code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class _A : """simple docstring""" def __init__( self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any=13 , __UpperCAmelCase : Tuple=7 , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : int=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : int=99 , __UpperCAmelCase : Dict=32 , __UpperCAmelCase : Union[str, Any]=5 , __UpperCAmelCase : str=4 , __UpperCAmelCase : Optional[Any]=4 , __UpperCAmelCase : Dict="gelu" , __UpperCAmelCase : Union[str, Any]=0.0 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : int=True , __UpperCAmelCase : str=512 , __UpperCAmelCase : Any=16 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : int=0.02 , __UpperCAmelCase : List[Any]=3 , __UpperCAmelCase : Union[str, Any]=4 , __UpperCAmelCase : List[str]=None , ): a : str = parent a : Union[str, Any] = batch_size a : Optional[Any] = seq_length a : int = is_training a : int = use_input_mask a : Optional[Any] = use_token_type_ids a : Any = use_labels a : Optional[int] = vocab_size a : Optional[int] = hidden_size a : Any = num_hidden_layers a : str = num_attention_heads a : int = intermediate_multiple_size a : Any = hidden_act a : Union[str, Any] = hidden_dropout a : int = attention_dropout a : str = weight_tying a : Optional[int] = max_position_embeddings a : Optional[int] = type_vocab_size a : int = type_sequence_label_size a : Optional[int] = initializer_range a : str = num_labels a : List[Any] = num_choices a : Any = scope def __snake_case ( self : List[str]): a : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a : Union[str, Any] = None if self.use_input_mask: a : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length]) a : Union[str, Any] = None if self.use_labels: a : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a : Any = self.get_config() return config, input_ids, input_mask, token_labels def __snake_case ( self : int): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __snake_case ( self : Union[str, Any]): a , a , a , a : Tuple = self.prepare_config_and_inputs() a : str = True return config, input_ids, input_mask, token_labels def __snake_case ( self : Any , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str]): a : str = GPTNeoXJapaneseModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : str = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase) a : Any = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __snake_case ( self : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : str): a : Optional[Any] = True a : Dict = GPTNeoXJapaneseModel(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int]): a : List[Any] = GPTNeoXJapaneseForCausalLM(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __snake_case ( self : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any]): a : List[Any] = True a : Any = GPTNeoXJapaneseForCausalLM(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() # first forward pass a : Optional[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase) a : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size) a : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and a : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1) a : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1) a : Optional[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase) a : List[Any] = output_from_no_past["hidden_states"][0] a : Tuple = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["hidden_states"][0] # select random slice a : List[Any] = ids_tensor((1,) , output_from_past.shape[-1]).item() a : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() a : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3)) def __snake_case ( self : Optional[int]): a : Tuple = self.prepare_config_and_inputs() a , a , a , a : Any = config_and_inputs a : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _A ( _a ,_a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : int = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () UpperCAmelCase : List[Any] = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () UpperCAmelCase : List[Any] = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) UpperCAmelCase : str = False UpperCAmelCase : Optional[int] = False UpperCAmelCase : Optional[int] = False UpperCAmelCase : Dict = False def __snake_case ( self : Any): a : Optional[int] = GPTNeoXJapaneseModelTester(self) a : Optional[int] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def __snake_case ( self : List[str]): self.config_tester.run_common_tests() def __snake_case ( self : Tuple): a , a , a , a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : Dict): a , a , a , a : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : Optional[int]): # This regression test was failing with PyTorch < 1.3 a , a , a , a : int = self.model_tester.prepare_config_and_inputs_for_decoder() a : Union[str, Any] = None self.model_tester.create_and_check_model_as_decoder(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : str): a , a , a , a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : Optional[int]): a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__UpperCAmelCase) @slow def __snake_case ( self : List[str]): a : Optional[int] = "abeja/gpt-neox-japanese-2.7b" a : int = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] a : Union[str, Any] = [ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] a : Tuple = GPTNeoXJapaneseTokenizer.from_pretrained(__UpperCAmelCase) a : List[Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(__UpperCAmelCase) a : int = [] for prompt in prompts: a : List[str] = tokenizer(__UpperCAmelCase , return_tensors="pt").input_ids a : List[str] = model.generate(__UpperCAmelCase , max_length=50) a : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase) predicted_outputs += generated_string self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase)
40
"""simple docstring""" def lowercase ( A_ )-> bool: '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) a : Tuple = sorted(string.lower() ) return len(A_ ) == len(set(A_ ) ) if __name__ == "__main__": __lowercase = input("""Enter a string """).strip() __lowercase = is_isogram(input_str) print(f'''{input_str} is {'an' if isogram else 'not an'} isogram.''')
40
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase :Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase :Union[str, Any] = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : List[str] = """gpt_bigcode""" A_ : str = ["""past_key_values"""] A_ : List[str] = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[Any] , _A : Dict=50257 , _A : Any=1024 , _A : List[Any]=768 , _A : Optional[int]=12 , _A : List[str]=12 , _A : Optional[Any]=None , _A : Optional[int]="gelu_pytorch_tanh" , _A : List[str]=0.1 , _A : Any=0.1 , _A : List[str]=0.1 , _A : int=1E-5 , _A : str=0.02 , _A : Optional[int]=True , _A : Optional[Any]=True , _A : List[Any]=50256 , _A : Optional[int]=50256 , _A : List[str]=True , _A : List[Any]=True , _A : Optional[Any]=True , **_A : str , ) -> Optional[Any]: __magic_name__ : List[Any] = vocab_size __magic_name__ : Tuple = n_positions __magic_name__ : Tuple = n_embd __magic_name__ : Dict = n_layer __magic_name__ : List[Any] = n_head __magic_name__ : Tuple = n_inner __magic_name__ : Tuple = activation_function __magic_name__ : Any = resid_pdrop __magic_name__ : Tuple = embd_pdrop __magic_name__ : Dict = attn_pdrop __magic_name__ : List[str] = layer_norm_epsilon __magic_name__ : Any = initializer_range __magic_name__ : Tuple = scale_attn_weights __magic_name__ : Optional[Any] = use_cache __magic_name__ : str = attention_softmax_in_fpaa __magic_name__ : Tuple = scale_attention_softmax_in_fpaa __magic_name__ : List[Any] = multi_query __magic_name__ : Union[str, Any] = bos_token_id __magic_name__ : str = eos_token_id super().__init__(bos_token_id=_A , eos_token_id=_A , **_A )
275
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase :Tuple = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : int = ["""pixel_values"""] def __init__( self : Any , _A : bool = True , _A : Optional[Dict[str, int]] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Optional[Any] , ) -> None: super().__init__(**_A ) __magic_name__ : List[str] = size if size is not None else {'shortest_edge': 256} __magic_name__ : str = get_size_dict(_A , default_to_square=_A ) __magic_name__ : List[str] = crop_size if crop_size is not None else {'height': 224, 'width': 224} __magic_name__ : Optional[int] = get_size_dict(_A ) __magic_name__ : Union[str, Any] = do_resize __magic_name__ : List[Any] = size __magic_name__ : List[str] = resample __magic_name__ : Dict = do_center_crop __magic_name__ : List[str] = crop_size __magic_name__ : int = do_rescale __magic_name__ : Tuple = rescale_factor __magic_name__ : List[str] = do_normalize __magic_name__ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __magic_name__ : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray: __magic_name__ : Optional[Any] = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __magic_name__ : Dict = get_resize_output_image_size(_A , size=size['shortest_edge'] , default_to_square=_A ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[int] , ) -> np.ndarray: __magic_name__ : int = get_size_dict(_A ) return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A ) def __lowerCAmelCase ( self : List[str] , _A : np.ndarray , _A : float , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple ) -> np.ndarray: return rescale(_A , scale=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : str , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : List[str] , _A : ImageInput , _A : Optional[bool] = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : Optional[bool] = None , _A : Optional[float] = None , _A : Optional[bool] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_A : List[Any] , ) -> List[str]: __magic_name__ : int = do_resize if do_resize is not None else self.do_resize __magic_name__ : Tuple = size if size is not None else self.size __magic_name__ : Optional[Any] = get_size_dict(_A , default_to_square=_A ) __magic_name__ : Dict = resample if resample is not None else self.resample __magic_name__ : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __magic_name__ : Dict = crop_size if crop_size is not None else self.crop_size __magic_name__ : List[str] = get_size_dict(_A ) __magic_name__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : str = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : Any = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ : Tuple = image_mean if image_mean is not None else self.image_mean __magic_name__ : Union[str, Any] = image_std if image_std is not None else self.image_std __magic_name__ : int = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __magic_name__ : List[Any] = [to_numpy_array(_A ) for image in images] if do_resize: __magic_name__ : Union[str, Any] = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: __magic_name__ : Union[str, Any] = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: __magic_name__ : List[Any] = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __magic_name__ : Optional[Any] = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __magic_name__ : Union[str, Any] = [to_channel_dimension_format(_A , _A ) for image in images] __magic_name__ : List[str] = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
275
1
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowercase_ ( _A : int ): """simple docstring""" return 1 / (1 + np.exp(-z )) def lowercase_ ( _A : Any , _A : Optional[int] ): """simple docstring""" return (-y * np.log(_A ) - (1 - y) * np.log(1 - h )).mean() def lowercase_ ( _A : Optional[Any] , _A : Dict , _A : Union[str, Any] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = np.dot(_A , _A ) return np.sum(y * scores - np.log(1 + np.exp(_A ) ) ) def lowercase_ ( _A : Union[str, Any] , _A : Dict , _A : Tuple , _A : Dict=70000 ): """simple docstring""" lowerCamelCase__ : int = np.zeros(x.shape[1] ) for iterations in range(_A ): lowerCamelCase__ : Optional[Any] = np.dot(_A , _A ) lowerCamelCase__ : Optional[int] = sigmoid_function(_A ) lowerCamelCase__ : Union[str, Any] = np.dot(x.T , h - y ) / y.size lowerCamelCase__ : Union[str, Any] = theta - alpha * gradient # updating the weights lowerCamelCase__ : List[Any] = np.dot(_A , _A ) lowerCamelCase__ : List[str] = sigmoid_function(_A ) lowerCamelCase__ : List[str] = cost_function(_A , _A ) if iterations % 100 == 0: print(F"loss: {j} \t" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": A : List[Any] = datasets.load_iris() A : List[str] = iris.data[:, :2] A : str = (iris.target != 0) * 1 A : Optional[int] = 0.1 A : List[Any] = logistic_reg(alpha, x, y, max_iterations=70000) print("theta: ", theta) # printing the theta i.e our weights vector def lowercase_ ( _A : Optional[Any] ): """simple docstring""" return sigmoid_function( np.dot(_A , _A ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1") ((A), (A)) : List[Any] = (x[:, 0].min(), x[:, 0].max()) ((A), (A)) : Optional[int] = (x[:, 1].min(), x[:, 1].max()) ((A), (A)) : List[Any] = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) A : List[str] = np.c_[xxa.ravel(), xxa.ravel()] A : List[Any] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
184
class _lowercase : """simple docstring""" def __init__( self : List[Any] , __lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = size lowerCamelCase__ : List[str] = [0] * size lowerCamelCase__ : str = [0] * size @staticmethod def lowerCAmelCase ( __lowerCamelCase : int ): '''simple docstring''' return index | (index + 1) @staticmethod def lowerCAmelCase ( __lowerCamelCase : int ): '''simple docstring''' return (index & (index + 1)) - 1 def lowerCAmelCase ( self : int , __lowerCamelCase : int , __lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = value while index < self.size: lowerCamelCase__ : Tuple = self.get_prev(__lowerCamelCase ) + 1 if current_left_border == index: lowerCamelCase__ : Optional[Any] = value else: lowerCamelCase__ : str = max(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Dict = self.get_next(__lowerCamelCase ) def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ): '''simple docstring''' right -= 1 # Because of right is exclusive lowerCamelCase__ : str = 0 while left <= right: lowerCamelCase__ : Optional[Any] = self.get_prev(__lowerCamelCase ) if left <= current_left: lowerCamelCase__ : Optional[Any] = max(__lowerCamelCase , self.tree[right] ) lowerCamelCase__ : Any = current_left else: lowerCamelCase__ : Optional[Any] = max(__lowerCamelCase , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
184
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'naver-clova-ix/donut-base-finetuned-docvqa' _lowerCAmelCase = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) _lowerCAmelCase = 'document_qa' _lowerCAmelCase = AutoProcessor _lowerCAmelCase = VisionEncoderDecoderModel _lowerCAmelCase = ['image', 'text'] _lowerCAmelCase = ['text'] def __init__( self : Optional[int] , *_lowerCamelCase : Any , **_lowerCamelCase : Dict ): """simple docstring""" if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*_lowerCamelCase , **_lowerCamelCase ) def _a ( self : str , _lowerCamelCase : "Image" , _lowerCamelCase : str ): """simple docstring""" A_ : Tuple = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' A_ : List[str] = task_prompt.replace('''{user_input}''' , _lowerCamelCase ) A_ : str = self.pre_processor.tokenizer( _lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors='''pt''' ).input_ids A_ : Optional[Any] = self.pre_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _a ( self : Optional[Any] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_lowerCamelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_lowerCamelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_lowerCamelCase , ).sequences def _a ( self : Optional[Any] , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : Optional[int] = self.pre_processor.batch_decode(_lowerCamelCase )[0] A_ : int = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) A_ : Tuple = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) A_ : str = re.sub(R'''<.*?>''' , '''''' , _lowerCamelCase , count=1 ).strip() # remove first task start token A_ : Any = self.pre_processor.tokenajson(_lowerCamelCase ) return sequence["answer"]
4
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline snake_case__ = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ (datasets.BuilderConfig ): """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = "utf-8" _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = True # deprecated _lowerCAmelCase = None # deprecated _lowerCAmelCase = 1_0 << 2_0 # 10MB _lowerCAmelCase = None class UpperCamelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" _lowerCAmelCase = JsonConfig def _a ( self : int ): """simple docstring""" if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) A_ : List[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def _a ( self : Any , _lowerCamelCase : List[str] ): """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) A_ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): A_ : Union[str, Any] = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : List[str] = [files] A_ : List[Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A_ : Tuple = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : int = [files] A_ : Union[str, Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'''files''': files} ) ) return splits def _a ( self : int , _lowerCamelCase : pa.Table ): """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): A_ : Optional[int] = self.config.features.arrow_schema.field(_lowerCamelCase ).type A_ : Optional[int] = pa_table.append_column(_lowerCamelCase , pa.array([None] * len(_lowerCamelCase ) , type=_lowerCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A_ : str = table_cast(_lowerCamelCase , self.config.features.arrow_schema ) return pa_table def _a ( self : List[str] , _lowerCamelCase : int ): """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : int = json.load(_lowerCamelCase ) # We keep only the field we are interested in A_ : List[str] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_lowerCamelCase , (list, tuple) ): A_ : int = set().union(*[row.keys() for row in dataset] ) A_ : List[str] = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} else: A_ : Tuple = dataset A_ : Dict = pa.Table.from_pydict(_lowerCamelCase ) yield file_idx, self._cast_table(_lowerCamelCase ) # If the file has one json object per line else: with open(_lowerCamelCase , '''rb''' ) as f: A_ : int = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A_ : int = max(self.config.chunksize // 32 , 16 << 10 ) A_ : int = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A_ : Any = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_lowerCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A_ : Optional[Any] = batch.decode(self.config.encoding , errors=_lowerCamelCase ).encode('''utf-8''' ) try: while True: try: A_ : List[Any] = paj.read_json( io.BytesIO(_lowerCamelCase ) , read_options=paj.ReadOptions(block_size=_lowerCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_lowerCamelCase , pa.ArrowInvalid ) and "straddling" not in str(_lowerCamelCase ) or block_size > len(_lowerCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'Batch of {len(_lowerCamelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : Optional[Any] = json.load(_lowerCamelCase ) except json.JSONDecodeError: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_lowerCamelCase , _lowerCamelCase ): # list is the only sequence type supported in JSON try: A_ : Optional[int] = set().union(*[row.keys() for row in dataset] ) A_ : Tuple = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} A_ : int = pa.Table.from_pydict(_lowerCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError(f'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(_lowerCamelCase ) break else: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError( f'Not able to read records in the JSON file at {file}. ' f'You should probably indicate the field of the JSON file containing your records. ' f'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' f'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) batch_idx += 1
4
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class a__ : lowerCamelCase : Optional[Any] =LEDConfig lowerCamelCase : Any ={} lowerCamelCase : Optional[Any] ='gelu' def __init__( self : Union[str, Any] , a : List[Any] , a : str=13 , a : Optional[Any]=7 , a : Any=True , a : Optional[Any]=False , a : Optional[Any]=99 , a : Union[str, Any]=32 , a : Tuple=2 , a : Any=4 , a : Any=37 , a : Any=0.1 , a : Tuple=0.1 , a : int=20 , a : List[str]=2 , a : Dict=1 , a : Tuple=0 , a : str=4 , ): """simple docstring""" __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = eos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = bos_token_id __lowerCamelCase = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __lowerCamelCase = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __lowerCamelCase = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __lowerCamelCase = prepare_led_inputs_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCamelCase = tf.concat( [tf.zeros_like(_SCREAMING_SNAKE_CASE )[:, :-1], tf.ones_like(_SCREAMING_SNAKE_CASE )[:, -1:]] , axis=-1 , ) __lowerCamelCase = global_attention_mask return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : Optional[Any] , a : int ): """simple docstring""" __lowerCamelCase = TFLEDModel(config=_SCREAMING_SNAKE_CASE ).get_decoder() __lowerCamelCase = inputs_dict["""input_ids"""] __lowerCamelCase = input_ids[:1, :] __lowerCamelCase = inputs_dict["""attention_mask"""][:1, :] __lowerCamelCase = 1 # first forward pass __lowerCamelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) __lowerCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowerCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowerCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowerCamelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] __lowerCamelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowerCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx] __lowerCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , rtol=1e-3 ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , ) -> Any: if attention_mask is None: __lowerCamelCase = tf.cast(tf.math.not_equal(UpperCamelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowerCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowerCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class a__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCamelCase : Optional[Any] =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowerCamelCase : Dict =(TFLEDForConditionalGeneration,) if is_tf_available() else () lowerCamelCase : int =( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase : Any =True lowerCamelCase : Tuple =False lowerCamelCase : Union[str, Any] =False lowerCamelCase : Dict =False def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = TFLEDModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = tf.zeros_like(inputs_dict['''attention_mask'''] ) __lowerCamelCase = 2 __lowerCamelCase = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) __lowerCamelCase = True __lowerCamelCase = self.model_tester.seq_length __lowerCamelCase = self.model_tester.encoder_seq_length def check_decoder_attentions_output(a : List[Any] ): __lowerCamelCase = outputs.decoder_attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(a : List[str] ): __lowerCamelCase = [t.numpy() for t in outputs.encoder_attentions] __lowerCamelCase = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = model_class(_SCREAMING_SNAKE_CASE ) __lowerCamelCase = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) __lowerCamelCase = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: __lowerCamelCase = model_class(_SCREAMING_SNAKE_CASE ) __lowerCamelCase = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_decoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowerCamelCase = True __lowerCamelCase = model_class(_SCREAMING_SNAKE_CASE ) __lowerCamelCase = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(_SCREAMING_SNAKE_CASE ) __lowerCamelCase = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_SCREAMING_SNAKE_CASE ) ) self.assertEqual(model.config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" pass def __lowerCAmelCase ( UpperCamelCase__ ) -> Union[str, Any]: return tf.constant(UpperCamelCase__ , dtype=tf.intaa ) __UpperCAmelCase =1e-4 @slow @require_tf class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here __lowerCamelCase = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) __lowerCamelCase = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) __lowerCamelCase = prepare_led_inputs_dict(model.config , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCamelCase = model(**_SCREAMING_SNAKE_CASE )[0] __lowerCamelCase = (1, 10_24, 7_68) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # change to expected output here __lowerCamelCase = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here __lowerCamelCase = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) __lowerCamelCase = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) __lowerCamelCase = prepare_led_inputs_dict(model.config , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCamelCase = model(**_SCREAMING_SNAKE_CASE )[0] __lowerCamelCase = (1, 10_24, model.config.vocab_size) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # change to expected output here __lowerCamelCase = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-3 , rtol=1e-3 )
67
