -> str: '''simple docstring''' a__ : List[str] = args a__ : Any = is_language_sensitive a__ : Optional[Any] = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase , lowercase): try: a__ : Optional[int] = Split[mode] except KeyError: raise KeyError('mode is not a valid split name') a__ : List[Any] = mode # Load data features from cache or dataset file a__ : List[str] = 'v2' if args.version_2_with_negative else 'v1' a__ : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. a__ : List[Any] = cached_features_file + '.lock' with FileLock(lowercase): if os.path.exists(lowercase) and not args.overwrite_cache: a__ : List[Any] = time.time() a__ : Optional[Any] = torch.load(lowercase) # Legacy cache files have only features, while new cache files # will have dataset and examples also. a__ : List[str] = self.old_features['features'] a__ : int = self.old_features.get('dataset' , lowercase) a__ : Dict = self.old_features.get('examples' , lowercase) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' ' future run') else: if mode == Split.dev: a__ : Dict = self.processor.get_dev_examples(args.data_dir) else: a__ : int = self.processor.get_train_examples(args.data_dir) a__ , a__ : Any = squad_convert_examples_to_features( examples=self.examples , tokenizer=lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=lowercase , ) a__ : Tuple = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples} , lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]') def __len__( self) -> Tuple: '''simple docstring''' return len(self.features) def __getitem__( self , lowercase) -> Dict[str, torch.Tensor]: '''simple docstring''' a__ : Union[str, Any] = self.features[i] a__ : Optional[int] = torch.tensor(feature.input_ids , dtype=torch.long) a__ : Tuple = torch.tensor(feature.attention_mask , dtype=torch.long) a__ : Optional[Any] = torch.tensor(feature.token_type_ids , dtype=torch.long) a__ : str = torch.tensor(feature.cls_index , dtype=torch.long) a__ : Optional[Any] = torch.tensor(feature.p_mask , dtype=torch.float) a__ : Tuple = torch.tensor(feature.is_impossible , dtype=torch.float) a__ : str = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask}) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible}) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape , dtype=torch.intaa) * self.args.lang_id)}) if self.mode == Split.train: a__ : Dict = torch.tensor(feature.start_position , dtype=torch.long) a__ : str = torch.tensor(feature.end_position , dtype=torch.long) inputs.update({'start_positions': start_positions, 'end_positions': end_positions}) return inputs
225
1
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def __A (self ) -> Optional[Any]: _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _lowercase ='''xvjiarui/stable-diffusion-2-inpainting''' _lowercase , _lowercase =FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase , safety_checker=UpperCAmelCase ) _lowercase ='''Face of a yellow cat, high resolution, sitting on a park bench''' _lowercase =jax.random.PRNGKey(0 ) _lowercase =5_0 _lowercase =jax.device_count() _lowercase =num_samples * [prompt] _lowercase =num_samples * [init_image] _lowercase =num_samples * [mask_image] _lowercase , _lowercase , _lowercase =pipeline.prepare_inputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # shard inputs and rng _lowercase =replicate(UpperCAmelCase ) _lowercase =jax.random.split(UpperCAmelCase , jax.device_count() ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =pipeline( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ) _lowercase =output.images.reshape(UpperCAmelCase , 5_1_2 , 5_1_2 , 3 ) _lowercase =images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowercase =jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowercase =jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
5
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class snake_case : """simple docstring""" snake_case__ = 42 snake_case__ = None snake_case__ = None lowerCAmelCase__ : Union[str, Any] = namedtuple('CoinsDistribResult', 'moves excess') def a_ ( lowerCamelCase ): if root is None: return 0 # Validation def count_nodes(lowerCamelCase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowerCamelCase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowerCamelCase ) != count_coins(lowerCamelCase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowerCamelCase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) UpperCAmelCase__ , UpperCAmelCase__ = get_distrib(node.left ) UpperCAmelCase__ , UpperCAmelCase__ = get_distrib(node.right ) UpperCAmelCase__ = 1 - left_distrib_excess UpperCAmelCase__ = 1 - right_distrib_excess UpperCAmelCase__ = ( left_distrib_moves + right_distrib_moves + abs(lowerCamelCase ) + abs(lowerCamelCase ) ) UpperCAmelCase__ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowerCamelCase , lowerCamelCase ) return get_distrib(lowerCamelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
98
0
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class A_ ( A_ ): '''simple docstring''' def __init__( self : str , lowercase_ : Tuple , lowercase_ : int=13 , lowercase_ : Optional[Any]=7 , lowercase_ : Optional[int]=True , lowercase_ : List[Any]=True , lowercase_ : Optional[Any]=True , lowercase_ : str=True , lowercase_ : List[str]=99 , lowercase_ : str=32 , lowercase_ : List[Any]=5 , lowercase_ : List[Any]=4 , lowercase_ : Dict=37 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : Tuple=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[int]=512 , lowercase_ : Union[str, Any]=16 , lowercase_ : Any=2 , lowercase_ : Dict=0.02 , lowercase_ : Any=False , lowercase_ : Union[str, Any]=True , lowercase_ : List[Any]="None" , lowercase_ : Any=3 , lowercase_ : Optional[int]=4 , lowercase_ : List[Any]=None , ) -> Any: UpperCAmelCase : List[Any] = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : List[Any] = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : List[str] = use_input_mask UpperCAmelCase : List[Any] = use_token_type_ids UpperCAmelCase : List[Any] = use_labels UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : Any = attention_probs_dropout_prob UpperCAmelCase : List[str] = max_position_embeddings UpperCAmelCase : Dict = type_vocab_size UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : int = initializer_range UpperCAmelCase : Any = num_labels UpperCAmelCase : List[Any] = num_choices UpperCAmelCase : Dict = relative_attention UpperCAmelCase : Optional[int] = position_biased_input UpperCAmelCase : str = pos_att_type UpperCAmelCase : str = scope def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[int] = None if self.use_input_mask: UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase : List[str] = None if self.use_token_type_ids: UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : List[Any] = None UpperCAmelCase : Any = None UpperCAmelCase : Tuple = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self : Dict ) -> Any: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: UpperCAmelCase : int = self.get_config() UpperCAmelCase : Tuple = 300 return config def UpperCAmelCase_ ( self : int , lowercase_ : int ) -> List[Any]: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Tuple ) -> str: UpperCAmelCase : Optional[Any] = DebertaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase : str = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase )[0] UpperCAmelCase : List[str] = model(_lowerCamelCase , token_type_ids=_lowerCamelCase )[0] UpperCAmelCase : Any = model(_lowerCamelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCAmelCase_ ( self : str , lowercase_ : List[str] , lowercase_ : str , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : int ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = DebertaForMaskedLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase : List[str] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : Dict , lowercase_ : int , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : int ) -> List[Any]: UpperCAmelCase : Optional[Any] = self.num_labels UpperCAmelCase : str = DebertaForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase : Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_lowerCamelCase ) def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> List[Any]: UpperCAmelCase : List[Any] = self.num_labels UpperCAmelCase : Optional[int] = DebertaForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase : List[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : str ) -> Optional[int]: UpperCAmelCase : str = DebertaForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase : Any = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[Any] = config_and_inputs UpperCAmelCase : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A_ ( A_ , A_ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase_ : Dict = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : int = False UpperCAmelCase_ : Optional[int] = False def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: UpperCAmelCase : List[str] = DebertaModelTester(self ) UpperCAmelCase : List[Any] = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_lowerCamelCase ) def UpperCAmelCase_ ( self : Dict ) -> Tuple: UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_lowerCamelCase ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_lowerCamelCase ) def UpperCAmelCase_ ( self : str ) -> Any: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_lowerCamelCase ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Union[str, Any] = DebertaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='Model not available yet' ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: pass @slow def UpperCAmelCase_ ( self : int ) -> str: UpperCAmelCase : Dict = DebertaModel.from_pretrained('microsoft/deberta-base' ) UpperCAmelCase : Optional[int] = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) UpperCAmelCase : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase : str = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] # compare the actual values for a slice. UpperCAmelCase : Tuple = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1E-4 ) , f"""{output[:, 1:4, 1:4]}""" )
368
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class A_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any , lowercase_ : str , lowercase_ : Union[str, Any]=7 , lowercase_ : Union[str, Any]=3 , lowercase_ : int=30 , lowercase_ : Tuple=400 , lowercase_ : Tuple=True , lowercase_ : Optional[int]=None , lowercase_ : List[str]=0.9 , lowercase_ : Tuple=None , lowercase_ : Union[str, Any]=True , lowercase_ : int=[0.5, 0.5, 0.5] , lowercase_ : List[str]=[0.5, 0.5, 0.5] , ) -> Tuple: UpperCAmelCase : Optional[int] = size if size is not None else {'shortest_edge': 30} UpperCAmelCase : int = crop_size if crop_size is not None else {'height': 30, 'width': 30} UpperCAmelCase : Tuple = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : int = num_channels UpperCAmelCase : int = min_resolution UpperCAmelCase : Optional[int] = max_resolution UpperCAmelCase : str = do_resize_and_center_crop UpperCAmelCase : int = size UpperCAmelCase : Dict = crop_pct UpperCAmelCase : Union[str, Any] = crop_size UpperCAmelCase : Optional[int] = do_normalize UpperCAmelCase : Optional[Any] = image_mean UpperCAmelCase : Optional[Any] = image_std def UpperCAmelCase_ ( self : str ) -> int: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = PoolFormerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : Dict ) -> str: UpperCAmelCase : Any = PoolFormerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Tuple ) -> str: UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(lowercase_ , 'size' ) ) self.assertTrue(hasattr(lowercase_ , 'crop_pct' ) ) self.assertTrue(hasattr(lowercase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowercase_ , 'image_std' ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} ) UpperCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: pass def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: # Initialize image_processing UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input UpperCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase : str = image_processing(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase_ ( self : List[Any] ) -> Dict: # Initialize image_processing UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input UpperCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase : Optional[Any] = image_processing(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase_ ( self : str ) -> Dict: # Initialize image_processing UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input UpperCAmelCase : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
280
0
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __A ( lowerCAmelCase__ ): a__ : torch.FloatTensor a__ : Optional[torch.FloatTensor] = None def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : str=0.999 , snake_case_ : Any="cosine" , ) -> List[str]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case_ : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case_ : Tuple ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCAmelCase_ = [] for i in range(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = i / num_diffusion_timesteps UpperCAmelCase_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class __A ( lowerCAmelCase__ , lowerCAmelCase__ ): @register_to_config def __init__(self : str , __a : Dict = 1000 , __a : Optional[Any] = "fixed_small_log" , __a : int = True , __a : List[Any] = 1.0 , __a : Any = "epsilon" , __a : Dict = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) UpperCAmelCase_ = betas_for_alpha_bar(UpperCamelCase__ ) UpperCAmelCase_ = 1.0 - self.betas UpperCAmelCase_ = torch.cumprod(self.alphas , dim=0 ) UpperCAmelCase_ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase_ = 1.0 # setable values UpperCAmelCase_ = None UpperCAmelCase_ = torch.from_numpy(np.arange(0 , UpperCamelCase__ )[::-1].copy() ) UpperCAmelCase_ = variance_type def _lowercase (self : List[str] , __a : int , __a : Tuple = None ): return sample def _lowercase (self : Optional[int] , __a : List[str] , __a : Optional[Any] = None ): UpperCAmelCase_ = num_inference_steps UpperCAmelCase_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase_ = (np.arange(0 , UpperCamelCase__ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase_ = torch.from_numpy(UpperCamelCase__ ).to(UpperCamelCase__ ) def _lowercase (self : str , __a : Dict , __a : List[Any]=None , __a : Any=None , __a : Any=None ): if prev_timestep is None: UpperCAmelCase_ = t - 1 UpperCAmelCase_ = self.alphas_cumprod[t] UpperCAmelCase_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase_ = 1 - alpha_prod_t UpperCAmelCase_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase_ = self.betas[t] else: UpperCAmelCase_ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase_ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase_ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase_ = torch.log(torch.clamp(UpperCamelCase__ , min=1E-20 ) ) UpperCAmelCase_ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase_ = variance.log() UpperCAmelCase_ = beta.log() UpperCAmelCase_ = (predicted_variance + 1) / 2 UpperCAmelCase_ = frac * max_log + (1 - frac) * min_log return variance def _lowercase (self : int , __a : List[Any] , __a : Dict , __a : Any , __a : str = None , __a : Dict=None , __a : Dict = True , ): UpperCAmelCase_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase_ = torch.split(UpperCamelCase__ , sample.shape[1] , dim=1 ) else: UpperCAmelCase_ = None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase_ = t - 1 UpperCAmelCase_ = self.alphas_cumprod[t] UpperCAmelCase_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase_ = 1 - alpha_prod_t UpperCAmelCase_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase_ = self.betas[t] UpperCAmelCase_ = self.alphas[t] else: UpperCAmelCase_ = 1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase_ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase_ = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase_ = torch.clamp( UpperCamelCase__ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase_ = 0 if t > 0: UpperCAmelCase_ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase__ , device=model_output.device ) UpperCAmelCase_ = self._get_variance( UpperCamelCase__ , predicted_variance=UpperCamelCase__ , prev_timestep=UpperCamelCase__ , ) if self.variance_type == "fixed_small_log": UpperCAmelCase_ = variance elif self.variance_type == "learned_range": UpperCAmelCase_ = (0.5 * variance).exp() else: raise ValueError( f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" " for the UnCLIPScheduler." ) UpperCAmelCase_ = variance * variance_noise UpperCAmelCase_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCamelCase__ , pred_original_sample=UpperCamelCase__ ) def _lowercase (self : int , __a : Dict , __a : Optional[int] , __a : List[Any] , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples UpperCAmelCase_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCAmelCase_ = timesteps.to(original_samples.device ) UpperCAmelCase_ = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase_ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase_ = sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase_ = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase_ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : Optional[Any] = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[Any] = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys SCREAMING_SNAKE_CASE__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
48
0
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self , **_a ): super().__init__(**_a ) requires_backends(self , '''vision''' ) requires_backends(self , '''torch''' ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(_a ) def __UpperCAmelCase ( self , **_a ): __a = {} __a = {} __a = {} # preprocess args if "points_per_batch" in kwargs: __a = kwargs['points_per_batch'] if "points_per_crop" in kwargs: __a = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: __a = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: __a = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: __a = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: __a = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: __a = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: __a = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: __a = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: __a = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: __a = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: __a = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , _a , *_a , _a=None , _a=None , **_a ): return super().__call__(_a , *_a , num_workers=_a , batch_size=_a , **_a ) def __UpperCAmelCase ( self , _a , _a=64 , _a = 0 , _a = 512 / 1_500 , _a = 32 , _a = 1 , ): __a = load_image(_a ) __a = self.image_processor.size['longest_edge'] __a = self.image_processor.generate_crop_boxes( _a , _a , _a , _a , _a , _a ) __a = self.image_processor(images=_a , return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": __a = self.get_inference_context() with inference_context(): __a = self._ensure_tensor_on_device(_a , device=self.device ) __a = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) __a = image_embeddings __a = grid_points.shape[1] __a = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 , _a , _a ): __a = grid_points[:, i : i + points_per_batch, :, :] __a = input_labels[:, i : i + points_per_batch] __a = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def __UpperCAmelCase ( self , _a , _a=0.88 , _a=0.95 , _a=0 , _a=1 , ): __a = model_inputs.pop('''input_boxes''' ) __a = model_inputs.pop('''is_last''' ) __a = model_inputs.pop('''original_sizes''' ).tolist() __a = model_inputs.pop('''reshaped_input_sizes''' ).tolist() __a = self.model(**_a ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks __a = model_outputs['pred_masks'] __a = self.image_processor.post_process_masks( _a , _a , _a , _a , binarize=_a ) __a = model_outputs['iou_scores'] __a = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , _a , _a , _a , _a , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def __UpperCAmelCase ( self , _a , _a=False , _a=False , _a=0.7 , ): __a = [] __a = [] __a = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) __a = torch.cat(_a ) __a = torch.cat(_a ) __a = self.image_processor.post_process_for_mask_generation( _a , _a , _a , _a ) __a = defaultdict(_a ) for output in model_outputs: for k, v in output.items(): extra[k].append(_a ) __a = {} if output_rle_mask: __a = rle_mask if output_bboxes_mask: __a = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
358
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } lowercase_ = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off lowercase_ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = ['input_ids', 'attention_mask'] __UpperCAmelCase : Optional[Any] = MBartTokenizer __UpperCAmelCase : List[int] = [] __UpperCAmelCase : List[int] = [] def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , **_a , ): # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , **_a , ) __a = vocab_file __a = False if not self.vocab_file else True __a = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __a = { lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __a = src_lang if src_lang is not None else '''en_XX''' __a = self.convert_tokens_to_ids(self._src_lang ) __a = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCAmelCase ( self ): return self._src_lang @src_lang.setter def __UpperCAmelCase ( self , _a ): __a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self , _a , _a = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self , _a , _a , _a , _a , **_a ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __a = src_lang __a = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) __a = self.convert_tokens_to_ids(_a ) __a = tgt_lang_id return inputs def __UpperCAmelCase ( self , _a , _a = "en_XX" , _a = None , _a = "ro_RO" , **_a , ): __a = src_lang __a = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def __UpperCAmelCase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a , _a = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
11
0
import argparse import json from tqdm import tqdm def lowerCAmelCase_ ( ): _A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--src_path""",type=snake_case_,default="""biencoder-nq-dev.json""",help="""Path to raw DPR training data""",) parser.add_argument( """--evaluation_set""",type=snake_case_,help="""where to store parsed evaluation_set file""",) parser.add_argument( """--gold_data_path""",type=snake_case_,help="""where to store parsed gold_data_path file""",) _A : str = parser.parse_args() with open(args.src_path,"""r""" ) as src_file, open(args.evaluation_set,"""w""" ) as eval_file, open( args.gold_data_path,"""w""" ) as gold_file: _A : List[Any] = json.load(snake_case_ ) for dpr_record in tqdm(snake_case_ ): _A : Union[str, Any] = dpr_record["""question"""] _A : List[str] = [context["""title"""] for context in dpr_record["""positive_ctxs"""]] eval_file.write(question + """\n""" ) gold_file.write("""\t""".join(snake_case_ ) + """\n""" ) if __name__ == "__main__": main()
26
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() A : Tuple = logging.get_logger(__name__) A : Tuple = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] A : Optional[Any] = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = torch.load(_UpperCamelCase , map_location="cpu" ) return sd def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=rename_keys_prefix ): '''simple docstring''' __lowerCAmelCase = OrderedDict() __lowerCAmelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __lowerCAmelCase = key for name_pair in rename_keys_prefix: __lowerCAmelCase = new_key.replace(name_pair[0] , name_pair[1] ) __lowerCAmelCase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __lowerCAmelCase = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}." # Get Config if "pre" in checkpoint_path: __lowerCAmelCase = "pretraining" if "vcr" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 1024} else: raise NotImplementedError(f"No implementation found for `{checkpoint_path}`." ) else: if "vcr" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 512} __lowerCAmelCase = "multichoice" elif "vqa_advanced" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 2048} __lowerCAmelCase = "vqa_advanced" elif "vqa" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 2048, "num_labels": 3129} __lowerCAmelCase = "vqa" elif "nlvr" in checkpoint_path: __lowerCAmelCase = { "visual_embedding_dim": 1024, "num_labels": 2, } __lowerCAmelCase = "nlvr" __lowerCAmelCase = VisualBertConfig(**_UpperCamelCase ) # Load State Dict __lowerCAmelCase = load_state_dict(_UpperCamelCase ) __lowerCAmelCase = get_new_dict(_UpperCamelCase , _UpperCamelCase ) if model_type == "pretraining": __lowerCAmelCase = VisualBertForPreTraining(_UpperCamelCase ) elif model_type == "vqa": __lowerCAmelCase = VisualBertForQuestionAnswering(_UpperCamelCase ) elif model_type == "nlvr": __lowerCAmelCase = VisualBertForVisualReasoning(_UpperCamelCase ) elif model_type == "multichoice": __lowerCAmelCase = VisualBertForMultipleChoice(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) # Save Checkpoints Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") A : Optional[int] = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
57
0
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ : Union[str, Any] =CLIPTokenizer a_ : int =CLIPTokenizerFast a_ : Optional[Any] =True a_ : Any ={} a_ : Dict =False def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' super().setUp() # fmt: off _snake_case : List[Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _snake_case : Tuple = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) _snake_case : str = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] _snake_case : Optional[int] = {"""unk_token""": """<unk>"""} _snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__UpperCAmelCase ) ) def UpperCamelCase_ ( self : Optional[Any] , **UpperCamelCase : List[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCamelCase_ ( self : str , **UpperCamelCase : Dict ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Any ): '''simple docstring''' _snake_case : Optional[int] = """lower newer""" _snake_case : Tuple = """lower newer""" return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _snake_case : Union[str, Any] = """lower newer""" _snake_case : int = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] _snake_case : int = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) _snake_case : Dict = tokens + [tokenizer.unk_token] _snake_case : Tuple = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) @require_ftfy def UpperCamelCase_ ( self : Dict ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : Optional[Any] = self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) _snake_case : Tuple = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) _snake_case : Optional[int] = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" _snake_case : Optional[Any] = tokenizer_s.tokenize(__UpperCAmelCase ) _snake_case : Optional[Any] = tokenizer_r.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _snake_case : Dict = """xa\u0303y""" + """ """ + """x\xe3y""" _snake_case : int = tokenizer_s.tokenize(__UpperCAmelCase ) _snake_case : Dict = tokenizer_r.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # Test that the tokenization is identical on unicode of space type _snake_case : int = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _snake_case : Optional[int] = tokenizer_s.tokenize(__UpperCAmelCase ) _snake_case : Any = tokenizer_r.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # Test that the tokenization is identical on unicode of line break type _snake_case : Union[str, Any] = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _snake_case : str = tokenizer_s.tokenize(__UpperCAmelCase ) _snake_case : int = tokenizer_r.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : Optional[Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _snake_case : str = f"""{text_of_1_token} {text_of_1_token}""" _snake_case : Dict = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , ) _snake_case : Optional[Any] = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ) + 1, len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _snake_case : Any = f""" {text}""" _snake_case : Optional[int] = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , ) _snake_case : Dict = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCAmelCase ) + 1, 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) def UpperCamelCase_ ( self : str ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' super().test_tokenization_python_rust_equals() def UpperCamelCase_ ( self : str ): '''simple docstring''' pass
366
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """nielsr/canine-s""": 2048, } # Unicode defines 1,114,112 total “codepoints” lowerCAmelCase_ = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py lowerCAmelCase_ = 0 lowerCAmelCase_ = 0xE_000 lowerCAmelCase_ = 0xE_001 lowerCAmelCase_ = 0xE_002 lowerCAmelCase_ = 0xE_003 lowerCAmelCase_ = 0xE_004 # Maps special codepoints to human-readable names. lowerCAmelCase_ = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. lowerCAmelCase_ = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , UpperCamelCase : int=chr(UpperCamelCase ) , UpperCamelCase : Union[str, Any]=chr(UpperCamelCase ) , UpperCamelCase : Any=chr(UpperCamelCase ) , UpperCamelCase : Union[str, Any]=chr(UpperCamelCase ) , UpperCamelCase : List[Any]=chr(UpperCamelCase ) , UpperCamelCase : List[str]=chr(UpperCamelCase ) , UpperCamelCase : int=False , UpperCamelCase : str=20_48 , **UpperCamelCase : List[str] , ): '''simple docstring''' _snake_case : Tuple = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else bos_token _snake_case : Optional[Any] = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else eos_token _snake_case : Any = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else sep_token _snake_case : str = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else cls_token _snake_case : Dict = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _snake_case : str = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else mask_token super().__init__( bos_token=UpperCamelCase , eos_token=UpperCamelCase , sep_token=UpperCamelCase , cls_token=UpperCamelCase , pad_token=UpperCamelCase , mask_token=UpperCamelCase , add_prefix_space=UpperCamelCase , model_max_length=UpperCamelCase , **UpperCamelCase , ) # Creates a mapping for looking up the IDs of special symbols. _snake_case : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): _snake_case : Tuple = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. _snake_case : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } _snake_case : str = UNICODE_VOCAB_SIZE _snake_case : Optional[Any] = len(self._special_codepoints ) @property def UpperCamelCase_ ( self : int ): '''simple docstring''' return self._unicode_vocab_size def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : str ): '''simple docstring''' return list(UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : str ): '''simple docstring''' try: return ord(UpperCamelCase ) except TypeError: raise ValueError(f"""invalid token: '{token}'""" ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : int ): '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCamelCase ) except TypeError: raise ValueError(f"""invalid id: {index}""" ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : List[Any] ): '''simple docstring''' return "".join(UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Optional[Any] = [self.sep_token_id] _snake_case : int = [self.cls_token_id] _snake_case : Any = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def UpperCamelCase_ ( self : Tuple , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) _snake_case : int = [1] + ([0] * len(UpperCamelCase )) + [1] if token_ids_a is not None: result += ([0] * len(UpperCamelCase )) + [1] return result def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : List[Any] = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] _snake_case : Tuple = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' return ()
260
0
from importlib import import_module from .logging import get_logger UpperCAmelCase : int = get_logger(__name__) class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> Tuple: '''simple docstring''' a__ : int =attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) a__ : Any =module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class __lowerCAmelCase : _lowercase : List[Any] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ) -> List[str]: '''simple docstring''' a__ : Optional[int] =obj a__ : Tuple =target a__ : Tuple =new a__ : str =target.split("." )[0] a__ : str ={} a__ : int =attrs or [] def __enter__( self ) -> str: '''simple docstring''' *a__ , a__ : List[Any] =self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: a__ : Optional[int] =import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): a__ : Optional[int] =getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): a__ : Dict =obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) a__ : Union[str, Any] =getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) a__ : int =getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: a__ : Any =getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: a__ : Optional[Any] =getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" a__ : Dict =globals()["__builtins__"][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(F'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self , *lowerCAmelCase__ ) -> str: '''simple docstring''' for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' self.__enter__() self._active_patches.append(self ) def _lowercase ( self ) -> str: '''simple docstring''' try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
95
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _A : Union[str, Any] =False class _lowercase ( unittest.TestCase ): pass @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) lowerCamelCase__ : List[Any] = torch.manual_seed(0 ) lowerCamelCase__ : List[Any] = pipe( image=UpperCamelCase__ , generator=UpperCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images lowerCamelCase__ : List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : Tuple = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
41
0
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ = 1_00 ) -> int: __lowerCamelCase = set() __lowerCamelCase = 0 __lowerCamelCase = n + 1 # maximum limit for a in range(2 , lowercase_ ): for b in range(2 , lowercase_ ): __lowerCamelCase = a**b # calculates the current power collect_powers.add(lowercase_ ) # adds the result to the set return len(lowercase_ ) if __name__ == "__main__": print("Number of terms ", solution(int(str(input()).strip())))
362
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class a__ : def __init__( self : List[Any] , a : Tuple , a : int , a : int ): """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) __lowerCamelCase = img __lowerCamelCase = img.shape[1] __lowerCamelCase = img.shape[0] __lowerCamelCase = dst_width __lowerCamelCase = dst_height __lowerCamelCase = self.src_w / self.dst_w __lowerCamelCase = self.src_h / self.dst_h __lowerCamelCase = __lowerCamelCase = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_55 ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): __lowerCamelCase = self.img[self.get_y(a )][self.get_x(a )] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : int ): """simple docstring""" return int(self.ratio_x * x ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : int ): """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": __UpperCAmelCase , __UpperCAmelCase =8_0_0, 6_0_0 __UpperCAmelCase =imread("image_data/lena.jpg", 1) __UpperCAmelCase =NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output ) waitKey(0) destroyAllWindows()
237
0
'''simple docstring''' import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowercase ( A__ ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase_ , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(UpperCamelCase_ , '''num_attention_heads''' ) ) class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=64 , UpperCamelCase_=3 , UpperCamelCase_=3 , UpperCamelCase_=2 , UpperCamelCase_=1 , UpperCamelCase_=16 , UpperCamelCase_=[128, 256, 384] , UpperCamelCase_=[4, 6, 8] , UpperCamelCase_=[2, 3, 4] , UpperCamelCase_=[16, 16, 16] , UpperCamelCase_=0 , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=0.02 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=2 , ): '''simple docstring''' UpperCamelCase__ :Any = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :str = image_size UpperCamelCase__ :Dict = num_channels UpperCamelCase__ :Optional[int] = kernel_size UpperCamelCase__ :List[str] = stride UpperCamelCase__ :Dict = padding UpperCamelCase__ :Optional[int] = hidden_sizes UpperCamelCase__ :int = num_attention_heads UpperCamelCase__ :List[Any] = depths UpperCamelCase__ :int = key_dim UpperCamelCase__ :int = drop_path_rate UpperCamelCase__ :int = patch_size UpperCamelCase__ :List[Any] = attention_ratio UpperCamelCase__ :Optional[int] = mlp_ratio UpperCamelCase__ :Optional[int] = initializer_range UpperCamelCase__ :Any = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] UpperCamelCase__ :Optional[int] = is_training UpperCamelCase__ :Optional[Any] = use_labels UpperCamelCase__ :Dict = num_labels UpperCamelCase__ :str = initializer_range def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :int = None if self.use_labels: UpperCamelCase__ :str = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase__ :Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self ): '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = LevitModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :int = model(UpperCamelCase_ ) UpperCamelCase__ :int = (self.image_size, self.image_size) UpperCamelCase__ , UpperCamelCase__ :Optional[int] = image_size[0], image_size[1] for _ in range(4 ): UpperCamelCase__ :int = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) UpperCamelCase__ :Optional[Any] = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Tuple = self.num_labels UpperCamelCase__ :List[Any] = LevitForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :Optional[int] = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = config_and_inputs UpperCamelCase__ :List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase ( A__ , A__ , unittest.TestCase ): """simple docstring""" _a = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) _a = ( { 'feature-extraction': LevitModel, 'image-classification': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) _a = False _a = False _a = False _a = False _a = False def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = LevitModelTester(self ) UpperCamelCase__ :Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase__ ( self ): '''simple docstring''' return @unittest.skip(reason='''Levit does not use inputs_embeds''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason='''Levit does not support input and output embeddings''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason='''Levit does not output attentions''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :Dict = model_class(UpperCamelCase_ ) UpperCamelCase__ :int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ :Tuple = [*signature.parameters.keys()] UpperCamelCase__ :Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' def check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase__ :str = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): UpperCamelCase__ :Union[str, Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase__ :List[str] = outputs.hidden_states UpperCamelCase__ :int = len(self.model_tester.depths ) + 1 self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) UpperCamelCase__ :Any = (self.model_tester.image_size, self.model_tester.image_size) UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = image_size[0], image_size[1] for _ in range(4 ): UpperCamelCase__ :Optional[Any] = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) UpperCamelCase__ :Union[str, Any] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) UpperCamelCase__ , UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :Any = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ :Union[str, Any] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = super()._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' if not self.model_tester.is_training: return UpperCamelCase__ , UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :str = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(UpperCamelCase_ ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue UpperCamelCase__ :List[Any] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.train() UpperCamelCase__ :Tuple = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) UpperCamelCase__ :Any = model(**UpperCamelCase_ ).loss loss.backward() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase__ :int = False UpperCamelCase__ :Dict = True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase_ ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue UpperCamelCase__ :Any = model_class(UpperCamelCase_ ) model.gradient_checkpointing_enable() model.to(UpperCamelCase_ ) model.train() UpperCamelCase__ :List[Any] = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) UpperCamelCase__ :Any = model(**UpperCamelCase_ ).loss loss.backward() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :int = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(UpperCamelCase_ ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): UpperCamelCase__ :List[Any] = problem_type['''title'''] UpperCamelCase__ :Tuple = problem_type['''num_labels'''] UpperCamelCase__ :int = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.train() UpperCamelCase__ :Optional[Any] = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) if problem_type["num_labels"] > 1: UpperCamelCase__ :Tuple = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) UpperCamelCase__ :Union[str, Any] = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=UpperCamelCase_ ) as warning_list: UpperCamelCase__ :Optional[int] = model(**UpperCamelCase_ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def lowerCAmelCase__ ( self ): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = LevitModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def a ( ) -> int: '''simple docstring''' UpperCamelCase__ :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase__ ( self ): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCamelCase_ ) UpperCamelCase__ :Dict = self.default_image_processor UpperCamelCase__ :Union[str, Any] = prepare_img() UpperCamelCase__ :List[Any] = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase__ :List[Any] = model(**UpperCamelCase_ ) # verify the logits UpperCamelCase__ :int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) UpperCamelCase__ :int = torch.tensor([1.0448, -0.3745, -1.8317] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1e-4 ) )