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _snake_case ( ): UpperCAmelCase : List[str] = ArgumentParser("""Accelerate CLI tool""" , usage="""accelerate <command> [<args>]""" , allow_abbrev=UpperCamelCase ) UpperCAmelCase : Dict = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=UpperCamelCase ) env_command_parser(subparsers=UpperCamelCase ) launch_command_parser(subparsers=UpperCamelCase ) tpu_command_parser(subparsers=UpperCamelCase ) test_command_parser(subparsers=UpperCamelCase ) # Let's go UpperCAmelCase : Optional[int] = parser.parse_args() if not hasattr(UpperCamelCase , """func""" ): parser.print_help() exit(1 ) # Run args.func(UpperCamelCase ) if __name__ == "__main__": main()
109
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase_ = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''PoolFormerFeatureExtractor'''] lowerCamelCase_ = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
253
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCamelCase_ (unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = "ZinengTang/tvlt-base" UpperCAmelCase_ : Dict = tempfile.mkdtemp() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , **lowerCAmelCase_ : int ) -> List[str]: return TvltImageProcessor.from_pretrained(self.checkpoint , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ) -> str: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : List[Any] = self.get_feature_extractor() UpperCAmelCase_ : Tuple = TvltProcessor(image_processor=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : List[str] = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase_ ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: UpperCAmelCase_ : Tuple = self.get_image_processor() UpperCAmelCase_ : int = self.get_feature_extractor() UpperCAmelCase_ : Tuple = TvltProcessor(image_processor=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = np.ones([12_000] ) UpperCAmelCase_ : Dict = feature_extractor(lowerCAmelCase_ , return_tensors="np" ) UpperCAmelCase_ : List[Any] = processor(audio=lowerCAmelCase_ , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: UpperCAmelCase_ : Optional[int] = self.get_image_processor() UpperCAmelCase_ : str = self.get_feature_extractor() UpperCAmelCase_ : str = TvltProcessor(image_processor=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) UpperCAmelCase_ : Any = np.ones([3, 224, 224] ) UpperCAmelCase_ : Union[str, Any] = image_processor(lowerCAmelCase_ , return_tensors="np" ) UpperCAmelCase_ : List[str] = processor(images=lowerCAmelCase_ , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.get_image_processor() UpperCAmelCase_ : str = self.get_feature_extractor() UpperCAmelCase_ : str = TvltProcessor(image_processor=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = np.ones([12_000] ) UpperCAmelCase_ : int = np.ones([3, 224, 224] ) UpperCAmelCase_ : Union[str, Any] = processor(audio=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: UpperCAmelCase_ : Any = self.get_image_processor() UpperCAmelCase_ : Dict = self.get_feature_extractor() UpperCAmelCase_ : List[Any] = TvltProcessor(image_processor=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
253
1
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ = None ): if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path UpperCAmelCase = quote(lowercase_ ) return hfh.hf_hub_url(lowercase_ , lowercase_ , repo_type='dataset' , revision=lowercase_ )
78
"""simple docstring""" import colorsys from PIL import Image # type: ignore def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = x UpperCAmelCase = y for step in range(lowercase_ ): # noqa: B007 UpperCAmelCase = a * a - b * b + x UpperCAmelCase = 2 * a * b + y UpperCAmelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _lowerCAmelCase ( lowercase_ ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def _lowerCAmelCase ( lowercase_ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowercase_ , 1 , 1 ) ) def _lowerCAmelCase ( lowercase_ = 800 , lowercase_ = 600 , lowercase_ = -0.6 , lowercase_ = 0 , lowercase_ = 3.2 , lowercase_ = 50 , lowercase_ = True , ): UpperCAmelCase = Image.new('RGB' , (image_width, image_height) ) UpperCAmelCase = img.load() # loop through the image-coordinates for image_x in range(lowercase_ ): for image_y in range(lowercase_ ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase = figure_width / image_width * image_height UpperCAmelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase = get_distance(lowercase_ , lowercase_ , lowercase_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase = get_color_coded_rgb(lowercase_ ) else: UpperCAmelCase = get_black_and_white_rgb(lowercase_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure snake_case_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
78
1
"""simple docstring""" from jiwer import compute_measures import datasets lowerCAmelCase__ = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" lowerCAmelCase__ = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" lowerCAmelCase__ = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", ] , ) def lowercase__ ( self , snake_case__=None , snake_case__=None , snake_case__=False ): """simple docstring""" if concatenate_texts: return compute_measures(snake_case__ , snake_case__ )["wer"] else: lowerCAmelCase : List[Any] = 0 lowerCAmelCase : List[Any] = 0 for prediction, reference in zip(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = compute_measures(snake_case__ , snake_case__ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
350
"""simple docstring""" import re from filelock import FileLock try: import nltk lowerCAmelCase__ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' re.sub("<n>" , "" , SCREAMING_SNAKE_CASE ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE ) )
133
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
87
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a : Tuple = logging.get_logger(__name__) a : Optional[Any] = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class a ( lowercase__ ): """simple docstring""" a : str = 'mvp' a : Optional[Any] = ['past_key_values'] a : int = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Dict , __lowercase : Tuple=50267 , __lowercase : Optional[int]=1024 , __lowercase : Any=12 , __lowercase : List[Any]=4096 , __lowercase : Optional[Any]=16 , __lowercase : List[str]=12 , __lowercase : Optional[Any]=4096 , __lowercase : Tuple=16 , __lowercase : Union[str, Any]=0.0 , __lowercase : str=0.0 , __lowercase : Any="gelu" , __lowercase : Any=1024 , __lowercase : List[str]=0.1 , __lowercase : List[Any]=0.0 , __lowercase : int=0.0 , __lowercase : str=0.02 , __lowercase : Tuple=0.0 , __lowercase : Union[str, Any]=False , __lowercase : Dict=True , __lowercase : List[Any]=1 , __lowercase : Optional[Any]=0 , __lowercase : Union[str, Any]=2 , __lowercase : Optional[int]=True , __lowercase : Dict=2 , __lowercase : int=2 , __lowercase : Union[str, Any]=False , __lowercase : Union[str, Any]=100 , __lowercase : str=800 , **__lowercase : Union[str, Any] , ) -> Any: __UpperCAmelCase : List[str] = vocab_size __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : Optional[Any] = d_model __UpperCAmelCase : int = encoder_ffn_dim __UpperCAmelCase : Tuple = encoder_layers __UpperCAmelCase : List[str] = encoder_attention_heads __UpperCAmelCase : Any = decoder_ffn_dim __UpperCAmelCase : List[Any] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Optional[int] = dropout __UpperCAmelCase : Tuple = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : List[Any] = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = encoder_layerdrop __UpperCAmelCase : Union[str, Any] = decoder_layerdrop __UpperCAmelCase : List[Any] = classifier_dropout __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : int = encoder_layers __UpperCAmelCase : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Tuple = use_prompt __UpperCAmelCase : str = prompt_length __UpperCAmelCase : Union[str, Any] = prompt_mid_dim super().__init__( pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , is_encoder_decoder=__lowercase , decoder_start_token_id=__lowercase , forced_eos_token_id=__lowercase , **__lowercase , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __lowercase ): __UpperCAmelCase : Optional[Any] = self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ """The config can simply be saved and uploaded again to be fixed.""" )
114
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _A = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
117
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _A = logging.get_logger(__name__) _A = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _A = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } _A = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } _A = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Any = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Dict = BertTokenizer def __init__( self , A_=None , A_=None , A_=True , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_=True , A_=None , **A_ , ) -> Any: super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) __UpperCamelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , A_ ) != do_lower_case or normalizer_state.get('strip_accents' , A_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , A_ ) != tokenize_chinese_chars ): __UpperCamelCase =getattr(A_ , normalizer_state.pop('type' ) ) __UpperCamelCase =do_lower_case __UpperCamelCase =strip_accents __UpperCamelCase =tokenize_chinese_chars __UpperCamelCase =normalizer_class(**A_ ) __UpperCamelCase =do_lower_case def _a ( self , A_ , A_=None ) -> List[str]: __UpperCamelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self , A_ , A_ = None ) -> List[int]: __UpperCamelCase =[self.sep_token_id] __UpperCamelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
117
1
from math import pow, sqrt def _lowercase ( *lowercase__ ): __lowerCAmelCase : Dict = len(lowercase__ ) > 0 and all(value > 0.0 for value in values ) return result def _lowercase ( lowercase__ , lowercase__ ): return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowercase__ , lowercase__ ) else ValueError('''Input Error: Molar mass values must greater than 0.''' ) ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowercase__ , lowercase__ , lowercase__ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowercase__ , lowercase__ , lowercase__ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(lowercase__ , lowercase__ , lowercase__ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(lowercase__ , lowercase__ , lowercase__ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) )
275
from ....configuration_utils import PretrainedConfig from ....utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __lowercase (_UpperCAmelCase ): _UpperCamelCase = """trajectory_transformer""" _UpperCamelCase = ["""past_key_values"""] _UpperCamelCase = { """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , A_=100 , A_=5 , A_=1 , A_=1 , A_=249 , A_=6 , A_=17 , A_=25 , A_=4 , A_=4 , A_=128 , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0_006 , A_=512 , A_=0.02 , A_=1e-12 , A_=1 , A_=True , A_=1 , A_=5_0256 , A_=5_0256 , **A_ , ) ->int: '''simple docstring''' __lowerCAmelCase : Any = vocab_size __lowerCAmelCase : Tuple = action_weight __lowerCAmelCase : Tuple = reward_weight __lowerCAmelCase : Union[str, Any] = value_weight __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : str = block_size __lowerCAmelCase : Optional[Any] = action_dim __lowerCAmelCase : Union[str, Any] = observation_dim __lowerCAmelCase : Union[str, Any] = transition_dim __lowerCAmelCase : Dict = learning_rate __lowerCAmelCase : Any = n_layer __lowerCAmelCase : Any = n_head __lowerCAmelCase : Optional[int] = n_embd __lowerCAmelCase : str = embd_pdrop __lowerCAmelCase : Dict = attn_pdrop __lowerCAmelCase : Optional[int] = resid_pdrop __lowerCAmelCase : Union[str, Any] = initializer_range __lowerCAmelCase : Optional[int] = layer_norm_eps __lowerCAmelCase : Any = kaiming_initializer_range __lowerCAmelCase : List[str] = use_cache super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ )
275
1
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __lowerCamelCase : """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=13 , SCREAMING_SNAKE_CASE__ : Optional[int]=7 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : str=99 , SCREAMING_SNAKE_CASE__ : Tuple=64 , SCREAMING_SNAKE_CASE__ : Any=5 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE__ : Dict=37 , SCREAMING_SNAKE_CASE__ : Dict="gelu" , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : str=512 , SCREAMING_SNAKE_CASE__ : List[Any]=16 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.02 , SCREAMING_SNAKE_CASE__ : List[str]=3 , SCREAMING_SNAKE_CASE__ : Tuple=4 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> int: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_choices lowerCAmelCase__ = scope lowerCAmelCase__ = vocab_size - 1 def a ( self : List[str] ) -> Union[str, Any]: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = self.get_config() return config, input_ids, input_mask, token_labels def a ( self : Optional[int] ) -> int: return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def a ( self : int ) -> Optional[int]: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ = True return config, input_ids, input_mask, token_labels def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: lowerCAmelCase__ = GPTNeoXModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[str]: lowerCAmelCase__ = True lowerCAmelCase__ = GPTNeoXModel(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: lowerCAmelCase__ = GPTNeoXForCausalLM(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = GPTNeoXForQuestionAnswering(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = GPTNeoXForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict ) -> str: lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = GPTNeoXForTokenClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> str: lowerCAmelCase__ = True lowerCAmelCase__ = GPTNeoXForCausalLM(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() # first forward pass lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = output_from_no_past["hidden_states"][0] lowerCAmelCase__ = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , )["hidden_states"][0] # select random slice lowerCAmelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) def a ( self : Union[str, Any] ) -> Union[str, Any]: lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) snake_case__ = (GPTNeoXForCausalLM,) if is_torch_available() else () snake_case__ = ( { "feature-extraction": GPTNeoXModel, "question-answering": GPTNeoXForQuestionAnswering, "text-classification": GPTNeoXForSequenceClassification, "text-generation": GPTNeoXForCausalLM, "token-classification": GPTNeoXForTokenClassification, "zero-shot": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def a ( self : Union[str, Any] ) -> Dict: lowerCAmelCase__ = GPTNeoXModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=64 , num_attention_heads=8 ) def a ( self : List[str] ) -> Dict: self.config_tester.run_common_tests() def a ( self : List[Any] ) -> Any: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] ) -> int: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a ( self : Union[str, Any] ) -> List[Any]: # This regression test was failing with PyTorch < 1.3 lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCAmelCase__ = None self.model_tester.create_and_check_model_as_decoder(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a ( self : int ) -> Dict: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a ( self : str ) -> Optional[Any]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*SCREAMING_SNAKE_CASE__ ) def a ( self : Tuple ) -> Optional[int]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE__ ) def a ( self : Dict ) -> Union[str, Any]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def a ( self : Dict ) -> str: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE__ ) @unittest.skip(reason="Feed forward chunking is not implemented" ) def a ( self : str ) -> str: pass @parameterized.expand([("linear",), ("dynamic",)] ) def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Union[str, Any]: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ = GPTNeoXModel(SCREAMING_SNAKE_CASE__ ) original_model.to(SCREAMING_SNAKE_CASE__ ) original_model.eval() lowerCAmelCase__ = original_model(SCREAMING_SNAKE_CASE__ ).last_hidden_state lowerCAmelCase__ = original_model(SCREAMING_SNAKE_CASE__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ = {"type": scaling_type, "factor": 10.0} lowerCAmelCase__ = GPTNeoXModel(SCREAMING_SNAKE_CASE__ ) scaled_model.to(SCREAMING_SNAKE_CASE__ ) scaled_model.eval() lowerCAmelCase__ = scaled_model(SCREAMING_SNAKE_CASE__ ).last_hidden_state lowerCAmelCase__ = scaled_model(SCREAMING_SNAKE_CASE__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-5 ) ) @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def a ( self : str ) -> List[Any]: lowerCAmelCase__ = AutoTokenizer.from_pretrained("EleutherAI/pythia-410m-deduped" ) for checkpointing in [True, False]: lowerCAmelCase__ = GPTNeoXForCausalLM.from_pretrained("EleutherAI/pythia-410m-deduped" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer("My favorite food is" , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE__ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowerCAmelCase__ = "My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure" lowerCAmelCase__ = model.generate(**SCREAMING_SNAKE_CASE__ , do_sample=SCREAMING_SNAKE_CASE__ , max_new_tokens=20 ) lowerCAmelCase__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ )[0] self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
350
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Dict ) -> Optional[int]: super().__init__() lowerCAmelCase__ = nn.Linear(3 , 4 ) lowerCAmelCase__ = nn.BatchNormad(4 ) lowerCAmelCase__ = nn.Linear(4 , 5 ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int ) -> List[Any]: return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE__ ) ) ) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def a ( self : Any , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Any ) -> Union[str, Any]: return (args[0] + 1,) + args[1:], kwargs class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> Dict: return output + 1 class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def a ( self : List[str] ) -> Tuple: lowerCAmelCase__ = ModelForTest() lowerCAmelCase__ = ModelHook() add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(test_model._hf_hook , SCREAMING_SNAKE_CASE__ ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "_old_forward" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , "forward" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["x"] ) remove_hook_from_module(SCREAMING_SNAKE_CASE__ ) self.assertFalse(hasattr(SCREAMING_SNAKE_CASE__ , "_hf_hook" ) ) self.assertFalse(hasattr(SCREAMING_SNAKE_CASE__ , "_old_forward" ) ) def a ( self : Union[str, Any] ) -> int: lowerCAmelCase__ = ModelForTest() lowerCAmelCase__ = ModelHook() add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , append=SCREAMING_SNAKE_CASE__ ) self.assertEqual(isinstance(test_model._hf_hook , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "_old_forward" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , "forward" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["x"] ) remove_hook_from_module(SCREAMING_SNAKE_CASE__ ) self.assertFalse(hasattr(SCREAMING_SNAKE_CASE__ , "_hf_hook" ) ) self.assertFalse(hasattr(SCREAMING_SNAKE_CASE__ , "_old_forward" ) ) def a ( self : List[str] ) -> Any: lowerCAmelCase__ = ModelForTest() lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = test_model(x + 1 ) lowerCAmelCase__ = test_model(x + 2 ) lowerCAmelCase__ = PreForwardHook() add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain lowerCAmelCase__ = PreForwardHook() add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks lowerCAmelCase__ = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-5 ) def a ( self : Any ) -> Union[str, Any]: lowerCAmelCase__ = ModelForTest() lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PostForwardHook() add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , output + 1 , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain lowerCAmelCase__ = PostForwardHook() add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , output + 1 , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks lowerCAmelCase__ = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) assert torch.allclose(SCREAMING_SNAKE_CASE__ , output + 2 , atol=1e-5 ) def a ( self : Optional[int] ) -> int: lowerCAmelCase__ = ModelForTest() lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PostForwardHook() add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) lowerCAmelCase__ = True lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def a ( self : Optional[Any] ) -> List[str]: lowerCAmelCase__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(SCREAMING_SNAKE_CASE__ , AlignDevicesHook(io_same_device=SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = torch.randn(2 , 3 ).to(0 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , torch.device(0 ) ) def a ( self : List[str] ) -> List[str]: lowerCAmelCase__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices lowerCAmelCase__ = {"execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True} add_hook_to_module(model.lineara , AlignDevicesHook(**SCREAMING_SNAKE_CASE__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**SCREAMING_SNAKE_CASE__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**SCREAMING_SNAKE_CASE__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device lowerCAmelCase__ = torch.device(hook_kwargs["execution_device"] ) self.assertEqual(model.batchnorm.running_mean.device , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload lowerCAmelCase__ = { "execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True, "offload_buffers": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**SCREAMING_SNAKE_CASE__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**SCREAMING_SNAKE_CASE__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**SCREAMING_SNAKE_CASE__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) def a ( self : Optional[int] ) -> Union[str, Any]: lowerCAmelCase__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices lowerCAmelCase__ = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook(SCREAMING_SNAKE_CASE__ , execution_device=SCREAMING_SNAKE_CASE__ , offload=SCREAMING_SNAKE_CASE__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device lowerCAmelCase__ = torch.device(SCREAMING_SNAKE_CASE__ ) self.assertEqual(model.batchnorm.running_mean.device , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(SCREAMING_SNAKE_CASE__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload attach_align_device_hook(SCREAMING_SNAKE_CASE__ , execution_device=SCREAMING_SNAKE_CASE__ , offload=SCREAMING_SNAKE_CASE__ , offload_buffers=SCREAMING_SNAKE_CASE__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(SCREAMING_SNAKE_CASE__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) def a ( self : Optional[Any] ) -> str: lowerCAmelCase__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices lowerCAmelCase__ = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook( SCREAMING_SNAKE_CASE__ , execution_device=SCREAMING_SNAKE_CASE__ , offload=SCREAMING_SNAKE_CASE__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device lowerCAmelCase__ = torch.device(SCREAMING_SNAKE_CASE__ ) self.assertEqual(model.batchnorm.running_mean.device , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(SCREAMING_SNAKE_CASE__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload attach_align_device_hook( SCREAMING_SNAKE_CASE__ , execution_device=SCREAMING_SNAKE_CASE__ , offload=SCREAMING_SNAKE_CASE__ , weights_map=model.state_dict() , offload_buffers=SCREAMING_SNAKE_CASE__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(SCREAMING_SNAKE_CASE__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
221
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : List[str] = '''naver-clova-ix/donut-base-finetuned-docvqa''' lowerCamelCase : List[Any] = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) lowerCamelCase : Union[str, Any] = '''document_qa''' lowerCamelCase : List[str] = AutoProcessor lowerCamelCase : List[str] = VisionEncoderDecoderModel lowerCamelCase : Union[str, Any] = ['''image''', '''text'''] lowerCamelCase : Any = ['''text'''] def __init__( self : Optional[int] , *UpperCAmelCase__ : int , **UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : "Image" , UpperCAmelCase__ : str ) -> Dict: lowerCAmelCase = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' lowerCAmelCase = task_prompt.replace('{user_input}' , UpperCAmelCase__ ) lowerCAmelCase = self.pre_processor.tokenizer( UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , return_tensors='pt' ).input_ids lowerCAmelCase = self.pre_processor(UpperCAmelCase__ , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Optional[int] ) -> int: return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=UpperCAmelCase__ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=UpperCAmelCase__ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=UpperCAmelCase__ , ).sequences def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Tuple ) -> Dict: lowerCAmelCase = self.pre_processor.batch_decode(UpperCAmelCase__ )[0] lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) lowerCAmelCase = re.sub(R'<.*?>' , '' , UpperCAmelCase__ , count=1 ).strip() # remove first task start token lowerCAmelCase = self.pre_processor.tokenajson(UpperCAmelCase__ ) return sequence["answer"]