97
'''simple docstring''' def a ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :Optional[int] = [] UpperCamelCase__ :int = 1 while len(__a ) < 1e6: constant.append(str(__a ) ) i += 1 UpperCamelCase__ :Union[str, Any] = ''''''.join(__a ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
97
1
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _a = logging.getLogger(__name__) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" return (preds == labels).mean() @dataclass class _UpperCAmelCase: lowercase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class _UpperCAmelCase: lowercase__ = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) lowercase__ = field(metadata={'help': 'Should contain the data files for the task.'} ) lowercase__ = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def lowerCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''', training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1 ), training_args.fpaa, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''', __snake_case ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=__snake_case, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=__snake_case, cache_dir=model_args.cache_dir, ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=__snake_case, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=__snake_case, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None ) def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase = np.argmax(p.predictions, axis=1 ) return {"acc": simple_accuracy(__snake_case, p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case, pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case, args=__snake_case, train_dataset=__snake_case, eval_dataset=__snake_case, compute_metrics=__snake_case, data_collator=__snake_case, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir, '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case, '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''', __snake_case, __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" main() if __name__ == "__main__": main()
361
"""simple docstring""" import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _a = get_logger(__name__) class _UpperCAmelCase: def __init__( self , __a = None) -> List[str]: '''simple docstring''' _UpperCamelCase = ( os.path.join(__a , config.EXTRACTED_DATASETS_DIR) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _UpperCamelCase = Extractor def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _UpperCamelCase = os.path.abspath(__a) return os.path.join(self.extract_dir , hash_url_to_filename(__a)) def UpperCAmelCase ( self , __a , __a) -> bool: '''simple docstring''' return force_extract or ( not os.path.isfile(__a) and not (os.path.isdir(__a) and os.listdir(__a)) ) def UpperCAmelCase ( self , __a , __a = False) -> str: '''simple docstring''' _UpperCamelCase = self.extractor.infer_extractor_format(__a) if not extractor_format: return input_path _UpperCamelCase = self._get_output_path(__a) if self._do_extract(__a , __a): self.extractor.extract(__a , __a , __a) return output_path class _UpperCAmelCase( lowerCamelCase ): @classmethod @abstractmethod def UpperCAmelCase ( cls , __a , **__a) -> bool: '''simple docstring''' ... @staticmethod @abstractmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' ... class _UpperCAmelCase( lowerCamelCase , lowerCamelCase ): lowercase__ = [] @staticmethod def UpperCAmelCase ( __a , __a) -> Any: '''simple docstring''' with open(__a , '''rb''') as f: return f.read(__a) @classmethod def UpperCAmelCase ( cls , __a , __a = b"") -> bool: '''simple docstring''' if not magic_number: _UpperCamelCase = max(len(__a) for cls_magic_number in cls.magic_numbers) try: _UpperCamelCase = cls.read_magic_number(__a , __a) except OSError: return False return any(magic_number.startswith(__a) for cls_magic_number in cls.magic_numbers) class _UpperCAmelCase( lowerCamelCase ): @classmethod def UpperCAmelCase ( cls , __a , **__a) -> bool: '''simple docstring''' return tarfile.is_tarfile(__a) @staticmethod def UpperCAmelCase ( __a , __a) -> List[str]: '''simple docstring''' def resolved(__a) -> str: return os.path.realpath(os.path.abspath(__a)) def badpath(__a , __a) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(__a , __a)).startswith(__a) def badlink(__a , __a) -> bool: # Links are interpreted relative to the directory containing the link _UpperCamelCase = resolved(os.path.join(__a , os.path.dirname(info.name))) return badpath(info.linkname , base=__a) _UpperCamelCase = resolved(__a) for finfo in members: if badpath(finfo.name , __a): logger.error(F'''Extraction of {finfo.name} is blocked (illegal path)''') elif finfo.issym() and badlink(__a , __a): logger.error(F'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''') elif finfo.islnk() and badlink(__a , __a): logger.error(F'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''') else: yield finfo @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' os.makedirs(__a , exist_ok=__a) _UpperCamelCase = tarfile.open(__a) tar_file.extractall(__a , members=TarExtractor.safemembers(__a , __a)) tar_file.close() class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x1F\x8B'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' with gzip.open(__a , '''rb''') as gzip_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [ b'PK\x03\x04', b'PK\x05\x06', # empty archive b'PK\x07\x08', # spanned archive ] @classmethod def UpperCAmelCase ( cls , __a , __a = b"") -> bool: '''simple docstring''' if super().is_extractable(__a , magic_number=__a): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(__a , '''rb''') as fp: _UpperCamelCase = _EndRecData(__a) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET]) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _UpperCamelCase = fp.read(__a) # CD is where we expect it to be if len(__a) == sizeCentralDir: _UpperCamelCase = struct.unpack(__a , __a) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' os.makedirs(__a , exist_ok=__a) with zipfile.ZipFile(__a , '''r''') as zip_file: zip_file.extractall(__a) zip_file.close() class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' with lzma.open(__a) as compressed_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'Rar!\x1a\x07\x00', b'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''') import rarfile os.makedirs(__a , exist_ok=__a) _UpperCamelCase = rarfile.RarFile(__a) rf.extractall(__a) rf.close() class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x28\xb5\x2F\xFD'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''') import zstandard as zstd _UpperCamelCase = zstd.ZstdDecompressor() with open(__a , '''rb''') as ifh, open(__a , '''wb''') as ofh: dctx.copy_stream(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x42\x5A\x68'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' with bza.open(__a , '''rb''') as compressed_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''') import pyazr os.makedirs(__a , exist_ok=__a) with pyazr.SevenZipFile(__a , '''r''') as archive: archive.extractall(__a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x04\x22\x4D\x18'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''') import lza.frame with lza.frame.open(__a , '''rb''') as compressed_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase: # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) lowercase__ = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def UpperCAmelCase ( cls) -> Any: '''simple docstring''' return max( len(__a) for extractor in cls.extractors.values() if issubclass(__a , __a) for extractor_magic_number in extractor.magic_numbers) @staticmethod def UpperCAmelCase ( __a , __a) -> List[str]: '''simple docstring''' try: return MagicNumberBaseExtractor.read_magic_number(__a , magic_number_length=__a) except OSError: return b"" @classmethod def UpperCAmelCase ( cls , __a , __a = False) -> bool: '''simple docstring''' warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=__a , ) _UpperCamelCase = cls.infer_extractor_format(__a) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def UpperCAmelCase ( cls , __a) -> str: # <Added version="2.4.0"/> '''simple docstring''' _UpperCamelCase = cls._get_magic_number_max_length() _UpperCamelCase = cls._read_magic_number(__a , __a) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(__a , magic_number=__a): return extractor_format @classmethod def UpperCAmelCase ( cls , __a , __a , __a = None , __a = "deprecated" , ) -> None: '''simple docstring''' os.makedirs(os.path.dirname(__a) , exist_ok=__a) # Prevent parallel extractions _UpperCamelCase = str(Path(__a).with_suffix('''.lock''')) with FileLock(__a): shutil.rmtree(__a , ignore_errors=__a) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(__a , __a): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=__a , ) _UpperCamelCase = extractor if extractor != '''deprecated''' else extractor_format else: _UpperCamelCase = cls.extractors[extractor_format] return extractor.extract(__a , __a) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=__a , ) for extractor in cls.extractors.values(): if extractor.is_extractable(__a): return extractor.extract(__a , __a)
100
0
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __lowerCAmelCase : Any = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Union[str, Any] , _snake_case : str , _snake_case : Optional[int] , _snake_case : int=None , _snake_case : Any=1 ): __lowercase : Optional[Any] = tokenizer __lowercase : Optional[Any] = dataset __lowercase : Dict = len(_snake_case ) if n_tasks is None else n_tasks __lowercase : Optional[int] = n_copies def __iter__( self : Union[str, Any] ): __lowercase : Tuple = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) __lowercase : Dict = self.tokenizer(_snake_case , padding=_snake_case , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[int] , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Optional[int] ): __lowercase : List[Any] = start_length __lowercase : Optional[Any] = eof_strings __lowercase : List[Any] = tokenizer def __call__( self : str , _snake_case : Any , _snake_case : Optional[Any] , **_snake_case : List[Any] ): __lowercase : List[Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) __lowercase : Optional[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_snake_case ) def UpperCAmelCase_ ( __lowerCAmelCase ) -> Optional[Any]: __lowercase : Optional[int] = re.split('''(%s)''' % '''|'''.join(__lowerCAmelCase ) , __lowerCAmelCase ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=20 , **__lowerCAmelCase ) -> List[Any]: __lowercase : int = defaultdict(__lowerCAmelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__lowerCAmelCase ) ): with torch.no_grad(): __lowercase : List[str] = batch['''ids'''].shape[-1] __lowercase : List[str] = accelerator.unwrap_model(__lowerCAmelCase ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__lowerCAmelCase , **__lowerCAmelCase ) # each task is generated batch_size times __lowercase : Tuple = batch['''task_id'''].repeat(__lowerCAmelCase ) __lowercase : str = accelerator.pad_across_processes( __lowerCAmelCase , dim=1 , pad_index=tokenizer.pad_token_id ) __lowercase , __lowercase : List[Any] = accelerator.gather((generated_tokens, generated_tasks) ) __lowercase : Any = generated_tokens.cpu().numpy() __lowercase : List[str] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__lowerCAmelCase , __lowerCAmelCase ): gen_token_dict[task].append(__lowerCAmelCase ) __lowercase : str = [[] for _ in range(__lowerCAmelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: __lowercase : Union[str, Any] = tokenizer.decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) code_gens[task].append(remove_last_block(__lowerCAmelCase ) ) return code_gens def UpperCAmelCase_ ( ) -> List[str]: # Setup configuration __lowercase : List[str] = HfArgumentParser(__lowerCAmelCase ) __lowercase : int = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric __lowercase : Tuple = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing __lowercase : Any = '''false''' if args.num_workers is None: __lowercase : Dict = multiprocessing.cpu_count() # Use dataset load to feed to accelerate __lowercase : List[str] = Accelerator() set_seed(args.seed , device_specific=__lowerCAmelCase ) # Load model and tokenizer __lowercase : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt ) __lowercase : int = tokenizer.eos_token __lowercase : str = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings __lowercase : List[Any] = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __lowerCAmelCase , __lowerCAmelCase )] ), } # Load evaluation dataset and metric __lowercase : Any = load_dataset('''openai_humaneval''' ) __lowercase : Tuple = load_metric('''code_eval''' ) __lowercase : Any = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) __lowercase : str = args.n_samples // args.batch_size __lowercase : List[Any] = TokenizedDataset(__lowerCAmelCase , human_eval['''test'''] , n_copies=__lowerCAmelCase , n_tasks=__lowerCAmelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences __lowercase : List[str] = DataLoader(__lowerCAmelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: __lowercase : Optional[Any] = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception __lowercase , __lowercase : Union[str, Any] = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase ) __lowercase : Optional[Any] = complete_code( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , n_tasks=__lowerCAmelCase , batch_size=args.batch_size , **__lowerCAmelCase , ) if accelerator.is_main_process: __lowercase : Optional[Any] = [] for task in tqdm(range(__lowerCAmelCase ) ): __lowercase : Optional[int] = human_eval['''test'''][task]['''test'''] __lowercase : str = F'check({human_eval["test"][task]["entry_point"]})' references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric __lowercase , __lowercase : Tuple = code_eval_metric.compute( references=__lowerCAmelCase , predictions=__lowerCAmelCase , num_workers=args.num_workers ) print(F'Results: {pass_at_k}' ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
156
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy __lowerCAmelCase : List[Any] = logging.get_logger(__name__) __lowerCAmelCase : int = { "artists_file": "artists.json", "lyrics_file": "lyrics.json", "genres_file": "genres.json", } __lowerCAmelCase : List[Any] = { "artists_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json", }, "genres_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json", }, "lyrics_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json", }, } __lowerCAmelCase : Dict = { "jukebox": 512, } class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Tuple = VOCAB_FILES_NAMES A__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : List[str] = PRETRAINED_LYRIC_TOKENS_SIZES A__ : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , _snake_case : List[str] , _snake_case : Any , _snake_case : Tuple , _snake_case : Dict=["v3", "v2", "v2"] , _snake_case : Tuple=512 , _snake_case : Any=5 , _snake_case : List[Any]="<|endoftext|>" , **_snake_case : Union[str, Any] , ): __lowercase : Dict = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else unk_token super().__init__( unk_token=_snake_case , n_genres=_snake_case , version=_snake_case , max_n_lyric_tokens=_snake_case , **_snake_case , ) __lowercase : List[str] = version __lowercase : Union[str, Any] = max_n_lyric_tokens __lowercase : Dict = n_genres with open(_snake_case , encoding='''utf-8''' ) as vocab_handle: __lowercase : str = json.load(_snake_case ) with open(_snake_case , encoding='''utf-8''' ) as vocab_handle: __lowercase : Optional[int] = json.load(_snake_case ) with open(_snake_case , encoding='''utf-8''' ) as vocab_handle: __lowercase : Optional[int] = json.load(_snake_case ) __lowercase : Dict = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowercase : int = oov.replace(r'''\-\'''' , r'''\-+\'''' ) __lowercase : Union[str, Any] = regex.compile(_snake_case ) __lowercase : int = {v: k for k, v in self.artists_encoder.items()} __lowercase : Tuple = {v: k for k, v in self.genres_encoder.items()} __lowercase : Dict = {v: k for k, v in self.lyrics_encoder.items()} @property def snake_case_ ( self : Tuple ): return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def snake_case_ ( self : Optional[Any] ): return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def snake_case_ ( self : int , _snake_case : Tuple , _snake_case : Dict , _snake_case : Dict ): __lowercase : Union[str, Any] = [self.artists_encoder.get(_snake_case , 0 ) for artist in list_artists] for genres in range(len(_snake_case ) ): __lowercase : Union[str, Any] = [self.genres_encoder.get(_snake_case , 0 ) for genre in list_genres[genres]] __lowercase : str = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowercase : int = [[self.lyrics_encoder.get(_snake_case , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def snake_case_ ( self : Dict , _snake_case : Any ): return list(_snake_case ) def snake_case_ ( self : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : List[str] , **_snake_case : Optional[int] ): __lowercase , __lowercase , __lowercase : Optional[int] = self.prepare_for_tokenization(_snake_case , _snake_case , _snake_case ) __lowercase : List[Any] = self._tokenize(_snake_case ) return artist, genre, lyrics def snake_case_ ( self : str , _snake_case : str , _snake_case : str , _snake_case : str , _snake_case : bool = False ): for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowercase : Union[str, Any] = artists[idx].lower() __lowercase : str = [genres[idx].lower()] else: __lowercase : Any = self._normalize(artists[idx] ) + '''.v2''' __lowercase : Tuple = [ self._normalize(_snake_case ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowercase : Optional[int] = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) __lowercase : Dict = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' __lowercase : List[Any] = {vocab[index]: index + 1 for index in range(len(_snake_case ) )} __lowercase : List[str] = 0 __lowercase : Any = len(_snake_case ) + 1 __lowercase : str = self.vocab __lowercase : Union[str, Any] = {v: k for k, v in self.vocab.items()} __lowercase : Dict = '''''' else: __lowercase : Tuple = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) __lowercase : List[Any] = self._run_strip_accents(_snake_case ) __lowercase : Tuple = lyrics.replace('''\\''' , '''\n''' ) __lowercase : str = self.out_of_vocab.sub('''''' , _snake_case ), [], [] return artists, genres, lyrics def snake_case_ ( self : Optional[int] , _snake_case : List[str] ): __lowercase : Any = unicodedata.normalize('''NFD''' , _snake_case ) __lowercase : Optional[int] = [] for char in text: __lowercase : Union[str, Any] = unicodedata.category(_snake_case ) if cat == "Mn": continue output.append(_snake_case ) return "".join(_snake_case ) def snake_case_ ( self : Optional[int] , _snake_case : str ): __lowercase : List[str] = ( [chr(_snake_case ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )] + [chr(_snake_case ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )] + [chr(_snake_case ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )] + ['''.'''] ) __lowercase : Optional[Any] = frozenset(_snake_case ) __lowercase : Union[str, Any] = re.compile(r'''_+''' ) __lowercase : Optional[int] = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) __lowercase : int = pattern.sub('''_''' , _snake_case ).strip('''_''' ) return text def snake_case_ ( self : List[Any] , _snake_case : List[str] ): return " ".join(_snake_case ) def snake_case_ ( self : List[str] , _snake_case : Any , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : bool = False ): # Convert to TensorType if not isinstance(_snake_case , _snake_case ): __lowercase : Optional[Any] = TensorType(_snake_case ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf __lowercase : int = tf.constant __lowercase : Optional[int] = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch __lowercase : Union[str, Any] = torch.tensor __lowercase : Dict = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 __lowercase : Union[str, Any] = jnp.array __lowercase : Optional[int] = _is_jax else: __lowercase : Tuple = np.asarray __lowercase : str = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowercase : Union[str, Any] = [inputs] if not is_tensor(_snake_case ): __lowercase : int = as_tensor(_snake_case ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self : str , _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Tuple="" , _snake_case : Tuple="pt" ): __lowercase : List[str] = [0, 0, 0] __lowercase : List[str] = [artist] * len(self.version ) __lowercase : List[Any] = [genres] * len(self.version ) __lowercase , __lowercase , __lowercase : Tuple = self.tokenize(_snake_case , _snake_case , _snake_case ) __lowercase , __lowercase , __lowercase : List[str] = self._convert_token_to_id(_snake_case , _snake_case , _snake_case ) __lowercase : Optional[Any] = [-INFINITY] * len(full_tokens[-1] ) __lowercase : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_snake_case ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def snake_case_ ( self : Optional[int] , _snake_case : str , _snake_case : Optional[str] = None ): if not os.path.isdir(_snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowercase : int = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_snake_case ) ) __lowercase : int = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_snake_case ) ) __lowercase : Union[str, Any] = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_snake_case ) ) return (artists_file, genres_file, lyrics_file) def snake_case_ ( self : str , _snake_case : Tuple , _snake_case : str , _snake_case : Dict ): __lowercase : List[str] = self.artists_decoder.get(_snake_case ) __lowercase : Optional[Any] = [self.genres_decoder.get(_snake_case ) for genre in genres_index] __lowercase : Dict = [self.lyrics_decoder.get(_snake_case ) for character in lyric_index] return artist, genres, lyrics
156
1
"""simple docstring""" from __future__ import annotations import math def lowercase ( a__ : int ) -> list[int]: if num <= 0: _UpperCamelCase = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(a__ ) _UpperCamelCase = [True] * (num + 1) _UpperCamelCase = [] _UpperCamelCase = 2 _UpperCamelCase = int(math.sqrt(a__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(a__ ) # Set multiples of start be False for i in range(start * start , num + 1 , a__ ): if sieve[i] is True: _UpperCamelCase = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(a__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
54
"""simple docstring""" import numpy as np def lowercase ( a__ : Optional[Any] , a__ : str , a__ : Union[str, Any] , a__ : Any , a__ : List[str] ) -> Dict: _UpperCamelCase = int(np.ceil((x_end - xa) / h ) ) _UpperCamelCase = np.zeros((n + 1,) ) _UpperCamelCase = ya _UpperCamelCase = xa for k in range(a__ ): _UpperCamelCase = f(a__ , y[k] ) _UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) _UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) _UpperCamelCase = f(x + h , y[k] + h * ka ) _UpperCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
54
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable a__ : Optional[int] ={ '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str =[ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys a__ : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
53
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @parameterized.expand([(None,), ("foo.json",)]) def _lowerCamelCase ( self , __lowerCamelCase) -> List[str]: _A : str = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase , config_name=__lowerCamelCase) _A : Tuple = GenerationConfig.from_pretrained(__lowerCamelCase , config_name=__lowerCamelCase) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __lowerCamelCase) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0) self.assertEqual(loaded_config.max_length , 2_0) self.assertEqual(loaded_config.max_time , __lowerCamelCase) def _lowerCamelCase ( self) -> Optional[int]: _A : Optional[int] = AutoConfig.from_pretrained("gpt2") _A : int = GenerationConfig.from_model_config(__lowerCamelCase) _A : List[Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__lowerCamelCase , __lowerCamelCase) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def _lowerCamelCase ( self) -> Optional[Any]: _A : Optional[Any] = GenerationConfig() _A : List[Any] = { "max_new_tokens": 1_0_2_4, "foo": "bar", } _A : List[str] = copy.deepcopy(__lowerCamelCase) _A : int = generation_config.update(**__lowerCamelCase) # update_kwargs was not modified (no side effects) self.assertEqual(__lowerCamelCase , __lowerCamelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__lowerCamelCase , {"foo": "bar"}) def _lowerCamelCase ( self) -> Any: _A : int = GenerationConfig() _A : int = "bar" with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(__lowerCamelCase) _A : Any = GenerationConfig.from_pretrained(__lowerCamelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar") _A : Optional[Any] = GenerationConfig.from_model_config(__lowerCamelCase) assert not hasattr(__lowerCamelCase , "foo") # no new kwargs should be initialized if from config def _lowerCamelCase ( self) -> List[str]: _A : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , __lowerCamelCase) self.assertEqual(default_config.num_beams , 1) _A : Optional[int] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , __lowerCamelCase) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase) _A : Optional[int] = GenerationConfig.from_pretrained(__lowerCamelCase , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , __lowerCamelCase) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @classmethod def _lowerCamelCase ( cls) -> Optional[int]: _A : Dict = TOKEN HfFolder.save_token(__lowerCamelCase) @classmethod def _lowerCamelCase ( cls) -> List[Any]: try: delete_repo(token=cls._token , repo_id="test-generation-config") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org") except HTTPError: pass def _lowerCamelCase ( self) -> Any: _A : Optional[int] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token) _A : Union[str, Any] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCamelCase , repo_id="test-generation-config" , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : Optional[Any] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) def _lowerCamelCase ( self) -> Union[str, Any]: _A : Union[str, Any] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token) _A : int = GenerationConfig.from_pretrained("valid_org/test-generation-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCamelCase , repo_id="valid_org/test-generation-config-org" , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : Optional[int] = GenerationConfig.from_pretrained("valid_org/test-generation-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase))
11
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase: Optional[Any] = logging.get_logger(__name__) lowerCAmelCase: List[str] = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class a__( lowerCamelCase__ ): lowercase__ = """blip_text_model""" def __init__( self : int , __snake_case : Dict=3_05_24 , __snake_case : str=7_68 , __snake_case : str=7_68 , __snake_case : List[str]=30_72 , __snake_case : Optional[int]=7_68 , __snake_case : List[Any]=12 , __snake_case : Dict=8 , __snake_case : Tuple=5_12 , __snake_case : Any="gelu" , __snake_case : Any=1e-1_2 , __snake_case : Optional[Any]=0.0 , __snake_case : Union[str, Any]=0.0 , __snake_case : Union[str, Any]=0.02 , __snake_case : Optional[Any]=3_05_22 , __snake_case : List[str]=2 , __snake_case : Any=0 , __snake_case : Optional[int]=1_02 , __snake_case : Tuple=True , __snake_case : Dict=True , **__snake_case : Optional[int] , ): super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , sep_token_id=__snake_case , **__snake_case , ) a : List[Any] = vocab_size a : int = hidden_size a : List[Any] = encoder_hidden_size a : Optional[int] = intermediate_size a : int = projection_dim a : Optional[Any] = hidden_dropout_prob a : Dict = num_hidden_layers a : Any = num_attention_heads a : int = max_position_embeddings a : Dict = layer_norm_eps a : Tuple = hidden_act a : str = initializer_range a : List[str] = attention_probs_dropout_prob a : Any = is_decoder a : Any = use_cache @classmethod def lowercase_ ( cls : Optional[Any] , __snake_case : Union[str, os.PathLike] , **__snake_case : List[str] ): cls._set_token_in_kwargs(__snake_case ) a , a : Optional[int] = cls.get_config_dict(__snake_case , **__snake_case ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": a : List[Any] = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__snake_case , **__snake_case ) class a__( lowerCamelCase__ ): lowercase__ = """blip_vision_model""" def __init__( self : Dict , __snake_case : Optional[Any]=7_68 , __snake_case : Dict=30_72 , __snake_case : str=5_12 , __snake_case : Any=12 , __snake_case : int=12 , __snake_case : Optional[Any]=3_84 , __snake_case : str=16 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=1e-5 , __snake_case : Any=0.0 , __snake_case : List[Any]=1e-1_0 , **__snake_case : Tuple , ): super().__init__(**__snake_case ) a : int = hidden_size a : Optional[int] = intermediate_size a : str = projection_dim a : str = num_hidden_layers a : Optional[int] = num_attention_heads a : Union[str, Any] = patch_size a : Optional[int] = image_size a : int = initializer_range a : Tuple = attention_dropout a : List[str] = layer_norm_eps a : List[str] = hidden_act @classmethod def lowercase_ ( cls : Dict , __snake_case : Union[str, os.PathLike] , **__snake_case : Union[str, Any] ): cls._set_token_in_kwargs(__snake_case ) a , a : int = cls.get_config_dict(__snake_case , **__snake_case ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": a : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__snake_case , **__snake_case ) class a__( lowerCamelCase__ ): lowercase__ = """blip""" lowercase__ = True def __init__( self : List[Any] , __snake_case : Optional[Any]=None , __snake_case : Optional[Any]=None , __snake_case : Optional[int]=5_12 , __snake_case : Tuple=2.6592 , __snake_case : Tuple=2_56 , **__snake_case : Any , ): super().__init__(**__snake_case ) if text_config is None: a : Tuple = {} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: a : List[str] = {} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) a : Optional[Any] = BlipTextConfig(**__snake_case ) a : str = BlipVisionConfig(**__snake_case ) a : Tuple = self.vision_config.hidden_size a : Any = projection_dim a : List[Any] = logit_scale_init_value a : Tuple = 1.0 a : Optional[Any] = 0.02 a : str = image_text_hidden_size @classmethod def lowercase_ ( cls : int , __snake_case : BlipTextConfig , __snake_case : BlipVisionConfig , **__snake_case : Dict ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__snake_case ) def lowercase_ ( self : Optional[int] ): a : int = copy.deepcopy(self.__dict__ ) a : Any = self.text_config.to_dict() a : Optional[Any] = self.vision_config.to_dict() a : Optional[int] = self.__class__.model_type return output
96
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase: List[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Optional[int] = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Dict = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowerCAmelCase: Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
96
1
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : lowerCamelCase__ = XGLMConfig lowerCamelCase__ = {} lowerCamelCase__ = 'gelu' def __init__( self, __a, __a=14, __a=7, __a=True, __a=True, __a=True, __a=99, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=0.02, ): '''simple docstring''' _lowerCAmelCase : Dict = parent _lowerCAmelCase : Tuple = batch_size _lowerCAmelCase : Dict = seq_length _lowerCAmelCase : Optional[int] = is_training _lowerCAmelCase : Optional[Any] = use_input_mask _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : Dict = vocab_size _lowerCAmelCase : List[str] = d_model _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = ffn_dim _lowerCAmelCase : Any = activation_function _lowerCAmelCase : str = activation_dropout _lowerCAmelCase : List[Any] = attention_dropout _lowerCAmelCase : Dict = max_position_embeddings _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Any = 0 _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : Dict = 1 def snake_case__ ( self): '''simple docstring''' return XGLMConfig.from_pretrained("facebook/xglm-564M") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length], self.vocab_size), clip_value_min=0, clip_value_max=3) _lowerCAmelCase : Optional[Any] = None if self.use_input_mask: _lowerCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : int = self.get_config() _lowerCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, ) def snake_case__ ( self): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=__a, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=__a, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : List[Any] = config_and_inputs _lowerCAmelCase : List[Any] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCamelCase__ = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCamelCase__ = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = TFXGLMModelTester(self) _lowerCAmelCase : int = ConfigTester(self, config_class=__a, n_embd=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() @slow def snake_case__ ( self): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Any = TFXGLMModel.from_pretrained(__a) self.assertIsNotNone(__a) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor.") def snake_case__ ( self): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self, __a=True): '''simple docstring''' _lowerCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") _lowerCAmelCase : Optional[Any] = tf.convert_to_tensor([[2, 268, 9865]], dtype=tf.intaa) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _lowerCAmelCase : Tuple = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on _lowerCAmelCase : Tuple = model.generate(__a, do_sample=__a, num_beams=1) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(), __a) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M") _lowerCAmelCase : List[str] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") tf.random.set_seed(0) _lowerCAmelCase : Union[str, Any] = tokenizer("Today is a nice day and", return_tensors="tf") _lowerCAmelCase : Union[str, Any] = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0"): _lowerCAmelCase : Tuple = model.generate(__a, do_sample=__a, seed=[7, 0]) _lowerCAmelCase : Optional[Any] = tokenizer.decode(output_ids[0], skip_special_tokens=__a) _lowerCAmelCase : Optional[Any] = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(__a, __a) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") _lowerCAmelCase : Any = XGLMTokenizer.from_pretrained("facebook/xglm-564M") _lowerCAmelCase : Union[str, Any] = "left" # use different length sentences to test batching _lowerCAmelCase : Tuple = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _lowerCAmelCase : Tuple = tokenizer(__a, return_tensors="tf", padding=__a) _lowerCAmelCase : List[str] = inputs["input_ids"] _lowerCAmelCase : Any = model.generate(input_ids=__a, attention_mask=inputs["attention_mask"], max_new_tokens=12) _lowerCAmelCase : List[Any] = tokenizer(sentences[0], return_tensors="tf").input_ids _lowerCAmelCase : int = model.generate(input_ids=__a, max_new_tokens=12) _lowerCAmelCase : List[Any] = tokenizer(sentences[1], return_tensors="tf").input_ids _lowerCAmelCase : Optional[Any] = model.generate(input_ids=__a, max_new_tokens=12) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a, skip_special_tokens=__a) _lowerCAmelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0], skip_special_tokens=__a) _lowerCAmelCase : Union[str, Any] = tokenizer.decode(output_padded[0], skip_special_tokens=__a) _lowerCAmelCase : Union[str, Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(__a, __a) self.assertListEqual(__a, [non_padded_sentence, padded_sentence])
36
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class UpperCAmelCase_ ( a): def snake_case__ ( self, __a): '''simple docstring''' return 0.0 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCAmelCase : Optional[int] = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = 512 _lowerCAmelCase : Union[str, Any] = [1] + [0] * (size - 1) _lowerCAmelCase : Optional[Any] = [filter_type.process(_lowerCamelCase ) for item in inputs] _lowerCAmelCase : int = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCAmelCase : str = np.abs(np.fft.fft(_lowerCamelCase ) ) _lowerCAmelCase : Union[str, Any] = 20 * np.logaa(_lowerCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds _lowerCAmelCase : List[Any] = get_bounds(_lowerCamelCase , _lowerCamelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(_lowerCamelCase ) plt.show() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 512 _lowerCAmelCase : Optional[Any] = [1] + [0] * (size - 1) _lowerCAmelCase : str = [filter_type.process(_lowerCamelCase ) for item in inputs] _lowerCAmelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCAmelCase : Optional[Any] = np.angle(np.fft.fft(_lowerCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(_lowerCamelCase , -2 * pi ) ) plt.show()
36
1
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class a ( _A ): '''simple docstring''' lowerCAmelCase : torch.FloatTensor lowerCAmelCase : Optional[torch.FloatTensor] = None def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : Optional[int]=0.999 , __UpperCamelCase : Union[str, Any]="cosine" , ) -> Tuple: if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCamelCase : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCamelCase : int ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) UpperCAmelCase_ = [] for i in range(__UpperCamelCase ): UpperCAmelCase_ = i / num_diffusion_timesteps UpperCAmelCase_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) , __UpperCamelCase ) ) return torch.tensor(__UpperCamelCase , dtype=torch.floataa ) class a ( _A , _A ): '''simple docstring''' lowerCAmelCase : Any = 1 @register_to_config def __init__( self : List[Any] , __snake_case : int = 10_00 , __snake_case : float = 0.0_001 , __snake_case : float = 0.02 , __snake_case : str = "linear" , __snake_case : Optional[Union[np.ndarray, List[float]]] = None , __snake_case : bool = True , __snake_case : bool = True , __snake_case : int = 0 , __snake_case : str = "epsilon" , __snake_case : float = 1.0 , **__snake_case : List[Any] , ): if kwargs.get('''set_alpha_to_one''' , __snake_case ) is not None: UpperCAmelCase_ = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __snake_case , standard_warn=__snake_case ) UpperCAmelCase_ = kwargs['''set_alpha_to_one'''] if trained_betas is not None: UpperCAmelCase_ = torch.tensor(__snake_case , dtype=torch.floataa ) elif beta_schedule == "linear": UpperCAmelCase_ = torch.linspace(__snake_case , __snake_case , __snake_case , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCAmelCase_ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __snake_case , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCAmelCase_ = betas_for_alpha_bar(__snake_case ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) UpperCAmelCase_ = 1.0 - self.betas UpperCAmelCase_ = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. UpperCAmelCase_ = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution UpperCAmelCase_ = 1.0 # setable values UpperCAmelCase_ = None UpperCAmelCase_ = torch.from_numpy(np.arange(0 , __snake_case ).copy().astype(np.intaa ) ) def lowerCamelCase_ ( self : str , __snake_case : torch.FloatTensor , __snake_case : Optional[int] = None ): return sample def lowerCamelCase_ ( self : int , __snake_case : int , __snake_case : Union[str, torch.device] = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) UpperCAmelCase_ = num_inference_steps UpperCAmelCase_ = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCAmelCase_ = (np.arange(0 , __snake_case ) * step_ratio).round().copy().astype(np.intaa ) UpperCAmelCase_ = torch.from_numpy(__snake_case ).to(__snake_case ) self.timesteps += self.config.steps_offset def lowerCamelCase_ ( self : Optional[Any] , __snake_case : torch.FloatTensor , __snake_case : int , __snake_case : torch.FloatTensor , __snake_case : float = 0.0 , __snake_case : bool = False , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : bool = True , ): # 1. get previous step value (=t+1) UpperCAmelCase_ = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process UpperCAmelCase_ = self.alphas_cumprod[timestep] UpperCAmelCase_ = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) UpperCAmelCase_ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 UpperCAmelCase_ = model_output elif self.config.prediction_type == "sample": UpperCAmelCase_ = model_output UpperCAmelCase_ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": UpperCAmelCase_ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output UpperCAmelCase_ = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: UpperCAmelCase_ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase_ = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase_ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__snake_case , pred_original_sample=__snake_case ) def __len__( self : Optional[Any] ): return self.config.num_train_timesteps
177
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
177
1
"""simple docstring""" from math import sqrt def a_ ( _lowerCAmelCase : int = 100_0000 ): '''simple docstring''' lowercase__ : int = 0 lowercase__ : int = 0 lowercase__ : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
77
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Dict = 0 def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : Tuple = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' ) self.assertIsInstance(a , a ) def _UpperCAmelCase ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : str = Path(a ) / 'preprocessor_config.json' lowercase__ : str = Path(a ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(a , 'w' ) , ) json.dump({'model_type': 'clip'} , open(a , 'w' ) ) lowercase__ : Union[str, Any] = AutoImageProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def _UpperCAmelCase ( self ) -> List[str]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : str = Path(a ) / 'preprocessor_config.json' lowercase__ : int = Path(a ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(a , 'w' ) , ) json.dump({'model_type': 'clip'} , open(a , 'w' ) ) lowercase__ : List[str] = AutoImageProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase__ : Optional[int] = Path(a ) / 'preprocessor_config.json' lowercase__ : Optional[int] = Path(a ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(a , 'w' ) , ) json.dump({'model_type': 'clip'} , open(a , 'w' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase__ : int = AutoImageProcessor.from_pretrained(a ).to_dict() config_dict.pop('image_processor_type' ) lowercase__ : Tuple = CLIPImageProcessor(**a ) # save in new folder model_config.save_pretrained(a ) config.save_pretrained(a ) lowercase__ : Union[str, Any] = AutoImageProcessor.from_pretrained(a ) # make sure private variable is not incorrectly saved lowercase__ : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(a , a ) def _UpperCAmelCase ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : Dict = Path(a ) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(a , 'w' ) , ) lowercase__ : List[str] = AutoImageProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def _UpperCAmelCase ( self ) -> Union[str, Any]: with self.assertRaisesRegex( a , 'clip-base is not a local folder and is not a valid model identifier' ): lowercase__ : Any = AutoImageProcessor.from_pretrained('clip-base' ) def _UpperCAmelCase ( self ) -> List[Any]: with self.assertRaisesRegex( a , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowercase__ : Dict = AutoImageProcessor.from_pretrained(a , revision='aaaaaa' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: with self.assertRaisesRegex( a , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): lowercase__ : int = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' ) def _UpperCAmelCase ( self ) -> Optional[int]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(a ): lowercase__ : List[Any] = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(a ): lowercase__ : Optional[int] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=a ) lowercase__ : Union[str, Any] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=a ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(a ) lowercase__ : str = AutoImageProcessor.from_pretrained(a , trust_remote_code=a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor' ) def _UpperCAmelCase ( self ) -> int: try: AutoConfig.register('custom' , a ) AutoImageProcessor.register(a , a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a ): AutoImageProcessor.register(a , a ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : Optional[Any] = Path(a ) / 'preprocessor_config.json' lowercase__ : List[Any] = Path(a ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(a , 'w' ) , ) json.dump({'model_type': 'clip'} , open(a , 'w' ) ) lowercase__ : Union[str, Any] = CustomImageProcessor.from_pretrained(a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(a ) lowercase__ : Optional[int] = AutoImageProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _UpperCAmelCase ( self ) -> Dict: class UpperCAmelCase_ ( _a): lowerCamelCase__ : Union[str, Any] = True try: AutoConfig.register('custom' , a ) AutoImageProcessor.register(a , a ) # If remote code is not set, the default is to use local lowercase__ : int = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase__ : Optional[int] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=a ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase__ : int = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=a ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(not hasattr(a , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
77
1
def UpperCAmelCase_( a__ ): """simple docstring""" if not all(char in '''01''' for char in bin_string ): raise ValueError('''Non-binary value was passed to the function''' ) if not bin_string: raise ValueError('''Empty string was passed to the function''' ) SCREAMING_SNAKE_CASE : List[Any] = '''''' while len(a__ ) % 3 != 0: SCREAMING_SNAKE_CASE : Optional[int] = '''0''' + bin_string SCREAMING_SNAKE_CASE : Dict = [ bin_string[index : index + 3] for index in range(len(a__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: SCREAMING_SNAKE_CASE : Optional[Any] = 0 for index, val in enumerate(a__ ): oct_val += int(2 ** (2 - index) * int(a__ ) ) oct_string += str(a__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
367
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def UpperCAmelCase_( a__ = 1 / 12_345 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : int = 3 while True: SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): SCREAMING_SNAKE_CASE : List[str] = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
19
0
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> list[str]: if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) __a = number_of_bytes // partitions __a = [] for i in range(lowerCAmelCase__ ): __a = i * bytes_per_partition + 1 __a = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
45
'''simple docstring''' import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case_ = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING snake_case_ = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __magic_name__ ( self : str , __lowercase : str , __lowercase : List[str] , __lowercase : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : Union[str, Any] =AudioClassificationPipeline(model=__lowercase , feature_extractor=__lowercase ) # test with a raw waveform SCREAMING_SNAKE_CASE__ : Optional[int] =np.zeros((3_40_00,) ) SCREAMING_SNAKE_CASE__ : str =np.zeros((1_40_00,) ) return audio_classifier, [audioa, audio] def __magic_name__ ( self : Optional[int] , __lowercase : int , __lowercase : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict =examples SCREAMING_SNAKE_CASE__ : str =audio_classifier(__lowercase ) # by default a model is initialized with num_labels=2 self.assertEqual( __lowercase , [ {'''score''': ANY(__lowercase ), '''label''': ANY(__lowercase )}, {'''score''': ANY(__lowercase ), '''label''': ANY(__lowercase )}, ] , ) SCREAMING_SNAKE_CASE__ : List[Any] =audio_classifier(__lowercase , top_k=1 ) self.assertEqual( __lowercase , [ {'''score''': ANY(__lowercase ), '''label''': ANY(__lowercase )}, ] , ) self.run_torchaudio(__lowercase ) @require_torchaudio def __magic_name__ ( self : Union[str, Any] , __lowercase : str ) -> Optional[Any]: import datasets # test with a local file SCREAMING_SNAKE_CASE__ : Optional[int] =datasets.load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) SCREAMING_SNAKE_CASE__ : int =dataset[0]['''audio''']['''array'''] SCREAMING_SNAKE_CASE__ : Optional[Any] =audio_classifier(__lowercase ) self.assertEqual( __lowercase , [ {'''score''': ANY(__lowercase ), '''label''': ANY(__lowercase )}, {'''score''': ANY(__lowercase ), '''label''': ANY(__lowercase )}, ] , ) @require_torch def __magic_name__ ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict ='''anton-l/wav2vec2-random-tiny-classifier''' SCREAMING_SNAKE_CASE__ : Optional[Any] =pipeline('''audio-classification''' , model=__lowercase ) SCREAMING_SNAKE_CASE__ : str =np.ones((80_00,) ) SCREAMING_SNAKE_CASE__ : List[str] =audio_classifier(__lowercase , top_k=4 ) SCREAMING_SNAKE_CASE__ : Dict =[ {'''score''': 0.0842, '''label''': '''no'''}, {'''score''': 0.0838, '''label''': '''up'''}, {'''score''': 0.0837, '''label''': '''go'''}, {'''score''': 0.0834, '''label''': '''right'''}, ] SCREAMING_SNAKE_CASE__ : List[str] =[ {'''score''': 0.0845, '''label''': '''stop'''}, {'''score''': 0.0844, '''label''': '''on'''}, {'''score''': 0.0841, '''label''': '''right'''}, {'''score''': 0.0834, '''label''': '''left'''}, ] self.assertIn(nested_simplify(__lowercase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) SCREAMING_SNAKE_CASE__ : List[str] ={'''array''': np.ones((80_00,) ), '''sampling_rate''': audio_classifier.feature_extractor.sampling_rate} SCREAMING_SNAKE_CASE__ : Tuple =audio_classifier(__lowercase , top_k=4 ) self.assertIn(nested_simplify(__lowercase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __magic_name__ ( self : Dict ) -> Any: import datasets SCREAMING_SNAKE_CASE__ : Union[str, Any] ='''superb/wav2vec2-base-superb-ks''' SCREAMING_SNAKE_CASE__ : Optional[int] =pipeline('''audio-classification''' , model=__lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =datasets.load_dataset('''anton-l/superb_dummy''' , '''ks''' , split='''test''' ) SCREAMING_SNAKE_CASE__ : List[str] =np.array(dataset[3]['''speech'''] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : int =audio_classifier(__lowercase , top_k=4 ) self.assertEqual( nested_simplify(__lowercase , decimals=3 ) , [ {'''score''': 0.981, '''label''': '''go'''}, {'''score''': 0.007, '''label''': '''up'''}, {'''score''': 0.006, '''label''': '''_unknown_'''}, {'''score''': 0.001, '''label''': '''down'''}, ] , ) @require_tf @unittest.skip('''Audio classification is not implemented for TF''' ) def __magic_name__ ( self : List[str] ) -> Optional[int]: pass
152
0
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json", # See all BART models at https://huggingface.co/models?filter=bart } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'bart' lowerCamelCase = ['past_key_values'] lowerCamelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Tuple,lowercase_ : Optional[int]=5_0_2_6_5,lowercase_ : List[str]=1_0_2_4,lowercase_ : Any=1_2,lowercase_ : Optional[Any]=4_0_9_6,lowercase_ : str=1_6,lowercase_ : int=1_2,lowercase_ : Optional[Any]=4_0_9_6,lowercase_ : Any=1_6,lowercase_ : Any=0.0,lowercase_ : str=0.0,lowercase_ : Optional[Any]="gelu",lowercase_ : List[str]=1_0_2_4,lowercase_ : List[Any]=0.1,lowercase_ : Union[str, Any]=0.0,lowercase_ : Optional[int]=0.0,lowercase_ : List[Any]=0.02,lowercase_ : int=0.0,lowercase_ : Optional[Any]=False,lowercase_ : List[Any]=True,lowercase_ : Union[str, Any]=3,lowercase_ : int=1,lowercase_ : int=0,lowercase_ : List[str]=2,lowercase_ : Optional[int]=True,lowercase_ : Tuple=2,lowercase_ : List[str]=2,**lowercase_ : Dict,)-> List[Any]: '''simple docstring''' A__ = vocab_size A__ = max_position_embeddings A__ = d_model A__ = encoder_ffn_dim A__ = encoder_layers A__ = encoder_attention_heads A__ = decoder_ffn_dim A__ = decoder_layers A__ = decoder_attention_heads A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = activation_function A__ = init_std A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = classifier_dropout A__ = use_cache A__ = encoder_layers A__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=lowercase_,pad_token_id=lowercase_,bos_token_id=lowercase_,eos_token_id=lowercase_,is_encoder_decoder=lowercase_,decoder_start_token_id=lowercase_,forced_eos_token_id=lowercase_,**lowercase_,) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated',lowercase_ ): A__ = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.' ) class A ( _UpperCAmelCase ): """simple docstring""" @property def snake_case__ ( self : Dict )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A__ = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A__ = {0: 'batch'} A__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: A__ = {0: 'batch', 1: 'decoder_sequence'} A__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_,direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. A__ = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A__ , A__ = self.num_layers for i in range(lowercase_ ): A__ = {0: 'batch', 2: 'past_sequence + sequence'} A__ = {0: 'batch', 2: 'past_sequence + sequence'} else: A__ = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def snake_case__ ( self : Optional[Any] )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A__ = super().outputs else: A__ = super(lowercase_,self ).outputs if self.use_past: A__ , A__ = self.num_layers for i in range(lowercase_ ): A__ = {0: 'batch', 2: 'past_sequence + sequence'} A__ = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def snake_case__ ( self : Tuple,lowercase_ : PreTrainedTokenizer,lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional[TensorType] = None,)-> Mapping[str, Any]: '''simple docstring''' A__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_,lowercase_,lowercase_,lowercase_,lowercase_ ) # Generate decoder inputs A__ = seq_length if not self.use_past else 1 A__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_,lowercase_,lowercase_,lowercase_,lowercase_ ) A__ = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} A__ = dict(**lowercase_,**lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A__ , A__ = common_inputs['input_ids'].shape A__ = common_inputs['decoder_input_ids'].shape[1] A__ , A__ = self.num_attention_heads A__ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A__ = decoder_seq_length + 3 A__ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A__ = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowercase_,lowercase_ )],dim=1 ) A__ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A__ , A__ = self.num_layers A__ = min(lowercase_,lowercase_ ) A__ = max(lowercase_,lowercase_ ) - min_num_layers A__ = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowercase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), ) ) # TODO: test this. A__ = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowercase_,lowercase_ ): common_inputs["past_key_values"].append((torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) ) return common_inputs def snake_case__ ( self : List[str],lowercase_ : PreTrainedTokenizer,lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional[TensorType] = None,)-> Mapping[str, Any]: '''simple docstring''' A__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_,lowercase_,lowercase_,lowercase_,lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A__ , A__ = common_inputs['input_ids'].shape # Not using the same length for past_key_values A__ = seqlen + 2 A__ , A__ = self.num_layers A__ , A__ = self.num_attention_heads A__ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A__ = common_inputs['attention_mask'].dtype A__ = torch.cat( [common_inputs['attention_mask'], torch.ones(lowercase_,lowercase_,dtype=lowercase_ )],dim=1 ) A__ = [ (torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) for _ in range(lowercase_ ) ] return common_inputs def snake_case__ ( self : Union[str, Any],lowercase_ : PreTrainedTokenizer,lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional[TensorType] = None,)-> Mapping[str, Any]: '''simple docstring''' A__ = compute_effective_axis_dimension( lowercase_,fixed_dimension=OnnxConfig.default_fixed_batch,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A__ = tokenizer.num_special_tokens_to_add(lowercase_ ) A__ = compute_effective_axis_dimension( lowercase_,fixed_dimension=OnnxConfig.default_fixed_sequence,num_token_to_add=lowercase_ ) # Generate dummy inputs according to compute batch and sequence A__ = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size A__ = dict(tokenizer(lowercase_,return_tensors=lowercase_ ) ) return common_inputs def snake_case__ ( self : Union[str, Any],lowercase_ : PreTrainedTokenizer,lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional[TensorType] = None,)-> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A__ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase_,batch_size=lowercase_,seq_length=lowercase_,is_pair=lowercase_,framework=lowercase_ ) elif self.task == "causal-lm": A__ = self._generate_dummy_inputs_for_causal_lm( lowercase_,batch_size=lowercase_,seq_length=lowercase_,is_pair=lowercase_,framework=lowercase_ ) else: A__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_,batch_size=lowercase_,seq_length=lowercase_,is_pair=lowercase_,framework=lowercase_ ) return common_inputs def snake_case__ ( self : int,lowercase_ : Tuple,lowercase_ : int,lowercase_ : int,lowercase_ : str )-> str: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A__ = super()._flatten_past_key_values_(lowercase_,lowercase_,lowercase_,lowercase_ ) else: A__ = super(lowercase_,self )._flatten_past_key_values_( lowercase_,lowercase_,lowercase_,lowercase_ )
282
import argparse import struct import unittest class A : """simple docstring""" def __init__( self : Any,lowercase_ : bytes )-> None: '''simple docstring''' A__ = data # Initialize hash values A__ = [ 0X6_a_0_9_e_6_6_7, 0Xb_b_6_7_a_e_8_5, 0X3_c_6_e_f_3_7_2, 0Xa_5_4_f_f_5_3_a, 0X5_1_0_e_5_2_7_f, 0X9_b_0_5_6_8_8_c, 0X1_f_8_3_d_9_a_b, 0X5_b_e_0_c_d_1_9, ] # Initialize round constants A__ = [ 0X4_2_8_a_2_f_9_8, 0X7_1_3_7_4_4_9_1, 0Xb_5_c_0_f_b_c_f, 0Xe_9_b_5_d_b_a_5, 0X3_9_5_6_c_2_5_b, 0X5_9_f_1_1_1_f_1, 0X9_2_3_f_8_2_a_4, 0Xa_b_1_c_5_e_d_5, 0Xd_8_0_7_a_a_9_8, 0X1_2_8_3_5_b_0_1, 0X2_4_3_1_8_5_b_e, 0X5_5_0_c_7_d_c_3, 0X7_2_b_e_5_d_7_4, 0X8_0_d_e_b_1_f_e, 0X9_b_d_c_0_6_a_7, 0Xc_1_9_b_f_1_7_4, 0Xe_4_9_b_6_9_c_1, 0Xe_f_b_e_4_7_8_6, 0X0_f_c_1_9_d_c_6, 0X2_4_0_c_a_1_c_c, 0X2_d_e_9_2_c_6_f, 0X4_a_7_4_8_4_a_a, 0X5_c_b_0_a_9_d_c, 0X7_6_f_9_8_8_d_a, 0X9_8_3_e_5_1_5_2, 0Xa_8_3_1_c_6_6_d, 0Xb_0_0_3_2_7_c_8, 0Xb_f_5_9_7_f_c_7, 0Xc_6_e_0_0_b_f_3, 0Xd_5_a_7_9_1_4_7, 0X0_6_c_a_6_3_5_1, 0X1_4_2_9_2_9_6_7, 0X2_7_b_7_0_a_8_5, 0X2_e_1_b_2_1_3_8, 0X4_d_2_c_6_d_f_c, 0X5_3_3_8_0_d_1_3, 0X6_5_0_a_7_3_5_4, 0X7_6_6_a_0_a_b_b, 0X8_1_c_2_c_9_2_e, 0X9_2_7_2_2_c_8_5, 0Xa_2_b_f_e_8_a_1, 0Xa_8_1_a_6_6_4_b, 0Xc_2_4_b_8_b_7_0, 0Xc_7_6_c_5_1_a_3, 0Xd_1_9_2_e_8_1_9, 0Xd_6_9_9_0_6_2_4, 0Xf_4_0_e_3_5_8_5, 0X1_0_6_a_a_0_7_0, 0X1_9_a_4_c_1_1_6, 0X1_e_3_7_6_c_0_8, 0X2_7_4_8_7_7_4_c, 0X3_4_b_0_b_c_b_5, 0X3_9_1_c_0_c_b_3, 0X4_e_d_8_a_a_4_a, 0X5_b_9_c_c_a_4_f, 0X6_8_2_e_6_f_f_3, 0X7_4_8_f_8_2_e_e, 0X7_8_a_5_6_3_6_f, 0X8_4_c_8_7_8_1_4, 0X8_c_c_7_0_2_0_8, 0X9_0_b_e_f_f_f_a, 0Xa_4_5_0_6_c_e_b, 0Xb_e_f_9_a_3_f_7, 0Xc_6_7_1_7_8_f_2, ] A__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def snake_case__ ( lowercase_ : bytes )-> bytes: '''simple docstring''' A__ = B'\x80' + (B'\x00' * (6_3 - (len(lowercase_ ) + 8) % 6_4)) A__ = struct.pack('>Q',(len(lowercase_ ) * 8) ) return data + padding + big_endian_integer def snake_case__ ( self : Optional[int] )-> None: '''simple docstring''' A__ = [ self.preprocessed_data[x : x + 6_4] for x in range(0,len(self.preprocessed_data ),6_4 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A__ = list(struct.unpack('>16L',lowercase_ ) ) # add 48 0-ed integers words += [0] * 4_8 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = self.hashes for index in range(0,6_4 ): if index > 1_5: # modify the zero-ed indexes at the end of the array A__ = ( self.ror(words[index - 1_5],7 ) ^ self.ror(words[index - 1_5],1_8 ) ^ (words[index - 1_5] >> 3) ) A__ = ( self.ror(words[index - 2],1_7 ) ^ self.ror(words[index - 2],1_9 ) ^ (words[index - 2] >> 1_0) ) A__ = ( words[index - 1_6] + sa + words[index - 7] + sa ) % 0X1_0_0_0_0_0_0_0_0 # Compression A__ = self.ror(lowercase_,6 ) ^ self.ror(lowercase_,1_1 ) ^ self.ror(lowercase_,2_5 ) A__ = (e & f) ^ ((~e & 0Xf_f_f_f_f_f_f_f) & g) A__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0_0_0_0_0_0_0_0 A__ = self.ror(lowercase_,2 ) ^ self.ror(lowercase_,1_3 ) ^ self.ror(lowercase_,2_2 ) A__ = (a & b) ^ (a & c) ^ (b & c) A__ = (sa + maj) % 0X1_0_0_0_0_0_0_0_0 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = ( g, f, e, ((d + tempa) % 0X1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0), ) A__ = [a, b, c, d, e, f, g, h] # Modify final values A__ = [ ((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] A__ = ''.join([hex(lowercase_ )[2:].zfill(8 ) for value in self.hashes] ) def snake_case__ ( self : Union[str, Any],lowercase_ : int,lowercase_ : int )-> int: '''simple docstring''' return 0Xf_f_f_f_f_f_f_f & (value << (3_2 - rotations)) | (value >> rotations) class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] )-> None: '''simple docstring''' import hashlib A__ = bytes('Test String','utf-8' ) self.assertEqual(SHAaaa(lowercase_ ).hash,hashlib.shaaaa(lowercase_ ).hexdigest() ) def _snake_case( ) -> None: '''simple docstring''' import doctest doctest.testmod() A__ = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) A__ = parser.parse_args() A__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: A__ = f.read() else: A__ = bytes(SCREAMING_SNAKE_CASE__ , 'utf-8' ) print(SHAaaa(SCREAMING_SNAKE_CASE__ ).hash ) if __name__ == "__main__": main()
282
1
"""simple docstring""" import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowercase_ = datasets.utils.logging.get_logger(__name__) @dataclass class __lowerCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' __UpperCAmelCase : Optional[datasets.Features] = None __UpperCAmelCase : str = "utf-8" __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True # deprecated __UpperCAmelCase : Optional[int] = None # deprecated __UpperCAmelCase : int = 1_0 << 2_0 # 10MB __UpperCAmelCase : Optional[bool] = None class __lowerCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = JsonConfig def __UpperCAmelCase ( self ): if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) __a = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def __UpperCAmelCase ( self , _a ): if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __a = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): __a = data_files if isinstance(_a , _a ): __a = [files] __a = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __a = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): __a = [files] __a = [dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) ) return splits def __UpperCAmelCase ( self , _a ): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): __a = self.config.features.arrow_schema.field(_a ).type __a = pa_table.append_column(_a , pa.array([None] * len(_a ) , type=_a ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example __a = table_cast(_a , self.config.features.arrow_schema ) return pa_table def __UpperCAmelCase ( self , _a ): for file_idx, file in enumerate(itertools.chain.from_iterable(_a ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_a , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __a = json.load(_a ) # We keep only the field we are interested in __a = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_a , (list, tuple) ): __a = set().union(*[row.keys() for row in dataset] ) __a = {col: [row.get(_a ) for row in dataset] for col in keys} else: __a = dataset __a = pa.Table.from_pydict(_a ) yield file_idx, self._cast_table(_a ) # If the file has one json object per line else: with open(_a , '''rb''' ) as f: __a = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small __a = max(self.config.chunksize // 32 , 16 << 10 ) __a = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: __a = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_a ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": __a = batch.decode(self.config.encoding , errors=_a ).encode('''utf-8''' ) try: while True: try: __a = paj.read_json( io.BytesIO(_a ) , read_options=paj.ReadOptions(block_size=_a ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_a , pa.ArrowInvalid ) and "straddling" not in str(_a ) or block_size > len(_a ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'''Batch of {len(_a )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _a , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __a = json.load(_a ) except json.JSONDecodeError: logger.error(f'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_a , _a ): # list is the only sequence type supported in JSON try: __a = set().union(*[row.keys() for row in dataset] ) __a = {col: [row.get(_a ) for row in dataset] for col in keys} __a = pa.Table.from_pydict(_a ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(_a ) break else: logger.error(f'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise ValueError( f'''Not able to read records in the JSON file at {file}. ''' f'''You should probably indicate the field of the JSON file containing your records. ''' f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_a ) batch_idx += 1
45
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = """hf-internal-testing/tiny-random-t5""" __a = AutoTokenizer.from_pretrained(__lowercase ) __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __a = tokenizer("""This is me""" , return_tensors="""pt""" ) __a = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __a = model.generate(**__lowercase ) __a = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowercase ) __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __a = model_reloaded.generate(**__lowercase ) self.assertTrue(torch.allclose(__lowercase , __lowercase ) ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = """hf-internal-testing/tiny-random-t5""" __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __a = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowercase ): model.save_pretrained(__lowercase ) __a = model.reverse_bettertransformer() model.save_pretrained(__lowercase )
302
0
"""simple docstring""" import os _UpperCamelCase = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000} def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = 0 UpperCAmelCase = 0 while index < len(_snake_case ) - 1: UpperCAmelCase = SYMBOLS[numerals[index]] UpperCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = """""" UpperCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 UpperCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 UpperCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _a ( _snake_case = "/p089_roman.txt" ): """simple docstring""" UpperCAmelCase = 0 with open(os.path.dirname(_snake_case ) + roman_numerals_filename ) as filea: UpperCAmelCase = filea.readlines() for line in lines: UpperCAmelCase = line.strip() UpperCAmelCase = parse_roman_numerals(_snake_case ) UpperCAmelCase = generate_roman_numerals(_snake_case ) savings += len(_snake_case ) - len(_snake_case ) return savings if __name__ == "__main__": print(F"""{solution() = }""")
234
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCamelCase = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""GLPNFeatureExtractor"""] _UpperCamelCase = ["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
234
1
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = DistilBertTokenizer snake_case_ = DistilBertTokenizerFast snake_case_ = True @slow def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = DistilBertTokenizer.from_pretrained('distilbert-base-uncased' ) __lowerCamelCase = tokenizer.encode('sequence builders' , add_special_tokens=lowerCamelCase__ ) __lowerCamelCase = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCamelCase__ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ , lowerCamelCase__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
90
from argparse import ArgumentParser from . import BaseTransformersCLICommand def _UpperCAmelCase ( snake_case ): """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __lowerCAmelCase ( lowerCamelCase__ ): @staticmethod def snake_case ( _snake_case ): """simple docstring""" _lowerCAmelCase = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=_snake_case , default=_snake_case , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=_snake_case , help="""Name of the model to download""" ) download_parser.set_defaults(func=_snake_case ) def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = model _lowerCAmelCase = cache _lowerCAmelCase = force _lowerCAmelCase = trust_remote_code def snake_case ( self ): """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
82
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : str = """instructblip_vision_model""" def __init__( self : Union[str, Any] , __lowerCamelCase : str=1_408 , __lowerCamelCase : str=6_144 , __lowerCamelCase : List[Any]=39 , __lowerCamelCase : str=16 , __lowerCamelCase : Optional[int]=224 , __lowerCamelCase : Dict=14 , __lowerCamelCase : str="gelu" , __lowerCamelCase : int=1E-6 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Tuple=1E-10 , __lowerCamelCase : List[str]=True , **__lowerCamelCase : str , ): super().__init__(**__lowerCamelCase ) UpperCamelCase :Dict = hidden_size UpperCamelCase :List[Any] = intermediate_size UpperCamelCase :List[Any] = num_hidden_layers UpperCamelCase :Tuple = num_attention_heads UpperCamelCase :Any = patch_size UpperCamelCase :Optional[int] = image_size UpperCamelCase :Any = initializer_range UpperCamelCase :Any = attention_dropout UpperCamelCase :Dict = layer_norm_eps UpperCamelCase :int = hidden_act UpperCamelCase :Optional[Any] = qkv_bias @classmethod def _A ( cls : Union[str, Any] , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : List[str] ): cls._set_token_in_kwargs(__lowerCamelCase ) UpperCamelCase :str = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": UpperCamelCase :Optional[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : str = """instructblip_qformer""" def __init__( self : Optional[Any] , __lowerCamelCase : Optional[int]=30_522 , __lowerCamelCase : Dict=768 , __lowerCamelCase : int=12 , __lowerCamelCase : str=12 , __lowerCamelCase : Optional[Any]=3_072 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Union[str, Any]=512 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : Optional[int]=1E-12 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : int="absolute" , __lowerCamelCase : str=2 , __lowerCamelCase : str=1_408 , **__lowerCamelCase : Tuple , ): super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) UpperCamelCase :str = vocab_size UpperCamelCase :Tuple = hidden_size UpperCamelCase :Any = num_hidden_layers UpperCamelCase :Optional[int] = num_attention_heads UpperCamelCase :Dict = hidden_act UpperCamelCase :Tuple = intermediate_size UpperCamelCase :Tuple = hidden_dropout_prob UpperCamelCase :int = attention_probs_dropout_prob UpperCamelCase :List[str] = max_position_embeddings UpperCamelCase :Optional[int] = initializer_range UpperCamelCase :List[str] = layer_norm_eps UpperCamelCase :int = position_embedding_type UpperCamelCase :int = cross_attention_frequency UpperCamelCase :Union[str, Any] = encoder_hidden_size @classmethod def _A ( cls : Optional[int] , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : Any ): cls._set_token_in_kwargs(__lowerCamelCase ) UpperCamelCase :Optional[Any] = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": UpperCamelCase :Optional[Any] = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Tuple = """instructblip""" snake_case__ : Optional[Any] = True def __init__( self : Any , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Dict=32 , **__lowerCamelCase : int ): super().__init__(**__lowerCamelCase ) if vision_config is None: UpperCamelCase :List[Any] = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: UpperCamelCase :Dict = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: UpperCamelCase :Union[str, Any] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) UpperCamelCase :Dict = InstructBlipVisionConfig(**__lowerCamelCase ) UpperCamelCase :str = InstructBlipQFormerConfig(**__lowerCamelCase ) UpperCamelCase :Optional[Any] = text_config["""model_type"""] if """model_type""" in text_config else """opt""" UpperCamelCase :Optional[int] = CONFIG_MAPPING[text_model_type](**__lowerCamelCase ) UpperCamelCase :str = self.text_config.tie_word_embeddings UpperCamelCase :Union[str, Any] = self.text_config.is_encoder_decoder UpperCamelCase :List[str] = num_query_tokens UpperCamelCase :Any = self.vision_config.hidden_size UpperCamelCase :int = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCamelCase :Optional[Any] = 1.0 UpperCamelCase :Optional[int] = 0.02 @classmethod def _A ( cls : Union[str, Any] , __lowerCamelCase : InstructBlipVisionConfig , __lowerCamelCase : InstructBlipQFormerConfig , __lowerCamelCase : PretrainedConfig , **__lowerCamelCase : List[Any] , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__lowerCamelCase , ) def _A ( self : Tuple ): UpperCamelCase :int = copy.deepcopy(self.__dict__ ) UpperCamelCase :Tuple = self.vision_config.to_dict() UpperCamelCase :int = self.qformer_config.to_dict() UpperCamelCase :Union[str, Any] = self.text_config.to_dict() UpperCamelCase :Any = self.__class__.model_type return output
350
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : Optional[int] = { '''configuration_jukebox''': [ '''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''JukeboxConfig''', '''JukeboxPriorConfig''', '''JukeboxVQVAEConfig''', ], '''tokenization_jukebox''': ['''JukeboxTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''JukeboxModel''', '''JukeboxPreTrainedModel''', '''JukeboxVQVAE''', '''JukeboxPrior''', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
62
0
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowercase ( _A , _A , _A=None ) -> Union[str, Any]: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F"{torch_layer} layer.weight does not match" SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(_A ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"{torch_layer} layer.bias does not match" SCREAMING_SNAKE_CASE : int = nn.Parameter(_A ) def __lowercase ( _A , _A , _A ) -> Optional[int]: # set torch weights for 1-to-1 comparison SCREAMING_SNAKE_CASE : Tuple = np.asarray(weights[0] ) SCREAMING_SNAKE_CASE : str = np.asarray(weights[1] ) SCREAMING_SNAKE_CASE : Optional[Any] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(_A ).transpose(1 , 2 ).contiguous().view(-1 , _A ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_A ).transpose(1 , 2 ).contiguous().view(-1 , _A ) , ) set_param( torch_layer.output.dense , torch.tensor(_A ).view(-1 , _A ).contiguous().transpose(0 , 1 ) , ) def __lowercase ( _A , _A , _A ) -> List[Any]: # set torch weights for 1-to-1 comparison SCREAMING_SNAKE_CASE : List[str] = np.asarray(weights[0] ) SCREAMING_SNAKE_CASE : Optional[int] = np.asarray(weights[1] ) SCREAMING_SNAKE_CASE : Dict = np.asarray(weights[2] ) SCREAMING_SNAKE_CASE : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(_A ).transpose(1 , 2 ).contiguous().view(-1 , _A ) , ) set_param( torch_layer.self_attention.key , torch.tensor(_A ).transpose(1 , 2 ).contiguous().view(-1 , _A ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_A ).transpose(1 , 2 ).contiguous().view(-1 , _A ) , ) set_param( torch_layer.output.dense , torch.tensor(_A ).view(-1 , _A ).contiguous().transpose(0 , 1 ) , ) def __lowercase ( _A , _A , _A ) -> Tuple: # layernorm 1 SCREAMING_SNAKE_CASE : Any = weights[0][0][0] SCREAMING_SNAKE_CASE : str = np.asarray(layer_norm_a[0] ) SCREAMING_SNAKE_CASE : List[str] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(_A ) , torch.tensor(_A ) , ) # lsh weights + output SCREAMING_SNAKE_CASE : List[str] = weights[0][1] if len(_A ) < 4: set_layer_weights_in_torch_lsh(_A , torch_block.attention , _A ) else: set_layer_weights_in_torch_local(_A , torch_block.attention , _A ) # intermediate weighs SCREAMING_SNAKE_CASE : Union[str, Any] = weights[2][0][1][2] # Chunked Feed Forward if len(_A ) == 4: SCREAMING_SNAKE_CASE : Dict = intermediate_weights[2] # layernorm 2 SCREAMING_SNAKE_CASE : Tuple = np.asarray(intermediate_weights[0][0] ) SCREAMING_SNAKE_CASE : Optional[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(_A ) , torch.tensor(_A ) , ) # intermediate dense SCREAMING_SNAKE_CASE : Optional[int] = np.asarray(intermediate_weights[1][0] ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(_A ).transpose(0 , 1 ).contiguous() , torch.tensor(_A ) , ) # intermediate out SCREAMING_SNAKE_CASE : Any = np.asarray(intermediate_weights[4][0] ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(_A ).transpose(0 , 1 ).contiguous() , torch.tensor(_A ) , ) def __lowercase ( _A , _A , _A ) -> Dict: # reformer model SCREAMING_SNAKE_CASE : int = torch_model.reformer # word embeds SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(_A ) , ) if isinstance(weights[3] , _A ): SCREAMING_SNAKE_CASE : Dict = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): SCREAMING_SNAKE_CASE : Any = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"{position_embeddings[emb_idx]} emb does not match" SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.tensor(_A ) ) SCREAMING_SNAKE_CASE : List[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( _A ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): SCREAMING_SNAKE_CASE : Optional[Any] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(_A , _A , _A ) # output layer norm SCREAMING_SNAKE_CASE : Tuple = np.asarray(weights[7][0] ) SCREAMING_SNAKE_CASE : int = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(_A ) , torch.tensor(_A ) , ) # output embeddings SCREAMING_SNAKE_CASE : Dict = np.asarray(weights[9][0] ) SCREAMING_SNAKE_CASE : Any = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(_A ).transpose(0 , 1 ).contiguous() , torch.tensor(_A ) , ) def __lowercase ( _A , _A , _A ) -> List[str]: # Initialise PyTorch model SCREAMING_SNAKE_CASE : Tuple = ReformerConfig.from_json_file(_A ) print(F"Building PyTorch model from configuration: {config}" ) SCREAMING_SNAKE_CASE : int = ReformerModelWithLMHead(_A ) with open(_A , """rb""" ) as f: SCREAMING_SNAKE_CASE : Optional[Any] = pickle.load(_A )["""weights"""] set_model_weights_in_torch(_A , _A , config.hidden_size ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": UpperCAmelCase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ : Any = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
245
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : str = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : List[Any] ="""table-transformer""" UpperCAmelCase__ : Union[str, Any] =["""past_key_values"""] UpperCAmelCase__ : Any ={ """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Tuple , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : Any=1_0_0 , UpperCAmelCase__ : Optional[Any]=6 , UpperCAmelCase__ : Dict=2_0_4_8 , UpperCAmelCase__ : Any=8 , UpperCAmelCase__ : List[str]=6 , UpperCAmelCase__ : Union[str, Any]=2_0_4_8 , UpperCAmelCase__ : int=8 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : Optional[Any]=0.0 , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Dict="relu" , UpperCAmelCase__ : List[Any]=2_5_6 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Optional[int]=0.0 , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : List[str]=1.0 , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : int="sine" , UpperCAmelCase__ : Dict="resnet50" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : Union[str, Any]=1 , UpperCAmelCase__ : List[Any]=5 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Any=1 , UpperCAmelCase__ : Any=1 , UpperCAmelCase__ : int=5 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : int=0.1 , **UpperCAmelCase__ : Union[str, Any] , ) ->Dict: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) SCREAMING_SNAKE_CASE : str = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE : Optional[int] = backbone_config.get("""model_type""" ) SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : Optional[Any] = config_class.from_dict(UpperCAmelCase__ ) # set timm attributes to None SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = None, None, None SCREAMING_SNAKE_CASE : List[Any] = use_timm_backbone SCREAMING_SNAKE_CASE : List[Any] = backbone_config SCREAMING_SNAKE_CASE : Dict = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = num_queries SCREAMING_SNAKE_CASE : Optional[Any] = d_model SCREAMING_SNAKE_CASE : Any = encoder_ffn_dim SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : List[str] = encoder_attention_heads SCREAMING_SNAKE_CASE : Tuple = decoder_ffn_dim SCREAMING_SNAKE_CASE : Optional[Any] = decoder_layers SCREAMING_SNAKE_CASE : str = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : List[Any] = attention_dropout SCREAMING_SNAKE_CASE : Optional[int] = activation_dropout SCREAMING_SNAKE_CASE : Tuple = activation_function SCREAMING_SNAKE_CASE : int = init_std SCREAMING_SNAKE_CASE : str = init_xavier_std SCREAMING_SNAKE_CASE : Tuple = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layers SCREAMING_SNAKE_CASE : Any = auxiliary_loss SCREAMING_SNAKE_CASE : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE : List[Any] = backbone SCREAMING_SNAKE_CASE : Optional[Any] = use_pretrained_backbone SCREAMING_SNAKE_CASE : Optional[Any] = dilation # Hungarian matcher SCREAMING_SNAKE_CASE : List[Any] = class_cost SCREAMING_SNAKE_CASE : Tuple = bbox_cost SCREAMING_SNAKE_CASE : Dict = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE : Dict = mask_loss_coefficient SCREAMING_SNAKE_CASE : Optional[Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE : Tuple = bbox_loss_coefficient SCREAMING_SNAKE_CASE : List[Any] = giou_loss_coefficient SCREAMING_SNAKE_CASE : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=UpperCAmelCase__ , **UpperCAmelCase__ ) @property def _lowercase ( self : List[str] ) ->int: """simple docstring""" return self.encoder_attention_heads @property def _lowercase ( self : Any ) ->int: """simple docstring""" return self.d_model class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : List[str] =version.parse("""1.11""" ) @property def _lowercase ( self : Union[str, Any] ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase ( self : Optional[Any] ) ->float: """simple docstring""" return 1e-5 @property def _lowercase ( self : Tuple ) ->int: """simple docstring""" return 1_2
245
1
"""simple docstring""" def lowercase__(A ) ->List[Any]: """simple docstring""" lowercase__ : Optional[Any]= [] if len(SCREAMING_SNAKE_CASE_ ) == 1: return [nums.copy()] for _ in range(len(SCREAMING_SNAKE_CASE_ ) ): lowercase__ : List[str]= nums.pop(0 ) lowercase__ : Optional[int]= permute(SCREAMING_SNAKE_CASE_ ) for perm in permutations: perm.append(SCREAMING_SNAKE_CASE_ ) result.extend(SCREAMING_SNAKE_CASE_ ) nums.append(SCREAMING_SNAKE_CASE_ ) return result def lowercase__(A ) ->Dict: """simple docstring""" def backtrack(A ): if start == len(SCREAMING_SNAKE_CASE_ ) - 1: output.append(nums[:] ) else: for i in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ): lowercase__, lowercase__ : Tuple= nums[i], nums[start] backtrack(start + 1 ) lowercase__, lowercase__ : Optional[int]= nums[i], nums[start] # backtrack lowercase__ : Optional[int]= [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function a : int = permutea([1, 2, 3]) print(res) doctest.testmod()
364
"""simple docstring""" from __future__ import annotations class __UpperCAmelCase: """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' lowercase__ : List[Any]= data lowercase__ : Node | None= None lowercase__ : Node | None= None def lowercase__(A ) ->None: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowercase__(A ) ->int: """simple docstring""" return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowercase__(A ) ->bool: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowercase__() ->None: # Main function for testing. """simple docstring""" lowercase__ : Tuple= Node(1 ) lowercase__ : Optional[int]= Node(2 ) lowercase__ : List[str]= Node(3 ) lowercase__ : Tuple= Node(4 ) lowercase__ : Optional[int]= Node(5 ) lowercase__ : Any= Node(6 ) lowercase__ : Optional[Any]= Node(7 ) lowercase__ : Optional[int]= Node(8 ) lowercase__ : List[str]= Node(9 ) print(is_full_binary_tree(A ) ) print(depth_of_tree(A ) ) print("Tree is: " ) display(A ) if __name__ == "__main__": main()
150
0
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore lowerCAmelCase_ : int = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" lowerCAmelCase_ : List[str] = [file for file in filepaths if file != file.lower()] if upper_files: print(f"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') lowerCAmelCase_ : Dict = [file for file in filepaths if ' ' in file] if space_files: print(f"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') lowerCAmelCase_ : Any = [file for file in filepaths if '-' in file] if hyphen_files: print(f"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') lowerCAmelCase_ : Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(f"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') lowerCAmelCase_ : int = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