4
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __snake_case ="""\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ __snake_case ="""\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ __snake_case =""" Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : Tuple ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]=False ) -> int: lowerCAmelCase = compute_bleu( reference_corpus=UpperCAmelCase__ , translation_corpus=UpperCAmelCase__ , max_order=UpperCAmelCase__ , smooth=UpperCAmelCase__ ) ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
4
1
from collections import namedtuple _snake_case = namedtuple("from_to", "from_ to") _snake_case = { "cubicmeter": from_to(1, 1), "litre": from_to(0.001, 1000), "kilolitre": from_to(1, 1), "gallon": from_to(0.00454, 264.172), "cubicyard": from_to(0.76455, 1.30795), "cubicfoot": from_to(0.028, 35.3147), "cup": from_to(0.000236588, 4226.75), } def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( F"Invalid \'from_type\' value: {from_type!r} Supported values are:\n" + ", ".join(lowercase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"Invalid \'to_type\' value: {to_type!r}. Supported values are:\n" + ", ".join(lowercase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
362
_snake_case = 8.3144598 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
300
0
'''simple docstring''' def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> float: if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) UpperCamelCase = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__UpperCamelCase ) ) return round(__UpperCamelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
321
'''simple docstring''' from timeit import timeit def lowercase__ ( __UpperCamelCase )-> int: if number < 0: raise ValueError("""the value of input must not be negative""" ) UpperCamelCase = 0 while number: number &= number - 1 result += 1 return result def lowercase__ ( __UpperCamelCase )-> int: if number < 0: raise ValueError("""the value of input must not be negative""" ) UpperCamelCase = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def lowercase__ ( )-> None: def do_benchmark(__UpperCamelCase ) -> None: UpperCamelCase = """import __main__ as z""" print(F"Benchmark when {number = }:" ) print(F"{get_set_bits_count_using_modulo_operator(__UpperCamelCase ) = }" ) UpperCamelCase = timeit("""z.get_set_bits_count_using_modulo_operator(25)""" , setup=__UpperCamelCase ) print(F"timeit() runs in {timing} seconds" ) print(F"{get_set_bits_count_using_brian_kernighans_algorithm(__UpperCamelCase ) = }" ) UpperCamelCase = timeit( """z.get_set_bits_count_using_brian_kernighans_algorithm(25)""" , setup=__UpperCamelCase , ) print(F"timeit() runs in {timing} seconds" ) for number in (25, 37, 58, 0): do_benchmark(__UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
321
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[Any] = logging.get_logger(__name__) a : List[Any] = { 'microsoft/unispeech-large-1500h-cv': ( 'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __UpperCAmelCase( _lowerCAmelCase ): """simple docstring""" __lowerCamelCase = "unispeech" def __init__( self , snake_case__=32 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1e-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(512, 512, 512, 512, 512, 512, 512) , snake_case__=(5, 2, 2, 2, 2, 2, 2) , snake_case__=(10, 3, 3, 3, 3, 2, 2) , snake_case__=False , snake_case__=128 , snake_case__=16 , snake_case__=False , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=0 , snake_case__=320 , snake_case__=2 , snake_case__=0.1 , snake_case__=100 , snake_case__=256 , snake_case__=256 , snake_case__=0.1 , snake_case__="mean" , snake_case__=False , snake_case__=False , snake_case__=256 , snake_case__=80 , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=0.5 , **snake_case__ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ ) lowercase__ : Union[str, Any]= hidden_size lowercase__ : Optional[Any]= feat_extract_norm lowercase__ : Optional[int]= feat_extract_activation lowercase__ : Dict= list(SCREAMING_SNAKE_CASE_ ) lowercase__ : str= list(SCREAMING_SNAKE_CASE_ ) lowercase__ : Any= list(SCREAMING_SNAKE_CASE_ ) lowercase__ : List[Any]= conv_bias lowercase__ : Tuple= num_conv_pos_embeddings lowercase__ : str= num_conv_pos_embedding_groups lowercase__ : List[Any]= len(self.conv_dim ) lowercase__ : Tuple= num_hidden_layers lowercase__ : Optional[int]= intermediate_size lowercase__ : Optional[Any]= hidden_act lowercase__ : str= num_attention_heads lowercase__ : Tuple= hidden_dropout lowercase__ : Dict= attention_dropout lowercase__ : Optional[int]= activation_dropout lowercase__ : List[str]= feat_proj_dropout lowercase__ : int= final_dropout lowercase__ : Dict= layerdrop lowercase__ : Optional[int]= layer_norm_eps lowercase__ : Optional[int]= initializer_range lowercase__ : Optional[int]= num_ctc_classes lowercase__ : Any= vocab_size lowercase__ : int= do_stable_layer_norm lowercase__ : Optional[int]= use_weighted_layer_sum lowercase__ : List[str]= classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ : Any= apply_spec_augment lowercase__ : List[Any]= mask_time_prob lowercase__ : Any= mask_time_length lowercase__ : Any= mask_time_min_masks lowercase__ : Union[str, Any]= mask_feature_prob lowercase__ : List[Any]= mask_feature_length lowercase__ : Tuple= mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ : int= num_codevectors_per_group lowercase__ : List[Any]= num_codevector_groups lowercase__ : Optional[int]= contrastive_logits_temperature lowercase__ : str= feat_quantizer_dropout lowercase__ : List[str]= num_negatives lowercase__ : Optional[Any]= codevector_dim lowercase__ : Any= proj_codevector_dim lowercase__ : Union[str, Any]= diversity_loss_weight # ctc loss lowercase__ : Optional[Any]= ctc_loss_reduction lowercase__ : List[Any]= ctc_zero_infinity # pretraining loss lowercase__ : Tuple= replace_prob @property def UpperCAmelCase_ ( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
366
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger a : Any = get_logger(__name__) a : Any = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class __UpperCAmelCase: """simple docstring""" @add_start_docstrings(snake_case__ ) def __call__( self , snake_case__ , snake_case__ ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __UpperCAmelCase: """simple docstring""" @add_start_docstrings(snake_case__ ) def __call__( self , snake_case__ , snake_case__ ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @add_start_docstrings(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): '''simple docstring''' for processor in self: lowercase__ : Optional[Any]= inspect.signature(processor.__call__ ).parameters if len(snake_case__ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' F'''{processor.__class__} are passed to the logits processor.''' ) lowercase__ : Union[str, Any]= processor(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ) else: lowercase__ : Dict= processor(snake_case__ , snake_case__ , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or not (temperature > 0): raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''' ) lowercase__ : Any= temperature def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : int= scores / self.temperature return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ = -float("Inf" ) , snake_case__ = 1 ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(snake_case__ , snake_case__ ) or (min_tokens_to_keep < 1): raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) lowercase__ : int= top_p lowercase__ : Optional[int]= filter_value lowercase__ : Tuple= min_tokens_to_keep def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__, lowercase__ : Dict= lax.top_k(snake_case__ , scores.shape[-1] ) lowercase__ : Optional[int]= jnp.full_like(snake_case__ , self.filter_value ) lowercase__ : Union[str, Any]= jax.nn.softmax(snake_case__ , axis=-1 ).cumsum(axis=-1 ) lowercase__ : str= cumulative_probs < self.top_p # include the token that is higher than top_p as well lowercase__ : str= jnp.roll(snake_case__ , 1 ) score_mask |= score_mask.at[:, 0].set(snake_case__ ) # min tokens to keep lowercase__ : Optional[int]= score_mask.at[:, : self.min_tokens_to_keep].set(snake_case__ ) lowercase__ : str= jnp.where(snake_case__ , snake_case__ , snake_case__ ) lowercase__ : str= jax.lax.sort_key_val(snake_case__ , snake_case__ )[-1] return next_scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ = -float("Inf" ) , snake_case__ = 1 ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or top_k <= 0: raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) lowercase__ : List[Any]= max(snake_case__ , snake_case__ ) lowercase__ : Dict= filter_value def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__, lowercase__ : Optional[Any]= scores.shape lowercase__ : int= jnp.full(batch_size * vocab_size , self.filter_value ) lowercase__ : Dict= min(self.top_k , scores.shape[-1] ) # Safety check lowercase__, lowercase__ : List[Any]= lax.top_k(snake_case__ , snake_case__ ) lowercase__ : Optional[int]= jnp.broadcast_to((jnp.arange(snake_case__ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() lowercase__ : str= topk_scores.flatten() lowercase__ : Any= topk_indices.flatten() + shift lowercase__ : Optional[Any]= next_scores_flat.at[topk_indices_flat].set(snake_case__ ) lowercase__ : str= next_scores_flat.reshape(snake_case__ , snake_case__ ) return next_scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' lowercase__ : Any= bos_token_id def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Any= jnp.full(scores.shape , -float("inf" ) ) lowercase__ : int= 1 - jnp.bool_(cur_len - 1 ) lowercase__ : int= jnp.where(snake_case__ , new_scores.at[:, self.bos_token_id].set(0 ) , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Tuple= max_length lowercase__ : str= eos_token_id def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : List[Any]= jnp.full(scores.shape , -float("inf" ) ) lowercase__ : Any= 1 - jnp.bool_(cur_len - self.max_length + 1 ) lowercase__ : Optional[int]= jnp.where(snake_case__ , new_scores.at[:, self.eos_token_id].set(0 ) , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or min_length < 0: raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(snake_case__ , snake_case__ ) or eos_token_id < 0: raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) lowercase__ : List[str]= min_length lowercase__ : Dict= eos_token_id def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' # create boolean flag to decide if min length penalty should be applied lowercase__ : Tuple= 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) lowercase__ : Dict= jnp.where(snake_case__ , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Optional[Any]= list(snake_case__ ) lowercase__ : List[Any]= begin_index def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : str= 1 - jnp.bool_(cur_len - self.begin_index ) lowercase__ : str= jnp.where(snake_case__ , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' lowercase__ : List[Any]= list(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Any= scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' lowercase__ : int= dict(snake_case__ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. lowercase__ : List[Any]= jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: lowercase__ : List[Any]= force_token_array.at[index].set(snake_case__ ) lowercase__ : int= jnp.intaa(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' def _force_token(snake_case__ ): lowercase__ : Dict= scores.shape[0] lowercase__ : Any= self.force_token_array[generation_idx] lowercase__ : List[Any]= jnp.ones_like(snake_case__ , dtype=scores.dtype ) * -float("inf" ) lowercase__ : List[Any]= jnp.zeros((batch_size, 1) , dtype=scores.dtype ) lowercase__ : List[str]= lax.dynamic_update_slice(snake_case__ , snake_case__ , (0, current_token) ) return new_scores lowercase__ : Dict= lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(snake_case__ ) , lambda: scores , ) , ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : str= generate_config.eos_token_id lowercase__ : Optional[int]= generate_config.no_timestamps_token_id lowercase__ : Dict= generate_config.no_timestamps_token_id + 1 lowercase__ : List[Any]= decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(snake_case__ , "max_initial_timestamp_index" ): lowercase__ : int= generate_config.max_initial_timestamp_index else: lowercase__ : Dict= model_config.vocab_size if self.max_initial_timestamp_index is None: lowercase__ : str= model_config.vocab_size def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' # suppress <|notimestamps|> which is handled by without_timestamps lowercase__ : int= scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(snake_case__ , snake_case__ ): lowercase__ : Union[str, Any]= jnp.where((cur_len - self.begin_index) >= 1 , snake_case__ , snake_case__ ) lowercase__ : Tuple= jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , snake_case__ , ) lowercase__ : int= jnp.where((cur_len - self.begin_index) < 2 , snake_case__ , snake_case__ ) lowercase__ : Optional[int]= jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , snake_case__ , snake_case__ , ) return jnp.where( snake_case__ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , snake_case__ , ) lowercase__ : List[str]= jax.vmap(snake_case__ )(snake_case__ , snake_case__ ) lowercase__ : str= jnp.where(cur_len == self.begin_index , snake_case__ , snake_case__ ) lowercase__ : List[Any]= jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , snake_case__ , ) lowercase__ : Any= self.timestamp_begin + self.max_initial_timestamp_index lowercase__ : str= jnp.where( snake_case__ , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , snake_case__ , ) # if sum of probability over timestamps is above any other token, sample timestamp lowercase__ : str= jax.nn.log_softmax(snake_case__ , axis=-1 ) def handle_cumulative_probs(snake_case__ , snake_case__ ): lowercase__ : Dict= jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) lowercase__ : Union[str, Any]= jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , snake_case__ , ) lowercase__ : Optional[int]= jax.vmap(snake_case__ )(snake_case__ , snake_case__ ) return scores
150
0
"""simple docstring""" # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
194
# Lint as: python3 import itertools import os import re lowerCamelCase = re.compile(R'([A-Z]+)([A-Z][a-z])') lowerCamelCase = re.compile(R'([a-z\d])([A-Z])') lowerCamelCase = re.compile(R'(?<!_)_(?!_)') lowerCamelCase = re.compile(R'(_{2,})') lowerCamelCase = R'^\w+(\.\w+)*$' lowerCamelCase = R'<>:/\|?*' def a_ ( SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' _lowerCamelCase : List[str] =_uppercase_uppercase_re.sub(r'\1_\2' , SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : List[Any] =_lowercase_uppercase_re.sub(r'\1_\2' , SCREAMING_SNAKE_CASE__ ) return name.lower() def a_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Tuple =_single_underscore_re.split(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Tuple =[_multiple_underscores_re.split(SCREAMING_SNAKE_CASE__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(SCREAMING_SNAKE_CASE__ ) if n != '' ) def a_ ( SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' if os.path.basename(SCREAMING_SNAKE_CASE__ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(SCREAMING_SNAKE_CASE__ ) def a_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' if os.path.basename(SCREAMING_SNAKE_CASE__ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , SCREAMING_SNAKE_CASE__ ): raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return F'''{filename_prefix_for_name(SCREAMING_SNAKE_CASE__ )}-{split}''' def a_ ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int=None ): '''simple docstring''' _lowerCamelCase : Union[str, Any] =filename_prefix_for_split(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if filetype_suffix: prefix += F'''.{filetype_suffix}''' _lowerCamelCase : Optional[Any] =os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return F'''{filepath}*''' def a_ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): '''simple docstring''' _lowerCamelCase : Dict =filename_prefix_for_split(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Union[str, Any] =os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if shard_lengths: _lowerCamelCase : Union[str, Any] =len(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Optional[int] =[F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(SCREAMING_SNAKE_CASE__ )] if filetype_suffix: _lowerCamelCase : List[Any] =[filename + F'''.{filetype_suffix}''' for filename in filenames] return filenames else: _lowerCamelCase : Any =prefix if filetype_suffix: filename += F'''.{filetype_suffix}''' return [filename]
199
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available UpperCamelCase__ = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
357
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin UpperCamelCase__ = random.Random() if is_torch_available(): import torch def a__ ( lowerCAmelCase__ , lowerCAmelCase__=1.0 , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Optional[Any]: if rng is None: UpperCAmelCase__ : List[str] = global_rng UpperCAmelCase__ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Any , _A : List[str] , _A : int=7 , _A : Dict=400 , _A : Tuple=2_000 , _A : Optional[int]=1 , _A : List[Any]=0.0 , _A : Any=16_000 , _A : int=True , _A : str=True , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Dict = min_seq_length UpperCAmelCase__ : str = max_seq_length UpperCAmelCase__ : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase__ : Optional[Any] = feature_size UpperCAmelCase__ : int = padding_value UpperCAmelCase__ : int = sampling_rate UpperCAmelCase__ : Tuple = return_attention_mask UpperCAmelCase__ : str = do_normalize def lowercase_ ( self : Optional[int] ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self : int , _A : Optional[Any]=False , _A : Any=False ): '''simple docstring''' def _flatten(_A : Union[str, Any] ): return list(itertools.chain(*_A ) ) if equal_length: UpperCAmelCase__ : Tuple = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase__ : Optional[int] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase__ : Dict = [np.asarray(_A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = ASTFeatureExtractor def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : int = ASTFeatureExtractionTester(self ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase__ : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCAmelCase__ : List[Any] = [np.asarray(_A ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase__ : str = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values UpperCAmelCase__ : List[Any] = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # Test batched UpperCAmelCase__ : Optional[Any] = feat_extract(_A , padding=_A , return_tensors='''np''' ).input_values UpperCAmelCase__ : Optional[int] = feat_extract(_A , padding=_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase__ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase__ : Any = np.asarray(_A ) UpperCAmelCase__ : int = feat_extract(_A , return_tensors='''np''' ).input_values UpperCAmelCase__ : List[str] = feat_extract(_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) @require_torch def lowercase_ ( self : List[str] ): '''simple docstring''' import torch UpperCAmelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase__ : Any = np.random.rand(100 ).astype(np.floataa ) UpperCAmelCase__ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase__ : str = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase__ : Any = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowercase_ ( self : int , _A : List[Any] ): '''simple docstring''' from datasets import load_dataset UpperCAmelCase__ : Tuple = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech UpperCAmelCase__ : List[Any] = ds.sort('''id''' ).select(range(_A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on UpperCAmelCase__ : Optional[Any] = self._load_datasamples(1 ) UpperCAmelCase__ : Optional[int] = ASTFeatureExtractor() UpperCAmelCase__ : Dict = feature_extractor(_A , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 1_024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _A , atol=1e-4 ) )
299
0
from __future__ import annotations def lowerCAmelCase_ ( __A, __A ) -> Dict: '''simple docstring''' if len(__lowerCamelCase ) <= 1 or n <= 1: return insert_next(__lowerCamelCase, n - 1 ) rec_insertion_sort(__lowerCamelCase, n - 1 ) def lowerCAmelCase_ ( __A, __A ) -> Union[str, Any]: '''simple docstring''' if index >= len(__lowerCamelCase ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order UpperCAmelCase__ = ( collection[index], collection[index - 1], ) insert_next(__lowerCamelCase, index + 1 ) if __name__ == "__main__": UpperCamelCase__ = input('Enter integers separated by spaces: ') UpperCamelCase__ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
65
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case : Optional[int] = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Union[str, Any] = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[Any] = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : str = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys _snake_case : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
123
0
'''simple docstring''' UpperCAmelCase_ = 9.8_0665 def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int = g ): '''simple docstring''' if fluid_density <= 0: raise ValueError("""Impossible fluid density""" ) if volume < 0: raise ValueError("""Impossible Object volume""" ) if gravity <= 0: raise ValueError("""Impossible Gravity""" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
352
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : str = """dpt""" def __init__( self : Optional[Any] , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : List[Any]=30_72 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : List[Any]=0.0 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : List[Any]=1E-12 , _UpperCAmelCase : int=3_84 , _UpperCAmelCase : int=16 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Any=True , _UpperCAmelCase : List[str]=[2, 5, 8, 11] , _UpperCAmelCase : Any="project" , _UpperCAmelCase : Optional[Any]=[4, 2, 1, 0.5] , _UpperCAmelCase : Tuple=[96, 1_92, 3_84, 7_68] , _UpperCAmelCase : List[Any]=2_56 , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Any=False , _UpperCAmelCase : str=True , _UpperCAmelCase : List[str]=0.4 , _UpperCAmelCase : Union[str, Any]=2_55 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Tuple=[1, 10_24, 24, 24] , _UpperCAmelCase : Union[str, Any]=[0, 1] , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : List[Any] , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) UpperCAmelCase__ = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } UpperCAmelCase__ = BitConfig(**_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): logger.info("""Initializing the config with a `BiT` backbone.""" ) UpperCAmelCase__ = BitConfig(**_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) UpperCAmelCase__ = backbone_featmap_shape UpperCAmelCase__ = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = [] UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) UpperCAmelCase__ = readout_type UpperCAmelCase__ = reassemble_factors UpperCAmelCase__ = neck_hidden_sizes UpperCAmelCase__ = fusion_hidden_size UpperCAmelCase__ = head_in_index UpperCAmelCase__ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) UpperCAmelCase__ = use_auxiliary_head UpperCAmelCase__ = auxiliary_loss_weight UpperCAmelCase__ = semantic_loss_ignore_index UpperCAmelCase__ = semantic_classifier_dropout def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase__ = self.backbone_config.to_dict() UpperCAmelCase__ = self.__class__.model_type return output
61
0
'''simple docstring''' from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration _UpperCamelCase = 'facebook/wmt19-en-de' _UpperCamelCase = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model _UpperCamelCase = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) _UpperCamelCase = FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test _UpperCamelCase = tokenizer(['Making tiny model'], return_tensors='pt') _UpperCamelCase = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save _UpperCamelCase = 'tiny-wmt19-en-de' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
208
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class a ( a_ ): UpperCAmelCase_ : BigBirdConfig UpperCAmelCase_ : jnp.dtype =jnp.floataa UpperCAmelCase_ : bool =True def UpperCamelCase_ ( self ): super().setup() lowercase = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *_lowerCamelCase , **_lowerCamelCase ): lowercase = super().__call__(*_lowerCamelCase , **_lowerCamelCase ) lowercase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class a ( a_ ): UpperCAmelCase_ : str =FlaxBigBirdForNaturalQuestionsModule def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Tuple ): '''simple docstring''' def cross_entropy(__snake_case : Dict , __snake_case : str , __snake_case : Any=None ): lowercase = logits.shape[-1] lowercase = (labels[..., None] == jnp.arange(__snake_case )[None]).astype('f4' ) lowercase = jax.nn.log_softmax(__snake_case , axis=-1 ) lowercase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase = reduction(__snake_case ) return loss lowercase = partial(__snake_case , reduction=jnp.mean ) lowercase = cross_entropy(__snake_case , __snake_case ) lowercase = cross_entropy(__snake_case , __snake_case ) lowercase = cross_entropy(__snake_case , __snake_case ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class a : UpperCAmelCase_ : str ="google/bigbird-roberta-base" UpperCAmelCase_ : int =3000 UpperCAmelCase_ : int =1_0500 UpperCAmelCase_ : int =128 UpperCAmelCase_ : int =3 UpperCAmelCase_ : int =1 UpperCAmelCase_ : int =5 # tx_args UpperCAmelCase_ : float =3e-5 UpperCAmelCase_ : float =0.0 UpperCAmelCase_ : int =2_0000 UpperCAmelCase_ : float =0.00_95 UpperCAmelCase_ : str ="bigbird-roberta-natural-questions" UpperCAmelCase_ : str ="training-expt" UpperCAmelCase_ : str ="data/nq-training.jsonl" UpperCAmelCase_ : str ="data/nq-validation.jsonl" def UpperCamelCase_ ( self ): os.makedirs(self.base_dir , exist_ok=_lowerCamelCase ) lowercase = os.path.join(self.base_dir , self.save_dir ) lowercase = self.batch_size_per_device * jax.device_count() @dataclass class a : UpperCAmelCase_ : int UpperCAmelCase_ : int =4096 # no dynamic padding on TPUs def __call__( self , _lowerCamelCase ): lowercase = self.collate_fn(_lowerCamelCase ) lowercase = jax.tree_util.tree_map(_lowerCamelCase , _lowerCamelCase ) return batch def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase , lowercase = self.fetch_inputs(features['input_ids'] ) lowercase = { 'input_ids': jnp.array(_lowerCamelCase , dtype=jnp.intaa ), 'attention_mask': jnp.array(_lowerCamelCase , dtype=jnp.intaa ), 'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa ), 'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa ), 'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa ), } return batch def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = [self._fetch_inputs(_lowerCamelCase ) for ids in input_ids] return zip(*_lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = [1 for _ in range(len(_lowerCamelCase ) )] while len(_lowerCamelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _SCREAMING_SNAKE_CASE ( __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[Any]=None ): '''simple docstring''' if seed is not None: lowercase = dataset.shuffle(seed=__snake_case ) for i in range(len(__snake_case ) // batch_size ): lowercase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(__snake_case ) @partial(jax.pmap , axis_name='batch' ) def _SCREAMING_SNAKE_CASE ( __snake_case : Dict , __snake_case : List[Any] , **__snake_case : List[Any] ): '''simple docstring''' def loss_fn(__snake_case : str ): lowercase = model_inputs.pop('start_labels' ) lowercase = model_inputs.pop('end_labels' ) lowercase = model_inputs.pop('pooled_labels' ) lowercase = state.apply_fn(**__snake_case , params=__snake_case , dropout_rng=__snake_case , train=__snake_case ) lowercase , lowercase , lowercase = outputs return state.loss_fn( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) lowercase , lowercase = jax.random.split(__snake_case ) lowercase = jax.value_and_grad(__snake_case ) lowercase , lowercase = grad_fn(state.params ) lowercase = jax.lax.pmean({'loss': loss} , axis_name='batch' ) lowercase = jax.lax.pmean(__snake_case , 'batch' ) lowercase = state.apply_gradients(grads=__snake_case ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='batch' ) def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , **__snake_case : Dict ): '''simple docstring''' lowercase = model_inputs.pop('start_labels' ) lowercase = model_inputs.pop('end_labels' ) lowercase = model_inputs.pop('pooled_labels' ) lowercase = state.apply_fn(**__snake_case , params=state.params , train=__snake_case ) lowercase , lowercase , lowercase = outputs lowercase = state.loss_fn(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) lowercase = jax.lax.pmean({'loss': loss} , axis_name='batch' ) return metrics class a ( train_state.TrainState ): UpperCAmelCase_ : Callable =struct.field(pytree_node=a_ ) @dataclass class a : UpperCAmelCase_ : Args UpperCAmelCase_ : Callable UpperCAmelCase_ : Callable UpperCAmelCase_ : Callable UpperCAmelCase_ : Callable UpperCAmelCase_ : wandb UpperCAmelCase_ : Callable =None def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): lowercase = model.params lowercase = TrainState.create( apply_fn=model.__call__ , params=_lowerCamelCase , tx=_lowerCamelCase , loss_fn=_lowerCamelCase , ) if ckpt_dir is not None: lowercase , lowercase , lowercase , lowercase , lowercase = restore_checkpoint(_lowerCamelCase , _lowerCamelCase ) lowercase = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } lowercase , lowercase = build_tx(**_lowerCamelCase ) lowercase = train_state.TrainState( step=_lowerCamelCase , apply_fn=model.__call__ , params=_lowerCamelCase , tx=_lowerCamelCase , opt_state=_lowerCamelCase , ) lowercase = args lowercase = data_collator lowercase = lr lowercase = params lowercase = jax_utils.replicate(_lowerCamelCase ) return state def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowercase = self.args lowercase = len(_lowerCamelCase ) // args.batch_size lowercase = jax.random.PRNGKey(0 ) lowercase = jax.random.split(_lowerCamelCase , jax.device_count() ) for epoch in range(args.max_epochs ): lowercase = jnp.array(0 , dtype=jnp.floataa ) lowercase = get_batched_dataset(_lowerCamelCase , args.batch_size , seed=_lowerCamelCase ) lowercase = 0 for batch in tqdm(_lowerCamelCase , total=_lowerCamelCase , desc=F'Running EPOCH-{epoch}' ): lowercase = self.data_collator(_lowerCamelCase ) lowercase , lowercase , lowercase = self.train_step_fn(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 if i % args.logging_steps == 0: lowercase = jax_utils.unreplicate(state.step ) lowercase = running_loss.item() / i lowercase = self.scheduler_fn(state_step - 1 ) lowercase = self.evaluate(_lowerCamelCase , _lowerCamelCase ) lowercase = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(_lowerCamelCase ) ) self.logger.log(_lowerCamelCase , commit=_lowerCamelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}' , state=_lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): lowercase = get_batched_dataset(_lowerCamelCase , self.args.batch_size ) lowercase = len(_lowerCamelCase ) // self.args.batch_size lowercase = jnp.array(0 , dtype=jnp.floataa ) lowercase = 0 for batch in tqdm(_lowerCamelCase , total=_lowerCamelCase , desc='Evaluating ... ' ): lowercase = self.data_collator(_lowerCamelCase ) lowercase = self.val_step_fn(_lowerCamelCase , **_lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 return running_loss / i def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): lowercase = jax_utils.unreplicate(_lowerCamelCase ) print(F'SAVING CHECKPOINT IN {save_dir}' , end=' ... ' ) self.model_save_fn(_lowerCamelCase , params=state.params ) with open(os.path.join(_lowerCamelCase , 'opt_state.msgpack' ) , 'wb' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(_lowerCamelCase , 'args.joblib' ) ) joblib.dump(self.data_collator , os.path.join(_lowerCamelCase , 'data_collator.joblib' ) ) with open(os.path.join(_lowerCamelCase , 'training_state.json' ) , 'w' ) as f: json.dump({'step': state.step.item()} , _lowerCamelCase ) print('DONE' ) def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : Tuple ): '''simple docstring''' print(f'RESTORING CHECKPOINT FROM {save_dir}' , end=' ... ' ) with open(os.path.join(__snake_case , 'flax_model.msgpack' ) , 'rb' ) as f: lowercase = from_bytes(state.params , f.read() ) with open(os.path.join(__snake_case , 'opt_state.msgpack' ) , 'rb' ) as f: lowercase = from_bytes(state.opt_state , f.read() ) lowercase = joblib.load(os.path.join(__snake_case , 'args.joblib' ) ) lowercase = joblib.load(os.path.join(__snake_case , 'data_collator.joblib' ) ) with open(os.path.join(__snake_case , 'training_state.json' ) , 'r' ) as f: lowercase = json.load(__snake_case ) lowercase = training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : str , __snake_case : Any , __snake_case : Any ): '''simple docstring''' lowercase = num_train_steps - warmup_steps lowercase = optax.linear_schedule(init_value=__snake_case , end_value=__snake_case , transition_steps=__snake_case ) lowercase = optax.linear_schedule(init_value=__snake_case , end_value=1e-7 , transition_steps=__snake_case ) lowercase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' def weight_decay_mask(__snake_case : Tuple ): lowercase = traverse_util.flatten_dict(__snake_case ) lowercase = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(__snake_case ) lowercase = scheduler_fn(__snake_case , __snake_case , __snake_case , __snake_case ) lowercase = optax.adamw(learning_rate=__snake_case , weight_decay=__snake_case , mask=__snake_case ) return tx, lr
220
0
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __UpperCamelCase = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' __UpperCamelCase = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' __UpperCamelCase = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def __A ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=False ) -> Optional[int]: if rouge_types is None: SCREAMING_SNAKE_CASE = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] SCREAMING_SNAKE_CASE = rouge_scorer.RougeScorer(rouge_types=lowerCAmelCase__ , use_stemmer=lowerCAmelCase__ ) if use_aggregator: SCREAMING_SNAKE_CASE = scoring.BootstrapAggregator() else: SCREAMING_SNAKE_CASE = [] for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = scorer.score(lowerCAmelCase__ , lowerCAmelCase__ ) if use_aggregator: aggregator.add_scores(lowerCAmelCase__ ) else: scores.append(lowerCAmelCase__ ) if use_aggregator: SCREAMING_SNAKE_CASE = aggregator.aggregate() else: SCREAMING_SNAKE_CASE = {} for key in scores[0]: SCREAMING_SNAKE_CASE = [score[key] for score in scores] return result
361
"""simple docstring""" from collections import deque from .hash_table import HashTable class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: SCREAMING_SNAKE_CASE = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.values[key] def __A ( self ) -> List[Any]: return ( sum(self.charge_factor - len(lowerCAmelCase__ ) for slot in self.values ) / self.size_table * self.charge_factor ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> Tuple: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(lowerCAmelCase__ ) == 0 ): return key return super()._collision_resolution(lowerCAmelCase__ , lowerCAmelCase__ )
38
0
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : str = IFPipeline _UpperCAmelCase : Tuple = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} _UpperCAmelCase : Any = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def _SCREAMING_SNAKE_CASE ( self : str): return self._get_dummy_components() def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]=0): if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: int = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Optional[int] = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA") def _SCREAMING_SNAKE_CASE ( self : Dict): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1) def _SCREAMING_SNAKE_CASE ( self : Dict): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _SCREAMING_SNAKE_CASE ( self : int): self._test_save_load_local() def _SCREAMING_SNAKE_CASE ( self : List[Any]): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _SCREAMING_SNAKE_CASE ( self : Dict): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): # if SCREAMING_SNAKE_CASE_: str = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa) SCREAMING_SNAKE_CASE_: Optional[int] = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda") SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = pipe_a.encode_prompt("anime turtle" , device="cuda") del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() SCREAMING_SNAKE_CASE_: Any = None SCREAMING_SNAKE_CASE_: int = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img SCREAMING_SNAKE_CASE_: Any = IFImgaImgPipeline(**pipe_a.components) SCREAMING_SNAKE_CASE_: Optional[int] = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting SCREAMING_SNAKE_CASE_: Optional[int] = IFInpaintingPipeline(**pipe_a.components) SCREAMING_SNAKE_CASE_: Optional[Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple): # pipeline 1 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.Generator(device="cpu").manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[int] = pipe_a( prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , num_inference_steps=2 , generator=lowerCAmelCase__ , output_type="np" , ) SCREAMING_SNAKE_CASE_: Optional[int] = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE_: Any = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 SCREAMING_SNAKE_CASE_: Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy") assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_: List[Any] = torch.Generator(device="cpu").manual_seed(0) SCREAMING_SNAKE_CASE_: Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = pipe_a( prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , ) SCREAMING_SNAKE_CASE_: str = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE_: Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy") assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int]): # pipeline 1 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_: Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = torch.Generator(device="cpu").manual_seed(0) SCREAMING_SNAKE_CASE_: List[Any] = pipe_a( prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , image=lowerCAmelCase__ , num_inference_steps=2 , generator=lowerCAmelCase__ , output_type="np" , ) SCREAMING_SNAKE_CASE_: str = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE_: List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE_: int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy") assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.Generator(device="cpu").manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = pipe_a( prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , image=lowerCAmelCase__ , original_image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , ) SCREAMING_SNAKE_CASE_: Any = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE_: Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE_: Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy") assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int): # pipeline 1 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_: List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = torch.Generator(device="cpu").manual_seed(0) SCREAMING_SNAKE_CASE_: Tuple = pipe_a( prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , num_inference_steps=2 , generator=lowerCAmelCase__ , output_type="np" , ) SCREAMING_SNAKE_CASE_: int = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE_: Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE_: Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy") assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_: Optional[Any] = torch.Generator(device="cpu").manual_seed(0) SCREAMING_SNAKE_CASE_: List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = pipe_a( prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , original_image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , ) SCREAMING_SNAKE_CASE_: Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE_: List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE_: List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy") assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__) def A_ ( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
13
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any]="shi-labs/oneformer_demo" ) -> int: with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) as f: A_ : Optional[int] = json.load(_lowerCAmelCase ) A_ : Union[str, Any] = {} A_ : Tuple = [] A_ : Optional[Any] = [] for key, info in class_info.items(): A_ : Tuple = info["name"] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) A_ : Optional[Any] = thing_ids A_ : int = class_names return metadata class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self :List[Any] , snake_case :List[str] , snake_case :int=7 , snake_case :Optional[int]=3 , snake_case :Union[str, Any]=30 , snake_case :Tuple=400 , snake_case :List[Any]=None , snake_case :Optional[Any]=True , snake_case :Tuple=True , snake_case :Dict=[0.5, 0.5, 0.5] , snake_case :Any=[0.5, 0.5, 0.5] , snake_case :Optional[int]=10 , snake_case :Tuple=False , snake_case :Optional[int]=255 , snake_case :Optional[Any]="shi-labs/oneformer_demo" , snake_case :Optional[Any]="ade20k_panoptic.json" , snake_case :Optional[int]=10 , ): '''simple docstring''' A_ : Tuple = parent A_ : List[str] = batch_size A_ : Optional[int] = num_channels A_ : Tuple = min_resolution A_ : List[Any] = max_resolution A_ : Union[str, Any] = do_resize A_ : Any = {"shortest_edge": 32, "longest_edge": 1_333} if size is None else size A_ : Tuple = do_normalize A_ : List[str] = image_mean A_ : List[Any] = image_std A_ : Union[str, Any] = class_info_file A_ : List[Any] = prepare_metadata(snake_case , snake_case ) A_ : Tuple = num_text A_ : str = repo_path # for the post_process_functions A_ : Any = 2 A_ : int = 10 A_ : Optional[int] = 10 A_ : Tuple = 3 A_ : Tuple = 4 A_ : str = num_labels A_ : int = do_reduce_labels A_ : List[Any] = ignore_index def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Any , snake_case :Any=False ): '''simple docstring''' if not batched: A_ : List[str] = image_inputs[0] if isinstance(snake_case , Image.Image ): A_ , A_ : Dict = image.size else: A_ , A_ : Tuple = image.shape[1], image.shape[2] if w < h: A_ : str = int(self.size["shortest_edge"] * h / w ) A_ : Any = self.size["shortest_edge"] elif w > h: A_ : Optional[int] = self.size["shortest_edge"] A_ : List[str] = int(self.size["shortest_edge"] * w / h ) else: A_ : List[str] = self.size["shortest_edge"] A_ : Optional[Any] = self.size["shortest_edge"] else: A_ : Tuple = [] for image in image_inputs: A_ , A_ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : Tuple = max(snake_case , key=lambda snake_case : item[0] )[0] A_ : Union[str, Any] = max(snake_case , key=lambda snake_case : item[1] )[1] return expected_height, expected_width def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __magic_name__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string __UpperCamelCase = image_processing_class def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Union[str, Any] = OneFormerImageProcessorTester(self ) @property def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , "image_mean" ) ) self.assertTrue(hasattr(snake_case , "image_std" ) ) self.assertTrue(hasattr(snake_case , "do_normalize" ) ) self.assertTrue(hasattr(snake_case , "do_resize" ) ) self.assertTrue(hasattr(snake_case , "size" ) ) self.assertTrue(hasattr(snake_case , "ignore_index" ) ) self.assertTrue(hasattr(snake_case , "class_info_file" ) ) self.assertTrue(hasattr(snake_case , "num_text" ) ) self.assertTrue(hasattr(snake_case , "repo_path" ) ) self.assertTrue(hasattr(snake_case , "metadata" ) ) self.assertTrue(hasattr(snake_case , "do_reduce_labels" ) ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input A_ : str = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : str = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : Optional[Any] = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : List[str] = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input A_ : List[str] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : List[str] = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : int = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : Optional[Any] = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input A_ : Any = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : Tuple = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : Tuple = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : Any = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Dict=False , snake_case :str=False , snake_case :Dict="np" ): '''simple docstring''' A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # prepare image and target A_ : Tuple = self.image_processing_tester.num_labels A_ : str = None A_ : Tuple = None A_ : Tuple = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case ) if with_segmentation_maps: A_ : List[str] = num_labels if is_instance_map: A_ : List[str] = list(range(snake_case ) ) * 2 A_ : int = dict(enumerate(snake_case ) ) A_ : List[str] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": A_ : int = [Image.fromarray(snake_case ) for annotation in annotations] A_ : List[str] = image_processor( snake_case , ["semantic"] * len(snake_case ) , snake_case , return_tensors="pt" , instance_id_to_semantic_id=snake_case , pad_and_return_pixel_mask=snake_case , ) return inputs def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' def common(snake_case :Dict=False , snake_case :Optional[int]=None ): A_ : Tuple = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case , is_instance_map=snake_case , segmentation_type=snake_case ) A_ : Optional[Any] = inputs["mask_labels"] A_ : List[Any] = inputs["class_labels"] A_ : Optional[Any] = inputs["pixel_values"] A_ : int = inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(snake_case , snake_case , snake_case ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case ) common(is_instance_map=snake_case , segmentation_type="pil" ) common(is_instance_map=snake_case , segmentation_type="pil" ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Any = np.zeros((20, 50) ) A_ : List[str] = 1 A_ : int = 1 A_ : Optional[Any] = 1 A_ : Any = binary_mask_to_rle(snake_case ) self.assertEqual(len(snake_case ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Union[str, Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() A_ : int = fature_extractor.post_process_semantic_segmentation(snake_case ) self.assertEqual(len(snake_case ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) A_ : Optional[int] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] A_ : List[Any] = fature_extractor.post_process_semantic_segmentation(snake_case , target_sizes=snake_case ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : str = self.image_processing_tester.get_fake_oneformer_outputs() A_ : Optional[Any] = image_processor.post_process_instance_segmentation(snake_case , threshold=0 ) self.assertTrue(len(snake_case ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , snake_case ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : List[Any] = self.image_processing_tester.get_fake_oneformer_outputs() A_ : Optional[Any] = image_processor.post_process_panoptic_segmentation(snake_case , threshold=0 ) self.assertTrue(len(snake_case ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , snake_case ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
300
0
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> list[int]: """simple docstring""" return [ord(__UpperCamelCase ) - 96 for elem in plain] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] ) -> str: """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def __SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , __UpperCamelCase ) print("""Decoded:""" , decode(__UpperCamelCase ) ) if __name__ == "__main__": main()
204