63
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") UpperCamelCase__ = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") UpperCamelCase__ = """pt""" if is_torch_available() else """tf""" @require_sentencepiece @require_tokenizers class a__ ( snake_case__ , unittest.TestCase ): _a : int = CamembertTokenizer _a : Dict = CamembertTokenizerFast _a : Tuple = True _a : List[Any] = True def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = CamembertTokenizer(_A ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = "<pad>" __lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>NOTUSED" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(_A ) , 1_0_0_4 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_5 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = CamembertTokenizer(_A ) tokenizer.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) __lowerCAmelCase = "I was born in 92000, and this is falsé." __lowerCAmelCase = tokenizer.encode(_A ) __lowerCAmelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = tokenizer.encode(_A , add_special_tokens=_A ) __lowerCAmelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(_A ) __lowerCAmelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if not self.test_rust_tokenizer: return __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = "I was born in 92000, and this is falsé." __lowerCAmelCase = tokenizer.tokenize(_A ) __lowerCAmelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = tokenizer.encode(_A , add_special_tokens=_A ) __lowerCAmelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(_A ) __lowerCAmelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = {"input_ids": [[5, 5_4, 7_1_9_6, 2_9_7, 3_0, 2_3, 7_7_6, 1_8, 1_1, 3_2_1_5, 3_7_0_5, 8_2_5_2, 2_2, 3_1_6_4, 1_1_8_1, 2_1_1_6, 2_9, 1_6, 8_1_3, 2_5, 7_9_1, 3_3_1_4, 2_0, 3_4_4_6, 3_8, 2_7_5_7_5, 1_2_0, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_6_8, 1_7, 1_1, 9_0_8_8, 2_0, 1_5_1_7, 8, 2_2_8_0_4, 1_8_8_1_8, 1_0, 3_8, 6_2_9, 6_0_7, 6_0_7, 1_4_2, 1_9, 7_1_9_6, 8_6_7, 5_6, 1_0_3_2_6, 2_4, 2_2_6_7, 2_0, 4_1_6, 5_0_7_2, 1_5_6_1_2, 2_3_3, 7_3_4, 7, 2_3_9_9, 2_7, 1_6, 3_0_1_5, 1_6_4_9, 7, 2_4, 2_0, 4_3_3_8, 2_3_9_9, 2_7, 1_3, 3_4_0_0, 1_4, 1_3, 6_1_8_9, 8, 9_3_0, 9, 6]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. __lowerCAmelCase = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=_A , model_name="camembert-base" , revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf" , sequences=_A , )
92
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
368
import argparse import struct import unittest class A : """simple docstring""" def __init__( self : Any,lowercase_ : bytes )-> None: '''simple docstring''' A__ = data # Initialize hash values A__ = [ 0X6_a_0_9_e_6_6_7, 0Xb_b_6_7_a_e_8_5, 0X3_c_6_e_f_3_7_2, 0Xa_5_4_f_f_5_3_a, 0X5_1_0_e_5_2_7_f, 0X9_b_0_5_6_8_8_c, 0X1_f_8_3_d_9_a_b, 0X5_b_e_0_c_d_1_9, ] # Initialize round constants A__ = [ 0X4_2_8_a_2_f_9_8, 0X7_1_3_7_4_4_9_1, 0Xb_5_c_0_f_b_c_f, 0Xe_9_b_5_d_b_a_5, 0X3_9_5_6_c_2_5_b, 0X5_9_f_1_1_1_f_1, 0X9_2_3_f_8_2_a_4, 0Xa_b_1_c_5_e_d_5, 0Xd_8_0_7_a_a_9_8, 0X1_2_8_3_5_b_0_1, 0X2_4_3_1_8_5_b_e, 0X5_5_0_c_7_d_c_3, 0X7_2_b_e_5_d_7_4, 0X8_0_d_e_b_1_f_e, 0X9_b_d_c_0_6_a_7, 0Xc_1_9_b_f_1_7_4, 0Xe_4_9_b_6_9_c_1, 0Xe_f_b_e_4_7_8_6, 0X0_f_c_1_9_d_c_6, 0X2_4_0_c_a_1_c_c, 0X2_d_e_9_2_c_6_f, 0X4_a_7_4_8_4_a_a, 0X5_c_b_0_a_9_d_c, 0X7_6_f_9_8_8_d_a, 0X9_8_3_e_5_1_5_2, 0Xa_8_3_1_c_6_6_d, 0Xb_0_0_3_2_7_c_8, 0Xb_f_5_9_7_f_c_7, 0Xc_6_e_0_0_b_f_3, 0Xd_5_a_7_9_1_4_7, 0X0_6_c_a_6_3_5_1, 0X1_4_2_9_2_9_6_7, 0X2_7_b_7_0_a_8_5, 0X2_e_1_b_2_1_3_8, 0X4_d_2_c_6_d_f_c, 0X5_3_3_8_0_d_1_3, 0X6_5_0_a_7_3_5_4, 0X7_6_6_a_0_a_b_b, 0X8_1_c_2_c_9_2_e, 0X9_2_7_2_2_c_8_5, 0Xa_2_b_f_e_8_a_1, 0Xa_8_1_a_6_6_4_b, 0Xc_2_4_b_8_b_7_0, 0Xc_7_6_c_5_1_a_3, 0Xd_1_9_2_e_8_1_9, 0Xd_6_9_9_0_6_2_4, 0Xf_4_0_e_3_5_8_5, 0X1_0_6_a_a_0_7_0, 0X1_9_a_4_c_1_1_6, 0X1_e_3_7_6_c_0_8, 0X2_7_4_8_7_7_4_c, 0X3_4_b_0_b_c_b_5, 0X3_9_1_c_0_c_b_3, 0X4_e_d_8_a_a_4_a, 0X5_b_9_c_c_a_4_f, 0X6_8_2_e_6_f_f_3, 0X7_4_8_f_8_2_e_e, 0X7_8_a_5_6_3_6_f, 0X8_4_c_8_7_8_1_4, 0X8_c_c_7_0_2_0_8, 0X9_0_b_e_f_f_f_a, 0Xa_4_5_0_6_c_e_b, 0Xb_e_f_9_a_3_f_7, 0Xc_6_7_1_7_8_f_2, ] A__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def snake_case__ ( lowercase_ : bytes )-> bytes: '''simple docstring''' A__ = B'\x80' + (B'\x00' * (6_3 - (len(lowercase_ ) + 8) % 6_4)) A__ = struct.pack('>Q',(len(lowercase_ ) * 8) ) return data + padding + big_endian_integer def snake_case__ ( self : Optional[int] )-> None: '''simple docstring''' A__ = [ self.preprocessed_data[x : x + 6_4] for x in range(0,len(self.preprocessed_data ),6_4 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A__ = list(struct.unpack('>16L',lowercase_ ) ) # add 48 0-ed integers words += [0] * 4_8 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = self.hashes for index in range(0,6_4 ): if index > 1_5: # modify the zero-ed indexes at the end of the array A__ = ( self.ror(words[index - 1_5],7 ) ^ self.ror(words[index - 1_5],1_8 ) ^ (words[index - 1_5] >> 3) ) A__ = ( self.ror(words[index - 2],1_7 ) ^ self.ror(words[index - 2],1_9 ) ^ (words[index - 2] >> 1_0) ) A__ = ( words[index - 1_6] + sa + words[index - 7] + sa ) % 0X1_0_0_0_0_0_0_0_0 # Compression A__ = self.ror(lowercase_,6 ) ^ self.ror(lowercase_,1_1 ) ^ self.ror(lowercase_,2_5 ) A__ = (e & f) ^ ((~e & 0Xf_f_f_f_f_f_f_f) & g) A__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0_0_0_0_0_0_0_0 A__ = self.ror(lowercase_,2 ) ^ self.ror(lowercase_,1_3 ) ^ self.ror(lowercase_,2_2 ) A__ = (a & b) ^ (a & c) ^ (b & c) A__ = (sa + maj) % 0X1_0_0_0_0_0_0_0_0 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = ( g, f, e, ((d + tempa) % 0X1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0), ) A__ = [a, b, c, d, e, f, g, h] # Modify final values A__ = [ ((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] A__ = ''.join([hex(lowercase_ )[2:].zfill(8 ) for value in self.hashes] ) def snake_case__ ( self : Union[str, Any],lowercase_ : int,lowercase_ : int )-> int: '''simple docstring''' return 0Xf_f_f_f_f_f_f_f & (value << (3_2 - rotations)) | (value >> rotations) class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] )-> None: '''simple docstring''' import hashlib A__ = bytes('Test String','utf-8' ) self.assertEqual(SHAaaa(lowercase_ ).hash,hashlib.shaaaa(lowercase_ ).hexdigest() ) def _snake_case( ) -> None: '''simple docstring''' import doctest doctest.testmod() A__ = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) A__ = parser.parse_args() A__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: A__ = f.read() else: A__ = bytes(SCREAMING_SNAKE_CASE__ , 'utf-8' ) print(SHAaaa(SCREAMING_SNAKE_CASE__ ).hash ) if __name__ == "__main__": main()
282
0
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint _SCREAMING_SNAKE_CASE : int = { "169M": 12, "430M": 24, "1B5": 24, "3B": 32, "7B": 32, "14B": 40, } _SCREAMING_SNAKE_CASE : Dict = { "169M": 768, "430M": 1024, "1B5": 2048, "3B": 2560, "7B": 4096, "14B": 5120, } def UpperCamelCase_( snake_case : Union[str, Any] ): '''simple docstring''' snake_case_ = list(state_dict.keys() ) for name in state_dict_keys: snake_case_ = state_dict.pop(snake_case ) # emb -> embedding if name.startswith("emb." ): snake_case_ = name.replace("emb." , "embeddings." ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("blocks.0.ln0" ): snake_case_ = name.replace("blocks.0.ln0" , "blocks.0.pre_ln" ) # att -> attention snake_case_ = re.sub(r"blocks\.(\d+)\.att" , r"blocks.\1.attention" , snake_case ) # ffn -> feed_forward snake_case_ = re.sub(r"blocks\.(\d+)\.ffn" , r"blocks.\1.feed_forward" , snake_case ) # time_mix_k -> time_mix_key and reshape if name.endswith(".time_mix_k" ): snake_case_ = name.replace(".time_mix_k" , ".time_mix_key" ) # time_mix_v -> time_mix_value and reshape if name.endswith(".time_mix_v" ): snake_case_ = name.replace(".time_mix_v" , ".time_mix_value" ) # time_mix_r -> time_mix_key and reshape if name.endswith(".time_mix_r" ): snake_case_ = name.replace(".time_mix_r" , ".time_mix_receptance" ) if name != "head.weight": snake_case_ = "rwkv." + name snake_case_ = weight return state_dict def UpperCamelCase_( snake_case : List[Any] , snake_case : str , snake_case : Optional[Any] , snake_case : str=None , snake_case : Union[str, Any]=None , snake_case : Any=False , snake_case : Tuple=None ): '''simple docstring''' if tokenizer_file is None: print("No `--tokenizer_file` provided, we will use the default tokenizer." ) snake_case_ = 5_0_2_7_7 snake_case_ = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b" ) else: snake_case_ = PreTrainedTokenizerFast(tokenizer_file=snake_case ) snake_case_ = len(snake_case ) tokenizer.save_pretrained(snake_case ) # 2. Build the config snake_case_ = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: snake_case_ = candidate break if size is None: raise ValueError("Could not infer the size, please provide it with the `--size` argument." ) if size not in possible_sizes: raise ValueError(f'`size` should be one of {possible_sizes}, got {size}.' ) snake_case_ = RwkvConfig( vocab_size=snake_case , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(snake_case ) # 3. Download model file then convert state_dict snake_case_ = hf_hub_download(snake_case , snake_case ) snake_case_ = torch.load(snake_case , map_location="cpu" ) snake_case_ = convert_state_dict(snake_case ) # 4. Split in shards and save snake_case_ , snake_case_ = shard_checkpoint(snake_case ) for shard_file, shard in shards.items(): torch.save(snake_case , os.path.join(snake_case , snake_case ) ) if index is not None: snake_case_ = os.path.join(snake_case , snake_case ) # Save the index as well with open(snake_case , "w" , encoding="utf-8" ) as f: snake_case_ = json.dumps(snake_case , indent=2 , sort_keys=snake_case ) + "\n" f.write(snake_case ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( "Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model." ) snake_case_ = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: snake_case_ = torch.load(os.path.join(snake_case , snake_case ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(snake_case , snake_case ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("Please provide a `model_name` to push the model to the Hub." ) snake_case_ = AutoModelForCausalLM.from_pretrained(snake_case ) model.push_to_hub(snake_case , max_shard_size="2GB" ) tokenizer.push_to_hub(snake_case ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--repo_id", default=None, type=str, required=True, help="Repo ID from which to pull the checkpoint." ) parser.add_argument( "--checkpoint_file", default=None, type=str, required=True, help="Name of the checkpoint file in the repo." ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="Where to save the converted model." ) parser.add_argument( "--tokenizer_file", default=None, type=str, help="Path to the tokenizer file to use (if not provided, only the model is converted).", ) parser.add_argument( "--size", default=None, type=str, help="Size of the model. Will be inferred from the `checkpoint_file` if not passed.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Push to the Hub the converted model.", ) parser.add_argument( "--model_name", default=None, type=str, help="Name of the pushed model on the Hub, including the username / organization.", ) _SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
85
'''simple docstring''' def UpperCamelCase_( snake_case : Optional[int] , snake_case : Optional[int] ): '''simple docstring''' snake_case_ = [0 for i in range(r + 1 )] # nc0 = 1 snake_case_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case_ = min(snake_case , snake_case ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
85
1
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """https://openaipublic.azureedge.net/jukebox/models/""" SCREAMING_SNAKE_CASE__ = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: lowercase_ = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: lowercase_ = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: lowercase_ = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: lowercase_ = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: lowercase_ = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: lowercase_ = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowercase_ = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: lowercase_ = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] ): '''simple docstring''' lowercase_ = {} import re lowercase_ = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) lowercase_ = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) lowercase_ = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) lowercase_ = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) lowercase_ = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) lowercase_ = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) lowercase_ = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) lowercase_ = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) lowercase_ = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__lowerCamelCase ): lowercase_ = re_encoder_block_conv_in.match(__lowerCamelCase ) lowercase_ = regex_match.groups() lowercase_ = int(groups[2] ) * 2 + int(groups[3] ) lowercase_ = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' lowercase_ = re_encoder_block_conv_in.sub(__lowerCamelCase , __lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(__lowerCamelCase ): lowercase_ = re_encoder_block_resnet.match(__lowerCamelCase ) lowercase_ = regex_match.groups() lowercase_ = int(groups[2] ) * 2 + int(groups[3] ) lowercase_ = {"1": 1, "3": 2}[groups[-2]] lowercase_ = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' lowercase_ = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' lowercase_ = prefix + resnet_block lowercase_ = re_encoder_block_resnet.sub(__lowerCamelCase , __lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(__lowerCamelCase ): lowercase_ = re_encoder_block_proj_out.match(__lowerCamelCase ) lowercase_ = regex_match.groups() lowercase_ = F'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' lowercase_ = re_encoder_block_proj_out.sub(__lowerCamelCase , __lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__lowerCamelCase ): lowercase_ = re_decoder_block_conv_out.match(__lowerCamelCase ) lowercase_ = regex_match.groups() lowercase_ = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowercase_ = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' lowercase_ = re_decoder_block_conv_out.sub(__lowerCamelCase , __lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(__lowerCamelCase ): lowercase_ = re_decoder_block_resnet.match(__lowerCamelCase ) lowercase_ = regex_match.groups() lowercase_ = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowercase_ = {"1": 1, "3": 2}[groups[-2]] lowercase_ = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' lowercase_ = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' lowercase_ = prefix + resnet_block lowercase_ = re_decoder_block_resnet.sub(__lowerCamelCase , __lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(__lowerCamelCase ): lowercase_ = re_decoder_block_proj_in.match(__lowerCamelCase ) lowercase_ = regex_match.groups() lowercase_ = F'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' lowercase_ = re_decoder_block_proj_in.sub(__lowerCamelCase , __lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__lowerCamelCase ): lowercase_ = re_prior_cond_conv_out.match(__lowerCamelCase ) lowercase_ = regex_match.groups() lowercase_ = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowercase_ = F'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' lowercase_ = re_prior_cond_conv_out.sub(__lowerCamelCase , __lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(__lowerCamelCase ): lowercase_ = re_prior_cond_resnet.match(__lowerCamelCase ) lowercase_ = regex_match.groups() lowercase_ = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowercase_ = {"1": 1, "3": 2}[groups[-2]] lowercase_ = F'conditioner_blocks.upsampler.upsample_block.{block_index}.' lowercase_ = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' lowercase_ = prefix + resnet_block lowercase_ = re_prior_cond_resnet.sub(__lowerCamelCase , __lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(__lowerCamelCase ): lowercase_ = re_prior_cond_proj_in.match(__lowerCamelCase ) lowercase_ = regex_match.groups() lowercase_ = F'conditioner_blocks.upsampler.proj_in.{groups[-1]}' lowercase_ = re_prior_cond_proj_in.sub(__lowerCamelCase , __lowerCamelCase ) # keep original key else: lowercase_ = original_key lowercase_ = replace_key(__lowerCamelCase ) if F'{key_prefix}.{key}' not in model_state_dict or key is None: print(F'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[F'{key_prefix}.{key}'].shape: lowercase_ = model_state_dict[F'{key_prefix}.{key}'] print(F'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) lowercase_ = original_key lowercase_ = original_key lowercase_ = value return new_dict @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple=None , __lowerCamelCase: List[str]=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): lowercase_ = requests.get(F'{PREFIX}{file}' , allow_redirects=__lowerCamelCase ) os.makedirs(F'{pytorch_dump_folder_path}/' , exist_ok=__lowerCamelCase ) open(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , "wb" ).write(r.content ) lowercase_ = MODEL_MAPPING[model_name.split("/" )[-1]] lowercase_ = JukeboxConfig.from_pretrained(__lowerCamelCase ) lowercase_ = JukeboxModel(__lowerCamelCase ) lowercase_ = [] lowercase_ = {} for i, dict_name in enumerate(__lowerCamelCase ): lowercase_ = torch.load(F'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )["model"] lowercase_ = {} for k in old_dic.keys(): if k.endswith(".b" ): lowercase_ = old_dic[k] elif k.endswith(".w" ): lowercase_ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowercase_ = old_dic[k] else: lowercase_ = old_dic[k] lowercase_ = "vqvae" if i == 0 else F'priors.{3 - i}' lowercase_ = fix_jukebox_keys(__lowerCamelCase , model.state_dict() , __lowerCamelCase , __lowerCamelCase ) weight_dict.append(__lowerCamelCase ) lowercase_ = weight_dict.pop(0 ) model.vqvae.load_state_dict(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) with open(F'{pytorch_dump_folder_path}/mapping.json' , "w" ) as txtfile: json.dump(__lowerCamelCase , __lowerCamelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) return weight_dict if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
297
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = 42 class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self , UpperCAmelCase = 16 , UpperCAmelCase = 88 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 32 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = True , UpperCAmelCase = True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowercase_ = num_attention_heads lowercase_ = attention_head_dim lowercase_ = num_attention_heads * attention_head_dim lowercase_ = in_channels lowercase_ = torch.nn.GroupNorm(num_groups=UpperCAmelCase , num_channels=UpperCAmelCase , eps=1e-6 , affine=UpperCAmelCase ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) # 3. Define transformers blocks lowercase_ = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , dropout=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , activation_fn=UpperCAmelCase , attention_bias=UpperCAmelCase , double_self_attention=UpperCAmelCase , norm_elementwise_affine=UpperCAmelCase , ) for d in range(UpperCAmelCase ) ] ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase=None , UpperCAmelCase = True , ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = hidden_states.shape lowercase_ = batch_frames // num_frames lowercase_ = hidden_states lowercase_ = hidden_states[None, :].reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowercase_ = self.norm(UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , UpperCAmelCase , UpperCAmelCase ) lowercase_ = self.proj_in(UpperCAmelCase ) # 2. Blocks for block in self.transformer_blocks: lowercase_ = block( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , class_labels=UpperCAmelCase , ) # 3. Output lowercase_ = self.proj_out(UpperCAmelCase ) lowercase_ = ( hidden_states[None, None, :] .reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowercase_ = hidden_states.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=UpperCAmelCase )
297
1
from __future__ import annotations import math def a ( A__ : int ) -> list[int]: """simple docstring""" if num <= 0: _lowercase =F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(A__ ) _lowercase =[True] * (num + 1) _lowercase =[] _lowercase =2 _lowercase =int(math.sqrt(A__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(A__ ) # Set multiples of start be False for i in range(start * start , num + 1 , A__ ): if sieve[i] is True: _lowercase =False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(A__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
205
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __lowerCAmelCase ( TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): def __init__( self , lowerCAmelCase=None , **lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' super().__init__(features=lowerCAmelCase ) _lowercase =torch_tensor_kwargs import torch # noqa import torch at initialization def A__ ( self , lowerCAmelCase ) -> int: '''simple docstring''' import torch if isinstance(lowerCAmelCase , lowerCAmelCase ) and column: if all( isinstance(lowerCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(lowerCAmelCase ) return column def A__ ( self , lowerCAmelCase ) -> str: '''simple docstring''' import torch if isinstance(lowerCAmelCase , (str, bytes, type(lowerCAmelCase )) ): return value elif isinstance(lowerCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _lowercase ={} if isinstance(lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): _lowercase ={'dtype': torch.intaa} elif isinstance(lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _lowercase ={'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowerCAmelCase , PIL.Image.Image ): _lowercase =np.asarray(lowerCAmelCase ) return torch.tensor(lowerCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def A__ ( self , lowerCAmelCase ) -> str: '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(lowerCAmelCase , '__array__' ) and not isinstance(lowerCAmelCase , torch.Tensor ): _lowercase =data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowerCAmelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowerCAmelCase ) for substruct in data_struct] ) elif isinstance(lowerCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(lowerCAmelCase ) for substruct in data_struct] ) return self._tensorize(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> Tuple: '''simple docstring''' return map_nested(self._recursive_tensorize , lowerCAmelCase , map_list=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> Mapping: '''simple docstring''' _lowercase =self.numpy_arrow_extractor().extract_row(lowerCAmelCase ) _lowercase =self.python_features_decoder.decode_row(lowerCAmelCase ) return self.recursive_tensorize(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> "torch.Tensor": '''simple docstring''' _lowercase =self.numpy_arrow_extractor().extract_column(lowerCAmelCase ) _lowercase =self.python_features_decoder.decode_column(lowerCAmelCase , pa_table.column_names[0] ) _lowercase =self.recursive_tensorize(lowerCAmelCase ) _lowercase =self._consolidate(lowerCAmelCase ) return column def A__ ( self , lowerCAmelCase ) -> Mapping: '''simple docstring''' _lowercase =self.numpy_arrow_extractor().extract_batch(lowerCAmelCase ) _lowercase =self.python_features_decoder.decode_batch(lowerCAmelCase ) _lowercase =self.recursive_tensorize(lowerCAmelCase ) for column_name in batch: _lowercase =self._consolidate(batch[column_name] ) return batch
205
1
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging UpperCAmelCase__ = logging.get_logger(__name__) class a : _snake_case : str _snake_case : str = None @staticmethod def lowerCAmelCase_ ( ): raise NotImplementedError def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : str , **__lowerCAmelCase : Union[str, Any] ): raise NotImplementedError def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Union[str, Any] ): raise NotImplementedError def lowerCAmelCase_ ( self : List[Any] ): if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def lowerCAmelCase_ ( cls : List[str] ): return f'''`pip install {cls.pip_package or cls.name}`''' class a ( lowerCAmelCase_ ): _snake_case : Any = 'optuna' @staticmethod def lowerCAmelCase_ ( ): return is_optuna_available() def lowerCAmelCase_ ( self : int , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : str , **__lowerCAmelCase : Union[str, Any] ): return run_hp_search_optuna(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : List[str] ): return default_hp_space_optuna(__lowerCAmelCase ) class a ( lowerCAmelCase_ ): _snake_case : Optional[int] = 'ray' _snake_case : Dict = '\'ray[tune]\'' @staticmethod def lowerCAmelCase_ ( ): return is_ray_available() def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : str , **__lowerCAmelCase : List[Any] ): return run_hp_search_ray(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : List[Any] ): return default_hp_space_ray(__lowerCAmelCase ) class a ( lowerCAmelCase_ ): _snake_case : Optional[Any] = 'sigopt' @staticmethod def lowerCAmelCase_ ( ): return is_sigopt_available() def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : str , **__lowerCAmelCase : int ): return run_hp_search_sigopt(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Tuple ): return default_hp_space_sigopt(__lowerCAmelCase ) class a ( lowerCAmelCase_ ): _snake_case : Optional[Any] = 'wandb' @staticmethod def lowerCAmelCase_ ( ): return is_wandb_available() def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : str , **__lowerCAmelCase : List[str] ): return run_hp_search_wandb(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Dict ): return default_hp_space_wandb(__lowerCAmelCase ) UpperCAmelCase__ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowercase ) > 0: _UpperCAmelCase = available_backends[0].name if len(lowercase ) > 1: logger.info( f'''{len(lowercase )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( """No hyperparameter search backend available.\n""" + """\n""".join( f''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
30
"""simple docstring""" import os import pytest from attr import dataclass UpperCAmelCase__ = """us-east-1""" # defaults region @dataclass class a : _snake_case : str _snake_case : Tuple = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' _snake_case : List[Any] = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_00, 'save_steps': 55_00, } _snake_case : Optional[Any] = {**hyperparameters, 'max_steps': 10_00} @property def lowerCAmelCase_ ( self : Optional[Any] ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCAmelCase_ ( self : Dict ): return f'''{self.framework}-transfromers-test''' @property def lowerCAmelCase_ ( self : Union[str, Any] ): return f'''./tests/sagemaker/scripts/{self.framework}''' @property def lowerCAmelCase_ ( self : Dict ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = SageMakerTestEnvironment(framework=request.cls.framework )
30
1
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowerCAmelCase = remove_duplicates(key.upper() ) __lowerCAmelCase = len(_UpperCamelCase ) # First fill cipher with key characters __lowerCAmelCase = {alphabet[i]: char for i, char in enumerate(_UpperCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_UpperCamelCase ) , 26 ): __lowerCAmelCase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowerCAmelCase = alphabet[i - offset] __lowerCAmelCase = char return cipher_alphabet def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return "".join(cipher_map.get(_UpperCamelCase , _UpperCamelCase ) for ch in message.upper() ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_UpperCamelCase , _UpperCamelCase ) for ch in message.upper() ) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = input("Enter message to encode or decode: " ).strip() __lowerCAmelCase = input("Enter keyword: " ).strip() __lowerCAmelCase = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: __lowerCAmelCase = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) __lowerCAmelCase = create_cipher_map(_UpperCamelCase ) print(func(_UpperCamelCase , _UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase = 6008_5147_5143 ): '''simple docstring''' try: __lowerCAmelCase = int(_UpperCamelCase ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) __lowerCAmelCase = 2 __lowerCAmelCase = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 __lowerCAmelCase = i while n % i == 0: __lowerCAmelCase = n // i i += 1 return int(_UpperCamelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
57
1
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = old_name if "patch_embed" in old_name: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = old_name.split("." ) if layer == "0": _SCREAMING_SNAKE_CASE : Any = old_name.replace("0", "convolution1" ) elif layer == "1": _SCREAMING_SNAKE_CASE : Dict = old_name.replace("1", "batchnorm_before" ) elif layer == "3": _SCREAMING_SNAKE_CASE : List[Any] = old_name.replace("3", "convolution2" ) else: _SCREAMING_SNAKE_CASE : List[Any] = old_name.replace("4", "batchnorm_after" ) if "network" in old_name and re.search(R"\d\.\d", __lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = R"\b\d{2}\b" if bool(re.search(__lowerCamelCase, __lowerCamelCase ) ): _SCREAMING_SNAKE_CASE : Optional[Any] = re.search(R"\d\.\d\d.", __lowerCamelCase ).group() else: _SCREAMING_SNAKE_CASE : List[Any] = re.search(R"\d\.\d.", __lowerCamelCase ).group() if int(match[0] ) < 6: _SCREAMING_SNAKE_CASE : Tuple = old_name.replace(__lowerCamelCase, "" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = trimmed_name.replace("network", match[0] + ".meta4D_layers.blocks." + match[2:-1] ) _SCREAMING_SNAKE_CASE : List[Any] = "intermediate_stages." + trimmed_name else: _SCREAMING_SNAKE_CASE : Union[str, Any] = old_name.replace(__lowerCamelCase, "" ) if int(match[2] ) < num_meta4D_last_stage: _SCREAMING_SNAKE_CASE : Dict = trimmed_name.replace("network", "meta4D_layers.blocks." + match[2] ) else: _SCREAMING_SNAKE_CASE : Union[str, Any] = str(int(match[2] ) - num_meta4D_last_stage ) _SCREAMING_SNAKE_CASE : Any = trimmed_name.replace("network", "meta3D_layers.blocks." + layer_index ) if "norm1" in old_name: _SCREAMING_SNAKE_CASE : Union[str, Any] = trimmed_name.replace("norm1", "layernorm1" ) elif "norm2" in old_name: _SCREAMING_SNAKE_CASE : Optional[int] = trimmed_name.replace("norm2", "layernorm2" ) elif "fc1" in old_name: _SCREAMING_SNAKE_CASE : str = trimmed_name.replace("fc1", "linear_in" ) elif "fc2" in old_name: _SCREAMING_SNAKE_CASE : Optional[Any] = trimmed_name.replace("fc2", "linear_out" ) _SCREAMING_SNAKE_CASE : str = "last_stage." + trimmed_name elif "network" in old_name and re.search(R".\d.", __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = old_name.replace("network", "intermediate_stages" ) if "fc" in new_name: _SCREAMING_SNAKE_CASE : str = new_name.replace("fc", "convolution" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): _SCREAMING_SNAKE_CASE : Tuple = new_name.replace("norm1", "batchnorm_before" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): _SCREAMING_SNAKE_CASE : Any = new_name.replace("norm2", "batchnorm_after" ) if "proj" in new_name: _SCREAMING_SNAKE_CASE : Any = new_name.replace("proj", "projection" ) if "dist_head" in new_name: _SCREAMING_SNAKE_CASE : Optional[int] = new_name.replace("dist_head", "distillation_classifier" ) elif "head" in new_name: _SCREAMING_SNAKE_CASE : Union[str, Any] = new_name.replace("head", "classifier" ) elif "patch_embed" in new_name: _SCREAMING_SNAKE_CASE : str = "efficientformer." + new_name elif new_name == "norm.weight" or new_name == "norm.bias": _SCREAMING_SNAKE_CASE : Any = new_name.replace("norm", "layernorm" ) _SCREAMING_SNAKE_CASE : int = "efficientformer." + new_name else: _SCREAMING_SNAKE_CASE : Optional[Any] = "efficientformer.encoder." + new_name return new_name def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): for key in checkpoint.copy().keys(): _SCREAMING_SNAKE_CASE : Dict = checkpoint.pop(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = val return checkpoint def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : str = "http://images.cocodataset.org/val2017/000000039769.jpg" _SCREAMING_SNAKE_CASE : Tuple = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return image def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[Any] = torch.load(__lowerCamelCase, map_location="cpu" )["model"] _SCREAMING_SNAKE_CASE : Dict = EfficientFormerConfig.from_json_file(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = EfficientFormerForImageClassificationWithTeacher(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = "_".join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] ) _SCREAMING_SNAKE_CASE : List[Any] = config.depths[-1] - config.num_metaad_blocks + 1 _SCREAMING_SNAKE_CASE : List[str] = convert_torch_checkpoint(__lowerCamelCase, __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : Tuple = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } # prepare image _SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_img() _SCREAMING_SNAKE_CASE : Optional[int] = 256 _SCREAMING_SNAKE_CASE : List[Any] = 224 _SCREAMING_SNAKE_CASE : List[str] = EfficientFormerImageProcessor( size={"shortest_edge": image_size}, crop_size={"height": crop_size, "width": crop_size}, resample=pillow_resamplings["bicubic"], ) _SCREAMING_SNAKE_CASE : Tuple = processor(images=__lowerCamelCase, return_tensors="pt" ).pixel_values # original processing pipeline _SCREAMING_SNAKE_CASE : Any = Compose( [ Resize(__lowerCamelCase, interpolation=pillow_resamplings["bicubic"] ), CenterCrop(__lowerCamelCase ), ToTensor(), Normalize(__lowerCamelCase, __lowerCamelCase ), ] ) _SCREAMING_SNAKE_CASE : Optional[int] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) assert torch.allclose(__lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = outputs.logits _SCREAMING_SNAKE_CASE : Tuple = (1, 1000) if "l1" in model_name: _SCREAMING_SNAKE_CASE : int = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10], __lowerCamelCase, atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: _SCREAMING_SNAKE_CASE : int = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10], __lowerCamelCase, atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: _SCREAMING_SNAKE_CASE : Dict = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(__lowerCamelCase ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print("Pushing model to the hub..." ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""", commit_message="Add model", use_temp_dir=__lowerCamelCase, ) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""", commit_message="Add image processor", use_temp_dir=__lowerCamelCase, ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) UpperCamelCase__ =parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
352
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'timesformer' def __init__( self , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=8 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.02 , __lowerCamelCase=1E-6 , __lowerCamelCase=True , __lowerCamelCase="divided_space_time" , __lowerCamelCase=0 , **__lowerCamelCase , ) -> List[str]: super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = image_size _SCREAMING_SNAKE_CASE : str = patch_size _SCREAMING_SNAKE_CASE : str = num_channels _SCREAMING_SNAKE_CASE : str = num_frames _SCREAMING_SNAKE_CASE : Dict = hidden_size _SCREAMING_SNAKE_CASE : Any = num_hidden_layers _SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size _SCREAMING_SNAKE_CASE : Optional[int] = hidden_act _SCREAMING_SNAKE_CASE : int = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : int = initializer_range _SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps _SCREAMING_SNAKE_CASE : List[str] = qkv_bias _SCREAMING_SNAKE_CASE : Tuple = attention_type _SCREAMING_SNAKE_CASE : Union[str, Any] = drop_path_rate
325
0
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : Optional[int] = 1_6 A : Tuple = 3_2 def UpperCamelCase ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> Union[str, Any]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__magic_name__ : Tuple ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__magic_name__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( __lowerCAmelCase , padding="""longest""" , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase , drop_last=__lowerCAmelCase ) lowercase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase , drop_last=(accelerator.mixed_precision == """fp8""") , ) return train_dataloader, eval_dataloader def UpperCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["""lr"""] lowercase__ = int(config["""num_epochs"""] ) lowercase__ = int(config["""seed"""] ) lowercase__ = int(config["""batch_size"""] ) lowercase__ = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowercase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase__ = batch_size // MAX_GPU_BATCH_SIZE lowercase__ = MAX_GPU_BATCH_SIZE set_seed(__lowerCAmelCase ) lowercase__ , lowercase__ = get_dataloaders(__lowerCAmelCase , __lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=__lowerCAmelCase ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=__lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Now we train the model for epoch in range(__lowerCAmelCase ): model.train() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ = model(**__lowerCAmelCase ) lowercase__ = outputs.loss lowercase__ = loss / gradient_accumulation_steps accelerator.backward(__lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**__lowerCAmelCase ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__lowerCAmelCase , references=__lowerCAmelCase , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __lowerCAmelCase ) def UpperCamelCase ( ) -> Any: """simple docstring""" lowercase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__lowerCAmelCase , default=__lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase__ = parser.parse_args() lowercase__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
305
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
270
0
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _lowerCAmelCase : Optional[int] = str(bin(_lowerCamelCase ) )[2:] # remove the leading "0b" _lowerCAmelCase : List[str] = str(bin(_lowerCamelCase ) )[2:] _lowerCAmelCase : Dict = max(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(_lowerCamelCase ) , b_binary.zfill(_lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
300
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowerCamelCase__ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'}) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase : Optional[Any] = logging.WARNING if model_args.verbose_logging: _lowerCAmelCase : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _lowerCAmelCase : str = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase__ = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'}) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = "longest" lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.feature_extractor.pad( __a, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) _lowerCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) _lowerCAmelCase : Optional[Any] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _lowerCAmelCase : List[str] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long) _lowerCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device) # these two operations makes sure that all values # before the output lengths indices are attended to _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices _lowerCAmelCase : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__a, min_masks=2, ) return batch class UpperCAmelCase_ ( a): def __init__( self, *__a, __a=1, __a=0, __a=1.0, **__a): '''simple docstring''' super().__init__(*__a, **__a) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = max_gumbel_temp _lowerCAmelCase : List[Any] = min_gumbel_temp _lowerCAmelCase : int = gumbel_temp_decay def snake_case__ ( self, __a, __a): '''simple docstring''' model.train() _lowerCAmelCase : str = self._prepare_inputs(__a) if self.use_amp: with autocast(): _lowerCAmelCase : Any = self.compute_loss(__a, __a) else: _lowerCAmelCase : Dict = self.compute_loss(__a, __a) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _lowerCAmelCase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCAmelCase : Union[str, Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: _lowerCAmelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a).backward() elif self.use_apex: with amp.scale_loss(__a, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) return loss.detach() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. _lowerCAmelCase : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _lowerCAmelCase : int = DatasetDict() _lowerCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _lowerCAmelCase : List[str] = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase ): # check that all files have the correct sampling rate _lowerCAmelCase , _lowerCAmelCase : Any = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _lowerCAmelCase : Tuple = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _lowerCAmelCase : Dict = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _lowerCAmelCase : Union[str, Any] = WavaVecaForPreTraining(_lowerCamelCase ) _lowerCAmelCase : int = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
300
1
from math import isclose, sqrt def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: lowerCAmelCase_ : List[Any] = point_y / 4 / point_x lowerCAmelCase_ : Any = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCAmelCase_ : Tuple = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCAmelCase_ : str = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCAmelCase_ : Tuple = outgoing_gradient**2 + 4 lowerCAmelCase_ : List[str] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCAmelCase_ : Dict = (point_y - outgoing_gradient * point_x) ** 2 - 100 lowerCAmelCase_ : Optional[Any] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCAmelCase_ : List[Any] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCAmelCase_ : Dict = x_minus if isclose(_lowercase , _lowercase ) else x_plus lowerCAmelCase_ : Optional[Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def lowerCAmelCase ( lowerCAmelCase_ = 1.4 , lowerCAmelCase_ = -9.6 )-> Tuple: lowerCAmelCase_ : int = 0 lowerCAmelCase_ : float = first_x_coord lowerCAmelCase_ : float = first_y_coord lowerCAmelCase_ : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCAmelCase_ : List[Any] = next_point(_lowercase , _lowercase , _lowercase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f"""{solution() = }""")