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __snake_case : def __init__( self : Any , _lowercase : Tuple , _lowercase : str=2 , _lowercase : List[Any]=3 , _lowercase : Optional[Any]=4 , _lowercase : Optional[Any]=2 , _lowercase : str=7 , _lowercase : Dict=True , _lowercase : List[str]=True , _lowercase : Union[str, Any]=True , _lowercase : Optional[int]=True , _lowercase : Dict=99 , _lowercase : Dict=36 , _lowercase : Tuple=2 , _lowercase : Optional[int]=4 , _lowercase : int=37 , _lowercase : Tuple="gelu" , _lowercase : Optional[Any]=0.1 , _lowercase : Tuple=0.1 , _lowercase : str=5_12 , _lowercase : Dict=16 , _lowercase : int=2 , _lowercase : int=0.02 , _lowercase : Any=6 , _lowercase : List[Any]=6 , _lowercase : List[Any]=3 , _lowercase : List[Any]=4 , _lowercase : int=None , _lowercase : Optional[int]=10_00 , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = coordinate_size SCREAMING_SNAKE_CASE__ = shape_size SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope SCREAMING_SNAKE_CASE__ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) SCREAMING_SNAKE_CASE__ = text_seq_length SCREAMING_SNAKE_CASE__ = (image_size // patch_size) ** 2 + 1 SCREAMING_SNAKE_CASE__ = self.text_seq_length + self.image_seq_length def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) SCREAMING_SNAKE_CASE__ = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE__ = bbox[i, j, 3] SCREAMING_SNAKE_CASE__ = bbox[i, j, 1] SCREAMING_SNAKE_CASE__ = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE__ = bbox[i, j, 2] SCREAMING_SNAKE_CASE__ = bbox[i, j, 0] SCREAMING_SNAKE_CASE__ = tmp_coordinate SCREAMING_SNAKE_CASE__ = tf.constant(_lowercase ) SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.text_seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __a ( self : List[str] , _lowercase : Dict , _lowercase : List[Any] , _lowercase : str , _lowercase : Optional[int] , _lowercase : Union[str, Any] , _lowercase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModel(config=_lowercase ) # text + image SCREAMING_SNAKE_CASE__ = model(_lowercase , pixel_values=_lowercase , training=_lowercase ) SCREAMING_SNAKE_CASE__ = model( _lowercase , bbox=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , training=_lowercase , ) SCREAMING_SNAKE_CASE__ = model(_lowercase , bbox=_lowercase , pixel_values=_lowercase , training=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only SCREAMING_SNAKE_CASE__ = model(_lowercase , training=_lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only SCREAMING_SNAKE_CASE__ = model({"""pixel_values""": pixel_values} , training=_lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __a ( self : int , _lowercase : int , _lowercase : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = TFLayoutLMvaForSequenceClassification(config=_lowercase ) SCREAMING_SNAKE_CASE__ = model( _lowercase , bbox=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , training=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : Any , _lowercase : Dict , _lowercase : Tuple , _lowercase : int , _lowercase : Optional[int] , _lowercase : Optional[int] , _lowercase : Union[str, Any] , _lowercase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = TFLayoutLMvaForTokenClassification(config=_lowercase ) SCREAMING_SNAKE_CASE__ = model( _lowercase , bbox=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , training=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __a ( self : str , _lowercase : int , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = TFLayoutLMvaForQuestionAnswering(config=_lowercase ) SCREAMING_SNAKE_CASE__ = model( _lowercase , bbox=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , training=_lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) = config_and_inputs SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class __snake_case ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase_ = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def __a ( self : Union[str, Any] , _lowercase : Optional[int] , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : List[Any] ): """simple docstring""" return True def __a ( self : List[str] , _lowercase : List[Any] , _lowercase : str , _lowercase : str=False ): """simple docstring""" SCREAMING_SNAKE_CASE__ = copy.deepcopy(_lowercase ) if model_class in get_values(_lowercase ): SCREAMING_SNAKE_CASE__ = { k: tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(_lowercase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_lowercase ): SCREAMING_SNAKE_CASE__ = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_lowercase ): SCREAMING_SNAKE_CASE__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) SCREAMING_SNAKE_CASE__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_lowercase ): SCREAMING_SNAKE_CASE__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_lowercase ): SCREAMING_SNAKE_CASE__ = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def __a ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(_lowercase ) if getattr(_lowercase , """hf_compute_loss""" , _lowercase ): # The number of elements in the loss should be the same as the number of elements in the label SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , _lowercase , return_labels=_lowercase ) SCREAMING_SNAKE_CASE__ = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=_lowercase )[0] ] SCREAMING_SNAKE_CASE__ = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , _lowercase , return_labels=_lowercase ) SCREAMING_SNAKE_CASE__ = prepared_for_class.pop("""input_ids""" ) SCREAMING_SNAKE_CASE__ = model(_lowercase , **_lowercase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , _lowercase , return_labels=_lowercase ) SCREAMING_SNAKE_CASE__ = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: SCREAMING_SNAKE_CASE__ = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: SCREAMING_SNAKE_CASE__ = -1_00 SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor(_lowercase ) SCREAMING_SNAKE_CASE__ = model(_lowercase , **_lowercase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , _lowercase , return_labels=_lowercase ) SCREAMING_SNAKE_CASE__ = model(_lowercase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , _lowercase , return_labels=_lowercase ) # Get keys that were added with the _prepare_for_class function SCREAMING_SNAKE_CASE__ = prepared_for_class.keys() - inputs_dict.keys() SCREAMING_SNAKE_CASE__ = inspect.signature(model.call ).parameters SCREAMING_SNAKE_CASE__ = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple SCREAMING_SNAKE_CASE__ = {0: """input_ids"""} for label_key in label_keys: SCREAMING_SNAKE_CASE__ = signature_names.index(_lowercase ) SCREAMING_SNAKE_CASE__ = label_key SCREAMING_SNAKE_CASE__ = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple SCREAMING_SNAKE_CASE__ = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: SCREAMING_SNAKE_CASE__ = prepared_for_class[value] SCREAMING_SNAKE_CASE__ = tuple(_lowercase ) # Send to model SCREAMING_SNAKE_CASE__ = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __a ( self : Optional[int] ): """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) def __a ( self : int ): """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE__ = type self.model_tester.create_and_check_model(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) def __a ( self : int ): """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) def __a ( self : str ): """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) def __a ( self : List[str] ): """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) @slow def __a ( self : Tuple ): """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class __snake_case ( unittest.TestCase ): @cached_property def __a ( self : Optional[int] ): """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=_lowercase ) if is_vision_available() else None @slow def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=_lowercase , return_tensors="""tf""" ).pixel_values SCREAMING_SNAKE_CASE__ = tf.constant([[1, 2]] ) SCREAMING_SNAKE_CASE__ = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass SCREAMING_SNAKE_CASE__ = model(input_ids=_lowercase , bbox=_lowercase , pixel_values=_lowercase , training=_lowercase ) # verify the logits SCREAMING_SNAKE_CASE__ = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , _lowercase ) SCREAMING_SNAKE_CASE__ = tf.constant( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowercase , atol=1E-4 ) )
204
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class _lowerCamelCase( __lowerCAmelCase ): lowercase_ : Dict = """audio-spectrogram-transformer""" def __init__( self, lowerCamelCase=7_68, lowerCamelCase=12, lowerCamelCase=12, lowerCamelCase=30_72, lowerCamelCase="gelu", lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=0.0_2, lowerCamelCase=1E-12, lowerCamelCase=16, lowerCamelCase=True, lowerCamelCase=10, lowerCamelCase=10, lowerCamelCase=10_24, lowerCamelCase=1_28, **lowerCamelCase, ) -> Dict: """simple docstring""" super().__init__(**lowerCamelCase_) _lowercase : List[str] = hidden_size _lowercase : Optional[int] = num_hidden_layers _lowercase : Any = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : int = hidden_act _lowercase : str = hidden_dropout_prob _lowercase : List[Any] = attention_probs_dropout_prob _lowercase : List[Any] = initializer_range _lowercase : Any = layer_norm_eps _lowercase : List[str] = patch_size _lowercase : Dict = qkv_bias _lowercase : int = frequency_stride _lowercase : Dict = time_stride _lowercase : int = max_length _lowercase : Optional[Any] = num_mel_bins
21
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _SCREAMING_SNAKE_CASE = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val def lowercase( UpperCamelCase_ ) -> Any: '''simple docstring''' UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCamelCase = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCamelCase = value else: UpperCamelCase = value return new_state_dict def lowercase( UpperCamelCase_ , UpperCamelCase_=False ) -> Optional[int]: '''simple docstring''' UpperCamelCase = """""" if is_panoptic: UpperCamelCase = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCamelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCamelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Any: '''simple docstring''' UpperCamelCase = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCamelCase = """resnet101""" if "dc5" in model_name: UpperCamelCase = True UpperCamelCase = """panoptic""" in model_name if is_panoptic: UpperCamelCase = 250 else: UpperCamelCase = 91 UpperCamelCase = """huggingface/label-files""" UpperCamelCase = """coco-detection-id2label.json""" UpperCamelCase = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} # load image processor UpperCamelCase = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCamelCase = ConditionalDetrImageProcessor(format=UpperCamelCase_ ) # prepare image UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" ) UpperCamelCase = encoding["""pixel_values"""] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub UpperCamelCase = torch.hub.load("""DeppMeng/ConditionalDETR""" , UpperCamelCase_ , pretrained=UpperCamelCase_ ).eval() UpperCamelCase = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCamelCase = """conditional_detr.""" + src rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = rename_backbone_keys(UpperCamelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase_ , is_panoptic=UpperCamelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCamelCase = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val # finally, create HuggingFace model and load state dict UpperCamelCase = ConditionalDetrForSegmentation(UpperCamelCase_ ) if is_panoptic else ConditionalDetrForObjectDetection(UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() model.push_to_hub(repo_id=UpperCamelCase_ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCamelCase = conditional_detr(UpperCamelCase_ ) UpperCamelCase = model(UpperCamelCase_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
343
0
"""simple docstring""" import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib _lowerCAmelCase : Optional[Any] = threading.Lock() _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : str = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } _lowerCAmelCase : Any = logging.WARNING _lowerCAmelCase : Tuple = True def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Optional[int] = os.getenv("TRANSFORMERS_VERBOSITY" , a_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def lowerCamelCase_( ) -> Optional[int]: '''simple docstring''' return __name__.split("." )[0] def lowerCamelCase_( ) -> str: '''simple docstring''' return logging.getLogger(_get_library_name() ) def lowerCamelCase_( ) -> Tuple: '''simple docstring''' global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _lowerCamelCase : Optional[Any] = logging.StreamHandler() # Set sys.stderr as stream. _lowerCamelCase : Dict = sys.stderr.flush # Apply our default configuration to the library root logger. _lowerCamelCase : Union[str, Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _lowerCamelCase : List[str] = False def lowerCamelCase_( ) -> Optional[Any]: '''simple docstring''' global _default_handler with _lock: if not _default_handler: return _lowerCamelCase : Union[str, Any] = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _lowerCamelCase : List[Any] = None def lowerCamelCase_( ) -> Optional[Any]: '''simple docstring''' return log_levels def lowerCamelCase_( _lowerCamelCase = None ) -> Dict: '''simple docstring''' if name is None: _lowerCamelCase : Optional[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(a_ ) def lowerCamelCase_( ) -> Optional[Any]: '''simple docstring''' _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _configure_library_root_logger() _get_library_root_logger().setLevel(a_ ) def lowerCamelCase_( ) -> Tuple: '''simple docstring''' return set_verbosity(a_ ) def lowerCamelCase_( ) -> List[str]: '''simple docstring''' return set_verbosity(a_ ) def lowerCamelCase_( ) -> Optional[int]: '''simple docstring''' return set_verbosity(a_ ) def lowerCamelCase_( ) -> int: '''simple docstring''' return set_verbosity(a_ ) def lowerCamelCase_( ) -> str: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def lowerCamelCase_( ) -> Dict: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(a_ ) def lowerCamelCase_( _lowerCamelCase ) -> List[str]: '''simple docstring''' _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(a_ ) def lowerCamelCase_( ) -> int: '''simple docstring''' _configure_library_root_logger() _lowerCamelCase : Union[str, Any] = False def lowerCamelCase_( ) -> int: '''simple docstring''' _configure_library_root_logger() _lowerCamelCase : int = True def lowerCamelCase_( ) -> Dict: '''simple docstring''' _lowerCamelCase : List[Any] = _get_library_root_logger().handlers for handler in handlers: _lowerCamelCase : List[Any] = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(a_ ) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Dict = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(a_ ) def lowerCamelCase_( self , *_lowerCamelCase , **_lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Optional[Any] = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , a_ ) if no_advisory_warnings: return self.warning(*a_ , **a_ ) _lowerCAmelCase : Any = warning_advice @functools.lru_cache(a_ ) def lowerCamelCase_( self , *_lowerCamelCase , **_lowerCamelCase ) -> List[Any]: '''simple docstring''' self.warning(*a_ , **a_ ) _lowerCAmelCase : Optional[int] = warning_once class A_ : def __init__( self: List[str] ,*__lowerCAmelCase: int ,**__lowerCAmelCase: List[Any] ): # pylint: disable=unused-argument '''simple docstring''' _lowerCamelCase : Union[str, Any] = args[0] if args else None def __iter__( self: List[Any] ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self: Any ,__lowerCAmelCase: Any ): '''simple docstring''' def empty_fn(*__lowerCAmelCase: Any ,**__lowerCAmelCase: List[str] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self: str ): '''simple docstring''' return self def __exit__( self: str ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' return class A_ : def __call__( self: Any ,*__lowerCAmelCase: Dict ,**__lowerCAmelCase: Any ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*lowerCAmelCase__ ,**lowerCAmelCase__ ) else: return EmptyTqdm(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def _lowercase ( self: List[Any] ,*__lowerCAmelCase: Optional[int] ,**__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def _lowercase ( self: Tuple ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() _lowerCAmelCase : str = _tqdm_cls() def lowerCamelCase_( ) -> Any: '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def lowerCamelCase_( ) -> str: '''simple docstring''' global _tqdm_active _lowerCamelCase : Optional[Any] = True hf_hub_utils.enable_progress_bars() def lowerCamelCase_( ) -> Dict: '''simple docstring''' global _tqdm_active _lowerCamelCase : int = False hf_hub_utils.disable_progress_bars()
367
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class A_ ( _a ): lowerCAmelCase__ = 'mobilenet_v1' def __init__( self: Tuple ,__lowerCAmelCase: int=3 ,__lowerCAmelCase: Dict=224 ,__lowerCAmelCase: int=1.0 ,__lowerCAmelCase: Tuple=8 ,__lowerCAmelCase: List[str]="relu6" ,__lowerCAmelCase: int=True ,__lowerCAmelCase: List[Any]=0.9_99 ,__lowerCAmelCase: Optional[int]=0.02 ,__lowerCAmelCase: Optional[int]=0.0_01 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _lowerCamelCase : List[str] = num_channels _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : List[Any] = depth_multiplier _lowerCamelCase : Any = min_depth _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Dict = tf_padding _lowerCamelCase : Union[str, Any] = classifier_dropout_prob _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps class A_ ( _a ): lowerCAmelCase__ = version.parse('1.11' ) @property def _lowercase ( self: Optional[int] ): '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def _lowercase ( self: Any ): '''simple docstring''' return 1e-4
340
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCAmelCase : List[str] = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class _A ( unittest.TestCase): SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: SCREAMING_SNAKE_CASE : Tuple = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: SCREAMING_SNAKE_CASE : Any = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ZeroShotClassificationPipeline( model=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(_SCREAMING_SNAKE_CASE , {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'labels': [ANY(_SCREAMING_SNAKE_CASE )], 'scores': [ANY(_SCREAMING_SNAKE_CASE )]} ) # No kwarg SCREAMING_SNAKE_CASE_ : int = classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(_SCREAMING_SNAKE_CASE , {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'labels': [ANY(_SCREAMING_SNAKE_CASE )], 'scores': [ANY(_SCREAMING_SNAKE_CASE )]} ) SCREAMING_SNAKE_CASE_ : Tuple = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(_SCREAMING_SNAKE_CASE , {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'labels': [ANY(_SCREAMING_SNAKE_CASE )], 'scores': [ANY(_SCREAMING_SNAKE_CASE )]} ) SCREAMING_SNAKE_CASE_ : List[Any] = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( _SCREAMING_SNAKE_CASE , {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'labels': [ANY(_SCREAMING_SNAKE_CASE ), ANY(_SCREAMING_SNAKE_CASE )], 'scores': [ANY(_SCREAMING_SNAKE_CASE ), ANY(_SCREAMING_SNAKE_CASE )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) SCREAMING_SNAKE_CASE_ : Dict = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( _SCREAMING_SNAKE_CASE , {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'labels': [ANY(_SCREAMING_SNAKE_CASE ), ANY(_SCREAMING_SNAKE_CASE )], 'scores': [ANY(_SCREAMING_SNAKE_CASE ), ANY(_SCREAMING_SNAKE_CASE )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(_SCREAMING_SNAKE_CASE , {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'labels': [ANY(_SCREAMING_SNAKE_CASE )], 'scores': [ANY(_SCREAMING_SNAKE_CASE )]} ) # https://github.com/huggingface/transformers/issues/13846 SCREAMING_SNAKE_CASE_ : str = classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'labels': [ANY(_SCREAMING_SNAKE_CASE ), ANY(_SCREAMING_SNAKE_CASE )], 'scores': [ANY(_SCREAMING_SNAKE_CASE ), ANY(_SCREAMING_SNAKE_CASE )]} for i in range(1 ) ] , ) SCREAMING_SNAKE_CASE_ : Any = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'labels': [ANY(_SCREAMING_SNAKE_CASE ), ANY(_SCREAMING_SNAKE_CASE )], 'scores': [ANY(_SCREAMING_SNAKE_CASE ), ANY(_SCREAMING_SNAKE_CASE )]} for i in range(2 ) ] , ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): classifier('' , candidate_labels='politics' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): classifier(_SCREAMING_SNAKE_CASE , candidate_labels='politics' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): classifier('Who are you voting for in 2020?' , candidate_labels=_SCREAMING_SNAKE_CASE ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=_SCREAMING_SNAKE_CASE , ) self.run_entailment_id(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = zero_shot_classifier.model.config SCREAMING_SNAKE_CASE_ : List[str] = config.labelaid SCREAMING_SNAKE_CASE_ : int = zero_shot_classifier.entailment_id SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) SCREAMING_SNAKE_CASE_ : List[Any] = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) SCREAMING_SNAKE_CASE_ : Tuple = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) SCREAMING_SNAKE_CASE_ : List[Any] = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = original_labelaid self.assertEqual(_SCREAMING_SNAKE_CASE , zero_shot_classifier.entailment_id ) @require_torch def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) SCREAMING_SNAKE_CASE_ : List[str] = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } , ) @require_tf def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) SCREAMING_SNAKE_CASE_ : int = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } , ) @slow @require_torch def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=_SCREAMING_SNAKE_CASE , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) SCREAMING_SNAKE_CASE_ : int = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } , ) SCREAMING_SNAKE_CASE_ : int = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=_SCREAMING_SNAKE_CASE , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } , )
253
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowerCAmelCase : Any = logging.getLogger(__name__) class _A ( __magic_name__): def __init__( self , _SCREAMING_SNAKE_CASE=-1 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = label_idx def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : int = mode.value SCREAMING_SNAKE_CASE_ : Any = os.path.join(_SCREAMING_SNAKE_CASE , f"{mode}.txt" ) SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : Any = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) ) guid_index += 1 SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : Dict = [] else: SCREAMING_SNAKE_CASE_ : List[str] = line.split(' ' ) words.append(splits[0] ) if len(_SCREAMING_SNAKE_CASE ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) ) return examples def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(_SCREAMING_SNAKE_CASE ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: SCREAMING_SNAKE_CASE_ : List[str] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(_SCREAMING_SNAKE_CASE ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if path: with open(_SCREAMING_SNAKE_CASE , 'r' ) as f: SCREAMING_SNAKE_CASE_ : Tuple = f.read().splitlines() if "O" not in labels: SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class _A ( __magic_name__): def __init__( self ): """simple docstring""" super().__init__(label_idx=-2 ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if path: with open(_SCREAMING_SNAKE_CASE , 'r' ) as f: SCREAMING_SNAKE_CASE_ : int = f.read().splitlines() if "O" not in labels: SCREAMING_SNAKE_CASE_ : int = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class _A ( __magic_name__): def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Dict = mode.value SCREAMING_SNAKE_CASE_ : str = os.path.join(_SCREAMING_SNAKE_CASE , f"{mode}.txt" ) SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : Tuple = [] with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: for sentence in parse_incr(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : List[str] = [] SCREAMING_SNAKE_CASE_ : List[str] = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) ) guid_index += 1 return examples def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 0 for sentence in parse_incr(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : List[str] = preds_list[example_id] SCREAMING_SNAKE_CASE_ : Any = '' for token in sentence: out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(_SCREAMING_SNAKE_CASE ) example_id += 1 def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if path: with open(_SCREAMING_SNAKE_CASE , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
253
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor snake_case__ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , *snake_case_ , **snake_case_ ): '''simple docstring''' warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
352
'''simple docstring''' import os import time import numpy as np import onnxruntime as ort snake_case__ : Optional[int] = '''1''' snake_case__ : str = '''0''' snake_case__ : List[str] = '''1''' snake_case__ : List[str] = ort.SessionOptions() snake_case__ : str = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('''Create inference session...''') snake_case__ : Dict = ['''TensorrtExecutionProvider''', '''CUDAExecutionProvider'''] snake_case__ : Dict = ort.InferenceSession('''model.onnx''', sess_options=sess_opt, providers=execution_provider) snake_case__ : str = ort.RunOptions() snake_case__ : List[Any] = 128 snake_case__ : Union[str, Any] = 1 snake_case__ : Tuple = np.ones((batch, sequence), dtype=np.intaa) snake_case__ : Tuple = np.ones((batch, sequence), dtype=np.intaa) snake_case__ : Union[str, Any] = np.ones((batch, sequence), dtype=np.intaa) print('''Warm up phase...''') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Start inference...''') snake_case__ : Union[str, Any] = time.time() snake_case__ : str = 2000 snake_case__ : Tuple = {} for iter in range(max_iters): snake_case__ : str = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Average Inference Time = {:.3f} ms'''.format((time.time() - start_time) * 1000 / max_iters))
274
0
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a__ = False class snake_case ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Dict) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""") pipe.to(lowerCAmelCase) pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""") _snake_case : Tuple = torch.manual_seed(0) _snake_case : str = pipe( image=lowerCAmelCase , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images _snake_case : Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _snake_case : int = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
317
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) snake_case_ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) snake_case_ : str = "question" snake_case_ : str = "context" snake_case_ : str = "answers" @property def UpperCamelCase_ ( self : Any) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
1