262
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_6_0_0, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_6_0_0, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self: Any ) -> str: if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case , ) assert hasattr(self , """env""" ) def lowerCAmelCase_ ( self: int , snake_case: Dict ) -> List[Any]: # configuration for running training on smdistributed Model Parallel snake_case_ :Tuple = { """enabled""": True, """processes_per_host""": 8, } snake_case_ :List[Any] = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } snake_case_ :Tuple = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} snake_case_ :Any = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case , instance_type=self.instance_type , debugger_hook_config=snake_case , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case , py_version="""py36""" , ) def lowerCAmelCase_ ( self: Any , snake_case: Tuple ) -> List[str]: TrainingJobAnalytics(snake_case ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowerCAmelCase_ ( self: Dict , snake_case: Dict ) -> List[Any]: # create estimator snake_case_ :List[Any] = self.create_estimator(snake_case ) # run training estimator.fit() # result dataframe snake_case_ :Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis snake_case_ :Tuple = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) snake_case_ :Dict = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping snake_case_ :int = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case )
66
0
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def UpperCamelCase_( _snake_case : int ): """simple docstring""" def is_in_circle(_snake_case : float , _snake_case : float ) -> bool: __a =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __a =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(_snake_case ) ) # The ratio of the area for circle to square is pi/4. __a =proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def UpperCamelCase_( _snake_case : int , _snake_case : Callable[[float], float] , _snake_case : float = 0.0 , _snake_case : float = 1.0 , ): """simple docstring""" return mean( function_to_integrate(uniform(_snake_case , _snake_case ) ) for _ in range(_snake_case ) ) * (max_value - min_value) def UpperCamelCase_( _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 1.0 ): """simple docstring""" def identity_function(_snake_case : float ) -> float: return x __a =area_under_curve_estimator( _snake_case , _snake_case , _snake_case , _snake_case ) __a =(max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print('******************' ) def UpperCamelCase_( _snake_case : int ): """simple docstring""" def function_to_integrate(_snake_case : float ) -> float: return sqrt(4.0 - x * x ) __a =area_under_curve_estimator( _snake_case , _snake_case , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
308
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[Any]: '''simple docstring''' __a =() for resnet, attn in zip(self.resnets , self.attentions ): __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]: '''simple docstring''' __a =() for resnet in self.resnets: __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # there is always at least one resnet __a =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __a =[] for _ in range(self.num_layers ): __a =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets __a =attentions def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[str]: '''simple docstring''' __a =self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
308
1
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin snake_case_ : Any = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = XLNetTokenizer lowercase__ = XLNetTokenizerFast lowercase__ = True lowercase__ = True def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase : List[Any] = XLNetTokenizer(lowerCamelCase__ ,keep_accents=lowerCamelCase__ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : Optional[Any] = '<s>' _UpperCamelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) ,lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) ,lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<unk>' ) self.assertEqual(vocab_keys[1] ,'<s>' ) self.assertEqual(vocab_keys[-1] ,'<eod>' ) self.assertEqual(len(lowerCamelCase__ ) ,1006 ) def UpperCamelCase_ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,1000 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : Optional[Any] = XLNetTokenizer(lowerCamelCase__ ,keep_accents=lowerCamelCase__ ) _UpperCamelCase : Dict = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowerCamelCase__ ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) ,[285, 46, 10, 170, 382] ) _UpperCamelCase : Union[str, Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCamelCase__ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] ,) _UpperCamelCase : Union[str, Any] = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,[8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) _UpperCamelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] ,) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : Any = XLNetTokenizer(lowerCamelCase__ ,do_lower_case=lowerCamelCase__ ) _UpperCamelCase : Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCamelCase__ ,[ SPIECE_UNDERLINE + '', 'i', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] ,) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['▁he', 'll', 'o'] ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : Optional[Any] = XLNetTokenizer(lowerCamelCase__ ,do_lower_case=lowerCamelCase__ ) _UpperCamelCase : Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCamelCase__ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] ,) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = XLNetTokenizer.from_pretrained('xlnet-base-cased' ) _UpperCamelCase : List[Any] = tokenizer.encode('sequence builders' ,add_special_tokens=lowerCamelCase__ ) _UpperCamelCase : Tuple = tokenizer.encode('multi-sequence build' ,add_special_tokens=lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) _UpperCamelCase : Any = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ,lowerCamelCase__ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' # fmt: off _UpperCamelCase : Any = {'input_ids': [[17, 21442, 270, 17, 10, 14645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 22018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 14431, 13, 5500, 11, 1176, 580, 13, 16819, 4797, 23, 17, 10, 17135, 658, 19, 457, 7932, 13, 184, 19, 3154, 17135, 6468, 19, 1404, 12269, 19, 4229, 5356, 16264, 46, 19, 17, 20545, 10395, 9, 9, 9, 11, 28, 6421, 9531, 20729, 17, 10, 353, 17022, 11, 21, 6421, 9531, 16949, 17, 10, 11509, 753, 11, 33, 95, 2421, 7385, 956, 14431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 24738, 19, 13203, 658, 218, 787, 21, 430, 18482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22178, 27, 1064, 22, 956, 13, 11101, 1429, 5854, 24313, 18953, 40, 422, 24366, 68, 1758, 37, 10483, 14257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 13894, 3380, 23, 95, 18, 17634, 2288, 9, 4, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ ,model_name='xlnet-base-cased' ,revision='c841166438c31ec7ca9a106dee7bb312b73ae511' ,)
83
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCAmelCase = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
173
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = '▁' __A = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} __A = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } __A = {'vinai/bartpho-syllable': 1024} class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _lowerCAmelCase =vocab_file _lowerCAmelCase =monolingual_vocab_file _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _lowerCAmelCase ={} _lowerCAmelCase =0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids: _lowerCAmelCase =cnt cnt += 1 with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): _lowerCAmelCase =line.strip().split()[0] _lowerCAmelCase =len(self.fairseq_tokens_to_ids ) if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids: _lowerCAmelCase =len(self.fairseq_tokens_to_ids ) _lowerCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Dict: _lowerCAmelCase =self.__dict__.copy() _lowerCAmelCase =None _lowerCAmelCase =self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCAmelCase ) -> List[Any]: _lowerCAmelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase ={} _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] _lowerCAmelCase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowerCAmelCase ( self ) -> Union[str, Any]: return len(self.fairseq_ids_to_tokens ) def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: return self.fairseq_ids_to_tokens[index] def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: _lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip() return out_string def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , """wb""" ) as fi: _lowerCAmelCase =self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__UpperCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
356
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _lowerCamelCase(__UpperCamelCase ) -> List[Any]: if len(__UpperCamelCase ) <= 1: return arr, 0 _lowerCAmelCase =len(__UpperCamelCase ) // 2 _lowerCAmelCase =arr[0:mid] _lowerCAmelCase =arr[mid:] _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =_count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase =inversion_p + inversions_q + cross_inversions return c, num_inversions def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any: _lowerCAmelCase =[] _lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _lowerCamelCase() -> str: _lowerCAmelCase =[10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _lowerCAmelCase =count_inversions_bf(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _lowerCAmelCase =count_inversions_bf(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , __UpperCamelCase ) # an empty list should also have zero inversions _lowerCAmelCase =[] _lowerCAmelCase =count_inversions_bf(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , __UpperCamelCase ) if __name__ == "__main__": main()
341
0
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' super().tearDown() gc.collect() def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case , _snake_case : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""", revision="""bf16""", dtype=jnp.bfloataa, ) _snake_case : str = """A painting of a squirrel eating a burger""" _snake_case : Union[str, Any] = jax.device_count() _snake_case : str = num_samples * [prompt] _snake_case : Union[str, Any] = sd_pipe.prepare_inputs(a_ ) _snake_case : List[Any] = replicate(a_ ) _snake_case : str = shard(a_ ) _snake_case : List[Any] = jax.random.PRNGKey(0 ) _snake_case : Tuple = jax.random.split(a_, jax.device_count() ) _snake_case : Union[str, Any] = sd_pipe(a_, a_, a_, num_inference_steps=25, jit=a_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _snake_case : Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _snake_case : List[Any] = images[0, 253:256, 253:256, -1] _snake_case : Optional[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _snake_case : Any = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : str = """stabilityai/stable-diffusion-2""" _snake_case , _snake_case : Dict = FlaxDPMSolverMultistepScheduler.from_pretrained(a_, subfolder="""scheduler""" ) _snake_case , _snake_case : Any = FlaxStableDiffusionPipeline.from_pretrained( a_, scheduler=a_, revision="""bf16""", dtype=jnp.bfloataa, ) _snake_case : Tuple = scheduler_params _snake_case : Dict = """A painting of a squirrel eating a burger""" _snake_case : str = jax.device_count() _snake_case : List[Any] = num_samples * [prompt] _snake_case : str = sd_pipe.prepare_inputs(a_ ) _snake_case : List[str] = replicate(a_ ) _snake_case : Tuple = shard(a_ ) _snake_case : Union[str, Any] = jax.random.PRNGKey(0 ) _snake_case : Dict = jax.random.split(a_, jax.device_count() ) _snake_case : str = sd_pipe(a_, a_, a_, num_inference_steps=25, jit=a_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _snake_case : Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _snake_case : List[Any] = images[0, 253:256, 253:256, -1] _snake_case : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _snake_case : Dict = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
64
import argparse from collections import defaultdict import yaml A : str = '''docs/source/en/_toctree.yml''' def __lowerCamelCase ( __a :str ) -> List[Any]: """simple docstring""" A__ = defaultdict(__a ) A__ = [] A__ = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(__a ) A__ = new_doc_list A__ = [key for key, value in counts.items() if value > 1] A__ = [] for duplicate_key in duplicates: A__ = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(__a ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) A__ = sorted(__a , key=lambda __a : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__a ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(__a ) # Sort return overview_doc def __lowerCamelCase ( __a :Any=False ) -> List[str]: """simple docstring""" with open(__a , encoding="""utf-8""" ) as f: A__ = yaml.safe_load(f.read() ) # Get to the API doc A__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 A__ = content[api_idx]["""sections"""] # Then to the model doc A__ = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 A__ = api_doc[scheduler_idx]["""sections"""] A__ = clean_doc_toc(__a ) A__ = False if new_scheduler_doc != scheduler_doc: A__ = True if overwrite: A__ = new_scheduler_doc if diff: if overwrite: A__ = api_doc with open(__a , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def __lowerCamelCase ( __a :Optional[int]=False ) -> Dict: """simple docstring""" with open(__a , encoding="""utf-8""" ) as f: A__ = yaml.safe_load(f.read() ) # Get to the API doc A__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 A__ = content[api_idx]["""sections"""] # Then to the model doc A__ = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 A__ = False A__ = api_doc[pipeline_idx]["""sections"""] A__ = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: A__ = pipeline_doc["""section"""] A__ = clean_doc_toc(__a ) if overwrite: A__ = new_sub_pipeline_doc new_pipeline_docs.append(__a ) # sort overall pipeline doc A__ = clean_doc_toc(__a ) if new_pipeline_docs != pipeline_docs: A__ = True if overwrite: A__ = new_pipeline_docs if diff: if overwrite: A__ = api_doc with open(__a , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') A : Optional[Any] = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
274
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = StableUnCLIPImgaImgPipeline lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase__ = frozenset([] ) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = 3_2 lowercase_ = embedder_hidden_size # image encoding components lowercase_ = CLIPImageProcessor(crop_size=3_2 , size=3_2) torch.manual_seed(0) lowercase_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowercase_ , projection_dim=lowercase_ , num_hidden_layers=5 , num_attention_heads=4 , image_size=3_2 , intermediate_size=3_7 , patch_size=1 , )) # regular denoising components torch.manual_seed(0) lowercase_ = StableUnCLIPImageNormalizer(embedding_dim=lowercase_) lowercase_ = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""") torch.manual_seed(0) lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""") torch.manual_seed(0) lowercase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )) torch.manual_seed(0) lowercase_ = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , ) torch.manual_seed(0) lowercase_ = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) torch.manual_seed(0) lowercase_ = AutoencoderKL() lowercase_ = { # image encoding components """feature_extractor""": feature_extractor, """image_encoder""": image_encoder.eval(), # image noising components """image_normalizer""": image_normalizer.eval(), """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder.eval(), """unet""": unet.eval(), """scheduler""": scheduler, """vae""": vae.eval(), } return components def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : Dict=True): """simple docstring""" if str(lowercase_).startswith("""mps"""): lowercase_ = torch.manual_seed(lowercase_) else: lowercase_ = torch.Generator(device=lowercase_).manual_seed(lowercase_) lowercase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_)).to(lowercase_) if pil_image: lowercase_ = input_image * 0.5 + 0.5 lowercase_ = input_image.clamp(0 , 1) lowercase_ = input_image.cpu().permute(0 , 2 , 3 , 1).float().numpy() lowercase_ = DiffusionPipeline.numpy_to_pil(lowercase_)[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = StableUnCLIPImgaImgPipeline(**lowercase_) lowercase_ = sd_pipe.to(lowercase_) sd_pipe.set_progress_bar_config(disable=lowercase_) lowercase_ = self.get_dummy_inputs(lowercase_) inputs.update({"""image_embeds""": None}) lowercase_ = sd_pipe(**lowercase_).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowercase_ = np.array([0.3_872, 0.7_224, 0.5_601, 0.4_741, 0.6_872, 0.5_814, 0.4_636, 0.3_867, 0.5_078]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = torch_device in ["""cpu""", """mps"""] self._test_attention_slicing_forward_pass(test_max_difference=lowercase_) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=lowercase_) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowercase_) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _UpperCAmelCase ( self : List[Any]): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""") lowercase_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""") lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="""cpu""").manual_seed(0) lowercase_ = pipe(lowercase_ , """anime turle""" , generator=lowercase_ , output_type="""np""") lowercase_ = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowercase_ , lowercase_) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""") lowercase_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""") lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="""cpu""").manual_seed(0) lowercase_ = pipe(lowercase_ , """anime turle""" , generator=lowercase_ , output_type="""np""") lowercase_ = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowercase_ , lowercase_) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""") torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa) lowercase_ = pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = pipe( lowercase_ , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , ) lowercase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
369
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Any: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase_ = """""" else: lowercase_ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ = in_proj_weight[ : config.hidden_size, : ] lowercase_ = in_proj_bias[: config.hidden_size] lowercase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ = in_proj_weight[ -config.hidden_size :, : ] lowercase_ = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = dct.pop(__lowerCAmelCase ) lowercase_ = val def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = ViTMSNConfig() lowercase_ = 10_00 lowercase_ = """datasets/huggingface/label-files""" lowercase_ = """imagenet-1k-id2label.json""" lowercase_ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase ) , """r""" ) ) lowercase_ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowercase_ = idalabel lowercase_ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase_ = 3_84 lowercase_ = 15_36 lowercase_ = 6 elif "l16" in checkpoint_url: lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 elif "b4" in checkpoint_url: lowercase_ = 4 elif "l7" in checkpoint_url: lowercase_ = 7 lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 lowercase_ = ViTMSNModel(__lowerCAmelCase ) lowercase_ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" )["""target_encoder"""] lowercase_ = ViTImageProcessor(size=config.image_size ) remove_projection_head(__lowerCAmelCase ) lowercase_ = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , base_model=__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() lowercase_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) lowercase_ = ViTImageProcessor( size=config.image_size , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase ) lowercase_ = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase_ = model(**__lowerCAmelCase ) lowercase_ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase_ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowercase_ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowercase_ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowercase_ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowercase_ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __lowerCAmelCase , atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase : Tuple = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
0
"""simple docstring""" from typing import Any def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): """simple docstring""" _validation( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) # Creates data structures and fill initial step UpperCamelCase = {} UpperCamelCase = {} for state in states_space: UpperCamelCase = observations_space[0] UpperCamelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) UpperCamelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase = observations_space[o] UpperCamelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function UpperCamelCase = '''''' UpperCamelCase = -1 for k_state in states_space: UpperCamelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: UpperCamelCase = probability UpperCamelCase = k_state # Update probabilities and pointers dicts UpperCamelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) UpperCamelCase = arg_max # The final observation UpperCamelCase = observations_space[len(_SCREAMING_SNAKE_CASE ) - 1] # argmax for given final observation UpperCamelCase = '''''' UpperCamelCase = -1 for k_state in states_space: UpperCamelCase = probabilities[(k_state, final_observation)] if probability > max_probability: UpperCamelCase = probability UpperCamelCase = k_state UpperCamelCase = arg_max # Process pointers backwards UpperCamelCase = last_state UpperCamelCase = [] for o in range(len(_SCREAMING_SNAKE_CASE ) - 1 , -1 , -1 ): result.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = pointers[previous, observations_space[o]] result.reverse() return result def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): """simple docstring""" _validate_not_empty( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) _validate_lists(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _validate_dicts( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There\'s an empty parameter" ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" _validate_list(_SCREAMING_SNAKE_CASE , "observations_space" ) _validate_list(_SCREAMING_SNAKE_CASE , "states_space" ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if not isinstance(_object , _SCREAMING_SNAKE_CASE ): UpperCamelCase = F"{var_name} must be a list" raise ValueError(_SCREAMING_SNAKE_CASE ) else: for x in _object: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase = F"{var_name} must be a list of strings" raise ValueError(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): """simple docstring""" _validate_dict(_SCREAMING_SNAKE_CASE , "initial_probabilities" , _SCREAMING_SNAKE_CASE ) _validate_nested_dict(_SCREAMING_SNAKE_CASE , "transition_probabilities" ) _validate_nested_dict(_SCREAMING_SNAKE_CASE , "emission_probabilities" ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" _validate_dict(_object , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for x in _object.values(): _validate_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ): """simple docstring""" if not isinstance(_object , _SCREAMING_SNAKE_CASE ): UpperCamelCase = F"{var_name} must be a dict" raise ValueError(_SCREAMING_SNAKE_CASE ) if not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for x in _object ): UpperCamelCase = F"{var_name} all keys must be strings" raise ValueError(_SCREAMING_SNAKE_CASE ) if not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for x in _object.values() ): UpperCamelCase = '''nested dictionary ''' if nested else '''''' UpperCamelCase = F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": from doctest import testmod testmod()
153
from collections import deque from math import floor from random import random from time import time class __magic_name__ : def __init__( self : Optional[int] ) -> str: '''simple docstring''' UpperCamelCase__ : str = {} def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[int]=1 ) -> Any: '''simple docstring''' if self.graph.get(lowerCamelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: UpperCamelCase__ : List[Any] = [[w, v]] if not self.graph.get(lowerCamelCase__ ): UpperCamelCase__ : Any = [] def UpperCAmelCase__ ( self : Optional[int] ) -> Any: '''simple docstring''' return list(self.graph ) def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple ) -> Optional[int]: '''simple docstring''' if self.graph.get(lowerCamelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCamelCase__ ) def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : int=-2 , lowerCamelCase__ : int=-1 ) -> List[Any]: '''simple docstring''' if s == d: return [] UpperCamelCase__ : List[str] = [] UpperCamelCase__ : Dict = [] if s == -2: UpperCamelCase__ : Optional[Any] = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase__ : Union[str, Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCamelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase__ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCamelCase__ ) != 0: UpperCamelCase__ : Optional[int] = stack[len(lowerCamelCase__ ) - 1] else: UpperCamelCase__ : int = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return visited def UpperCAmelCase__ ( self : str , lowerCamelCase__ : Optional[int]=-1 ) -> Optional[Any]: '''simple docstring''' if c == -1: UpperCamelCase__ : int = floor(random() * 10000 ) + 10 for i in range(lowerCamelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): UpperCamelCase__ : Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCamelCase__ , lowerCamelCase__ , 1 ) def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : Tuple=-2 ) -> str: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = deque() UpperCamelCase__ : Optional[Any] = [] if s == -2: UpperCamelCase__ : Optional[int] = list(self.graph )[0] d.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) while d: UpperCamelCase__ : List[str] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCAmelCase__ ( self : int , lowerCamelCase__ : List[Any] ) -> int: '''simple docstring''' UpperCamelCase__ : List[str] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : List[str] ) -> int: '''simple docstring''' return len(self.graph[u] ) def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : List[str]=-2 ) -> Dict: '''simple docstring''' UpperCamelCase__ : int = [] UpperCamelCase__ : Optional[int] = [] if s == -2: UpperCamelCase__ : Dict = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = s UpperCamelCase__ : Dict = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase__ : Optional[int] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase__ : Tuple = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCamelCase__ ) != 0: UpperCamelCase__ : List[Any] = stack[len(lowerCamelCase__ ) - 1] else: UpperCamelCase__ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return sorted_nodes def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Optional[int] = [] UpperCamelCase__ : int = [] UpperCamelCase__ : List[Any] = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) UpperCamelCase__ : Dict = -2 UpperCamelCase__ : int = [] UpperCamelCase__ : Tuple = s UpperCamelCase__ : str = False UpperCamelCase__ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase__ : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCamelCase__ : Union[str, Any] = len(lowerCamelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase__ : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCamelCase__ : Optional[int] = True if len(lowerCamelCase__ ) != 0: UpperCamelCase__ : List[Any] = stack[len(lowerCamelCase__ ) - 1] else: UpperCamelCase__ : Optional[Any] = False indirect_parents.append(lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = s UpperCamelCase__ : Optional[Any] = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return list(lowerCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ) -> Dict: '''simple docstring''' UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : Any = [] UpperCamelCase__ : Tuple = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) UpperCamelCase__ : int = -2 UpperCamelCase__ : Optional[int] = [] UpperCamelCase__ : Tuple = s UpperCamelCase__ : List[str] = False UpperCamelCase__ : Tuple = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase__ : Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCamelCase__ : List[str] = len(lowerCamelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase__ : int = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCamelCase__ : List[str] = True if len(lowerCamelCase__ ) != 0: UpperCamelCase__ : Optional[Any] = stack[len(lowerCamelCase__ ) - 1] else: UpperCamelCase__ : List[str] = False indirect_parents.append(lowerCamelCase__ ) UpperCamelCase__ : Tuple = s UpperCamelCase__ : List[Any] = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return False def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Union[str, Any]=-2 , lowerCamelCase__ : Union[str, Any]=-1 ) -> Any: '''simple docstring''' UpperCamelCase__ : Optional[int] = time() self.dfs(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : int = time() return end - begin def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : int=-2 ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : List[str] = time() self.bfs(lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = time() return end - begin class __magic_name__ : def __init__( self : Optional[Any] ) -> Any: '''simple docstring''' UpperCamelCase__ : Dict = {} def UpperCAmelCase__ ( self : int , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple=1 ) -> Dict: '''simple docstring''' if self.graph.get(lowerCamelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist UpperCamelCase__ : Union[str, Any] = [[w, v]] # add the other way if self.graph.get(lowerCamelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist UpperCamelCase__ : int = [[w, u]] def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) -> Tuple: '''simple docstring''' if self.graph.get(lowerCamelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCamelCase__ ) # the other way round if self.graph.get(lowerCamelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCamelCase__ ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : Tuple=-2 , lowerCamelCase__ : Tuple=-1 ) -> str: '''simple docstring''' if s == d: return [] UpperCamelCase__ : List[str] = [] UpperCamelCase__ : Tuple = [] if s == -2: UpperCamelCase__ : str = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) UpperCamelCase__ : int = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase__ : int = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCamelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase__ : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCamelCase__ ) != 0: UpperCamelCase__ : Optional[Any] = stack[len(lowerCamelCase__ ) - 1] else: UpperCamelCase__ : List[str] = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return visited def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : Optional[int]=-1 ) -> Optional[Any]: '''simple docstring''' if c == -1: UpperCamelCase__ : List[Any] = floor(random() * 10000 ) + 10 for i in range(lowerCamelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): UpperCamelCase__ : str = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCamelCase__ , lowerCamelCase__ , 1 ) def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : int=-2 ) -> Tuple: '''simple docstring''' UpperCamelCase__ : List[Any] = deque() UpperCamelCase__ : int = [] if s == -2: UpperCamelCase__ : Dict = list(self.graph )[0] d.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) while d: UpperCamelCase__ : List[str] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCAmelCase__ ( self : int , lowerCamelCase__ : str ) -> List[Any]: '''simple docstring''' return len(self.graph[u] ) def UpperCAmelCase__ ( self : Dict ) -> int: '''simple docstring''' UpperCamelCase__ : Optional[Any] = [] UpperCamelCase__ : Tuple = [] UpperCamelCase__ : str = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) UpperCamelCase__ : Dict = -2 UpperCamelCase__ : Optional[Any] = [] UpperCamelCase__ : Optional[int] = s UpperCamelCase__ : int = False UpperCamelCase__ : str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase__ : Tuple = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCamelCase__ : Optional[int] = len(lowerCamelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase__ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCamelCase__ : Optional[Any] = True if len(lowerCamelCase__ ) != 0: UpperCamelCase__ : List[str] = stack[len(lowerCamelCase__ ) - 1] else: UpperCamelCase__ : Optional[Any] = False indirect_parents.append(lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = s UpperCamelCase__ : Dict = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return list(lowerCamelCase__ ) def UpperCAmelCase__ ( self : Any ) -> str: '''simple docstring''' UpperCamelCase__ : int = [] UpperCamelCase__ : str = [] UpperCamelCase__ : Optional[int] = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = -2 UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : Optional[int] = s UpperCamelCase__ : str = False UpperCamelCase__ : Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase__ : Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCamelCase__ : Optional[Any] = len(lowerCamelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase__ : int = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCamelCase__ : Optional[Any] = True if len(lowerCamelCase__ ) != 0: UpperCamelCase__ : Optional[int] = stack[len(lowerCamelCase__ ) - 1] else: UpperCamelCase__ : Tuple = False indirect_parents.append(lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = s UpperCamelCase__ : Dict = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return False def UpperCAmelCase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' return list(self.graph ) def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : Any=-2 , lowerCamelCase__ : str=-1 ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : List[str] = time() self.dfs(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Dict = time() return end - begin def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : str=-2 ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : List[str] = time() self.bfs(lowerCamelCase__ ) UpperCamelCase__ : Any = time() return end - begin
146
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' return "".join(chr(ord(_lowerCamelCase ) - 32 ) if "a" <= char <= "z" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
357
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _lowerCAmelCase : List[Any] = get_logger(__name__) class A_ : lowerCAmelCase__ = 'dummy_data' lowerCAmelCase__ = 'datasets' lowerCAmelCase__ = False def __init__( self: List[str] ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[Version, str] ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[List[Callable]] = None ,): '''simple docstring''' _lowerCamelCase : str = 0 _lowerCamelCase : List[str] = dataset_name _lowerCamelCase : Optional[int] = cache_dir _lowerCamelCase : Optional[int] = use_local_dummy_data _lowerCamelCase : int = config # download_callbacks take a single url as input _lowerCamelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _lowerCamelCase : int = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _lowerCamelCase : Tuple = str(__lowerCAmelCase ) # to be downloaded _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Dict = None @property def _lowercase ( self: str ): '''simple docstring''' if self._dummy_file is None: _lowerCamelCase : List[str] = self.download_dummy_data() return self._dummy_file @property def _lowercase ( self: str ): '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" ,self.config.name ,self.version_name ) # structure is dummy / version_name return os.path.join("dummy" ,self.version_name ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' return os.path.join(self.dummy_data_folder ,"dummy_data.zip" ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _lowerCamelCase : Optional[int] = cached_path( __lowerCAmelCase ,cache_dir=self.cache_dir ,extract_compressed_file=__lowerCAmelCase ,force_extract=__lowerCAmelCase ) return os.path.join(__lowerCAmelCase ,self.dummy_file_name ) @property def _lowercase ( self: Tuple ): '''simple docstring''' return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file ) @property def _lowercase ( self: List[str] ): '''simple docstring''' if self._bucket_url is None: _lowerCamelCase : List[str] = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) ) return self._bucket_url @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ,*__lowerCAmelCase: List[Any] ): '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested _lowerCamelCase : Tuple = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _lowerCamelCase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.create_dummy_data_dict(__lowerCAmelCase ,__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,(list, tuple) ): return self.create_dummy_data_list(__lowerCAmelCase ,__lowerCAmelCase ) else: return self.create_dummy_data_single(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: Optional[int] ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' return path def _lowercase ( self: Optional[int] ): '''simple docstring''' return {} def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : str = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): for single_url in single_urls: download_callback(__lowerCAmelCase ) else: _lowerCamelCase : Union[str, Any] = single_urls download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Dict = [os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) for x in single_urls] else: _lowerCamelCase : Union[str, Any] = single_urls _lowerCamelCase : List[str] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) _lowerCamelCase : List[Any] = value # make sure that values are unique if all(isinstance(__lowerCAmelCase ,__lowerCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _lowerCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _lowerCamelCase : List[str] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,__lowerCAmelCase ) ) for url in data_url ) _lowerCamelCase : Optional[Any] = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _lowerCamelCase : Tuple = [data_url[0]] * len(__lowerCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(__lowerCAmelCase ) return dummy_data_list def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ): '''simple docstring''' for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : Optional[int] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(__lowerCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass def _lowercase ( self: Optional[int] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' def _iter_archive_members(__lowerCAmelCase: Any ): # this preserves the order of the members inside the ZIP archive _lowerCamelCase : Tuple = Path(self.dummy_file ).parent _lowerCamelCase : str = path.relative_to(__lowerCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _lowerCamelCase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = Path(__lowerCAmelCase ) _lowerCamelCase : int = _iter_archive_members(__lowerCAmelCase ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(__lowerCAmelCase ).as_posix(), file_path.open("rb" ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [paths] for path in paths: if os.path.isfile(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(__lowerCAmelCase ): if filename.startswith((".", "__") ): continue yield os.path.join(__lowerCAmelCase ,__lowerCAmelCase )
340
0
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def UpperCamelCase ( _lowerCAmelCase : Union[str, Any] ) -> List[str]: for param in module.parameters(): _UpperCAmelCase : Tuple = False def UpperCamelCase ( ) -> Any: _UpperCAmelCase : Dict = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase : str = """mps""" if device == "mps": print( """WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues""" """ with generations.""" ) return device def UpperCamelCase ( _lowerCAmelCase : Union[str, Any] ) -> int: _UpperCAmelCase : Union[str, Any] = plt.imshow(_lowerCAmelCase ) fig.axes.get_xaxis().set_visible(_lowerCAmelCase ) fig.axes.get_yaxis().set_visible(_lowerCAmelCase ) plt.show() def UpperCamelCase ( ) -> int: _UpperCAmelCase : List[str] = datetime.now() _UpperCAmelCase : Optional[Any] = current_time.strftime("""%H:%M:%S""" ) return timestamp
246
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets lowerCamelCase__ : List[str] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' lowerCamelCase__ : str = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' lowerCamelCase__ : Union[str, Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _UpperCAmelCase ( datasets.Metric): def __snake_case ( self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def __snake_case ( self , _A , _A , _A=None ) -> str: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(_A , _A , sample_weight=_A ) ), }
246
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a__ : Union[str, Any] = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure)
243
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = None # Automatically constructed __SCREAMING_SNAKE_CASE = "dict" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = field(default='''Translation''' , init=UpperCAmelCase_ , repr=UpperCAmelCase_) def __call__( self ) -> Optional[Any]: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __lowerCamelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None # Automatically constructed __SCREAMING_SNAKE_CASE = "dict" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = field(default='''TranslationVariableLanguages''' , init=UpperCAmelCase_ , repr=UpperCAmelCase_) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = sorted(set(self.languages ) ) if self.languages else None __UpperCamelCase = len(self.languages ) if self.languages else None def __call__( self ) -> Any: return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def __lowerCamelCase ( self , lowercase ) -> Any: __UpperCamelCase = set(self.languages ) if self.languages and set(lowercase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(lowercase ) - lang_set ) )}) are not in valid set ({', '.join(lowercase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __UpperCamelCase = [] for lang, text in translation_dict.items(): if isinstance(lowercase , lowercase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __UpperCamelCase , __UpperCamelCase = zip(*sorted(lowercase ) ) return {"language": languages, "translation": translations} def __lowerCamelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
243
1
import os import time import numpy as np import onnxruntime as ort lowercase = '''1''' lowercase = '''0''' lowercase = '''1''' lowercase = ort.SessionOptions() lowercase = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("Create inference session...") lowercase = ['''TensorrtExecutionProvider''', '''CUDAExecutionProvider'''] lowercase = ort.InferenceSession("model.onnx", sess_options=sess_opt, providers=execution_provider) lowercase = ort.RunOptions() lowercase = 128 lowercase = 1 lowercase = np.ones((batch, sequence), dtype=np.intaa) lowercase = np.ones((batch, sequence), dtype=np.intaa) lowercase = np.ones((batch, sequence), dtype=np.intaa) print("Warm up phase...") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Start inference...") lowercase = time.time() lowercase = 2000 lowercase = {} for iter in range(max_iters): lowercase = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Average Inference Time = {:.3f} ms".format((time.time() - start_time) * 1000 / max_iters))
178
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType A : str = logging.get_logger(__name__) A : Union[str, Any] = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Optional[Any] = '''layoutlmv3''' def __init__( self : Tuple , __lowerCAmelCase : Optional[int]=5_02_65 , __lowerCAmelCase : Tuple=7_68 , __lowerCAmelCase : Union[str, Any]=12 , __lowerCAmelCase : Any=12 , __lowerCAmelCase : List[Any]=30_72 , __lowerCAmelCase : Optional[int]="gelu" , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Dict=5_12 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : Dict=0.0_2 , __lowerCAmelCase : List[str]=1e-5 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : int=0 , __lowerCAmelCase : Dict=2 , __lowerCAmelCase : Tuple=10_24 , __lowerCAmelCase : List[str]=1_28 , __lowerCAmelCase : Optional[int]=1_28 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Optional[Any]=32 , __lowerCAmelCase : Any=1_28 , __lowerCAmelCase : str=64 , __lowerCAmelCase : Optional[int]=2_56 , __lowerCAmelCase : int=True , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : int=2_24 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Dict=None , **__lowerCAmelCase : Optional[Any] , ) -> Dict: """simple docstring""" super().__init__( vocab_size=__lowerCAmelCase , hidden_size=__lowerCAmelCase , num_hidden_layers=__lowerCAmelCase , num_attention_heads=__lowerCAmelCase , intermediate_size=__lowerCAmelCase , hidden_act=__lowerCAmelCase , hidden_dropout_prob=__lowerCAmelCase , attention_probs_dropout_prob=__lowerCAmelCase , max_position_embeddings=__lowerCAmelCase , type_vocab_size=__lowerCAmelCase , initializer_range=__lowerCAmelCase , layer_norm_eps=__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) A__ = max_ad_position_embeddings A__ = coordinate_size A__ = shape_size A__ = has_relative_attention_bias A__ = rel_pos_bins A__ = max_rel_pos A__ = has_spatial_attention_bias A__ = rel_ad_pos_bins A__ = max_rel_ad_pos A__ = text_embed A__ = visual_embed A__ = input_size A__ = num_channels A__ = patch_size A__ = classifier_dropout class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : List[str] = version.parse('''1.12''' ) @property def a_ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def a_ ( self : Optional[int] ) -> float: """simple docstring""" return 1e-5 @property def a_ ( self : Tuple ) -> int: """simple docstring""" return 12 def a_ ( self : str , __lowerCAmelCase : "ProcessorMixin" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 40 , __lowerCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __lowerCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A__ = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A__ = processor.tokenizer.num_special_tokens_to_add(__lowerCAmelCase ) A__ = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence A__ = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes A__ = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) A__ = self._generate_dummy_images(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) A__ = dict( processor( __lowerCAmelCase , text=__lowerCAmelCase , boxes=__lowerCAmelCase , return_tensors=__lowerCAmelCase , ) ) return inputs
274
0
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> int: A = jnp.ones((batch_size, length) ) / length return scores def UpperCamelCase__ ( self ) -> Optional[int]: A = None A = 2_0 A = self._get_uniform_logits(batch_size=2 ,length=lowerCamelCase_ ) # tweak scores to not be uniform anymore A = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch A = scores.at[1, 1_0].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax A = jax.nn.softmax(lowerCamelCase_ ,axis=-1 ) A = FlaxTemperatureLogitsWarper(temperature=0.5 ) A = FlaxTemperatureLogitsWarper(temperature=1.3 ) A = jax.nn.softmax(temp_dist_warper_sharper(lowerCamelCase_ ,scores.copy() ,cur_len=lowerCamelCase_ ) ,axis=-1 ) A = jax.nn.softmax(temp_dist_warper_smoother(lowerCamelCase_ ,scores.copy() ,cur_len=lowerCamelCase_ ) ,axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() ) def UpperCamelCase__ ( self ) -> Any: A = None A = 1_0 A = 2 # create ramp distribution A = np.broadcast_to(np.arange(lowerCamelCase_ )[None, :] ,(batch_size, vocab_size) ).copy() A = ramp_logits[1:, : vocab_size // 2] + vocab_size A = FlaxTopKLogitsWarper(3 ) A = top_k_warp(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] ) # check special case A = 5 A = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 ) A = np.broadcast_to(np.arange(lowerCamelCase_ )[None, :] ,(batch_size, length) ).copy() A = top_k_warp_safety_check(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] ) def UpperCamelCase__ ( self ) -> Tuple: A = None A = 1_0 A = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) A = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) A = FlaxTopPLogitsWarper(0.8 ) A = np.exp(top_p_warp(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 A = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(lowerCamelCase_ ,lowerCamelCase_ ,atol=1E-3 ) ) # check edge cases with negative and extreme logits A = np.broadcast_to(np.arange(lowerCamelCase_ )[None, :] ,(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme A = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept A = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 ) A = top_p_warp(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] ) def UpperCamelCase__ ( self ) -> Dict: A = 2_0 A = 4 A = 0 A = FlaxMinLengthLogitsProcessor(min_length=1_0 ,eos_token_id=lowerCamelCase_ ) # check that min length is applied at length 5 A = ids_tensor((batch_size, 2_0) ,vocab_size=2_0 ) A = 5 A = self._get_uniform_logits(lowerCamelCase_ ,lowerCamelCase_ ) A = min_dist_processor(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 A = self._get_uniform_logits(lowerCamelCase_ ,lowerCamelCase_ ) A = 1_5 A = min_dist_processor(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) self.assertFalse(jnp.isinf(lowerCamelCase_ ).any() ) def UpperCamelCase__ ( self ) -> Union[str, Any]: A = 2_0 A = 4 A = 0 A = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase_ ) # check that all scores are -inf except the bos_token_id score A = ids_tensor((batch_size, 1) ,vocab_size=2_0 ) A = 1 A = self._get_uniform_logits(lowerCamelCase_ ,lowerCamelCase_ ) A = logits_processor(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 A = 3 A = self._get_uniform_logits(lowerCamelCase_ ,lowerCamelCase_ ) A = logits_processor(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) self.assertFalse(jnp.isinf(lowerCamelCase_ ).any() ) def UpperCamelCase__ ( self ) -> Dict: A = 2_0 A = 4 A = 0 A = 5 A = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ) # check that all scores are -inf except the eos_token_id when max_length is reached A = ids_tensor((batch_size, 4) ,vocab_size=2_0 ) A = 4 A = self._get_uniform_logits(lowerCamelCase_ ,lowerCamelCase_ ) A = logits_processor(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached A = 3 A = self._get_uniform_logits(lowerCamelCase_ ,lowerCamelCase_ ) A = logits_processor(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) self.assertFalse(jnp.isinf(lowerCamelCase_ ).any() ) def UpperCamelCase__ ( self ) -> List[Any]: A = 4 A = 1_0 A = 1_5 A = 2 A = 1 A = 1_5 # dummy input_ids and scores A = ids_tensor((batch_size, sequence_length) ,lowerCamelCase_ ) A = input_ids.copy() A = self._get_uniform_logits(lowerCamelCase_ ,lowerCamelCase_ ) A = scores.copy() # instantiate all dist processors A = FlaxTemperatureLogitsWarper(temperature=0.5 ) A = FlaxTopKLogitsWarper(3 ) A = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors A = FlaxMinLengthLogitsProcessor(min_length=1_0 ,eos_token_id=lowerCamelCase_ ) A = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase_ ) A = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ) A = 1_0 # no processor list A = temp_dist_warp(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) A = top_k_warp(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) A = top_p_warp(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) A = min_dist_proc(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) A = bos_dist_proc(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) A = eos_dist_proc(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) # with processor list A = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) A = processor(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) # scores should be equal self.assertTrue(jnp.allclose(lowerCamelCase_ ,lowerCamelCase_ ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() ) def UpperCamelCase__ ( self ) -> Tuple: A = 4 A = 1_0 A = 1_5 A = 2 A = 1 A = 1_5 # dummy input_ids and scores A = ids_tensor((batch_size, sequence_length) ,lowerCamelCase_ ) A = input_ids.copy() A = self._get_uniform_logits(lowerCamelCase_ ,lowerCamelCase_ ) A = scores.copy() # instantiate all dist processors A = FlaxTemperatureLogitsWarper(temperature=0.5 ) A = FlaxTopKLogitsWarper(3 ) A = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors A = FlaxMinLengthLogitsProcessor(min_length=1_0 ,eos_token_id=lowerCamelCase_ ) A = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase_ ) A = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ) A = 1_0 # no processor list def run_no_processor_list(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ): A = temp_dist_warp(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) A = top_k_warp(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) A = top_p_warp(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) A = min_dist_proc(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) A = bos_dist_proc(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) A = eos_dist_proc(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) return scores # with processor list def run_processor_list(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ): A = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) A = processor(lowerCamelCase_ ,lowerCamelCase_ ,cur_len=lowerCamelCase_ ) return scores A = jax.jit(lowerCamelCase_ ) A = jax.jit(lowerCamelCase_ ) A = jitted_run_no_processor_list(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) A = jitted_run_processor_list(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # scores should be equal self.assertTrue(jnp.allclose(lowerCamelCase_ ,lowerCamelCase_ ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
366
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={ "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = '''data2vec-vision''' def __init__( self ,lowerCamelCase_=7_6_8 ,lowerCamelCase_=1_2 ,lowerCamelCase_=1_2 ,lowerCamelCase_=3_0_7_2 ,lowerCamelCase_="gelu" ,lowerCamelCase_=0.0 ,lowerCamelCase_=0.0 ,lowerCamelCase_=0.02 ,lowerCamelCase_=1E-12 ,lowerCamelCase_=2_2_4 ,lowerCamelCase_=1_6 ,lowerCamelCase_=3 ,lowerCamelCase_=False ,lowerCamelCase_=False ,lowerCamelCase_=False ,lowerCamelCase_=False ,lowerCamelCase_=0.1 ,lowerCamelCase_=0.1 ,lowerCamelCase_=True ,lowerCamelCase_=[3, 5, 7, 1_1] ,lowerCamelCase_=[1, 2, 3, 6] ,lowerCamelCase_=True ,lowerCamelCase_=0.4 ,lowerCamelCase_=2_5_6 ,lowerCamelCase_=1 ,lowerCamelCase_=False ,lowerCamelCase_=2_5_5 ,**lowerCamelCase_ ,) -> Optional[Any]: super().__init__(**lowerCamelCase_ ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = use_mask_token A = use_absolute_position_embeddings A = use_relative_position_bias A = use_shared_relative_position_bias A = layer_scale_init_value A = drop_path_rate A = use_mean_pooling # decode head attributes (semantic segmentation) A = out_indices A = pool_scales # auxiliary head attributes (semantic segmentation) A = use_auxiliary_head A = auxiliary_loss_weight A = auxiliary_channels A = auxiliary_num_convs A = auxiliary_concat_input A = semantic_loss_ignore_index class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCamelCase__ ( self ) -> float: return 1E-4
77
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple ="naver-clova-ix/donut-base-finetuned-docvqa" SCREAMING_SNAKE_CASE_ : Dict =( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) SCREAMING_SNAKE_CASE_ : List[str] ="document_qa" SCREAMING_SNAKE_CASE_ : Union[str, Any] =AutoProcessor SCREAMING_SNAKE_CASE_ : Union[str, Any] =VisionEncoderDecoderModel SCREAMING_SNAKE_CASE_ : List[Any] =["image", "text"] SCREAMING_SNAKE_CASE_ : Any =["text"] def __init__( self : Optional[int] , *__A : List[str] , **__A : List[Any] ): if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*__A , **__A ) def _lowerCamelCase ( self : Any , __A : "Image" , __A : str ): __UpperCamelCase = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' __UpperCamelCase = task_prompt.replace('{user_input}' , __A ) __UpperCamelCase = self.pre_processor.tokenizer( __A , add_special_tokens=__A , return_tensors='pt' ).input_ids __UpperCamelCase = self.pre_processor(__A , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _lowerCamelCase ( self : Union[str, Any] , __A : Optional[Any] ): return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__A , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__A , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__A , ).sequences def _lowerCamelCase ( self : Tuple , __A : List[Any] ): __UpperCamelCase = self.pre_processor.batch_decode(__A )[0] __UpperCamelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) __UpperCamelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) __UpperCamelCase = re.sub(R'<.*?>' , '' , __A , count=1 ).strip() # remove first task start token __UpperCamelCase = self.pre_processor.tokenajson(__A ) return sequence["answer"]
53
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys a__ : Tuple ='''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
53
1
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> List[Any]: """simple docstring""" snake_case_ = torch.exp(SCREAMING_SNAKE_CASE ) snake_case_ = torch.sum(SCREAMING_SNAKE_CASE , dim=1 ) # sum of exp(x_i) snake_case_ = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(SCREAMING_SNAKE_CASE ) - B / A class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , _UpperCAmelCase ): super().__init__() snake_case_ = config.output_attentions snake_case_ = config.output_hidden_states snake_case_ = nn.ModuleList([BertLayer(_UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) snake_case_ = nn.ModuleList([BertHighway(_UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) snake_case_ = [-1 for _ in range(config.num_hidden_layers )] def UpperCamelCase__ ( self , _UpperCAmelCase ): if (type(_UpperCAmelCase ) is float) or (type(_UpperCAmelCase ) is int): for i in range(len(self.early_exit_entropy ) ): snake_case_ = x else: snake_case_ = x def UpperCamelCase__ ( self , _UpperCAmelCase ): snake_case_ = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): snake_case_ = () snake_case_ = () snake_case_ = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: snake_case_ = all_hidden_states + (hidden_states,) snake_case_ = layer_module( _UpperCAmelCase , _UpperCAmelCase , head_mask[i] , _UpperCAmelCase , _UpperCAmelCase ) snake_case_ = layer_outputs[0] if self.output_attentions: snake_case_ = all_attentions + (layer_outputs[1],) snake_case_ = (hidden_states,) if self.output_hidden_states: snake_case_ = current_outputs + (all_hidden_states,) if self.output_attentions: snake_case_ = current_outputs + (all_attentions,) snake_case_ = self.highway[i](_UpperCAmelCase ) # logits, pooled_output if not self.training: snake_case_ = highway_exit[0] snake_case_ = entropy(_UpperCAmelCase ) snake_case_ = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy snake_case_ = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: snake_case_ = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(_UpperCAmelCase , i + 1 ) else: snake_case_ = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: snake_case_ = all_hidden_states + (hidden_states,) snake_case_ = (hidden_states,) if self.output_hidden_states: snake_case_ = outputs + (all_hidden_states,) if self.output_attentions: snake_case_ = outputs + (all_attentions,) snake_case_ = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , lowerCamelCase__ , ) class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) snake_case_ = config snake_case_ = BertEmbeddings(_UpperCAmelCase ) snake_case_ = DeeBertEncoder(_UpperCAmelCase ) snake_case_ = BertPooler(_UpperCAmelCase ) self.init_weights() def UpperCamelCase__ ( self ): self.encoder.init_highway_pooler(self.pooler ) def UpperCamelCase__ ( self ): return self.embeddings.word_embeddings def UpperCamelCase__ ( self , _UpperCAmelCase ): snake_case_ = value def UpperCamelCase__ ( self , _UpperCAmelCase ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(_UpperCAmelCase ) @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def UpperCamelCase__ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: snake_case_ = input_ids.size() elif inputs_embeds is not None: snake_case_ = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) snake_case_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: snake_case_ = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if encoder_attention_mask is None: snake_case_ = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if token_type_ids is None: snake_case_ = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. snake_case_ = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: snake_case_ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: snake_case_ = encoder_attention_mask[:, None, None, :] snake_case_ = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility snake_case_ = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] snake_case_ = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers ) snake_case_ = self.embeddings( input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase ) snake_case_ = self.encoder( _UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) snake_case_ = encoder_outputs[0] snake_case_ = self.pooler(_UpperCAmelCase ) snake_case_ = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = message snake_case_ = exit_layer # start from 1! class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , _UpperCAmelCase ): super().__init__() snake_case_ = BertPooler(_UpperCAmelCase ) snake_case_ = nn.Dropout(config.hidden_dropout_prob ) snake_case_ = nn.Linear(config.hidden_size , config.num_labels ) def UpperCamelCase__ ( self , _UpperCAmelCase ): # Pooler snake_case_ = encoder_outputs[0] snake_case_ = self.pooler(_UpperCAmelCase ) # "return" pooler_output # BertModel snake_case_ = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification snake_case_ = bmodel_output[1] snake_case_ = self.dropout(_UpperCAmelCase ) snake_case_ = self.classifier(_UpperCAmelCase ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , lowerCamelCase__ , ) class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) snake_case_ = config.num_labels snake_case_ = config.num_hidden_layers snake_case_ = DeeBertModel(_UpperCAmelCase ) snake_case_ = nn.Dropout(config.hidden_dropout_prob ) snake_case_ = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def UpperCamelCase__ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=-1 , _UpperCAmelCase=False , ): snake_case_ = self.num_layers try: snake_case_ = self.bert( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits snake_case_ = outputs[1] snake_case_ = self.dropout(_UpperCAmelCase ) snake_case_ = self.classifier(_UpperCAmelCase ) snake_case_ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case_ = e.message snake_case_ = e.exit_layer snake_case_ = outputs[0] if not self.training: snake_case_ = entropy(_UpperCAmelCase ) snake_case_ = [] snake_case_ = [] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case_ = MSELoss() snake_case_ = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ = CrossEntropyLoss() snake_case_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits snake_case_ = [] for highway_exit in outputs[-1]: snake_case_ = highway_exit[0] if not self.training: highway_logits_all.append(_UpperCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case_ = MSELoss() snake_case_ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ = CrossEntropyLoss() snake_case_ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_UpperCAmelCase ) if train_highway: snake_case_ = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case_ = (loss,) + outputs if not self.training: snake_case_ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case_ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
267
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu UpperCAmelCase = False class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self ): return 12 @property def UpperCamelCase__ ( self ): return 12 @property def UpperCamelCase__ ( self ): return 32 @property def UpperCamelCase__ ( self ): torch.manual_seed(0 ) snake_case_ = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCamelCase__ ( self ): snake_case_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase__ ( self ): torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(_UpperCAmelCase ) @property def UpperCamelCase__ ( self ): torch.manual_seed(0 ) snake_case_ = 12 snake_case_ = 12 snake_case_ = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } snake_case_ = TransformeraDModel(**_UpperCAmelCase ) return model def UpperCamelCase__ ( self ): snake_case_ = '''cpu''' snake_case_ = self.dummy_vqvae snake_case_ = self.dummy_text_encoder snake_case_ = self.dummy_tokenizer snake_case_ = self.dummy_transformer snake_case_ = VQDiffusionScheduler(self.num_embed ) snake_case_ = LearnedClassifierFreeSamplingEmbeddings(learnable=_UpperCAmelCase ) snake_case_ = VQDiffusionPipeline( vqvae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , transformer=_UpperCAmelCase , scheduler=_UpperCAmelCase , learned_classifier_free_sampling_embeddings=_UpperCAmelCase , ) snake_case_ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = '''teddy bear playing in the pool''' snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) snake_case_ = pipe([prompt] , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='''np''' ) snake_case_ = output.images snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) snake_case_ = pipe( [prompt] , generator=_UpperCAmelCase , output_type='''np''' , return_dict=_UpperCAmelCase , num_inference_steps=2 )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case_ = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): snake_case_ = '''cpu''' snake_case_ = self.dummy_vqvae snake_case_ = self.dummy_text_encoder snake_case_ = self.dummy_tokenizer snake_case_ = self.dummy_transformer snake_case_ = VQDiffusionScheduler(self.num_embed ) snake_case_ = LearnedClassifierFreeSamplingEmbeddings( learnable=_UpperCAmelCase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ = VQDiffusionPipeline( vqvae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , transformer=_UpperCAmelCase , scheduler=_UpperCAmelCase , learned_classifier_free_sampling_embeddings=_UpperCAmelCase , ) snake_case_ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = '''teddy bear playing in the pool''' snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) snake_case_ = pipe([prompt] , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='''np''' ) snake_case_ = output.images snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) snake_case_ = pipe( [prompt] , generator=_UpperCAmelCase , output_type='''np''' , return_dict=_UpperCAmelCase , num_inference_steps=2 )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case_ = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): snake_case_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) snake_case_ = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) snake_case_ = pipeline.to(_UpperCAmelCase ) pipeline.set_progress_bar_config(disable=_UpperCAmelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) snake_case_ = pipeline( '''teddy bear playing in the pool''' , num_images_per_prompt=1 , generator=_UpperCAmelCase , output_type='''np''' , ) snake_case_ = output.images[0] assert image.shape == (2_56, 2_56, 3) assert np.abs(expected_image - image ).max() < 2.0
267
1
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def a ( A__ : int ) -> str: """simple docstring""" random.seed(A__ ) np.random.seed(A__ ) torch.manual_seed(A__ ) torch.cuda.manual_seed_all(A__ ) # ^^ safe to call this function even if cuda is not available class __lowerCAmelCase : def __init__( self , lowerCAmelCase , lowerCAmelCase = 0.9999 , lowerCAmelCase = 0.0 , lowerCAmelCase = 0 , lowerCAmelCase = False , lowerCAmelCase = 1.0 , lowerCAmelCase = 2 / 3 , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ) -> str: '''simple docstring''' if isinstance(lowerCAmelCase , torch.nn.Module ): _lowercase =( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage`' , '1.0.0' , lowerCAmelCase , standard_warn=lowerCAmelCase , ) _lowercase =parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowercase =True if kwargs.get('max_value' , lowerCAmelCase ) is not None: _lowercase ='The `max_value` argument is deprecated. Please use `decay` instead.' deprecate('max_value' , '1.0.0' , lowerCAmelCase , standard_warn=lowerCAmelCase ) _lowercase =kwargs['max_value'] if kwargs.get('min_value' , lowerCAmelCase ) is not None: _lowercase ='The `min_value` argument is deprecated. Please use `min_decay` instead.' deprecate('min_value' , '1.0.0' , lowerCAmelCase , standard_warn=lowerCAmelCase ) _lowercase =kwargs['min_value'] _lowercase =list(lowerCAmelCase ) _lowercase =[p.clone().detach() for p in parameters] if kwargs.get('device' , lowerCAmelCase ) is not None: _lowercase ='The `device` argument is deprecated. Please use `to` instead.' deprecate('device' , '1.0.0' , lowerCAmelCase , standard_warn=lowerCAmelCase ) self.to(device=kwargs['device'] ) _lowercase =None _lowercase =decay _lowercase =min_decay _lowercase =update_after_step _lowercase =use_ema_warmup _lowercase =inv_gamma _lowercase =power _lowercase =0 _lowercase =None # set in `step()` _lowercase =model_cls _lowercase =model_config @classmethod def A__ ( cls , lowerCAmelCase , lowerCAmelCase ) -> "EMAModel": '''simple docstring''' _lowercase , _lowercase =model_cls.load_config(lowerCAmelCase , return_unused_kwargs=lowerCAmelCase ) _lowercase =model_cls.from_pretrained(lowerCAmelCase ) _lowercase =cls(model.parameters() , model_cls=lowerCAmelCase , model_config=model.config ) ema_model.load_state_dict(lowerCAmelCase ) return ema_model def A__ ( self , lowerCAmelCase ) -> int: '''simple docstring''' if self.model_cls is None: raise ValueError('`save_pretrained` can only be used if `model_cls` was defined at __init__.' ) if self.model_config is None: raise ValueError('`save_pretrained` can only be used if `model_config` was defined at __init__.' ) _lowercase =self.model_cls.from_config(self.model_config ) _lowercase =self.state_dict() state_dict.pop('shadow_params' , lowerCAmelCase ) model.register_to_config(**lowerCAmelCase ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> float: '''simple docstring''' _lowercase =max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowercase =1 - (1 + step / self.inv_gamma) ** -self.power else: _lowercase =(1 + step) / (10 + step) _lowercase =min(lowerCAmelCase , self.decay ) # make sure decay is not smaller than min_decay _lowercase =max(lowerCAmelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def A__ ( self , lowerCAmelCase ) -> Tuple: '''simple docstring''' if isinstance(lowerCAmelCase , torch.nn.Module ): _lowercase =( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage.step`' , '1.0.0' , lowerCAmelCase , standard_warn=lowerCAmelCase , ) _lowercase =parameters.parameters() _lowercase =list(lowerCAmelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowercase =self.get_decay(self.optimization_step ) _lowercase =decay _lowercase =1 - decay _lowercase =contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowerCAmelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowercase =deepspeed.zero.GatheredParameters(lowerCAmelCase , modifier_rank=lowerCAmelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> None: '''simple docstring''' _lowercase =list(lowerCAmelCase ) for s_param, param in zip(self.shadow_params , lowerCAmelCase ): param.data.copy_(s_param.to(param.device ).data ) def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None ) -> None: '''simple docstring''' _lowercase =[ p.to(device=lowerCAmelCase , dtype=lowerCAmelCase ) if p.is_floating_point() else p.to(device=lowerCAmelCase ) for p in self.shadow_params ] def A__ ( self ) -> dict: '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def A__ ( self , lowerCAmelCase ) -> None: '''simple docstring''' _lowercase =[param.detach().cpu().clone() for param in parameters] def A__ ( self , lowerCAmelCase ) -> None: '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError('This ExponentialMovingAverage has no `store()`ed weights ' 'to `restore()`' ) for c_param, param in zip(self.temp_stored_params , lowerCAmelCase ): param.data.copy_(c_param.data ) # Better memory-wise. _lowercase =None def A__ ( self , lowerCAmelCase ) -> None: '''simple docstring''' _lowercase =copy.deepcopy(lowerCAmelCase ) _lowercase =state_dict.get('decay' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('Decay must be between 0 and 1' ) _lowercase =state_dict.get('min_decay' , self.min_decay ) if not isinstance(self.min_decay , lowerCAmelCase ): raise ValueError('Invalid min_decay' ) _lowercase =state_dict.get('optimization_step' , self.optimization_step ) if not isinstance(self.optimization_step , lowerCAmelCase ): raise ValueError('Invalid optimization_step' ) _lowercase =state_dict.get('update_after_step' , self.update_after_step ) if not isinstance(self.update_after_step , lowerCAmelCase ): raise ValueError('Invalid update_after_step' ) _lowercase =state_dict.get('use_ema_warmup' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowerCAmelCase ): raise ValueError('Invalid use_ema_warmup' ) _lowercase =state_dict.get('inv_gamma' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('Invalid inv_gamma' ) _lowercase =state_dict.get('power' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('Invalid power' ) _lowercase =state_dict.get('shadow_params' , lowerCAmelCase ) if shadow_params is not None: _lowercase =shadow_params if not isinstance(self.shadow_params , lowerCAmelCase ): raise ValueError('shadow_params must be a list' ) if not all(isinstance(lowerCAmelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError('shadow_params must all be Tensors' )
205
def a ( A__ : str , A__ : bool = False ) -> str: """simple docstring""" if not isinstance(A__ , A__ ): _lowercase =F'''Expected string as input, found {type(A__ )}''' raise ValueError(A__ ) if not isinstance(A__ , A__ ): _lowercase =F'''Expected boolean as use_pascal parameter, found {type(A__ )}''' raise ValueError(A__ ) _lowercase =input_str.split('_' ) _lowercase =0 if use_pascal else 1 _lowercase =words[start_index:] _lowercase =[word[0].upper() + word[1:] for word in words_to_capitalize] _lowercase ='' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
205
1
'''simple docstring''' import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase = logging.getLogger(__name__) class _A ( lowerCamelCase__ ): lowercase__: Optional[Any] = 'token-classification' def __init__( self : Any , __magic_name__ : List[str] ) -> Tuple: """simple docstring""" if type(lowercase__ ) == dict: __snake_case : Dict = Namespace(**lowercase__ ) __snake_case : Optional[int] = import_module("""tasks""" ) try: __snake_case : List[str] = getattr(lowercase__ , hparams.task_type ) __snake_case : List[str] = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) __snake_case : Optional[Any] = self.token_classification_task.get_labels(hparams.labels ) __snake_case : Tuple = CrossEntropyLoss().ignore_index super().__init__(lowercase__ , len(self.labels ) , self.mode ) def lowercase__ ( self : Union[str, Any] , **__magic_name__ : int ) -> Union[str, Any]: """simple docstring""" return self.model(**lowercase__ ) def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : Tuple ) -> str: """simple docstring""" __snake_case : Dict = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": __snake_case : Tuple = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids __snake_case : Dict = self(**lowercase__ ) __snake_case : Optional[Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = self.hparams for mode in ["train", "dev", "test"]: __snake_case : Any = self._feature_file(lowercase__ ) if os.path.exists(lowercase__ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , lowercase__ ) __snake_case : List[Any] = torch.load(lowercase__ ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) __snake_case : int = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase__ ) __snake_case : int = self.token_classification_task.convert_examples_to_features( lowercase__ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase__ , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , lowercase__ ) torch.save(lowercase__ , lowercase__ ) def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : bool = False ) -> Any: """simple docstring""" __snake_case : List[Any] = self._feature_file(lowercase__ ) logger.info("""Loading features from cached file %s""" , lowercase__ ) __snake_case : List[Any] = torch.load(lowercase__ ) __snake_case : Dict = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case : Tuple = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: __snake_case : List[Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: __snake_case : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) __snake_case : Tuple = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , batch_size=lowercase__ ) def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Any ) -> List[str]: """simple docstring""" """Compute validation""" "" __snake_case : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": __snake_case : Tuple = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids __snake_case : Tuple = self(**lowercase__ ) __snake_case , __snake_case : int = outputs[:2] __snake_case : Optional[int] = logits.detach().cpu().numpy() __snake_case : List[Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowercase__ ( self : List[str] , __magic_name__ : str ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = torch.stack([x["""val_loss"""] for x in outputs] ).mean() __snake_case : List[str] = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) __snake_case : Any = np.argmax(lowercase__ , axis=2 ) __snake_case : Optional[int] = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) __snake_case : List[Any] = dict(enumerate(self.labels ) ) __snake_case : Dict = [[] for _ in range(out_label_ids.shape[0] )] __snake_case : Any = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) __snake_case : str = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(lowercase__ , lowercase__ ), """precision""": precision_score(lowercase__ , lowercase__ ), """recall""": recall_score(lowercase__ , lowercase__ ), """f1""": fa_score(lowercase__ , lowercase__ ), } __snake_case : str = dict(results.items() ) __snake_case : str = results return ret, preds_list, out_label_list def lowercase__ ( self : List[Any] , __magic_name__ : Optional[Any] ) -> str: """simple docstring""" __snake_case , __snake_case , __snake_case : Tuple = self._eval_end(lowercase__ ) __snake_case : Tuple = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowercase__ ( self : Dict , __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" __snake_case , __snake_case , __snake_case : int = self._eval_end(lowercase__ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 __snake_case : List[str] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowercase__ ( __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" BaseTransformer.add_model_specific_args(lowercase__ , lowercase__ ) parser.add_argument( """--task_type""" , default="""NER""" , type=lowercase__ , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=1_28 , type=lowercase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=lowercase__ , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=lowercase__ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase = parser.parse_args() __UpperCamelCase = NERTransformer(args) __UpperCamelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, "checkpoint-epoch=*.ckpt"), recursive=True)) __UpperCamelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
357
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
13
0
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class _UpperCAmelCase ( unittest.TestCase): __a : Tuple = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def __snake_case ( self , _A , _A , _A ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) _UpperCAmelCase : Tuple = VideoClassificationPipeline(model=_A , image_processor=_A , top_k=2 ) _UpperCAmelCase : List[str] = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def __snake_case ( self , _A , _A ) -> Optional[int]: '''simple docstring''' for example in examples: _UpperCAmelCase : str = video_classifier(_A ) self.assertEqual( _A , [ {"""score""": ANY(_A ), """label""": ANY(_A )}, {"""score""": ANY(_A ), """label""": ANY(_A )}, ] , ) @require_torch def __snake_case ( self ) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" _UpperCAmelCase : Optional[Any] = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) _UpperCAmelCase : List[str] = pipeline( """video-classification""" , model=_A , feature_extractor=_A , frame_sampling_rate=4 ) _UpperCAmelCase : Union[str, Any] = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) _UpperCAmelCase : Union[str, Any] = video_classifier(_A , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}] , ) _UpperCAmelCase : int = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], ] , ) @require_tf def __snake_case ( self ) -> Any: '''simple docstring''' pass
246
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCamelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase__ : Union[str, Any] = ''' Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "A red cartoon frog, 4k" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/frog.png" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save("red_frog.png") ``` ''' def UpperCamelCase ( _lowerCAmelCase : int, _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any]=8 ) -> Union[str, Any]: _UpperCAmelCase : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _UpperCAmelCase : Tuple = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def UpperCamelCase ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Any=512, _lowerCAmelCase : Optional[Any]=512 ) -> Optional[Any]: _UpperCAmelCase : Optional[int] = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1 ) _UpperCAmelCase : List[Any] = np.array(pil_image.convert("""RGB""" ) ) _UpperCAmelCase : str = arr.astype(np.floataa ) / 127.5 - 1 _UpperCAmelCase : Dict = np.transpose(_lowerCAmelCase, [2, 0, 1] ) _UpperCAmelCase : Union[str, Any] = torch.from_numpy(_lowerCAmelCase ).unsqueeze(0 ) return image class _UpperCAmelCase ( __a): def __init__( self , _A , _A , _A , ) -> int: '''simple docstring''' super().__init__() self.register_modules( unet=_A , scheduler=_A , movq=_A , ) _UpperCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __snake_case ( self , _A , _A , _A ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : int = min(int(num_inference_steps * strength ) , _A ) _UpperCAmelCase : Dict = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase : Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __snake_case ( self , _A , _A , _A , _A , _A , _A , _A=None ) -> List[Any]: '''simple docstring''' if not isinstance(_A , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_A )}''' ) _UpperCAmelCase : Any = image.to(device=_A , dtype=_A ) _UpperCAmelCase : Optional[int] = batch_size * num_images_per_prompt if image.shape[1] == 4: _UpperCAmelCase : Dict = image else: if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_A )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) elif isinstance(_A , _A ): _UpperCAmelCase : Any = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_A ) ] _UpperCAmelCase : List[Any] = torch.cat(_A , dim=0 ) else: _UpperCAmelCase : str = self.movq.encode(_A ).latent_dist.sample(_A ) _UpperCAmelCase : Any = self.movq.config.scaling_factor * init_latents _UpperCAmelCase : List[Any] = torch.cat([init_latents] , dim=0 ) _UpperCAmelCase : Union[str, Any] = init_latents.shape _UpperCAmelCase : List[Any] = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) # get latents _UpperCAmelCase : Optional[int] = self.scheduler.add_noise(_A , _A , _A ) _UpperCAmelCase : Optional[int] = init_latents return latents def __snake_case ( self , _A=0 ) -> Optional[Any]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _UpperCAmelCase : List[Any] = torch.device(f'''cuda:{gpu_id}''' ) _UpperCAmelCase : Tuple = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) def __snake_case ( self , _A=0 ) -> int: '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _UpperCAmelCase : int = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _UpperCAmelCase : Any = None for cpu_offloaded_model in [self.unet, self.movq]: _UpperCAmelCase , _UpperCAmelCase : Tuple = cpu_offload_with_hook(_A , _A , prev_module_hook=_A ) # We'll offload the last model manually. _UpperCAmelCase : Optional[int] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __snake_case ( self ) -> List[str]: '''simple docstring''' if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_A , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self , _A , _A , _A , _A = 5_12 , _A = 5_12 , _A = 1_00 , _A = 4.0 , _A = 0.3 , _A = 1 , _A = None , _A = "pil" , _A = True , ) -> Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self._execution_device _UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(_A , _A ): _UpperCAmelCase : Dict = torch.cat(_A , dim=0 ) _UpperCAmelCase : Any = image_embeds.shape[0] if isinstance(_A , _A ): _UpperCAmelCase : Any = torch.cat(_A , dim=0 ) if do_classifier_free_guidance: _UpperCAmelCase : str = image_embeds.repeat_interleave(_A , dim=0 ) _UpperCAmelCase : Optional[int] = negative_image_embeds.repeat_interleave(_A , dim=0 ) _UpperCAmelCase : str = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) if not isinstance(_A , _A ): _UpperCAmelCase : str = [image] if not all(isinstance(_A , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f'''Input is in incorrect format: {[type(_A ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' ) _UpperCAmelCase : Union[str, Any] = torch.cat([prepare_image(_A , _A , _A ) for i in image] , dim=0 ) _UpperCAmelCase : List[Any] = image.to(dtype=image_embeds.dtype , device=_A ) _UpperCAmelCase : int = self.movq.encode(_A )["""latents"""] _UpperCAmelCase : Dict = latents.repeat_interleave(_A , dim=0 ) self.scheduler.set_timesteps(_A , device=_A ) _UpperCAmelCase , _UpperCAmelCase : Any = self.get_timesteps(_A , _A , _A ) _UpperCAmelCase : Dict = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _UpperCAmelCase , _UpperCAmelCase : str = downscale_height_and_width(_A , _A , self.movq_scale_factor ) _UpperCAmelCase : List[Any] = self.prepare_latents( _A , _A , _A , _A , image_embeds.dtype , _A , _A ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance _UpperCAmelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCAmelCase : Union[str, Any] = {"""image_embeds""": image_embeds} _UpperCAmelCase : str = self.unet( sample=_A , timestep=_A , encoder_hidden_states=_A , added_cond_kwargs=_A , return_dict=_A , )[0] if do_classifier_free_guidance: _UpperCAmelCase , _UpperCAmelCase : Any = noise_pred.split(latents.shape[1] , dim=1 ) _UpperCAmelCase , _UpperCAmelCase : Any = noise_pred.chunk(2 ) _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = variance_pred.chunk(2 ) _UpperCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _UpperCAmelCase : Optional[int] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _UpperCAmelCase , _UpperCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : List[Any] = self.scheduler.step( _A , _A , _A , generator=_A , )[0] # post-processing _UpperCAmelCase : Optional[int] = self.movq.decode(_A , force_not_quantize=_A )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: _UpperCAmelCase : Any = image * 0.5 + 0.5 _UpperCAmelCase : Dict = image.clamp(0 , 1 ) _UpperCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _UpperCAmelCase : List[str] = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