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class snake_case_ ( yaml.SafeLoader ): def __UpperCamelCase ( self : Optional[Any] , lowercase_ : List[str] ) -> Union[str, Any]: lowercase__ : int = [self.constructed_objects[key_node] for key_node, _ in node.value] lowercase__ : Dict = [tuple(lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else key for key in keys] lowercase__ : Optional[Any] = Counter(lowercase_ ) lowercase__ : Any = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'''Got duplicate yaml keys: {duplicate_keys}''' ) def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Any=False ) -> int: lowercase__ : Union[str, Any] = super().construct_mapping(lowercase_ , deep=lowercase_ ) self._check_no_duplicates_on_constructed_node(lowercase_ ) return mapping def lowercase_ ( _lowerCamelCase : str): lowercase__ : Union[str, Any] = list(readme_content.splitlines()) if full_content and full_content[0] == "---" and "---" in full_content[1:]: lowercase__ : List[Any] = full_content[1:].index("---") + 1 lowercase__ : Any = "\n".join(full_content[1:sep_idx]) return yamlblock, "\n".join(full_content[sep_idx + 1 :]) return None, "\n".join(_lowerCamelCase) class snake_case_ ( __A ): # class attributes __A : List[str] = {"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def __UpperCamelCase ( cls : str , lowercase_ : Path ) -> "DatasetMetadata": with open(lowercase_ , encoding="utf-8" ) as readme_file: lowercase__ , lowercase__ : str = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(lowercase_ ) else: return cls() def __UpperCamelCase ( self : Optional[int] , lowercase_ : Path ) -> str: if path.exists(): with open(lowercase_ , encoding="utf-8" ) as readme_file: lowercase__ : Any = readme_file.read() else: lowercase__ : Union[str, Any] = None lowercase__ : List[str] = self._to_readme(lowercase_ ) with open(lowercase_ , "w" , encoding="utf-8" ) as readme_file: readme_file.write(lowercase_ ) def __UpperCamelCase ( self : List[Any] , lowercase_ : Optional[str] = None ) -> str: if readme_content is not None: lowercase__ , lowercase__ : Tuple = _split_yaml_from_readme(lowercase_ ) lowercase__ : Any = "---\n" + self.to_yaml_string() + "---\n" + content else: lowercase__ : int = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def __UpperCamelCase ( cls : Optional[int] , lowercase_ : str ) -> "DatasetMetadata": lowercase__ : int = yaml.load(lowercase_ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields lowercase__ : List[str] = { (key.replace("-" , "_" ) if key.replace("-" , "_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**lowercase_ ) def __UpperCamelCase ( self : Optional[int] ) -> str: return yaml.safe_dump( { (key.replace("_" , "-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=lowercase_ , allow_unicode=lowercase_ , encoding="utf-8" , ).decode("utf-8" ) UpperCamelCase = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser UpperCamelCase = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') UpperCamelCase = ap.parse_args() UpperCamelCase = Path(args.readme_filepath) UpperCamelCase = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
333
def lowercase_ ( _lowerCamelCase : list): for i in range(len(_lowerCamelCase) - 1 , 0 , -1): lowercase__ : int = False for j in range(_lowerCamelCase , 0 , -1): if unsorted[j] < unsorted[j - 1]: lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j] lowercase__ : List[str] = True for j in range(_lowerCamelCase): if unsorted[j] > unsorted[j + 1]: lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j] lowercase__ : Dict = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(f"{cocktail_shaker_sort(unsorted) = }")
333
1
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class A_ (unittest.TestCase ): UpperCAmelCase__ = JukeboxTokenizer UpperCAmelCase__ = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def _lowercase ( self ): '''simple docstring''' import torch UpperCAmelCase = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) UpperCAmelCase = tokenizer(**self.metas )['''input_ids'''] # fmt: off UpperCAmelCase = [ torch.tensor([[ 0, 0, 0, 7_1_6_9, 5_0_7, 9, 7_6, 3_9, 3_1, 4_6, 7_6, 2_7, 7_6, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_6, 3_2, 4_4, 4_1, 3_9, 7_6, 2_7, 4_0, 7_6, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_6, 3_8, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 4_1, 7_6, 4_5, 2_7, 3_5, 3_0, 7_6, 7_1, 2_0, 4_9, 4_1, 7_6, 4_8, 2_7, 4_5, 4_6, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_6, 3_8, 3_1, 3_3, 4_5, 7_6, 4_1, 3_2, 7_6, 4_5, 4_6, 4_1, 4_0, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_9, 4_6, 2_7, 4_0, 3_0, 7_6, 3_5, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 1_4, 3_1, 2_7, 4_4, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_5, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 8, 2_7, 3_8, 3_2, 7_6, 4_5, 4_7, 4_0, 3_7, 7_6, 2_7, 7_6, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_6, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_6, 3_8, 3_5, 3_1, 4_5, 6_4, 7_6, 4_9, 3_4, 4_1, 4_5, 3_1, 7_6, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_6, 3_8, 3_5, 4_2, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_5, 4_0, 3_1, 3_1, 4_4, 7_6, 4_1, 3_2, 7_6, 2_9, 4_1, 3_8, 3_0, 7_6, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_5, 4_6, 4_5, 7_6, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_6, 4_9, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 4_1, 4_5, 3_1, 7_6, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_6, 4_4, 3_1, 2_7, 3_0, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 3_5, 2_9, 3_4, 7_6, 5_1, 3_1, 4_6, 7_6, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_6, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_6, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_4, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_4, 3_1, 2_7, 4_4, 4_6, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_2, 3_1, 3_0, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 4_9, 4_1, 4_4, 3_0, 4_5, 7_6, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_3, 5_1, 7_6, 4_0, 2_7, 3_9, 3_1, 7_6, 3_5, 4_5, 7_6, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_6, 1_1, 3_5, 4_0, 3_3, 7_6, 4_1, 3_2, 7_6, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_2, 4_1, 4_1, 3_7, 7_6, 4_1, 4_0, 7_6, 3_9, 5_1, 7_6, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_6, 5_1, 3_1, 7_6, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_6, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_6, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_6, 1_8, 4_1, 4_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 2_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_5, 3_2, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_6, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_6, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_6, 2_7, 4_0, 3_0, 7_6, 2_8, 2_7, 4_4, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_8, 4_1, 4_0, 3_1, 7_6, 2_7, 4_0, 3_0, 7_6, 3_8, 3_1, 4_8, 3_1, 3_8, 7_6, 4_5, 2_7, 4_0, 3_0, 4_5, 7_6, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_6, 3_2, 2_7, 4_4, 7_6, 2_7, 4_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def _lowercase ( self ): '''simple docstring''' import torch UpperCAmelCase = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) UpperCAmelCase = tokenizer(**self.metas )['''input_ids'''] # fmt: off UpperCAmelCase = [ torch.tensor([[ 0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1, 9, 7_7, 3_9, 3_1, 4_6, 7_7, 2_7, 7_7, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_7, 3_2, 4_4, 4_1, 3_9, 7_7, 2_7, 4_0, 7_7, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_7, 3_8, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 4_1, 7_7, 4_5, 2_7, 3_5, 3_0, 7_7, 7_2, 2_0, 4_9, 4_1, 7_7, 4_8, 2_7, 4_5, 4_6, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_7, 3_8, 3_1, 3_3, 4_5, 7_7, 4_1, 3_2, 7_7, 4_5, 4_6, 4_1, 4_0, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_9, 4_6, 2_7, 4_0, 3_0, 7_7, 3_5, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 1_4, 3_1, 2_7, 4_4, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_5, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 8, 2_7, 3_8, 3_2, 7_7, 4_5, 4_7, 4_0, 3_7, 7_7, 2_7, 7_7, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_7, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_7, 3_8, 3_5, 3_1, 4_5, 6_4, 7_7, 4_9, 3_4, 4_1, 4_5, 3_1, 7_7, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_7, 3_8, 3_5, 4_2, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_5, 4_0, 3_1, 3_1, 4_4, 7_7, 4_1, 3_2, 7_7, 2_9, 4_1, 3_8, 3_0, 7_7, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_5, 4_6, 4_5, 7_7, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_7, 4_9, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 4_1, 4_5, 3_1, 7_7, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_7, 4_4, 3_1, 2_7, 3_0, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 3_5, 2_9, 3_4, 7_7, 5_1, 3_1, 4_6, 7_7, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_7, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_7, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_4, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_4, 3_1, 2_7, 4_4, 4_6, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_2, 3_1, 3_0, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 4_9, 4_1, 4_4, 3_0, 4_5, 7_7, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_3, 5_1, 7_7, 4_0, 2_7, 3_9, 3_1, 7_7, 3_5, 4_5, 7_7, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_7, 1_1, 3_5, 4_0, 3_3, 7_7, 4_1, 3_2, 7_7, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_2, 4_1, 4_1, 3_7, 7_7, 4_1, 4_0, 7_7, 3_9, 5_1, 7_7, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_7, 5_1, 3_1, 7_7, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_7, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_7, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_7, 1_8, 4_1, 4_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 2_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_5, 3_2, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_7, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_7, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_7, 2_7, 4_0, 3_0, 7_7, 2_8, 2_7, 4_4, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_8, 4_1, 4_0, 3_1, 7_7, 2_7, 4_0, 3_0, 7_7, 3_8, 3_1, 4_8, 3_1, 3_8, 7_7, 4_5, 2_7, 4_0, 3_0, 4_5, 7_7, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_7, 3_2, 2_7, 4_4, 7_7, 2_7, 4_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
273
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) __A : Union[str, Any] = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
273
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. snake_case : int = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __lowerCamelCase ( UpperCAmelCase_ : List[Any] ): """simple docstring""" config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def __lowerCamelCase ( UpperCAmelCase_ : Dict ): """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase_ ) def __lowerCamelCase ( UpperCAmelCase_ : List[str] ): """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main a :Optional[Any] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase_ , id=UpperCAmelCase_ ) def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ): """simple docstring""" if exitstatus == 5: a :int = 0 # Doctest custom flag to ignore output. snake_case : int = doctest.register_optionflag('''IGNORE_RESULT''') snake_case : List[str] = doctest.OutputChecker class _snake_case ( _snake_case ): def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) snake_case : Optional[int] = CustomOutputChecker snake_case : Optional[Any] = HfDoctestModule snake_case : int = HfDocTestParser
281
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
281
1
"""simple docstring""" from importlib import import_module from .logging import get_logger __lowerCAmelCase : List[Any] =get_logger(__name__) class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" lowercase = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("""__""" ): setattr(self , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase = module._original_module if isinstance(__lowerCAmelCase , _PatchedModuleObj ) else module class _A : snake_case__ : Tuple = [] def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" lowercase = obj lowercase = target lowercase = new lowercase = target.split(""".""" )[0] lowercase = {} lowercase = attrs or [] def __enter__( self ): """simple docstring""" *lowercase , lowercase = self.target.split(""".""" ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(__lowerCAmelCase ) ): try: lowercase = import_module(""".""".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): lowercase = getattr(self.obj , __lowerCAmelCase ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(__lowerCAmelCase , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): lowercase = obj_attr # patch at top level setattr(self.obj , __lowerCAmelCase , _PatchedModuleObj(__lowerCAmelCase , attrs=self.attrs ) ) lowercase = getattr(self.obj , __lowerCAmelCase ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(__lowerCAmelCase , __lowerCAmelCase , _PatchedModuleObj(getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , attrs=self.attrs ) ) lowercase = getattr(__lowerCAmelCase , __lowerCAmelCase ) # finally set the target attribute setattr(__lowerCAmelCase , __lowerCAmelCase , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: lowercase = getattr(import_module(""".""".join(__lowerCAmelCase ) ) , __lowerCAmelCase ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , __lowerCAmelCase ) is attr_value: lowercase = getattr(self.obj , __lowerCAmelCase ) setattr(self.obj , __lowerCAmelCase , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" lowercase = globals()["""__builtins__"""][target_attr] setattr(self.obj , __lowerCAmelCase , self.new ) else: raise RuntimeError(f'Tried to patch attribute {target_attr} instead of a submodule.' ) def __exit__( self , *__lowerCAmelCase ): """simple docstring""" for attr in list(self.original ): setattr(self.obj , __lowerCAmelCase , self.original.pop(__lowerCAmelCase ) ) def A__ ( self ): """simple docstring""" self.__enter__() self._active_patches.append(self ) def A__ ( self ): """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
197
"""simple docstring""" from __future__ import annotations import numpy as np def UpperCAmelCase__ ( lowerCAmelCase__ :list[float] ) -> Optional[Any]: '''simple docstring''' return np.maximum(0 , lowerCAmelCase__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
197
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} _UpperCamelCase = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } _UpperCamelCase = { '''abeja/gpt-neox-japanese-2.7b''': 2048, } def UpperCamelCase_( snake_case__: List[str] , snake_case__: str ) -> str: with open(snake_case__ , 'r' , encoding='utf-8' ) as f: UpperCAmelCase__ = json.loads(f.read() ) UpperCAmelCase__ = collections.OrderedDict() UpperCAmelCase__ = collections.OrderedDict() UpperCAmelCase__ = collections.OrderedDict() with open(snake_case__ , 'r' , encoding='utf-8' ) as f: UpperCAmelCase__ = f.readlines() UpperCAmelCase__ = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(snake_case__ ): UpperCAmelCase__ = b UpperCAmelCase__ = idx for wd in b: UpperCAmelCase__ = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] def __init__(self , __a , __a , __a="<|endoftext|>" , __a="<|endoftext|>" , __a="<|startoftext|>" , __a="<|endoftext|>" , __a=False , **__a , ) -> Union[str, Any]: """simple docstring""" super().__init__( unk_token=__a , pad_token=__a , bos_token=__a , eos_token=__a , do_clean_text=__a , **__a , ) if not os.path.isfile(__a ): raise ValueError( F"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(__a ): raise ValueError( F"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google" ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) UpperCAmelCase__ = do_clean_text UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_vocab_and_emoji(__a , __a ) UpperCAmelCase__ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def UpperCamelCase__ (self ) -> int: """simple docstring""" return len(self.raw_vocab ) def UpperCamelCase__ (self ) -> str: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" return self.subword_tokenizer.tokenize(__a , clean=self.do_clean_text ) def UpperCamelCase__ (self , __a ) -> str: """simple docstring""" return self.vocab.get(__a , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ (self , __a ) -> int: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(__a ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = ''.join(__a ).strip() return out_string def UpperCamelCase__ (self , __a ) -> List[int]: """simple docstring""" UpperCAmelCase__ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] ) if len(__a ) > self.model_max_length: UpperCAmelCase__ = input_ids[-self.model_max_length :] return input_ids def UpperCamelCase__ (self , __a , __a = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase__ = 0 if os.path.isdir(__a ): UpperCAmelCase__ = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: UpperCAmelCase__ = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(__a , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." ' Please check that the vocabulary is not corrupted!' ) UpperCAmelCase__ = token_index writer.write(','.join(__a ) + '\n' ) index += 1 with open(__a , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , __a ) return vocab_file, emoji_file class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = vocab # same as swe UpperCAmelCase__ = ids_to_tokens # same as bpe UpperCAmelCase__ = emoji UpperCAmelCase__ = np.max([len(__a ) for w in self.vocab.keys()] ) UpperCAmelCase__ = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) UpperCAmelCase__ = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) UpperCAmelCase__ = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) UpperCAmelCase__ = re.compile( r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) UpperCAmelCase__ = re.compile( r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) UpperCAmelCase__ = re.compile( r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) UpperCAmelCase__ = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' UpperCAmelCase__ = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' UpperCAmelCase__ = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__(self ) -> Union[str, Any]: """simple docstring""" return len(self.ids_to_tokens ) def UpperCamelCase__ (self , __a ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.content_repattera.sub('<URL>' , __a ) UpperCAmelCase__ = self.content_repattera.sub('<EMAIL>' , __a ) UpperCAmelCase__ = self.content_repattera.sub('<TEL>' , __a ) UpperCAmelCase__ = self.content_repattera.sub('<DATE>' , __a ) UpperCAmelCase__ = self.content_repattera.sub('<DATE>' , __a ) UpperCAmelCase__ = self.content_repattera.sub('<PRICE>' , __a ) UpperCAmelCase__ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCAmelCase__ = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def UpperCamelCase__ (self , __a , __a=False ) -> str: """simple docstring""" UpperCAmelCase__ = text.replace(' ' , '<SP>' ) UpperCAmelCase__ = text.replace(' ' , '<SP>' ) UpperCAmelCase__ = text.replace('\r\n' , '<BR>' ) UpperCAmelCase__ = text.replace('\n' , '<BR>' ) UpperCAmelCase__ = text.replace('\r' , '<BR>' ) UpperCAmelCase__ = text.replace('\t' , '<TAB>' ) UpperCAmelCase__ = text.replace('—' , 'ー' ) UpperCAmelCase__ = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCAmelCase__ = text.replace(__a , __a ) if clean: UpperCAmelCase__ = self.clean_text(__a ) def check_simbol(__a ): UpperCAmelCase__ = x.encode() if len(__a ) == 1 and len(__a ) == 2: UpperCAmelCase__ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc2a1 and c <= 0xc2bf) or (c >= 0xc780 and c <= 0xc783) or (c >= 0xcab9 and c <= 0xcbbf) or (c >= 0xcc80 and c <= 0xcda2) ): return True return False def checkuae(__a ): UpperCAmelCase__ = x.encode() if len(__a ) == 1 and len(__a ) == 3: UpperCAmelCase__ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe2_8080 and c <= 0xe2_b07f: return True return False UpperCAmelCase__ = 0 UpperCAmelCase__ = [] while pos < len(__a ): UpperCAmelCase__ = min(len(__a ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 UpperCAmelCase__ = [] # (token_id, token, pos) for e in range(__a , __a , -1 ): UpperCAmelCase__ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__a ) > 2: UpperCAmelCase__ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__a ) > 0: # the smallest token_id is adopted UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = sorted(__a , key=lambda __a : x[0] )[0] result.append(__a ) UpperCAmelCase__ = e else: UpperCAmelCase__ = pos + 1 UpperCAmelCase__ = text[pos:end] if check_simbol(__a ): result.append('<KIGOU>' ) elif checkuae(__a ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) UpperCAmelCase__ = end return result def UpperCamelCase__ (self , __a , __a="\n" ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__a ) > 0: words.append(bytearray(__a ).decode('utf-8' , errors='replace' ) ) UpperCAmelCase__ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(__a ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(__a ) if len(__a ) > 0: words.append(bytearray(__a ).decode('utf-8' , errors='replace' ) ) UpperCAmelCase__ = ''.join(__a ) return text
335
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCamelCase ) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , **__a ) -> Optional[Any]: """simple docstring""" super().__init__(**__a ) requires_backends(self , 'vision' ) requires_backends(self , 'torch' ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(__a ) def UpperCamelCase__ (self , **__a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = {} UpperCAmelCase__ = {} UpperCAmelCase__ = {} # preprocess args if "points_per_batch" in kwargs: UpperCAmelCase__ = kwargs['points_per_batch'] if "points_per_crop" in kwargs: UpperCAmelCase__ = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: UpperCAmelCase__ = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: UpperCAmelCase__ = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: UpperCAmelCase__ = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: UpperCAmelCase__ = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: UpperCAmelCase__ = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: UpperCAmelCase__ = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: UpperCAmelCase__ = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: UpperCAmelCase__ = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: UpperCAmelCase__ = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: UpperCAmelCase__ = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> List[str]: """simple docstring""" return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a ) def UpperCamelCase__ (self , __a , __a=64 , __a = 0 , __a = 512 / 1500 , __a = 32 , __a = 1 , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = load_image(__a ) UpperCAmelCase__ = self.image_processor.size['longest_edge'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes( __a , __a , __a , __a , __a , __a ) UpperCAmelCase__ = self.image_processor(images=__a , return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": UpperCAmelCase__ = self.get_inference_context() with inference_context(): UpperCAmelCase__ = self._ensure_tensor_on_device(__a , device=self.device ) UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) UpperCAmelCase__ = image_embeddings UpperCAmelCase__ = grid_points.shape[1] UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 , __a , __a ): UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :] UpperCAmelCase__ = input_labels[:, i : i + points_per_batch] UpperCAmelCase__ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase__ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = model_inputs.pop('input_boxes' ) UpperCAmelCase__ = model_inputs.pop('is_last' ) UpperCAmelCase__ = model_inputs.pop('original_sizes' ).tolist() UpperCAmelCase__ = model_inputs.pop('reshaped_input_sizes' ).tolist() UpperCAmelCase__ = self.model(**__a ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCAmelCase__ = model_outputs['pred_masks'] UpperCAmelCase__ = self.image_processor.post_process_masks( __a , __a , __a , __a , binarize=__a ) UpperCAmelCase__ = model_outputs['iou_scores'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase__ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation( __a , __a , __a , __a ) UpperCAmelCase__ = defaultdict(__a ) for output in model_outputs: for k, v in output.items(): extra[k].append(__a ) UpperCAmelCase__ = {} if output_rle_mask: UpperCAmelCase__ = rle_mask if output_bboxes_mask: UpperCAmelCase__ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
335
1
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int = 1000 ): '''simple docstring''' _lowerCAmelCase = 2**power _lowerCAmelCase = str(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = list(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = 0 for i in list_num: sum_of_num += int(SCREAMING_SNAKE_CASE_ ) return sum_of_num if __name__ == "__main__": _SCREAMING_SNAKE_CASE = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) _SCREAMING_SNAKE_CASE = solution(power) print("Sum of the digits is: ", result)
158
'''simple docstring''' from __future__ import annotations from collections import deque class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(_lowerCAmelCase ) self.set_fail_transitions() def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int | None: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _snake_case ( self , _lowerCAmelCase ) -> None: _lowerCAmelCase = 0 for character in keyword: _lowerCAmelCase = self.find_next_state(_lowerCAmelCase , _lowerCAmelCase ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) _lowerCAmelCase = len(self.adlist ) - 1 else: _lowerCAmelCase = next_state self.adlist[current_state]["output"].append(_lowerCAmelCase ) def _snake_case ( self ) -> None: _lowerCAmelCase = deque() for node in self.adlist[0]["next_states"]: q.append(_lowerCAmelCase ) _lowerCAmelCase = 0 while q: _lowerCAmelCase = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_lowerCAmelCase ) _lowerCAmelCase = self.adlist[r]["fail_state"] while ( self.find_next_state(_lowerCAmelCase , self.adlist[child]["value"] ) is None and state != 0 ): _lowerCAmelCase = self.adlist[state]["fail_state"] _lowerCAmelCase = self.find_next_state( _lowerCAmelCase , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: _lowerCAmelCase = 0 _lowerCAmelCase = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def _snake_case ( self , _lowerCAmelCase ) -> dict[str, list[int]]: _lowerCAmelCase = {} # returns a dict with keywords and list of its occurrences _lowerCAmelCase = 0 for i in range(len(_lowerCAmelCase ) ): while ( self.find_next_state(_lowerCAmelCase , string[i] ) is None and current_state != 0 ): _lowerCAmelCase = self.adlist[current_state]["fail_state"] _lowerCAmelCase = self.find_next_state(_lowerCAmelCase , string[i] ) if next_state is None: _lowerCAmelCase = 0 else: _lowerCAmelCase = next_state for key in self.adlist[current_state]["output"]: if key not in result: _lowerCAmelCase = [] result[key].append(i - len(_lowerCAmelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
158
1
'''simple docstring''' from __future__ import annotations def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
358
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : Union[str, Any] = seq_length __UpperCAmelCase : int = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : Optional[int] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : List[Any] = type_vocab_size __UpperCAmelCase : Dict = type_sequence_label_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : int = scope def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[Any] = None if self.use_input_mask: __UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> List[str]: '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_config() __UpperCAmelCase : List[Any] = 300 return config def __A ( self ) -> Dict: '''simple docstring''' ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = self.prepare_config_and_inputs() __UpperCAmelCase : Tuple = True __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : List[str] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[str] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[Any] = config_and_inputs __UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : Dict = () def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = MraModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Any: '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason="""MRA does not output attentions""" ) def __A ( self ) -> List[Any]: '''simple docstring''' return @require_torch class _A ( unittest.TestCase ): @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0] __UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : int = model(__UpperCAmelCase )[0] __UpperCAmelCase : Union[str, Any] = 50_265 __UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) __UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : Any = model(__UpperCAmelCase )[0] __UpperCAmelCase : Dict = 50_265 __UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : str = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = """▁""" a_ = {"""vocab_file""": """sentencepiece.bpe.model"""} a_ = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } a_ = { """xlm-roberta-base""": 512, """xlm-roberta-large""": 512, """xlm-roberta-large-finetuned-conll02-dutch""": 512, """xlm-roberta-large-finetuned-conll02-spanish""": 512, """xlm-roberta-large-finetuned-conll03-english""": 512, """xlm-roberta-large-finetuned-conll03-german""": 512, } class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self , __lowerCamelCase , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase = None , **__lowerCamelCase , ): '''simple docstring''' __A : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token __A : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) __A : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) __A : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __A : str = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __A : Dict = 1 __A : Tuple = len(self.sp_model ) + self.fairseq_offset __A : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' __A : Any = self.__dict__.copy() __A : Optional[Any] = None __A : List[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , __lowerCamelCase ): '''simple docstring''' __A : str = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __A : Dict = {} __A : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Union[str, Any] = [self.cls_token_id] __A : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase__( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __A : Union[str, Any] = self.sp_model.PieceToId(__lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Dict = ''''''.join(__lowerCamelCase ).replace(__lowerCamelCase , ''' ''' ).strip() return out_string def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __A : str = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , '''wb''' ) as fi: __A : Dict = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
179
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__( self ): '''simple docstring''' __A : Union[str, Any] = 1 __A : Any = 3 __A : List[str] = (32, 32) __A : List[str] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCamelCase ) return image @property def UpperCamelCase__( self ): '''simple docstring''' torch.manual_seed(0 ) __A : List[Any] = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__lowerCamelCase , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def UpperCamelCase__( self ): '''simple docstring''' torch.manual_seed(0 ) __A : Any = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCamelCase__( self ): '''simple docstring''' torch.manual_seed(0 ) __A : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) return CLIPTextModel(__lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __A : int = self.dummy_cond_unet_upscale __A : Union[str, Any] = DDPMScheduler() __A : Dict = DDIMScheduler(prediction_type='''v_prediction''' ) __A : int = self.dummy_vae __A : int = self.dummy_text_encoder __A : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __A : Tuple = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __A : Any = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __A : Dict = StableDiffusionUpscalePipeline( unet=__lowerCamelCase , low_res_scheduler=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , max_noise_level=350 , ) __A : str = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) __A : List[str] = '''A painting of a squirrel eating a burger''' __A : Any = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) __A : List[str] = sd_pipe( [prompt] , image=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __A : Union[str, Any] = output.images __A : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) __A : str = sd_pipe( [prompt] , image=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=__lowerCamelCase , )[0] __A : Tuple = image[0, -3:, -3:, -1] __A : int = image_from_tuple[0, -3:, -3:, -1] __A : Dict = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __A : str = np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase__( self ): '''simple docstring''' __A : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator __A : Dict = self.dummy_cond_unet_upscale __A : List[str] = DDPMScheduler() __A : str = DDIMScheduler(prediction_type='''v_prediction''' ) __A : Optional[int] = self.dummy_vae __A : Optional[Any] = self.dummy_text_encoder __A : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __A : List[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __A : int = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __A : Any = StableDiffusionUpscalePipeline( unet=__lowerCamelCase , low_res_scheduler=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , max_noise_level=350 , ) __A : Any = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) __A : Any = '''A painting of a squirrel eating a burger''' __A : Any = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __A : Union[str, Any] = output.images assert image.shape[0] == 2 __A : Optional[Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) __A : Any = sd_pipe( [prompt] , image=__lowerCamelCase , generator=__lowerCamelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __A : Union[str, Any] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = self.dummy_cond_unet_upscale __A : int = DDPMScheduler() __A : List[Any] = DDIMScheduler(prediction_type='''v_prediction''' ) __A : Optional[Any] = self.dummy_vae __A : List[str] = self.dummy_text_encoder __A : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __A : Union[str, Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __A : int = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 __A : Union[str, Any] = unet.half() __A : Optional[int] = text_encoder.half() # make sure here that pndm scheduler skips prk __A : Optional[int] = StableDiffusionUpscalePipeline( unet=__lowerCamelCase , low_res_scheduler=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , max_noise_level=350 , ) __A : Union[str, Any] = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) __A : Union[str, Any] = '''A painting of a squirrel eating a burger''' __A : Optional[Any] = torch.manual_seed(0 ) __A : Tuple = sd_pipe( [prompt] , image=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=2 , output_type='''np''' , ).images __A : str = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __A : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) __A : str = '''stabilityai/stable-diffusion-x4-upscaler''' __A : Optional[Any] = StableDiffusionUpscalePipeline.from_pretrained(__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() __A : Union[str, Any] = '''a cat sitting on a park bench''' __A : Union[str, Any] = torch.manual_seed(0 ) __A : Optional[Any] = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , generator=__lowerCamelCase , output_type='''np''' , ) __A : List[str] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def UpperCamelCase__( self ): '''simple docstring''' __A : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __A : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) __A : Optional[int] = '''stabilityai/stable-diffusion-x4-upscaler''' __A : Optional[int] = StableDiffusionUpscalePipeline.from_pretrained( __lowerCamelCase , torch_dtype=torch.floataa , ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() __A : Dict = '''a cat sitting on a park bench''' __A : Any = torch.manual_seed(0 ) __A : Optional[int] = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , generator=__lowerCamelCase , output_type='''np''' , ) __A : Any = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def UpperCamelCase__( self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __A : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __A : List[str] = '''stabilityai/stable-diffusion-x4-upscaler''' __A : Dict = StableDiffusionUpscalePipeline.from_pretrained( __lowerCamelCase , torch_dtype=torch.floataa , ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __A : Tuple = '''a cat sitting on a park bench''' __A : Tuple = torch.manual_seed(0 ) __A : List[str] = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , output_type='''np''' , ) __A : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
179
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available snake_case_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
238
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : int = XLMTokenizer A_ : Optional[Any] = False def a (self : Optional[int] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __snake_case = dict(zip(a__ , range(len(a__ ) ) ) ) __snake_case = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(a__ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(a__ ) ) def a (self : int , a__ : Any ): """simple docstring""" __snake_case = '''lower newer''' __snake_case = '''lower newer''' return input_text, output_text def a (self : Optional[Any] ): """simple docstring""" __snake_case = XLMTokenizer(self.vocab_file , self.merges_file ) __snake_case = '''lower''' __snake_case = ['''low''', '''er</w>'''] __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = tokens + ['''<unk>'''] __snake_case = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) @slow def a (self : Union[str, Any] ): """simple docstring""" __snake_case = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) __snake_case = tokenizer.encode('''sequence builders''' , add_special_tokens=a__ ) __snake_case = tokenizer.encode('''multi-sequence build''' , add_special_tokens=a__ ) __snake_case = tokenizer.build_inputs_with_special_tokens(a__ ) __snake_case = tokenizer.build_inputs_with_special_tokens(a__ , a__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
238
1
"""simple docstring""" def snake_case_ ( A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : Any = [0] * len(A_ ) _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Tuple = [1] * len(A_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(A_ ) ): if indegree[i] == 0: queue.append(A_ ) while queue: _lowerCamelCase : Union[str, Any] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: _lowerCamelCase : Any = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(A_ ) print(max(A_ ) ) # Adjacency list of Graph lowerCAmelCase__ = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
72
class A : '''simple docstring''' def __init__(self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if vertex not in self.adjacency: lowercase__ = {} self.num_vertices += 1 def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return lowercase__ = weight lowercase__ = weight def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): lowercase__ = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = weight lowercase__ = weight def __str__(self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.adjacency.keys() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = Graph() if vertices is None: lowercase__ = [] if edges is None: lowercase__ = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class A : '''simple docstring''' def __init__(self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = {} lowercase__ = {} def __len__(self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.parent ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item in self.parent: return self.find(_UpperCAmelCase ) lowercase__ = item lowercase__ = 0 return item def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: lowercase__ = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.find(_UpperCAmelCase ) lowercase__ = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ = roota return roota return None @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = graph.num_vertices lowercase__ = Graph.UnionFind() lowercase__ = [] while num_components > 1: lowercase__ = {} for vertex in graph.get_vertices(): lowercase__ = -1 lowercase__ = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = union_find.find(_UpperCAmelCase ) lowercase__ = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase__ = num_components - 1 lowercase__ = Graph.build(edges=_UpperCAmelCase ) return mst
305
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'mvp' __magic_name__ = ['past_key_values'] __magic_name__ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , __snake_case=5_0_2_6_7 , __snake_case=1_0_2_4 , __snake_case=1_2 , __snake_case=4_0_9_6 , __snake_case=1_6 , __snake_case=1_2 , __snake_case=4_0_9_6 , __snake_case=1_6 , __snake_case=0.0 , __snake_case=0.0 , __snake_case="gelu" , __snake_case=1_0_2_4 , __snake_case=0.1 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=0.0 , __snake_case=False , __snake_case=True , __snake_case=1 , __snake_case=0 , __snake_case=2 , __snake_case=True , __snake_case=2 , __snake_case=2 , __snake_case=False , __snake_case=1_0_0 , __snake_case=8_0_0 , **__snake_case , ): snake_case = vocab_size snake_case = max_position_embeddings snake_case = d_model snake_case = encoder_ffn_dim snake_case = encoder_layers snake_case = encoder_attention_heads snake_case = decoder_ffn_dim snake_case = decoder_layers snake_case = decoder_attention_heads snake_case = dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = activation_function snake_case = init_std snake_case = encoder_layerdrop snake_case = decoder_layerdrop snake_case = classifier_dropout snake_case = use_cache snake_case = encoder_layers snake_case = scale_embedding # scale factor will be sqrt(d_model) if True snake_case = use_prompt snake_case = prompt_length snake_case = prompt_mid_dim super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __snake_case ): snake_case = self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' '''The config can simply be saved and uploaded again to be fixed.''' )
213
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class A__ : """simple docstring""" def __init__( self , __snake_case , __snake_case=1_3 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=9_9 , __snake_case=6_4 , __snake_case=5 , __snake_case=4 , __snake_case=3_7 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_1_2 , __snake_case=1_6 , __snake_case=2 , __snake_case=0.02 , __snake_case=3 , __snake_case=4 , __snake_case=None , ): snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = scope snake_case = vocab_size - 1 def a_ ( self ): snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = self.get_config() return config, input_ids, input_mask, token_labels def a_ ( self ): return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def a_ ( self ): snake_case , snake_case , snake_case , snake_case = self.prepare_config_and_inputs() snake_case = True return config, input_ids, input_mask, token_labels def a_ ( self , __snake_case , __snake_case , __snake_case ): snake_case = GPTNeoXModel(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case ) snake_case = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self , __snake_case , __snake_case , __snake_case ): snake_case = True snake_case = GPTNeoXModel(__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case ): snake_case = GPTNeoXForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case ): snake_case = self.num_labels snake_case = GPTNeoXForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case ): snake_case = self.num_labels snake_case = GPTNeoXForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case ): snake_case = self.num_labels snake_case = GPTNeoXForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self , __snake_case , __snake_case , __snake_case ): snake_case = True snake_case = GPTNeoXForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() # first forward pass snake_case = model(__snake_case , attention_mask=__snake_case , use_cache=__snake_case ) snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case = model(__snake_case , attention_mask=__snake_case , output_hidden_states=__snake_case ) snake_case = output_from_no_past['''hidden_states'''][0] snake_case = model( __snake_case , attention_mask=__snake_case , past_key_values=__snake_case , output_hidden_states=__snake_case , )['''hidden_states'''][0] # select random slice snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-3 ) ) def a_ ( self ): snake_case = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case = config_and_inputs snake_case = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class A__ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) __magic_name__ = (GPTNeoXForCausalLM,) if is_torch_available() else () __magic_name__ = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def a_ ( self ): snake_case = GPTNeoXModelTester(self ) snake_case = ConfigTester(self , config_class=__snake_case , hidden_size=6_4 , num_attention_heads=8 ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__snake_case , __snake_case , __snake_case ) def a_ ( self ): snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__snake_case , __snake_case , __snake_case ) def a_ ( self ): # This regression test was failing with PyTorch < 1.3 snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case = None self.model_tester.create_and_check_model_as_decoder(__snake_case , __snake_case , __snake_case ) def a_ ( self ): snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__snake_case , __snake_case , __snake_case ) def a_ ( self ): snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__snake_case ) def a_ ( self ): snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def a_ ( self ): snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def a_ ( self ): snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def a_ ( self ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def a_ ( self , __snake_case ): snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = ids_tensor([1, 1_0] , config.vocab_size ) snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights snake_case = GPTNeoXModel(__snake_case ) original_model.to(__snake_case ) original_model.eval() snake_case = original_model(__snake_case ).last_hidden_state snake_case = original_model(__snake_case ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights snake_case = {'''type''': scaling_type, '''factor''': 10.0} snake_case = GPTNeoXModel(__snake_case ) scaled_model.to(__snake_case ) scaled_model.eval() snake_case = scaled_model(__snake_case ).last_hidden_state snake_case = scaled_model(__snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) @require_torch class A__ ( unittest.TestCase ): """simple docstring""" @slow def a_ ( self ): snake_case = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: snake_case = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(__snake_case ) snake_case = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__snake_case ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 snake_case = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' snake_case = model.generate(**__snake_case , do_sample=__snake_case , max_new_tokens=2_0 ) snake_case = tokenizer.batch_decode(__snake_case )[0] self.assertEqual(__snake_case , __snake_case )
213
1
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return base * power(_UpperCamelCase , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") A : List[Any] = int(input("Enter the base: ").strip()) A : str = int(input("Enter the exponent: ").strip()) A : List[str] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents A : List[Any] = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
57
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCAmelCase : Union[str, Any] =TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def snake_case ( self , __a , __a , __a ): __lowerCAmelCase = TextaTextGenerationPipeline(model=__a , tokenizer=__a ) return generator, ["Something to write", "Something else"] def snake_case ( self , __a , __a ): __lowerCAmelCase = generator("Something there" ) self.assertEqual(__a , [{"generated_text": ANY(__a )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there" ) ) __lowerCAmelCase = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=__a ) self.assertEqual( __a , [ [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], ] , ) __lowerCAmelCase = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=__a ) self.assertEqual( __a , [ [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], ] , ) with self.assertRaises(__a ): generator(4 ) @require_torch def snake_case ( self ): __lowerCAmelCase = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt" ) # do_sample=False necessary for reproducibility __lowerCAmelCase = generator("Something there" , do_sample=__a ) self.assertEqual(__a , [{"generated_text": ""}] ) __lowerCAmelCase = 3 __lowerCAmelCase = generator( "Something there" , num_return_sequences=__a , num_beams=__a , ) __lowerCAmelCase = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(__a , __a ) __lowerCAmelCase = generator("This is a test" , do_sample=__a , num_return_sequences=2 , return_tensors=__a ) self.assertEqual( __a , [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ] , ) __lowerCAmelCase = generator.model.config.eos_token_id __lowerCAmelCase = "<pad>" __lowerCAmelCase = generator( ["This is a test", "This is a second test"] , do_sample=__a , num_return_sequences=2 , batch_size=2 , return_tensors=__a , ) self.assertEqual( __a , [ [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], ] , ) @require_tf def snake_case ( self ): __lowerCAmelCase = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf" ) # do_sample=False necessary for reproducibility __lowerCAmelCase = generator("Something there" , do_sample=__a ) self.assertEqual(__a , [{"generated_text": ""}] )
57
1
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE = "▁" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = "<unk>" , _SCREAMING_SNAKE_CASE = "</s>" , _SCREAMING_SNAKE_CASE = "<pad>" , ) -> List[Any]: snake_case_ : List[Any] = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } snake_case_ : str = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): snake_case_ : Optional[int] = token_dict["token"] snake_case_ : Dict = Tokenizer(Unigram() ) snake_case_ : Tuple = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}" ) , " " ), normalizers.Lowercase(), ] ) snake_case_ : Tuple = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ), pre_tokenizers.Digits(individual_digits=_SCREAMING_SNAKE_CASE ), pre_tokenizers.Punctuation(), ] ) snake_case_ : List[str] = decoders.Metaspace(replacement=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = TemplateProcessing( single=f'''$A {self.special_tokens['eos']['token']}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) snake_case_ : str = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8000 , _SCREAMING_SNAKE_CASE = True , ) -> Optional[Any]: snake_case_ : Tuple = trainers.UnigramTrainer( vocab_size=_SCREAMING_SNAKE_CASE , special_tokens=self.special_tokens_list , show_progress=_SCREAMING_SNAKE_CASE , ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ : int = [files] self._tokenizer.train(_SCREAMING_SNAKE_CASE , trainer=_SCREAMING_SNAKE_CASE ) self.add_unk_id() def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8000 , _SCREAMING_SNAKE_CASE = True , ) -> List[Any]: snake_case_ : Any = trainers.UnigramTrainer( vocab_size=_SCREAMING_SNAKE_CASE , special_tokens=self.special_tokens_list , show_progress=_SCREAMING_SNAKE_CASE , ) self._tokenizer.train_from_iterator(_SCREAMING_SNAKE_CASE , trainer=_SCREAMING_SNAKE_CASE ) self.add_unk_id() def _lowerCAmelCase ( self ) -> str: snake_case_ : str = json.loads(self._tokenizer.to_str() ) snake_case_ : Any = self.special_tokens["unk"]["id"] snake_case_ : str = Tokenizer.from_str(json.dumps(_SCREAMING_SNAKE_CASE ) )