246
1
"""simple docstring""" import qiskit def _A ( lowercase , lowercase ): """simple docstring""" a =qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register a =qiskit.QuantumCircuit(lowercase , lowercase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator a =qiskit.execute(lowercase , lowercase , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase ) if __name__ == "__main__": print(F'Total count for various states are: {single_qubit_measure(1, 1)}')
352
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCamelCase_ : Any = random.Random() def _A ( lowercase , lowercase=1.0 , lowercase=None , lowercase=None ): """simple docstring""" if rng is None: a =global_rng a =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __A ( unittest.TestCase ): """simple docstring""" def __init__( self , __A , __A=7 , __A=400 , __A=2000 , __A=10 , __A=160 , __A=8 , __A=0.0 , __A=4000 , __A=False , __A=True , ) -> Optional[Any]: a =parent a =batch_size a =min_seq_length a =max_seq_length a =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a =padding_value a =sampling_rate a =return_attention_mask a =do_normalize a =feature_size a =chunk_length a =hop_length def SCREAMING_SNAKE_CASE ( self ) -> str: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def SCREAMING_SNAKE_CASE ( self , __A=False , __A=False ) -> str: def _flatten(__A ): return list(itertools.chain(*__A ) ) if equal_length: a =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a =[np.asarray(__A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __A ( _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = WhisperFeatureExtractor if is_speech_available() else None def SCREAMING_SNAKE_CASE ( self ) -> Dict: a =WhisperFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a =feat_extract_first.save_pretrained(__A )[0] check_json_file_has_correct_format(__A ) a =self.feature_extraction_class.from_pretrained(__A ) a =feat_extract_first.to_dict() a =feat_extract_second.to_dict() a =feat_extract_first.mel_filters a =feat_extract_second.mel_filters self.assertTrue(np.allclose(__A , __A ) ) self.assertEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> str: a =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a =os.path.join(__A , '''feat_extract.json''' ) feat_extract_first.to_json_file(__A ) a =self.feature_extraction_class.from_json_file(__A ) a =feat_extract_first.to_dict() a =feat_extract_second.to_dict() a =feat_extract_first.mel_filters a =feat_extract_second.mel_filters self.assertTrue(np.allclose(__A , __A ) ) self.assertEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus a =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a =[np.asarray(__A ) for speech_input in speech_inputs] # Test feature size a =feature_extractor(__A , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input a =feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features a =feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) # Test batched a =feature_extractor(__A , return_tensors='''np''' ).input_features a =feature_extractor(__A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. a =[floats_list((1, x) )[0] for x in (800, 800, 800)] a =np.asarray(__A ) a =feature_extractor(__A , return_tensors='''np''' ).input_features a =feature_extractor(__A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) # Test truncation required a =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] a =[np.asarray(__A ) for speech_input in speech_inputs] a =[x[: feature_extractor.n_samples] for x in speech_inputs] a =[np.asarray(__A ) for speech_input in speech_inputs_truncated] a =feature_extractor(__A , return_tensors='''np''' ).input_features a =feature_extractor(__A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: import torch a =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a =np.random.rand(100 , 32 ).astype(np.floataa ) a =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a =feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) a =feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Dict: a =load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech a =ds.sort('''id''' ).select(range(__A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE ( self ) -> Any: # fmt: off a =torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on a =self._load_datasamples(1 ) a =WhisperFeatureExtractor() a =feature_extractor(__A , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __A , atol=1E-4 ) ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a =self._load_datasamples(1 )[0] a =((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue a =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__A )[0] self.assertTrue(np.all(np.mean(__A ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__A ) - 1 ) < 1E-3 ) )
215
0
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _lowerCamelCase( a , a , a = None ): if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path __a = quote(a ) return hfh.hf_hub_url(a , a , repo_type="dataset" , revision=a )
261
"""simple docstring""" from __future__ import annotations from typing import Any class snake_case__ : def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = 0 ): __a , __a = row, column __a = [[default_value for c in range(lowerCamelCase )] for r in range(lowerCamelCase )] def __str__( self ): __a = F"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier __a = 0 for row_vector in self.array: for obj in row_vector: __a = max(lowerCamelCase , len(str(lowerCamelCase ) ) ) __a = F"%{max_element_length}s" # Make string and return def single_line(lowerCamelCase ) -> str: nonlocal string_format_identifier __a = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(lowerCamelCase ) for row_vector in self.array ) return s def __repr__( self ): return str(self ) def a__ ( self , lowerCamelCase ): if not (isinstance(lowerCamelCase , (list, tuple) ) and len(lowerCamelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , lowerCamelCase ): assert self.validate_indicies(lowerCamelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self , lowerCamelCase , lowerCamelCase ): assert self.validate_indicies(lowerCamelCase ) __a = value def __add__( self , lowerCamelCase ): assert isinstance(lowerCamelCase , lowerCamelCase ) assert self.row == another.row and self.column == another.column # Add __a = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __a = self[r, c] + another[r, c] return result def __neg__( self ): __a = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __a = -self[r, c] return result def __sub__( self , lowerCamelCase ): return self + (-another) def __mul__( self , lowerCamelCase ): if isinstance(lowerCamelCase , (int, float) ): # Scalar multiplication __a = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __a = self[r, c] * another return result elif isinstance(lowerCamelCase , lowerCamelCase ): # Matrix multiplication assert self.column == another.row __a = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __a = F"Unsupported type given for another ({type(lowerCamelCase )})" raise TypeError(lowerCamelCase ) def a__ ( self ): __a = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __a = self[r, c] return result def a__ ( self , lowerCamelCase , lowerCamelCase ): assert isinstance(lowerCamelCase , lowerCamelCase ) and isinstance(lowerCamelCase , lowerCamelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __a = v.transpose() __a = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _lowerCamelCase( ): # a^(-1) __a = Matrix(3 , 3 , 0 ) for i in range(3 ): __a = 1 print(F"a^(-1) is {ainv}" ) # u, v __a = Matrix(3 , 1 , 0 ) __a , __a , __a = 1, 2, -3 __a = Matrix(3 , 1 , 0 ) __a , __a , __a = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(a , a )}" ) def _lowerCamelCase( ): import doctest doctest.testmod() testa()
261
1
"""simple docstring""" import os import string import sys a = 1 << 8 a = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 27, '''up''': 65 + ARROW_KEY_FLAG, '''down''': 66 + ARROW_KEY_FLAG, '''right''': 67 + ARROW_KEY_FLAG, '''left''': 68 + ARROW_KEY_FLAG, '''mod_int''': 91, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 50, '''delete''': 51, '''pg_up''': 53, '''pg_down''': 54, } a = KEYMAP['''up'''] a = KEYMAP['''left'''] if sys.platform == "win32": a = [] a = { B'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, B'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(10): a = ord(str(i)) def _snake_case ( ) -> Any: '''simple docstring''' if os.name == "nt": import msvcrt _A = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_snake_case ) == 0: # Read the keystroke _A = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _A = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _A = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(_snake_case ) if ord(_snake_case ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26 ) ) _A = chr(KEYMAP['esc'] ) except KeyError: _A = cha[1] else: _A = ch.decode(_snake_case ) else: _A = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _A = sys.stdin.fileno() _A = termios.tcgetattr(_snake_case ) try: tty.setraw(_snake_case ) _A = sys.stdin.read(1 ) finally: termios.tcsetattr(_snake_case , termios.TCSADRAIN , _snake_case ) return ch def _snake_case ( ) -> Tuple: '''simple docstring''' _A = get_raw_chars() if ord(_snake_case ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_snake_case ) == KEYMAP["esc"]: _A = get_raw_chars() if ord(_snake_case ) == KEYMAP["mod_int"]: _A = get_raw_chars() if ord(_snake_case ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_snake_case ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_snake_case ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
271
"""simple docstring""" from __future__ import annotations import time import numpy as np a = [8, 5, 9, 7] a = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] a = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowercase_ : '''simple docstring''' def __init__( self : str , _UpperCAmelCase : list[int] , _UpperCAmelCase : list[list[int]] , _UpperCAmelCase : list[list[int]] , ): _A = claim_vector _A = allocated_resources_table _A = maximum_claim_table def lowerCAmelCase_ ( self : Tuple ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowerCAmelCase_ ( self : Tuple ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowerCAmelCase_ ( self : List[Any] ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_UpperCAmelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowerCAmelCase_ ( self : List[Any] ): return {self.__need().index(_UpperCAmelCase ): i for i in self.__need()} def lowerCAmelCase_ ( self : List[str] , **_UpperCAmelCase : int ): _A = self.__need() _A = self.__allocated_resources_table _A = self.__available_resources() _A = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: _A = False for each_need in need_list: _A = True for index, need in enumerate(_UpperCAmelCase ): if need > available_resources[index]: _A = False break if execution: _A = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: _A = original_need_index print(F'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(_UpperCAmelCase ) # update available/freed resources stack _A = np.array(_UpperCAmelCase ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(_UpperCAmelCase ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def lowerCAmelCase_ ( self : Union[str, Any] ): print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(_UpperCAmelCase ) + 1}''' + ' '.join(F'''{it:>8}''' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(_UpperCAmelCase ) + 1}''' + ' '.join(F'''{it:>8}''' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(_UpperCAmelCase ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(_UpperCAmelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
271
1
from typing import Union import fire import torch from tqdm import tqdm def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = "cpu" , SCREAMING_SNAKE_CASE : Union[str, None] = None ): """simple docstring""" a__ : int =torch.load(SCREAMING_SNAKE_CASE , map_location=SCREAMING_SNAKE_CASE ) for k, v in tqdm(state_dict.items() ): if not isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) a__ : Tuple =v.half() if save_path is None: # overwrite src_path a__ : Optional[int] =src_path torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": fire.Fire(convert)
95
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE_:str = { """configuration_transfo_xl""": ["""TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TransfoXLConfig"""], """tokenization_transfo_xl""": ["""TransfoXLCorpus""", """TransfoXLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Union[str, Any] = [ """TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """AdaptiveEmbedding""", """TransfoXLForSequenceClassification""", """TransfoXLLMHeadModel""", """TransfoXLModel""", """TransfoXLPreTrainedModel""", """load_tf_weights_in_transfo_xl""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Any = [ """TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAdaptiveEmbedding""", """TFTransfoXLForSequenceClassification""", """TFTransfoXLLMHeadModel""", """TFTransfoXLMainLayer""", """TFTransfoXLModel""", """TFTransfoXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_:Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
116
0
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=3_0 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1_0 , snake_case_=0.02 , snake_case_=3 , snake_case_=0.6 , snake_case_=None , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : Dict = patch_size UpperCAmelCase_ : Union[str, Any] = num_channels UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : Dict = use_labels UpperCAmelCase_ : Tuple = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : int = type_sequence_label_size UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : str = mask_ratio UpperCAmelCase_ : str = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase_ : Optional[Any] = (image_size // patch_size) ** 2 UpperCAmelCase_ : Union[str, Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Optional[Any] = None if self.use_labels: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Any = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Any = ViTMAEModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Tuple = ViTMAEForPreTraining(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase_ : Tuple = model(snake_case_ ) UpperCAmelCase_ : Dict = (self.image_size // self.patch_size) ** 2 UpperCAmelCase_ : str = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase_ : Optional[Any] = 1 UpperCAmelCase_ : int = ViTMAEForPreTraining(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase_ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = model(snake_case_ ) UpperCAmelCase_ : Union[str, Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Any = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = config_and_inputs UpperCAmelCase_ : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ :Dict = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCamelCase_ :Tuple = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} lowerCamelCase_ :str = False lowerCamelCase_ :Optional[int] = False lowerCamelCase_ :str = False lowerCamelCase_ :int = False def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : str = ViTMAEModelTester(self ) UpperCAmelCase_ : str = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def _UpperCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(snake_case_ ) UpperCAmelCase_ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Dict = [*signature.parameters.keys()] UpperCAmelCase_ : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case_ ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' np.random.seed(2 ) UpperCAmelCase_ : int = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCAmelCase_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase_ : Optional[int] = torch.from_numpy(snake_case_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase_ : Optional[int] = pt_noise super().check_pt_tf_models(snake_case_ , snake_case_ , snake_case_ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) UpperCAmelCase_ : List[str] = outputs[0].cpu().numpy() UpperCAmelCase_ : Tuple = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) UpperCAmelCase_ : List[Any] = model_class.from_pretrained(snake_case_ ) model.to(snake_case_ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCAmelCase_ : Dict = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) # Make sure we don't have nans UpperCAmelCase_ : Optional[Any] = after_outputs[0].cpu().numpy() UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case_ , 1E-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @slow def _UpperCamelCase ( self ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[Any] = ViTMAEModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _lowerCamelCase ( ): """simple docstring""" UpperCAmelCase_ : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _UpperCamelCase ( self ): '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ): '''simple docstring''' np.random.seed(2 ) UpperCAmelCase_ : Dict = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(snake_case_ ) UpperCAmelCase_ : Any = self.default_image_processor UpperCAmelCase_ : Any = prepare_img() UpperCAmelCase_ : Optional[int] = image_processor(images=snake_case_ , return_tensors='pt' ).to(snake_case_ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase_ : List[str] = ViTMAEConfig() UpperCAmelCase_ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase_ : List[str] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCAmelCase_ : int = model(**snake_case_ , noise=torch.from_numpy(snake_case_ ).to(device=snake_case_ ) ) # verify the logits UpperCAmelCase_ : Any = torch.Size((1, 1_9_6, 7_6_8) ) self.assertEqual(outputs.logits.shape , snake_case_ ) UpperCAmelCase_ : Optional[int] = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(snake_case_ ) , atol=1E-4 ) )
274
'''simple docstring''' snake_case__ : str = '''Tobias Carryer''' from time import time class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=int(time() ) ): # noqa: B008 '''simple docstring''' UpperCAmelCase_ : str = multiplier UpperCAmelCase_ : Dict = increment UpperCAmelCase_ : Tuple = modulo UpperCAmelCase_ : Dict = seed def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. snake_case__ : Any = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
274
1
"""simple docstring""" __snake_case : List[Any] = 65_521 def _lowercase ( __snake_case ) -> int: __lowerCAmelCase : int = 1 __lowerCAmelCase : List[Any] = 0 for plain_chr in plain_text: __lowerCAmelCase : Dict = (a + ord(__UpperCamelCase )) % MOD_ADLER __lowerCAmelCase : List[Any] = (b + a) % MOD_ADLER return (b << 16) | a
269
import warnings from ..trainer import Trainer from ..utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) class __snake_case ( lowerCamelCase_ ): def __init__( self : Tuple , _lowercase : Optional[int]=None , **_lowercase : List[Any] ): """simple docstring""" warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , _lowercase , ) super().__init__(args=_lowercase , **_lowercase )
219
0
"""simple docstring""" def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> int: if exponent == 1: return base if exponent % 2 == 0: SCREAMING_SNAKE_CASE = _modexpt(SCREAMING_SNAKE_CASE_ , exponent // 2 , SCREAMING_SNAKE_CASE_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(SCREAMING_SNAKE_CASE_ , exponent - 1 , SCREAMING_SNAKE_CASE_ )) % modulo_value def lowercase (SCREAMING_SNAKE_CASE_ : int = 17_77 , SCREAMING_SNAKE_CASE_ : int = 18_55 , SCREAMING_SNAKE_CASE_ : int = 8 ) -> int: SCREAMING_SNAKE_CASE = base for _ in range(1 , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = _modexpt(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
38
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str ) -> Any: # Load configuration defined in the metadata file with open(SCREAMING_SNAKE_CASE_ ) as metadata_file: SCREAMING_SNAKE_CASE = json.load(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = LukeConfig(use_entity_aware_attention=SCREAMING_SNAKE_CASE_ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' )['module'] # Load the entity vocab file SCREAMING_SNAKE_CASE = load_original_entity_vocab(SCREAMING_SNAKE_CASE_ ) # add an entry for [MASK2] SCREAMING_SNAKE_CASE = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE = AddedToken('<ent>' , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = AddedToken('<ent2>' , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , 'tokenizer_config.json' ) , 'r' ) as f: SCREAMING_SNAKE_CASE = json.load(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = 'MLukeTokenizer' with open(os.path.join(SCREAMING_SNAKE_CASE_ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(['@'] )[0] SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(['#'] )[0] SCREAMING_SNAKE_CASE = state_dict['embeddings.word_embeddings.weight'] SCREAMING_SNAKE_CASE = word_emb[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = word_emb[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: SCREAMING_SNAKE_CASE = state_dict[bias_name] SCREAMING_SNAKE_CASE = decoder_bias[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = decoder_bias[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE = F'encoder.layer.{layer_index}.attention.self.' SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE = state_dict['entity_embeddings.entity_embeddings.weight'] SCREAMING_SNAKE_CASE = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' SCREAMING_SNAKE_CASE = state_dict['entity_predictions.bias'] SCREAMING_SNAKE_CASE = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([entity_prediction_bias, entity_mask_bias] ) SCREAMING_SNAKE_CASE = LukeForMaskedLM(config=SCREAMING_SNAKE_CASE_ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) SCREAMING_SNAKE_CASE = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): SCREAMING_SNAKE_CASE = state_dict[key] else: SCREAMING_SNAKE_CASE = state_dict[key] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) if set(SCREAMING_SNAKE_CASE_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'Unexpected unexpected_keys: {unexpected_keys}' ) if set(SCREAMING_SNAKE_CASE_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , task='entity_classification' ) SCREAMING_SNAKE_CASE = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' SCREAMING_SNAKE_CASE = (0, 9) SCREAMING_SNAKE_CASE = tokenizer(SCREAMING_SNAKE_CASE_ , entity_spans=[span] , return_tensors='pt' ) SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE = torch.Size((1, 33, 7_68) ) SCREAMING_SNAKE_CASE = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE = torch.Size((1, 1, 7_68) ) SCREAMING_SNAKE_CASE = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = 'Tokyo is the capital of <mask>.' SCREAMING_SNAKE_CASE = (24, 30) SCREAMING_SNAKE_CASE = tokenizer(SCREAMING_SNAKE_CASE_ , entity_spans=[span] , return_tensors='pt' ) SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = encoding['input_ids'][0].tolist() SCREAMING_SNAKE_CASE = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) SCREAMING_SNAKE_CASE = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = outputs.entity_logits[0][0].argmax().item() SCREAMING_SNAKE_CASE = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(SCREAMING_SNAKE_CASE_ ) ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> int: SCREAMING_SNAKE_CASE = ['[MASK]', '[PAD]', '[UNK]'] SCREAMING_SNAKE_CASE = [json.loads(SCREAMING_SNAKE_CASE_ ) for line in open(SCREAMING_SNAKE_CASE_ )] SCREAMING_SNAKE_CASE = {} for entry in data: SCREAMING_SNAKE_CASE = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: SCREAMING_SNAKE_CASE = entity_id break SCREAMING_SNAKE_CASE = F'{language}:{entity_name}' SCREAMING_SNAKE_CASE = entity_id return new_mapping if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
38
1
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : Optional[int] = """▁""" __lowerCamelCase : List[str] = {"""vocab_file""": """vocab.txt""", """sentencepiece_model_ckpt""": """sentencepiece.bpe.model"""} __lowerCamelCase : Tuple = { """sentencepiece_model_file""": """sentencepiece.bpe.model""", """vocab_file""": """vocab.txt""", } __lowerCamelCase : Optional[Any] = { """vocab_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", }, """sentencepiece_model_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", }, } __lowerCamelCase : int = { """ernie-m-base""": 514, """ernie-m-large""": 514, } __lowerCamelCase : Union[str, Any] = { """ernie-m-base""": {"""do_lower_case""": False}, """ernie-m-large""": {"""do_lower_case""": False}, } class A__ ( __snake_case ): _UpperCAmelCase :List[str] = ["input_ids"] _UpperCAmelCase :Any = VOCAB_FILES_NAMES _UpperCAmelCase :Optional[int] = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase :List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Tuple = RESOURCE_FILES_NAMES def __init__( self , A_ , A_=None , A_=False , A_="utf8" , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_ = None , **A_ , ): '''simple docstring''' UpperCamelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , vocab_file=A_ , encoding=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) UpperCamelCase : List[str] = do_lower_case UpperCamelCase : List[Any] = sentencepiece_model_ckpt UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCamelCase : List[Any] = self.load_vocab(filepath=A_ ) else: UpperCamelCase : Optional[Any] = {self.sp_model.id_to_piece(A_ ): id for id in range(self.sp_model.get_piece_size() )} UpperCamelCase : Union[str, Any] = {v: k for k, v in self.vocab.items()} def __UpperCamelCase( self , A_ ): '''simple docstring''' if text is None: return None UpperCamelCase : Optional[Any] = self.tokenize(A_ ) UpperCamelCase , UpperCamelCase : Any = "", [] for i, ch in enumerate(A_ ): if ch in self.SP_CHAR_MAPPING: UpperCamelCase : int = self.SP_CHAR_MAPPING.get(A_ ) else: UpperCamelCase : int = unicodedata.normalize("NFKC" , A_ ) if self.is_whitespace(A_ ): continue normalized_text += ch char_mapping.extend([i] * len(A_ ) ) UpperCamelCase , UpperCamelCase , UpperCamelCase : str = normalized_text, [], 0 if self.do_lower_case: UpperCamelCase : List[str] = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCamelCase : List[Any] = token[1:] UpperCamelCase : Tuple = text[offset:].index(A_ ) + offset UpperCamelCase : List[Any] = start + len(A_ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCamelCase : Dict = end return token_mapping @property def __UpperCamelCase( self ): '''simple docstring''' return len(self.vocab ) def __UpperCamelCase( self ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): '''simple docstring''' UpperCamelCase : Tuple = self.__dict__.copy() UpperCamelCase : Dict = None return state def __setstate__( self , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase : Optional[int] = {} UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def __UpperCamelCase( self , A_ ): '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(A_ , A_ ) for c in text) ) def __UpperCamelCase( self , A_ , A_=False , A_=64 , A_=0.1 ): '''simple docstring''' if self.sp_model_kwargs.get("enable_sampling" ) is True: UpperCamelCase : Any = True if self.sp_model_kwargs.get("alpha" ) is not None: UpperCamelCase : Union[str, Any] = self.sp_model_kwargs.get("alpha" ) if self.sp_model_kwargs.get("nbest_size" ) is not None: UpperCamelCase : Dict = self.sp_model_kwargs.get("nbest_size" ) if not enable_sampling: UpperCamelCase : Optional[int] = self.sp_model.EncodeAsPieces(A_ ) else: UpperCamelCase : List[str] = self.sp_model.SampleEncodeAsPieces(A_ , A_ , A_ ) UpperCamelCase : Tuple = [] for pi, piece in enumerate(A_ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(A_ ) and pi != 0: new_pieces.append(A_ ) continue else: continue UpperCamelCase : str = 0 for i, chunk in enumerate(A_ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(A_ ) or self.is_punct(A_ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(A_ ) UpperCamelCase : List[str] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Any = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Dict = i if len(A_ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Tuple = "".join(A_ ).replace(A_ , " " ).strip() return out_string def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[str] = self.convert_ids_to_tokens(A_ ) UpperCamelCase : Optional[Any] = "".join(A_ ).replace(A_ , " " ).strip() return out_string def __UpperCamelCase( self , A_ ): '''simple docstring''' return self.vocab.get(A_ , self.vocab.get(self.unk_token ) ) def __UpperCamelCase( self , A_ ): '''simple docstring''' return self.reverse_vocab.get(A_ , self.unk_token ) def __UpperCamelCase( self , A_ , A_=None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase : int = [self.cls_token_id] UpperCamelCase : Optional[int] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def __UpperCamelCase( self , A_ , A_=None ): '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def __UpperCamelCase( self , A_ , A_=None , A_=False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1] def __UpperCamelCase( self , A_ , A_ = None ): '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(A_ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(A_ ) + 1) + [1] * (len(A_ ) + 3) def __UpperCamelCase( self , A_ ): '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def __UpperCamelCase( self , A_ ): '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def __UpperCamelCase( self , A_ ): '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def __UpperCamelCase( self , A_ ): '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(A_ ) == 1: UpperCamelCase : Optional[Any] = unicodedata.category(A_ ) if cat == "Zs": return True return False def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : str = {} with io.open(A_ , "r" , encoding="utf-8" ) as f: for index, line in enumerate(A_ ): UpperCamelCase : List[Any] = line.rstrip("\n" ) UpperCamelCase : Any = int(A_ ) return token_to_idx def __UpperCamelCase( self , A_ , A_ = None ): '''simple docstring''' UpperCamelCase : Any = 0 if os.path.isdir(A_ ): UpperCamelCase : Optional[int] = os.path.join( A_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: UpperCamelCase : List[Any] = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(A_ , "w" , encoding="utf-8" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) UpperCamelCase : Any = token_index writer.write(token + "\n" ) index += 1 UpperCamelCase : Any = os.path.join(A_ , "sentencepiece.bpe.model" ) with open(A_ , "wb" ) as fi: UpperCamelCase : int = self.sp_model.serialized_model_proto() fi.write(A_ ) return (vocab_file,)
52
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[Any] = XGLMTokenizer _UpperCAmelCase : List[Any] = XGLMTokenizerFast _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = True def _SCREAMING_SNAKE_CASE ( self : Tuple): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_: List[Any] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = "<pad>" SCREAMING_SNAKE_CASE_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(len(lowerCAmelCase__) , 1008) def _SCREAMING_SNAKE_CASE ( self : Any): self.assertEqual(self.get_tokenizer().vocab_size , 1008) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Any): return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def _SCREAMING_SNAKE_CASE ( self : str): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name) SCREAMING_SNAKE_CASE_: Tuple = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = pickle.dumps(lowerCAmelCase__) pickle.loads(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_: Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_: List[str] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: Any = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: str = tokenizer.encode(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = "Hello World!" SCREAMING_SNAKE_CASE_: Union[str, Any] = [2, 3_1227, 4447, 35] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off SCREAMING_SNAKE_CASE_: Optional[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): # fmt: off SCREAMING_SNAKE_CASE_: str = { "input_ids": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase__ , )
13
0
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar _UpperCAmelCase = TypeVar("""T""") class UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self , lowercase , lowercase ): """simple docstring""" A_ : Any | T = None A_ : int = len(lowercase ) A_ : list[T] = [any_type for _ in range(self.N )] + arr A_ : Dict = fnc self.build() def lowerCAmelCase_ ( self ): """simple docstring""" for p in range(self.N - 1 , 0 , -1 ): A_ : List[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" p += self.N A_ : Union[str, Any] = v while p > 1: A_ : List[str] = p // 2 A_ : Optional[int] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowerCAmelCase_ ( self , lowercase , lowercase ): # noqa: E741 """simple docstring""" A_ , A_ : Optional[int] = l + self.N, r + self.N A_ : T | None = None while l <= r: if l % 2 == 1: A_ : int = self.st[l] if res is None else self.fn(lowercase , self.st[l] ) if r % 2 == 0: A_ : Any = self.st[r] if res is None else self.fn(lowercase , self.st[r] ) A_ , A_ : Union[str, Any] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce _UpperCAmelCase = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] _UpperCAmelCase = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } _UpperCAmelCase = SegmentTree(test_array, min) _UpperCAmelCase = SegmentTree(test_array, max) _UpperCAmelCase = SegmentTree(test_array, lambda a, b: a + b) def UpperCamelCase ( ): '''simple docstring''' for i in range(len(__lowercase ) ): for j in range(__lowercase ,len(__lowercase ) ): A_ : Optional[int] = reduce(__lowercase ,test_array[i : j + 1] ) A_ : Any = reduce(__lowercase ,test_array[i : j + 1] ) A_ : str = reduce(lambda __lowercase ,__lowercase : a + b ,test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__lowercase ,__lowercase ) assert max_range == max_segment_tree.query(__lowercase ,__lowercase ) assert sum_range == sum_segment_tree.query(__lowercase ,__lowercase ) test_all_segments() for index, value in test_updates.items(): _UpperCAmelCase = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
192
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 _UpperCAmelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 128, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase_ ( cls ): """simple docstring""" A_ : Optional[int] = TOKEN HfFolder.save_token(lowercase ) @classmethod def lowerCAmelCase_ ( cls ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('test-config' , use_auth_token=self._token ) A_ : Dict = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase , getattr(lowercase , lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase , repo_id='test-config' , push_to_hub=lowercase , use_auth_token=self._token ) A_ : Dict = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase , getattr(lowercase , lowercase ) ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[str] = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) A_ : List[Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase , getattr(lowercase , lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase , repo_id='valid_org/test-config-org' , push_to_hub=lowercase , use_auth_token=self._token ) A_ : Optional[Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase , getattr(lowercase , lowercase ) ) def lowerCAmelCase_ ( self ): """simple docstring""" CustomConfig.register_for_auto_class() A_ : Optional[int] = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) A_ : Optional[int] = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=lowercase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 4_2 ) class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self ): """simple docstring""" A_ : int = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated A_ : Optional[int] = c.n_embd + 1 # int A_ : List[str] = c.resid_pdrop + 1.0 # float A_ : str = not c.scale_attn_weights # bool A_ : Optional[int] = c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowercase , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(lowercase , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(lowercase , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowercase , c.summary_type , 'mismatch for key: summary_type' ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[int] = PretrainedConfig() A_ : int = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowercase , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) A_ : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowercase , lowercase )] if len(lowercase ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(lowercase )}.''' ) def lowerCAmelCase_ ( self ): """simple docstring""" with self.assertRaises(lowercase ): # config is in subfolder, the following should not work without specifying the subfolder A_ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) A_ : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : int = mock.Mock() A_ : int = 5_0_0 A_ : Union[str, Any] = {} A_ : List[str] = HTTPError A_ : List[Any] = {} # Download this model to make sure it's in the cache. A_ : Tuple = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=lowercase ) as mock_head: A_ : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Any = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : int = AutoConfig.from_pretrained('bert-base-cased' ) A_ : Tuple = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowercase ) A_ : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(lowercase , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 A_ : Tuple = AutoConfig.from_pretrained(lowercase ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 A_ : int = ['config.42.0.0.json'] A_ : str = 7_6_8 configuration.save_pretrained(lowercase ) shutil.move(os.path.join(lowercase , 'config.4.0.0.json' ) , os.path.join(lowercase , 'config.42.0.0.json' ) ) A_ : str = AutoConfig.from_pretrained(lowercase ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[Any] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers A_ : List[Any] = 'v4.0.0' A_ , A_ : List[str] = new_transformers.models.auto.AutoConfig.from_pretrained( lowercase , return_unused_kwargs=lowercase ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowercase , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers A_ : Optional[int] = 'v3.0.0' A_ : List[Any] = old_transformers.models.auto.AutoConfig.from_pretrained(lowercase ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
192
1
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class A__ ( _lowerCamelCase): @staticmethod @abstractmethod def __lowerCamelCase ( _SCREAMING_SNAKE_CASE ): raise NotImplementedError() @abstractmethod def __lowerCamelCase ( self ): raise NotImplementedError()
86
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class A__ ( _lowerCamelCase): A_ : Optional[int] = 'poolformer' def __init__( self , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=[2, 2, 6, 2] , _SCREAMING_SNAKE_CASE=[64, 1_28, 3_20, 5_12] , _SCREAMING_SNAKE_CASE=[7, 3, 3, 3] , _SCREAMING_SNAKE_CASE=[4, 2, 2, 2] , _SCREAMING_SNAKE_CASE=[2, 1, 1, 1] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=0.02 , **_SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : int = num_channels __lowerCAmelCase : str = patch_size __lowerCAmelCase : Optional[Any] = stride __lowerCAmelCase : Optional[int] = padding __lowerCAmelCase : List[Any] = pool_size __lowerCAmelCase : int = hidden_sizes __lowerCAmelCase : str = mlp_ratio __lowerCAmelCase : Optional[int] = depths __lowerCAmelCase : str = patch_sizes __lowerCAmelCase : str = strides __lowerCAmelCase : Optional[int] = num_encoder_blocks __lowerCAmelCase : Any = drop_path_rate __lowerCAmelCase : Any = hidden_act __lowerCAmelCase : Dict = use_layer_scale __lowerCAmelCase : Union[str, Any] = layer_scale_init_value __lowerCAmelCase : Dict = initializer_range super().__init__(**_SCREAMING_SNAKE_CASE ) class A__ ( _lowerCamelCase): A_ : List[str] = version.parse('1.11') @property def __lowerCamelCase ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowerCamelCase ( self ): return 2E-3
86
1
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __A : Dict = '''pt''' elif is_tf_available(): __A : Union[str, Any] = '''tf''' else: __A : Tuple = '''jax''' class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Union[str, Any] = ByTaTokenizer lowerCAmelCase_ : Dict = False def lowercase__ ( self : Any ): super().setUp() lowerCAmelCase : List[Any] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : int ): return ByTaTokenizer.from_pretrained('google/byt5-small' ) def lowercase__ ( self : str , **UpperCAmelCase_ : Tuple ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : str=False , UpperCAmelCase_ : int=20 , UpperCAmelCase_ : Optional[Any]=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. lowerCAmelCase : Any = [] for i in range(len(UpperCAmelCase_ ) ): try: lowerCAmelCase : Optional[int] = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCAmelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCAmelCase : Union[str, Any] = list(filter(lambda UpperCAmelCase_ : re.match(R'^[ a-zA-Z]+$' , t[1] ) , UpperCAmelCase_ ) ) lowerCAmelCase : Tuple = list(filter(lambda UpperCAmelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCAmelCase_ ) , UpperCAmelCase_ ) ) if max_length is not None and len(UpperCAmelCase_ ) > max_length: lowerCAmelCase : Optional[int] = toks[:max_length] if min_length is not None and len(UpperCAmelCase_ ) < min_length and len(UpperCAmelCase_ ) > 0: while len(UpperCAmelCase_ ) < min_length: lowerCAmelCase : Union[str, Any] = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase : List[str] = [t[0] for t in toks] # Ensure consistency lowerCAmelCase : Tuple = tokenizer.decode(UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ ) if " " not in output_txt and len(UpperCAmelCase_ ) > 1: lowerCAmelCase : Tuple = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCAmelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCAmelCase_ ) ) if with_prefix_space: lowerCAmelCase : Union[str, Any] = ' ' + output_txt lowerCAmelCase : Optional[int] = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) return output_txt, output_ids def lowercase__ ( self : List[str] ): lowerCAmelCase : int = self.ta_base_tokenizer lowerCAmelCase : Dict = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) lowerCAmelCase : Tuple = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def lowercase__ ( self : str ): lowerCAmelCase : str = self.ta_base_tokenizer lowerCAmelCase : str = 'Unicode €.' lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) lowerCAmelCase : int = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , UpperCAmelCase_ ) # decoding lowerCAmelCase : int = tokenizer.decode(UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , 'Unicode €.</s>' ) lowerCAmelCase : Optional[Any] = tokenizer('e è é ê ë' ) lowerCAmelCase : List[Any] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , UpperCAmelCase_ ) # decoding lowerCAmelCase : List[Any] = tokenizer.decode(UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Dict = self.ta_base_tokenizer lowerCAmelCase : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off lowerCAmelCase : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowerCAmelCase : Dict = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) if FRAMEWORK != "jax": lowerCAmelCase : Union[str, Any] = list(batch.input_ids.numpy()[0] ) else: lowerCAmelCase : Dict = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = self.ta_base_tokenizer lowerCAmelCase : Tuple = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCAmelCase : Optional[Any] = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , UpperCAmelCase_ ) self.assertIn('attention_mask' , UpperCAmelCase_ ) self.assertNotIn('decoder_input_ids' , UpperCAmelCase_ ) self.assertNotIn('decoder_attention_mask' , UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Dict = self.ta_base_tokenizer lowerCAmelCase : List[Any] = [ 'Summary of the text.', 'Another summary.', ] lowerCAmelCase : Dict = tokenizer( text_target=UpperCAmelCase_ , max_length=32 , padding='max_length' , truncation=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = self.ta_base_tokenizer lowerCAmelCase : int = ['A long paragraph for summarization. </s>'] lowerCAmelCase : Optional[Any] = ['Summary of the text. </s>'] # fmt: off lowerCAmelCase : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowerCAmelCase : List[str] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowerCAmelCase : Optional[Any] = tokenizer(UpperCAmelCase_ , text_target=UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , batch['input_ids'][0] ) self.assertEqual(UpperCAmelCase_ , batch['labels'][0] ) def lowercase__ ( self : List[Any] ): # safety check on max_len default value so we are sure the test works lowerCAmelCase : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCAmelCase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase : Dict = tempfile.mkdtemp() lowerCAmelCase : Tuple = ' He is very happy, UNwant\u00E9d,running' lowerCAmelCase : Tuple = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) tokenizer.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : Tuple = tokenizer.__class__.from_pretrained(UpperCAmelCase_ ) lowerCAmelCase : Dict = after_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) shutil.rmtree(UpperCAmelCase_ ) lowerCAmelCase : Dict = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase : List[Any] = tempfile.mkdtemp() lowerCAmelCase : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) lowerCAmelCase : Tuple = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowerCAmelCase : List[Any] = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) tokenizer.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer.__class__.from_pretrained(UpperCAmelCase_ ) lowerCAmelCase : Tuple = after_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCAmelCase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCAmelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCAmelCase_ ) def lowercase__ ( self : Dict ): lowerCAmelCase : List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: lowerCAmelCase : int = json.load(UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: lowerCAmelCase : Dict = json.load(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = [f"<extra_id_{i}>" for i in range(125 )] lowerCAmelCase : Tuple = added_tokens_extra_ids + [ 'an_additional_special_token' ] lowerCAmelCase : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(UpperCAmelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCAmelCase : int = tokenizer_class.from_pretrained( UpperCAmelCase_ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCAmelCase : Any = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=UpperCAmelCase_ )] lowerCAmelCase : List[str] = tokenizer_class.from_pretrained( UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase__ ( self : int ): lowerCAmelCase : Any = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = tokenizer_class.from_pretrained(UpperCAmelCase_ ) self.assertTrue(tokenizer.decode([255] ) == '' ) def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : Any ): pass def lowercase__ ( self : List[str] ): pass def lowercase__ ( self : Optional[int] ): pass def lowercase__ ( self : List[Any] ): # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens lowerCAmelCase : Tuple = self.get_tokenizers(fast=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCAmelCase : Tuple = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] lowerCAmelCase : List[str] = tokenizer.convert_tokens_to_string(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCAmelCase : Tuple = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : List[str] = tokenizer.convert_ids_to_tokens( UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) for attr in attributes_list: setattr(UpperCAmelCase_ , attr + '_id' , UpperCAmelCase_ ) self.assertEqual(getattr(UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(getattr(UpperCAmelCase_ , attr + '_id' ) , UpperCAmelCase_ ) setattr(UpperCAmelCase_ , attr + '_id' , UpperCAmelCase_ ) self.assertEqual(getattr(UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(getattr(UpperCAmelCase_ , attr + '_id' ) , UpperCAmelCase_ ) setattr(UpperCAmelCase_ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(UpperCAmelCase_ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(UpperCAmelCase_ , 'additional_special_tokens_ids' ) , [] ) setattr(UpperCAmelCase_ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(UpperCAmelCase_ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(UpperCAmelCase_ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
323
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError('String lengths must match!' ) lowerCAmelCase : Tuple = 0 for chara, chara in zip(_UpperCAmelCase, _UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
323
1
'''simple docstring''' import os a_ : Optional[int] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 1_00, """D""": 5_00, """M""": 10_00} def a_ ( __snake_case : str ) -> int: """simple docstring""" lowerCamelCase_ =0 lowerCamelCase_ =0 while index < len(__snake_case ) - 1: lowerCamelCase_ =SYMBOLS[numerals[index]] lowerCamelCase_ =SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def a_ ( __snake_case : int ) -> str: """simple docstring""" lowerCamelCase_ ='''''' lowerCamelCase_ =num // 1000 numerals += m_count * "M" num %= 1000 lowerCamelCase_ =num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowerCamelCase_ =num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def a_ ( __snake_case : str = "/p089_roman.txt" ) -> int: """simple docstring""" lowerCamelCase_ =0 with open(os.path.dirname(__snake_case ) + roman_numerals_filename ) as filea: lowerCamelCase_ =filea.readlines() for line in lines: lowerCamelCase_ =line.strip() lowerCamelCase_ =parse_roman_numerals(__snake_case ) lowerCamelCase_ =generate_roman_numerals(__snake_case ) savings += len(__snake_case ) - len(__snake_case ) return savings if __name__ == "__main__": print(F"""{solution() = }""")
75
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
199
0
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging UpperCAmelCase = logging.get_logger(__name__) class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : str = ["input_features"] def __init__( self , A_=80 , A_=1_6000 , A_=160 , A_=30 , A_=400 , A_=0.0 , A_=False , **A_ , ) -> Optional[int]: super().__init__( feature_size=A_ , sampling_rate=A_ , padding_value=A_ , return_attention_mask=A_ , **A_ , ) lowerCAmelCase = n_fft lowerCAmelCase = hop_length lowerCAmelCase = chunk_length lowerCAmelCase = chunk_length * sampling_rate lowerCAmelCase = self.n_samples // hop_length lowerCAmelCase = sampling_rate lowerCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=A_ , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=A_ , norm="""slaney""" , mel_scale="""slaney""" , ) def __snake_case ( self , A_ ) -> np.ndarray: lowerCAmelCase = spectrogram( A_ , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) lowerCAmelCase = log_spec[:, :-1] lowerCAmelCase = np.maximum(A_ , log_spec.max() - 8.0 ) lowerCAmelCase = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __snake_case ( A_ , A_ , A_ = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: lowerCAmelCase = np.array(A_ , np.intaa ) lowerCAmelCase = [] for vector, length in zip(A_ , attention_mask.sum(-1 ) ): lowerCAmelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowerCAmelCase = padding_value normed_input_values.append(A_ ) else: lowerCAmelCase = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , A_ , A_ = True , A_ = None , A_ = None , A_ = None , A_ = "max_length" , A_ = None , A_ = None , A_ = None , **A_ , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCAmelCase = isinstance(A_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) lowerCAmelCase = is_batched_numpy or ( isinstance(A_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A_ , np.ndarray ): lowerCAmelCase = np.asarray(A_ , dtype=np.floataa ) elif isinstance(A_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase = [np.asarray([raw_speech] ).T] lowerCAmelCase = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding lowerCAmelCase = self.pad( A_ , padding=A_ , max_length=max_length if max_length else self.n_samples , truncation=A_ , pad_to_multiple_of=A_ , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCAmelCase = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) lowerCAmelCase = np.stack(padded_inputs["""input_features"""] , axis=0 ) # make sure list is in array format lowerCAmelCase = padded_inputs.get("""input_features""" ).transpose(2 , 0 , 1 ) lowerCAmelCase = [self._np_extract_fbank_features(A_ ) for waveform in input_features[0]] if isinstance(input_features[0] , A_ ): lowerCAmelCase = [np.asarray(A_ , dtype=np.floataa ) for feature in input_features] else: lowerCAmelCase = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCAmelCase = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: lowerCAmelCase = padded_inputs.convert_to_tensors(A_ ) return padded_inputs def __snake_case ( self ) -> Dict[str, Any]: lowerCAmelCase = copy.deepcopy(self.__dict__ ) lowerCAmelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
358
'''simple docstring''' from torch import nn def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'Unsupported activation function: {act_fn}' )
187
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "wav2vec2" def __init__( self, lowerCAmelCase__=32, lowerCAmelCase__=768, lowerCAmelCase__=12, lowerCAmelCase__=12, lowerCAmelCase__=3072, lowerCAmelCase__="gelu", lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.0, lowerCAmelCase__=0.0, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-5, lowerCAmelCase__="group", lowerCAmelCase__="gelu", lowerCAmelCase__=(512, 512, 512, 512, 512, 512, 512), lowerCAmelCase__=(5, 2, 2, 2, 2, 2, 2), lowerCAmelCase__=(10, 3, 3, 3, 3, 2, 2), lowerCAmelCase__=False, lowerCAmelCase__=128, lowerCAmelCase__=16, lowerCAmelCase__=False, lowerCAmelCase__=True, lowerCAmelCase__=0.05, lowerCAmelCase__=10, lowerCAmelCase__=2, lowerCAmelCase__=0.0, lowerCAmelCase__=10, lowerCAmelCase__=0, lowerCAmelCase__=320, lowerCAmelCase__=2, lowerCAmelCase__=0.1, lowerCAmelCase__=100, lowerCAmelCase__=256, lowerCAmelCase__=256, lowerCAmelCase__=0.1, lowerCAmelCase__="sum", lowerCAmelCase__=False, lowerCAmelCase__=False, lowerCAmelCase__=256, lowerCAmelCase__=(512, 512, 512, 512, 1500), lowerCAmelCase__=(5, 3, 3, 1, 1), lowerCAmelCase__=(1, 2, 3, 1, 1), lowerCAmelCase__=512, lowerCAmelCase__=0, lowerCAmelCase__=1, lowerCAmelCase__=2, lowerCAmelCase__=False, lowerCAmelCase__=3, lowerCAmelCase__=2, lowerCAmelCase__=3, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__, ) -> List[Any]: super().__init__(**lowerCAmelCase__, pad_token_id=lowerCAmelCase__, bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__) snake_case_ = hidden_size snake_case_ = feat_extract_norm snake_case_ = feat_extract_activation snake_case_ = list(lowerCAmelCase__) snake_case_ = list(lowerCAmelCase__) snake_case_ = list(lowerCAmelCase__) snake_case_ = conv_bias snake_case_ = num_conv_pos_embeddings snake_case_ = num_conv_pos_embedding_groups snake_case_ = len(self.conv_dim) snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = num_attention_heads snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = feat_proj_dropout snake_case_ = final_dropout snake_case_ = layerdrop snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = vocab_size snake_case_ = do_stable_layer_norm snake_case_ = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel)}`.') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ = apply_spec_augment snake_case_ = mask_time_prob snake_case_ = mask_time_length snake_case_ = mask_time_min_masks snake_case_ = mask_feature_prob snake_case_ = mask_feature_length snake_case_ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations snake_case_ = num_codevectors_per_group snake_case_ = num_codevector_groups snake_case_ = contrastive_logits_temperature snake_case_ = feat_quantizer_dropout snake_case_ = num_negatives snake_case_ = codevector_dim snake_case_ = proj_codevector_dim snake_case_ = diversity_loss_weight # ctc loss snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # adapter snake_case_ = add_adapter snake_case_ = adapter_kernel_size snake_case_ = adapter_stride snake_case_ = num_adapter_layers snake_case_ = output_hidden_size or hidden_size snake_case_ = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case_ = list(lowerCAmelCase__) snake_case_ = list(lowerCAmelCase__) snake_case_ = list(lowerCAmelCase__) snake_case_ = xvector_output_dim @property def a_ ( self) -> List[Any]: return functools.reduce(operator.mul, self.conv_stride, 1)
69
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys lowerCamelCase : Optional[Any] =subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') lowerCamelCase : str =subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() lowerCamelCase : List[Any] ='''|'''.join(sys.argv[1:]) lowerCamelCase : str =re.compile(RF"""^({joined_dirs}).*?\.py$""") lowerCamelCase : Optional[int] =[x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
189
0
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = ['model.decoder.embed_positions.weights'] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Any ) -> Optional[int]: if "emb" in name: __lowerCAmelCase : Tuple = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: __lowerCAmelCase : Any = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: __lowerCAmelCase : Tuple = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: __lowerCAmelCase : int = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: __lowerCAmelCase : Optional[int] = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: __lowerCAmelCase : Optional[int] = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: __lowerCAmelCase : int = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: __lowerCAmelCase : int = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: __lowerCAmelCase : str = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: __lowerCAmelCase : Any = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCAmelCase : Any = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :OrderedDict , SCREAMING_SNAKE_CASE :int ) -> Tuple[Dict, Dict]: __lowerCAmelCase : int = list(state_dict.keys() ) __lowerCAmelCase : Dict = {} for key in keys: __lowerCAmelCase : str = state_dict.pop(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = rename_keys(SCREAMING_SNAKE_CASE ) if "in_proj_weight" in key: # split fused qkv proj __lowerCAmelCase : Optional[Any] = val[:hidden_size, :] __lowerCAmelCase : List[str] = val[hidden_size : 2 * hidden_size, :] __lowerCAmelCase : str = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCAmelCase : Any = val else: __lowerCAmelCase : int = val return state_dict, enc_dec_proj_state_dict def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :str ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __lowerCAmelCase : Optional[Any] = 1_024 __lowerCAmelCase : Dict = 24 __lowerCAmelCase : Union[str, Any] = 16 elif checkpoint == "medium": __lowerCAmelCase : Tuple = 1_536 __lowerCAmelCase : Tuple = 48 __lowerCAmelCase : List[str] = 24 elif checkpoint == "large": __lowerCAmelCase : List[Any] = 2_048 __lowerCAmelCase : Optional[int] = 48 __lowerCAmelCase : List[str] = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) __lowerCAmelCase : List[Any] = MusicgenDecoderConfig( hidden_size=SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=SCREAMING_SNAKE_CASE , num_attention_heads=SCREAMING_SNAKE_CASE , ) return config @torch.no_grad() def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :str=None , SCREAMING_SNAKE_CASE :List[Any]=None , SCREAMING_SNAKE_CASE :List[Any]="cpu" ) -> Optional[int]: __lowerCAmelCase : Tuple = MusicGen.get_pretrained(SCREAMING_SNAKE_CASE , device=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = decoder_config_from_checkpoint(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = fairseq_model.lm.state_dict() __lowerCAmelCase : Optional[int] = rename_state_dict( SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size ) __lowerCAmelCase : Optional[Any] = TaEncoderModel.from_pretrained("""t5-base""" ) __lowerCAmelCase : List[str] = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) __lowerCAmelCase : Optional[int] = MusicgenForCausalLM(SCREAMING_SNAKE_CASE ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCAmelCase : List[Any] = decoder.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model __lowerCAmelCase : Optional[int] = MusicgenForConditionalGeneration(text_encoder=SCREAMING_SNAKE_CASE , audio_encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(SCREAMING_SNAKE_CASE ) # check we can do a forward pass __lowerCAmelCase : List[Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCAmelCase : Union[str, Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCAmelCase : List[Any] = model(input_ids=SCREAMING_SNAKE_CASE , decoder_input_ids=SCREAMING_SNAKE_CASE ).logits if logits.shape != (8, 1, 2_048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor __lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("""t5-base""" ) __lowerCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) __lowerCAmelCase : Tuple = MusicgenProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) # set the appropriate bos/pad token ids __lowerCAmelCase : int = 2_048 __lowerCAmelCase : str = 2_048 # set other default generation config params __lowerCAmelCase : List[str] = int(30 * audio_encoder.config.frame_rate ) __lowerCAmelCase : List[str] = True __lowerCAmelCase : Dict = 3.0 if pytorch_dump_folder is not None: Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(SCREAMING_SNAKE_CASE ) processor.push_to_hub(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint', default='small', type=str, help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.', ) parser.add_argument( '--pytorch_dump_folder', required=True, default=None, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) parser.add_argument( '--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.' ) _UpperCAmelCase = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
351
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} _UpperCAmelCase = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } _UpperCAmelCase = { 'abeja/gpt-neox-japanese-2.7b': 2048, } def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Optional[int] ) -> Optional[Any]: with open(SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f: __lowerCAmelCase : int = json.loads(f.read() ) __lowerCAmelCase : Dict = collections.OrderedDict() __lowerCAmelCase : str = collections.OrderedDict() __lowerCAmelCase : Union[str, Any] = collections.OrderedDict() with open(SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f: __lowerCAmelCase : Tuple = f.readlines() __lowerCAmelCase : Tuple = [[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token] for idx, b in enumerate(SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Dict = b __lowerCAmelCase : Dict = idx for wd in b: __lowerCAmelCase : List[str] = idx return vocab, raw_vocab, ids_to_tokens, emoji class snake_case_ ( __lowercase ): A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['input_ids', 'attention_mask'] def __init__( self : str , _snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Any="<|endoftext|>" , _snake_case : str="<|endoftext|>" , _snake_case : str="<|startoftext|>" , _snake_case : List[Any]="<|endoftext|>" , _snake_case : str=False , **_snake_case : List[Any] , )->Union[str, Any]: '''simple docstring''' super().__init__( unk_token=_snake_case , pad_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , do_clean_text=_snake_case , **_snake_case , ) if not os.path.isfile(_snake_case ): raise ValueError( F'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' """ model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) if not os.path.isfile(_snake_case ): raise ValueError( F'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' """ pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) __lowerCAmelCase : Any = do_clean_text __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = load_vocab_and_emoji(_snake_case , _snake_case ) __lowerCAmelCase : int = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def UpperCAmelCase__ ( self : int )->str: '''simple docstring''' return len(self.raw_vocab ) def UpperCAmelCase__ ( self : Tuple )->Any: '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self : Any , _snake_case : str )->Optional[int]: '''simple docstring''' return self.subword_tokenizer.tokenize(_snake_case , clean=self.do_clean_text ) def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : Optional[Any] )->Any: '''simple docstring''' return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self : int , _snake_case : Any )->int: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(_snake_case ) def UpperCAmelCase__ ( self : Optional[int] , _snake_case : int )->List[Any]: '''simple docstring''' __lowerCAmelCase : str = """""".join(_snake_case ).strip() return out_string def UpperCAmelCase__ ( self : List[str] , _snake_case : "Conversation" )->List[int]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_snake_case , add_special_tokens=_snake_case ) + [self.eos_token_id] ) if len(_snake_case ) > self.model_max_length: __lowerCAmelCase : List[str] = input_ids[-self.model_max_length :] return input_ids def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : str , _snake_case : Optional[str] = None )->Tuple[str]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = 0 if os.path.isdir(_snake_case ): __lowerCAmelCase : Dict = os.path.join( _snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase : List[Any] = os.path.join( _snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] ) else: __lowerCAmelCase : Union[str, Any] = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase : Dict = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""] ) with open(_snake_case , """w""" , encoding="""utf-8""" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) __lowerCAmelCase : List[str] = token_index writer.write(""",""".join(_snake_case ) + """\n""" ) index += 1 with open(_snake_case , """w""" , encoding="""utf-8""" ) as writer: json.dump(self.emoji , _snake_case ) return vocab_file, emoji_file class snake_case_ ( __lowercase ): def __init__( self : Optional[Any] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : Optional[int] )->List[Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = vocab # same as swe __lowerCAmelCase : str = ids_to_tokens # same as bpe __lowerCAmelCase : Dict = emoji __lowerCAmelCase : int = np.max([len(_snake_case ) for w in self.vocab.keys()] ) __lowerCAmelCase : str = re.compile(R"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" ) __lowerCAmelCase : Optional[Any] = re.compile(R"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" ) __lowerCAmelCase : Tuple = re.compile(R"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" ) __lowerCAmelCase : Optional[Any] = re.compile( R"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) __lowerCAmelCase : Union[str, Any] = re.compile( R"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) __lowerCAmelCase : str = re.compile( R"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" ) __lowerCAmelCase : List[Any] = """─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿""" __lowerCAmelCase : Union[str, Any] = """▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟""" __lowerCAmelCase : str = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} ) def __len__( self : int )->int: '''simple docstring''' return len(self.ids_to_tokens ) def UpperCAmelCase__ ( self : List[str] , _snake_case : Any )->str: '''simple docstring''' __lowerCAmelCase : List[str] = self.content_repattera.sub("""<URL>""" , _snake_case ) __lowerCAmelCase : Tuple = self.content_repattera.sub("""<EMAIL>""" , _snake_case ) __lowerCAmelCase : Optional[Any] = self.content_repattera.sub("""<TEL>""" , _snake_case ) __lowerCAmelCase : str = self.content_repattera.sub("""<DATE>""" , _snake_case ) __lowerCAmelCase : Tuple = self.content_repattera.sub("""<DATE>""" , _snake_case ) __lowerCAmelCase : Tuple = self.content_repattera.sub("""<PRICE>""" , _snake_case ) __lowerCAmelCase : List[Any] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: __lowerCAmelCase : str = content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""" ) return content def UpperCAmelCase__ ( self : str , _snake_case : List[Any] , _snake_case : Optional[int]=False )->int: '''simple docstring''' __lowerCAmelCase : Optional[int] = text.replace(""" """ , """<SP>""" ) __lowerCAmelCase : Optional[int] = text.replace(""" """ , """<SP>""" ) __lowerCAmelCase : Union[str, Any] = text.replace("""\r\n""" , """<BR>""" ) __lowerCAmelCase : Tuple = text.replace("""\n""" , """<BR>""" ) __lowerCAmelCase : List[str] = text.replace("""\r""" , """<BR>""" ) __lowerCAmelCase : Dict = text.replace("""\t""" , """<TAB>""" ) __lowerCAmelCase : Dict = text.replace("""—""" , """ー""" ) __lowerCAmelCase : Tuple = text.replace("""−""" , """ー""" ) for k, v in self.emoji["emoji"].items(): if k in text: __lowerCAmelCase : Optional[Any] = text.replace(_snake_case , _snake_case ) if clean: __lowerCAmelCase : List[Any] = self.clean_text(_snake_case ) def check_simbol(_snake_case : List[str] ): __lowerCAmelCase : Optional[int] = x.encode() if len(_snake_case ) == 1 and len(_snake_case ) == 2: __lowerCAmelCase : Optional[Any] = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc2a1 and c <= 0xc2bf) or (c >= 0xc780 and c <= 0xc783) or (c >= 0xcab9 and c <= 0xcbbf) or (c >= 0xcc80 and c <= 0xcda2) ): return True return False def checkuae(_snake_case : Union[str, Any] ): __lowerCAmelCase : Dict = x.encode() if len(_snake_case ) == 1 and len(_snake_case ) == 3: __lowerCAmelCase : List[str] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe2_8080 and c <= 0xe2_b07f: return True return False __lowerCAmelCase : Dict = 0 __lowerCAmelCase : Dict = [] while pos < len(_snake_case ): __lowerCAmelCase : str = min(len(_snake_case ) , pos + self.maxlen + 1 ) if text[pos] == """<""" else pos + 3 __lowerCAmelCase : Tuple = [] # (token_id, token, pos) for e in range(_snake_case , _snake_case , -1 ): __lowerCAmelCase : Optional[int] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_snake_case ) > 2: __lowerCAmelCase : Tuple = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_snake_case ) > 0: # the smallest token_id is adopted __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = sorted(_snake_case , key=lambda _snake_case : x[0] )[0] result.append(_snake_case ) __lowerCAmelCase : int = e else: __lowerCAmelCase : Dict = pos + 1 __lowerCAmelCase : Dict = text[pos:end] if check_simbol(_snake_case ): result.append("""<KIGOU>""" ) elif checkuae(_snake_case ): result.append("""<U2000U2BFF>""" ) else: for i in wd.encode("""utf-8""" ): result.append("""<|byte%d|>""" % i ) __lowerCAmelCase : int = end return result def UpperCAmelCase__ ( self : List[str] , _snake_case : Optional[int] , _snake_case : List[Any]="\n" )->List[Any]: '''simple docstring''' __lowerCAmelCase : List[str] = [] __lowerCAmelCase : Union[str, Any] = [] __lowerCAmelCase : Optional[Any] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_snake_case ) > 0: words.append(bytearray(_snake_case ).decode("""utf-8""" , errors="""replace""" ) ) __lowerCAmelCase : Optional[Any] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["""emoji_inv"""][word] ) elif word == "<SP>": words.append(""" """ ) elif word == "<BR>": words.append(_snake_case ) elif word == "<TAB>": words.append("""\t""" ) elif word == "<BLOCK>": words.append("""▀""" ) elif word == "<KIGOU>": words.append("""ǀ""" ) elif word == "<U2000U2BFF>": words.append("""‖""" ) else: words.append(_snake_case ) if len(_snake_case ) > 0: words.append(bytearray(_snake_case ).decode("""utf-8""" , errors="""replace""" ) ) __lowerCAmelCase : Dict = """""".join(_snake_case ) return text
232
0
'''simple docstring''' from timeit import timeit def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("""the value of input must not be negative""" ) _a : List[str] =0 while number: number &= number - 1 result += 1 return result def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("""the value of input must not be negative""" ) _a : Any =0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def SCREAMING_SNAKE_CASE_ ( ) -> None: def do_benchmark(_UpperCAmelCase : int ) -> None: _a : Optional[int] ="""import __main__ as z""" print(F"Benchmark when {number = }:" ) print(F"{get_set_bits_count_using_modulo_operator(_UpperCAmelCase ) = }" ) _a : Union[str, Any] =timeit("""z.get_set_bits_count_using_modulo_operator(25)""" ,setup=_UpperCAmelCase ) print(F"timeit() runs in {timing} seconds" ) print(F"{get_set_bits_count_using_brian_kernighans_algorithm(_UpperCAmelCase ) = }" ) _a : Union[str, Any] =timeit( """z.get_set_bits_count_using_brian_kernighans_algorithm(25)""" ,setup=_UpperCAmelCase ,) print(F"timeit() runs in {timing} seconds" ) for number in (25, 37, 58, 0): do_benchmark(_UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
276
'''simple docstring''' from __future__ import annotations from typing import TypedDict class A__ ( UpperCAmelCase__ ): __UpperCamelCase : str __UpperCamelCase : int def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> list[str]: if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(_UpperCAmelCase ) )] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> BWTTransformDict: if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _a : List[Any] =all_rotations(_UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _a : BWTTransformDict ={ "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(_UpperCAmelCase ), } return response def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : int ) -> str: if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _a : List[str] =int(_UpperCAmelCase ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(_UpperCAmelCase ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _a : Optional[int] =[""""""] * len(_UpperCAmelCase ) for _ in range(len(_UpperCAmelCase ) ): for i in range(len(_UpperCAmelCase ) ): _a : int =bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": A__: Any = '''Provide a string that I will generate its BWT transform: ''' A__: Union[str, Any] = input(entry_msg).strip() A__: Optional[int] = bwt_transform(s) print( F"Burrows Wheeler transform for string '{s}' results " F"in '{result['bwt_string']}'" ) A__: Union[str, Any] = reverse_bwt(result['''bwt_string'''], result['''idx_original_string''']) print( F"Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' " F"we get original string '{original_string}'" )
276
1
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __a = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : int = state_dict.pop(_lowercase ) UpperCAmelCase_ : Optional[int] = val def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : str = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase_ : List[Any] = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) UpperCAmelCase_ : Optional[Any] = value else: UpperCAmelCase_ : Union[str, Any] = value return new_state_dict def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : int = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ : Dict = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase_ : Any = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[:256, :] UpperCAmelCase_ : Optional[int] = in_proj_bias[:256] UpperCAmelCase_ : Tuple = in_proj_weight[256:512, :] UpperCAmelCase_ : List[Any] = in_proj_bias[256:512] UpperCAmelCase_ : Union[str, Any] = in_proj_weight[-256:, :] UpperCAmelCase_ : str = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase_ : Any = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase_ : Optional[int] = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[:256, :] UpperCAmelCase_ : List[str] = in_proj_bias[:256] UpperCAmelCase_ : Optional[int] = in_proj_weight[256:512, :] UpperCAmelCase_ : str = in_proj_bias[256:512] UpperCAmelCase_ : Optional[Any] = in_proj_weight[-256:, :] UpperCAmelCase_ : Union[str, Any] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase_ : List[str] = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) UpperCAmelCase_ : List[Any] = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase_ : List[str] = in_proj_weight_cross_attn[:256, :] UpperCAmelCase_ : str = in_proj_bias_cross_attn[:256] UpperCAmelCase_ : int = in_proj_weight_cross_attn[256:512, :] UpperCAmelCase_ : Tuple = in_proj_bias_cross_attn[256:512] UpperCAmelCase_ : List[str] = in_proj_weight_cross_attn[-256:, :] UpperCAmelCase_ : Dict = in_proj_bias_cross_attn[-256:] def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = image.size UpperCAmelCase_ : List[Any] = max(_lowercase , _lowercase ) UpperCAmelCase_ : Dict = 800 if '''detection''' in checkpoint_url else 1000 UpperCAmelCase_ : Any = target_max_size / current_max_size UpperCAmelCase_ : Any = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = F.to_tensor(_lowercase ) UpperCAmelCase_ : Optional[Any] = F.normalize(_lowercase , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' logger.info('''Converting model...''' ) # load original state dict UpperCAmelCase_ : Any = torch.hub.load_state_dict_from_url(_lowercase , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase_ : Optional[int] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ : int = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): UpperCAmelCase_ : int = state_dict.pop(_lowercase ) UpperCAmelCase_ : Dict = val # create HuggingFace model and load state dict UpperCAmelCase_ : str = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: UpperCAmelCase_ : Any = 15 UpperCAmelCase_ : List[str] = 2 UpperCAmelCase_ : Union[str, Any] = {0: '''table''', 1: '''table rotated'''} UpperCAmelCase_ : str = idalabel UpperCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} else: UpperCAmelCase_ : Optional[Any] = 125 UpperCAmelCase_ : Optional[Any] = 6 UpperCAmelCase_ : Dict = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } UpperCAmelCase_ : Optional[Any] = idalabel UpperCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Union[str, Any] = DetrImageProcessor( format='''coco_detection''' , max_size=800 if '''detection''' in checkpoint_url else 1000 ) UpperCAmelCase_ : Union[str, Any] = TableTransformerForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() # verify our conversion UpperCAmelCase_ : str = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' UpperCAmelCase_ : Dict = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=_lowercase ) UpperCAmelCase_ : Dict = Image.open(_lowercase ).convert('''RGB''' ) UpperCAmelCase_ : Any = normalize(resize(_lowercase , _lowercase ) ).unsqueeze(0 ) UpperCAmelCase_ : Dict = model(_lowercase ) if "detection" in checkpoint_url: UpperCAmelCase_ : Any = (1, 15, 3) UpperCAmelCase_ : Optional[int] = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) UpperCAmelCase_ : Any = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: UpperCAmelCase_ : Any = (1, 125, 7) UpperCAmelCase_ : Any = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) UpperCAmelCase_ : str = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , _lowercase , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _lowercase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) UpperCAmelCase_ : List[Any] = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(_lowercase ) image_processor.push_to_hub(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __a = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
370
from ...processing_utils import ProcessorMixin class __a( _a ): """simple docstring""" lowerCAmelCase = '''SpeechT5FeatureExtractor''' lowerCAmelCase = '''SpeechT5Tokenizer''' def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: super().__init__(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def __call__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ : List[str] = kwargs.pop('''audio''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = kwargs.pop('''text''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = kwargs.pop('''text_target''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = kwargs.pop('''audio_target''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = kwargs.pop('''sampling_rate''' ,_SCREAMING_SNAKE_CASE ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: UpperCAmelCase_ : Optional[Any] = self.feature_extractor(_SCREAMING_SNAKE_CASE ,*_SCREAMING_SNAKE_CASE ,sampling_rate=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) elif text is not None: UpperCAmelCase_ : Dict = self.tokenizer(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : List[str] = None if audio_target is not None: UpperCAmelCase_ : List[Any] = self.feature_extractor(audio_target=_SCREAMING_SNAKE_CASE ,*_SCREAMING_SNAKE_CASE ,sampling_rate=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = targets['''input_values'''] elif text_target is not None: UpperCAmelCase_ : Optional[int] = self.tokenizer(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = targets['''input_ids'''] else: UpperCAmelCase_ : Tuple = None if inputs is None: return targets if targets is not None: UpperCAmelCase_ : Dict = labels UpperCAmelCase_ : Optional[int] = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: UpperCAmelCase_ : List[Any] = decoder_attention_mask return inputs def a__ ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ : Dict = kwargs.pop('''input_values''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''input_ids''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = kwargs.pop('''labels''' ,_SCREAMING_SNAKE_CASE ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: UpperCAmelCase_ : Tuple = self.feature_extractor.pad(_SCREAMING_SNAKE_CASE ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) elif input_ids is not None: UpperCAmelCase_ : Tuple = self.tokenizer.pad(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : List[str] = None if labels is not None: if "input_ids" in labels or (isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) and "input_ids" in labels[0]): UpperCAmelCase_ : Tuple = self.tokenizer.pad(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = targets['''input_ids'''] else: UpperCAmelCase_ : int = self.feature_extractor.feature_size UpperCAmelCase_ : List[str] = self.feature_extractor.num_mel_bins UpperCAmelCase_ : Optional[Any] = self.feature_extractor.pad(_SCREAMING_SNAKE_CASE ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = feature_size_hack UpperCAmelCase_ : List[Any] = targets['''input_values'''] else: UpperCAmelCase_ : Optional[int] = None if inputs is None: return targets if targets is not None: UpperCAmelCase_ : Optional[int] = labels UpperCAmelCase_ : Union[str, Any] = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: UpperCAmelCase_ : List[Any] = decoder_attention_mask return inputs def a__ ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Optional[Any]: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE )
235
0