36
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=4 , ) -> List[str]: snake_case_ : Dict = parent snake_case_ : List[Any] = batch_size snake_case_ : Union[str, Any] = seq_length snake_case_ : Tuple = is_training snake_case_ : List[str] = use_attention_mask snake_case_ : Union[str, Any] = use_token_type_ids snake_case_ : Optional[Any] = use_labels snake_case_ : Tuple = vocab_size snake_case_ : Dict = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : str = hidden_act snake_case_ : List[Any] = hidden_dropout_prob snake_case_ : Optional[int] = attention_probs_dropout_prob snake_case_ : Optional[Any] = max_position_embeddings snake_case_ : Optional[Any] = type_vocab_size snake_case_ : Union[str, Any] = type_sequence_label_size snake_case_ : str = initializer_range snake_case_ : List[Any] = num_choices def _lowerCAmelCase ( self ) -> Union[str, Any]: snake_case_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : str = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Any = None if self.use_token_type_ids: snake_case_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ : int = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs snake_case_ : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : Union[str, Any] = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : str = True snake_case_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A : List[str] = True A : List[str] = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCAmelCase ( self ) -> List[str]: snake_case_ : List[str] = FlaxBertModelTester(self ) @slow def _lowerCAmelCase ( self ) -> Dict: # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. snake_case_ : int = FlaxBertModel.from_pretrained("bert-base-cased" ) snake_case_ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
36
1
class SCREAMING_SNAKE_CASE__ : # Public class to implement a graph '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Union[str, Any] = row A : str = col A : Optional[Any] = graph def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): # Checking all 8 elements surrounding nth element A : str = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order A : str = [-1, 0, 1, -1, 1, -1, 0, 1] A : Any = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k], j + col_nbr[k], lowerCamelCase__ ): self.diffs(i + row_nbr[k], j + col_nbr[k], lowerCamelCase__ ) def _lowerCAmelCase ( self ): # And finally, count all islands. A : Optional[int] = [[False for j in range(self.COL )] for i in range(self.ROW )] A : List[str] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) count += 1 return count
116
from __future__ import annotations from math import ceil, floor, sqrt def __UpperCamelCase ( _lowerCAmelCase = 200_0000 ) -> int: """simple docstring""" A : list[int] = [0] A : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target A : int = 0 # the area corresponding to the grid that gives the product closest to target A : int = 0 # an estimate of b, using the quadratic formula A : float # the largest integer less than b_estimate A : int # the largest integer less than b_estimate A : int # the triangle number corresponding to b_floor A : int # the triangle number corresponding to b_ceil A : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): A : Union[str, Any] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 A : List[Any] = floor(_lowerCAmelCase ) A : Tuple = ceil(_lowerCAmelCase ) A : int = triangle_numbers[b_floor] A : Dict = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): A : Optional[int] = triangle_b_first_guess * triangle_a A : Optional[int] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): A : Tuple = triangle_b_second_guess * triangle_a A : Tuple = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
116
1
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class __A ( UpperCamelCase__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ) -> str: a =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCamelCase , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(__lowerCamelCase , '''num_attention_heads''' ) ) self.parent.assertTrue(hasattr(__lowerCamelCase , '''num_encoder_blocks''' ) ) class __A : """simple docstring""" def __init__( self , __A , __A=13 , __A=64 , __A=3 , __A=4 , __A=[2, 2, 2, 2] , __A=[8, 4, 2, 1] , __A=[16, 32, 64, 128] , __A=[1, 4, 8, 16] , __A=[1, 2, 4, 8] , __A=True , __A=True , __A="gelu" , __A=0.1 , __A=0.1 , __A=0.02 , __A=3 , __A=None , ) -> Dict: a =parent a =batch_size a =image_size a =num_channels a =num_encoder_blocks a =sr_ratios a =depths a =hidden_sizes a =downsampling_rates a =num_attention_heads a =is_training a =use_labels a =hidden_act a =hidden_dropout_prob a =attention_probs_dropout_prob a =initializer_range a =num_labels a =scope def SCREAMING_SNAKE_CASE ( self ) -> Any: a =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a =None if self.use_labels: a =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a =self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> Optional[int]: a =SegformerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a =model(__lowerCamelCase ) a =a =self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> str: a =self.num_labels a =SegformerForSemanticSegmentation(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a =model(__lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) a =model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> Dict: a =1 a =SegformerForSemanticSegmentation(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a =torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(__lowerCamelCase ) a =model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertGreater(result.loss , 0.0 ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =self.prepare_config_and_inputs() a , a , a =config_and_inputs a ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( UpperCamelCase__, UpperCamelCase__, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __lowerCAmelCase = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =SegformerModelTester(self ) a =SegformerConfigTester(self , config_class=__lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self ) -> Any: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*__lowerCamelCase ) @unittest.skip('''SegFormer does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''' ) def SCREAMING_SNAKE_CASE ( self ) -> Any: pass def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =model_class(__lowerCamelCase ) a =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a =[*signature.parameters.keys()] a =['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self ) -> int: a , a =self.model_tester.prepare_config_and_inputs_for_common() a =True for model_class in self.all_model_classes: a =True a =False a =True a =model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) a =outputs.attentions a =sum(self.model_tester.depths ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a =True a =model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) a =outputs.attentions self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) # verify the first attentions (first block, first layer) a =(self.model_tester.image_size // 4) ** 2 a =(self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) a =(self.model_tester.image_size // 32) ** 2 a =(self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) a =len(__lowerCamelCase ) # Check attention is always last and order is fine a =True a =True a =model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + 1 , len(__lowerCamelCase ) ) a =outputs.attentions self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) # verify the first attentions (first block, first layer) a =(self.model_tester.image_size // 4) ** 2 a =(self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: def check_hidden_states_output(__A , __A , __A ): a =model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) a =outputs.hidden_states a =self.model_tester.num_encoder_blocks self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a =True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: if not self.model_tester.is_training: return a , a =self.model_tester.prepare_config_and_inputs_for_common() a =True for model_class in self.all_model_classes: if model_class in get_values(__lowerCamelCase ): continue a =model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() a =self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) a =model(**__lowerCamelCase ).loss loss.backward() @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: pass @slow def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a =SegformerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _A ( ): """simple docstring""" a =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class __A ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: # only resize + normalize a =SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=__lowerCamelCase , align=__lowerCamelCase , do_random_crop=__lowerCamelCase ) a =SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( __lowerCamelCase ) a =prepare_img() a =image_processor(images=__lowerCamelCase , return_tensors='''pt''' ) a =encoded_inputs.pixel_values.to(__lowerCamelCase ) with torch.no_grad(): a =model(__lowerCamelCase ) a =torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) a =torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __lowerCamelCase , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> List[str]: # only resize + normalize a =SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=__lowerCamelCase , align=__lowerCamelCase , do_random_crop=__lowerCamelCase ) a =SegformerForSemanticSegmentation.from_pretrained( '''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''' ).to(__lowerCamelCase ) a =prepare_img() a =image_processor(images=__lowerCamelCase , return_tensors='''pt''' ) a =encoded_inputs.pixel_values.to(__lowerCamelCase ) with torch.no_grad(): a =model(__lowerCamelCase ) a =torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) a =torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __lowerCamelCase , atol=1E-1 ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> List[str]: # only resize + normalize a =SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=__lowerCamelCase , align=__lowerCamelCase , do_random_crop=__lowerCamelCase ) a =SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( __lowerCamelCase ) a =prepare_img() a =image_processor(images=__lowerCamelCase , return_tensors='''pt''' ) a =encoded_inputs.pixel_values.to(__lowerCamelCase ) with torch.no_grad(): a =model(__lowerCamelCase ) a =outputs.logits.detach().cpu() a =image_processor.post_process_semantic_segmentation(outputs=__lowerCamelCase , target_sizes=[(500, 300)] ) a =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __lowerCamelCase ) a =image_processor.post_process_semantic_segmentation(outputs=__lowerCamelCase ) a =torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , __lowerCamelCase )
367
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = IFInpaintingSuperResolutionPipeline __lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} __lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) __lowerCAmelCase = PipelineTesterMixin.required_optional_params - {"latents"} def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE ( self , __A , __A=0 ) -> Optional[int]: if str(__A ).startswith('''mps''' ): a =torch.manual_seed(__A ) else: a =torch.Generator(device=__A ).manual_seed(__A ) a =floats_tensor((1, 3, 16, 16) , rng=random.Random(__A ) ).to(__A ) a =floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A ) a =floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A ) a ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE ( self ) -> int: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def SCREAMING_SNAKE_CASE ( self ) -> Any: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self._test_save_load_local() def SCREAMING_SNAKE_CASE ( self ) -> Dict: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
215
0
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __UpperCamelCase ( unittest.TestCase ): lowercase : Optional[int] =MODEL_FOR_MASKED_LM_MAPPING lowercase : Any =TF_MODEL_FOR_MASKED_LM_MAPPING def lowercase__ ( self ): """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =pipeline(task='''fill-mask''', model='''sshleifer/tiny-distilroberta-base''', top_k=2, framework='''tf''' ) lowerCamelCase_ =unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=6 ), [ {'''sequence''': '''My name is grouped''', '''score''': 2.1e-05, '''token''': 38_015, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1e-05, '''token''': 25_506, '''token_str''': ''' accuser'''}, ], ) lowerCamelCase_ =unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=6 ), [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1e-05, '''token''': 38_015, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1e-05, '''token''': 25_506, '''token_str''': ''' accuser''', }, ], ) lowerCamelCase_ =unmasker('''My name is <mask>''', targets=[''' Patrick''', ''' Clara''', ''' Teven'''], top_k=3 ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=6 ), [ {'''sequence''': '''My name is Clara''', '''score''': 2e-05, '''token''': 13_606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2e-05, '''token''': 3_499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9e-05, '''token''': 2_941, '''token_str''': ''' Te'''}, ], ) @require_torch def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =pipeline(task='''fill-mask''', model='''sshleifer/tiny-distilroberta-base''', top_k=2, framework='''pt''' ) lowerCamelCase_ =unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=6 ), [ {'''sequence''': '''My name is Maul''', '''score''': 2.2e-05, '''token''': 35_676, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2e-05, '''token''': 16_416, '''token_str''': '''ELS'''}, ], ) lowerCamelCase_ =unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=6 ), [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2e-05, '''token''': 35_676, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2e-05, '''token''': 16_416, '''token_str''': '''ELS'''}, ], ) lowerCamelCase_ =unmasker('''My name is <mask>''', targets=[''' Patrick''', ''' Clara''', ''' Teven'''], top_k=3 ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=6 ), [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1e-05, '''token''': 3_499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2e-05, '''token''': 2_941, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2e-05, '''token''': 13_606, '''token_str''': ''' Clara'''}, ], ) lowerCamelCase_ =unmasker('''My name is <mask> <mask>''', top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=6 ), [ [ { '''score''': 2.2e-05, '''token''': 35_676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2e-05, '''token''': 16_416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2e-05, '''token''': 35_676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2e-05, '''token''': 16_416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ], ) @require_torch_gpu def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =pipeline('''fill-mask''', model='''hf-internal-testing/tiny-random-distilbert''', device=0, framework='''pt''' ) # convert model to fp16 pipe.model.half() lowerCamelCase_ =pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) @slow @require_torch def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =pipeline(task='''fill-mask''', model='''distilroberta-base''', top_k=2, framework='''pt''' ) self.run_large_test(lowerCAmelCase ) @slow @require_tf def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =pipeline(task='''fill-mask''', model='''distilroberta-base''', top_k=2, framework='''tf''' ) self.run_large_test(lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(lowerCAmelCase ), [ {'''sequence''': '''My name is John''', '''score''': 0.0_0_8, '''token''': 610, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.0_0_7, '''token''': 1_573, '''token_str''': ''' Chris'''}, ], ) lowerCamelCase_ =unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(lowerCAmelCase ), [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.2_5_1, '''token''': 2_201, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.2_1_4, '''token''': 12_790, '''token_str''': ''' Lyon''', }, ], ) lowerCamelCase_ =unmasker('''My name is <mask>''', targets=[''' Patrick''', ''' Clara''', ''' Teven'''], top_k=3 ) self.assertEqual( nested_simplify(lowerCAmelCase ), [ {'''sequence''': '''My name is Patrick''', '''score''': 0.0_0_5, '''token''': 3_499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.0_0_0, '''token''': 13_606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.0_0_0, '''token''': 2_941, '''token_str''': ''' Te'''}, ], ) @require_torch def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =pipeline(task='''fill-mask''', model='''sshleifer/tiny-distilroberta-base''', framework='''pt''' ) lowerCamelCase_ =None lowerCamelCase_ =None self.run_pipeline_test(lowerCAmelCase, [] ) @require_tf def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =pipeline(task='''fill-mask''', model='''sshleifer/tiny-distilroberta-base''', framework='''tf''' ) lowerCamelCase_ =None lowerCamelCase_ =None self.run_pipeline_test(lowerCAmelCase, [] ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) lowerCamelCase_ =FillMaskPipeline(model=lowerCAmelCase, tokenizer=lowerCAmelCase ) lowerCamelCase_ =[ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =fill_masker.tokenizer lowerCamelCase_ =fill_masker.model lowerCamelCase_ =fill_masker( f'''This is a {tokenizer.mask_token}''', ) self.assertEqual( lowerCAmelCase, [ {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, ], ) lowerCamelCase_ =fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( lowerCAmelCase, [ {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, ], ) lowerCamelCase_ =fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( lowerCAmelCase, [ [ {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, ], [ {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, ], ], ) with self.assertRaises(lowerCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(lowerCAmelCase ): fill_masker('''This is''' ) self.run_test_top_k(lowerCAmelCase, lowerCAmelCase ) self.run_test_targets(lowerCAmelCase, lowerCAmelCase ) self.run_test_top_k_targets(lowerCAmelCase, lowerCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(lowerCAmelCase, lowerCAmelCase ) self.fill_mask_with_multiple_masks(lowerCAmelCase, lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =tokenizer.get_vocab() lowerCamelCase_ =sorted(vocab.keys() )[:2] # Pipeline argument lowerCamelCase_ =FillMaskPipeline(model=lowerCAmelCase, tokenizer=lowerCAmelCase, targets=lowerCAmelCase ) lowerCamelCase_ =fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( lowerCAmelCase, [ {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, ], ) lowerCamelCase_ ={vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs}, lowerCAmelCase ) lowerCamelCase_ =[tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs}, set(lowerCAmelCase ) ) # Call argument lowerCamelCase_ =FillMaskPipeline(model=lowerCAmelCase, tokenizer=lowerCAmelCase ) lowerCamelCase_ =fill_masker(f'''This is a {tokenizer.mask_token}''', targets=lowerCAmelCase ) self.assertEqual( lowerCAmelCase, [ {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, ], ) lowerCamelCase_ ={vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs}, lowerCAmelCase ) lowerCamelCase_ =[tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs}, set(lowerCAmelCase ) ) # Score equivalence lowerCamelCase_ =fill_masker(f'''This is a {tokenizer.mask_token}''', targets=lowerCAmelCase ) lowerCamelCase_ =[top_mask['''token_str'''] for top_mask in outputs] lowerCamelCase_ =[top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowerCAmelCase ) == set(lowerCAmelCase ): lowerCamelCase_ =fill_masker(f'''This is a {tokenizer.mask_token}''', targets=lowerCAmelCase ) lowerCamelCase_ =[top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(lowerCAmelCase ), nested_simplify(lowerCAmelCase ) ) # Raises with invalid with self.assertRaises(lowerCAmelCase ): lowerCamelCase_ =fill_masker(f'''This is a {tokenizer.mask_token}''', targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(lowerCAmelCase ): lowerCamelCase_ =fill_masker(f'''This is a {tokenizer.mask_token}''', targets=[''''''] ) with self.assertRaises(lowerCAmelCase ): lowerCamelCase_ =fill_masker(f'''This is a {tokenizer.mask_token}''', targets='''''' ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =FillMaskPipeline(model=lowerCAmelCase, tokenizer=lowerCAmelCase, top_k=2 ) lowerCamelCase_ =fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( lowerCAmelCase, [ {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, ], ) lowerCamelCase_ =FillMaskPipeline(model=lowerCAmelCase, tokenizer=lowerCAmelCase ) lowerCamelCase_ =fill_masker(f'''This is a {tokenizer.mask_token}''', top_k=2 ) self.assertEqual( lowerCAmelCase, [ {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, ], ) self.assertEqual(nested_simplify(lowerCAmelCase ), nested_simplify(lowerCAmelCase ) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =tokenizer.get_vocab() lowerCamelCase_ =FillMaskPipeline(model=lowerCAmelCase, tokenizer=lowerCAmelCase ) # top_k=2, ntargets=3 lowerCamelCase_ =sorted(vocab.keys() )[:3] lowerCamelCase_ =fill_masker(f'''This is a {tokenizer.mask_token}''', top_k=2, targets=lowerCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results lowerCamelCase_ =[el['''token_str'''] for el in sorted(lowerCAmelCase, key=lambda lowerCAmelCase : x["score"], reverse=lowerCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowerCAmelCase ).issubset(lowerCAmelCase ): lowerCamelCase_ =fill_masker(f'''This is a {tokenizer.mask_token}''', top_k=3, targets=lowerCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(lowerCAmelCase ), nested_simplify(lowerCAmelCase ) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =FillMaskPipeline(model=lowerCAmelCase, tokenizer=lowerCAmelCase ) lowerCamelCase_ =tokenizer.get_vocab() # String duplicates + id duplicates lowerCamelCase_ =sorted(vocab.keys() )[:3] lowerCamelCase_ =[targets[0], targets[1], targets[0], targets[2], targets[1]] lowerCamelCase_ =fill_masker(f'''My name is {tokenizer.mask_token}''', targets=lowerCAmelCase, top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(lowerCAmelCase ), 3 ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =FillMaskPipeline(model=lowerCAmelCase, tokenizer=lowerCAmelCase ) lowerCamelCase_ =fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''', top_k=2 ) self.assertEqual( lowerCAmelCase, [ [ {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, ], [ {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, ], [ {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, {'''sequence''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase ), '''token''': ANY(lowerCAmelCase ), '''token_str''': ANY(lowerCAmelCase )}, ], ], )
75
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '▁' lowerCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } lowerCAmelCase_ = { 'facebook/xglm-564M': 2_048, } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self : int ,_snake_case : Dict ,_snake_case : Dict="<s>" ,_snake_case : Dict="</s>" ,_snake_case : str="</s>" ,_snake_case : Optional[Any]="<s>" ,_snake_case : Optional[Any]="<unk>" ,_snake_case : Optional[int]="<pad>" ,_snake_case : Optional[Dict[str, Any]] = None ,**_snake_case : str ,) -> None: """simple docstring""" lowercase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase__ : Any = 7 lowercase__ : Optional[int] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] lowercase__ : Dict = kwargs.get('''additional_special_tokens''' ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,cls_token=_snake_case ,pad_token=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**_snake_case ,) lowercase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) lowercase__ : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ : Optional[int] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ : Optional[int] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase__ : List[str] = len(self.sp_model ) lowercase__ : Tuple = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_snake_case ) lowercase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = self.__dict__.copy() lowercase__ : Optional[int] = None lowercase__ : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict ,_snake_case : List[str] ) -> Any: """simple docstring""" lowercase__ : int = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowercase__ : Dict = {} lowercase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase__ : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : List[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_snake_case ,out_type=_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : Tuple = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self : Any ,_snake_case : List[str] ) -> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self : Tuple ,_snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = ''''''.join(_snake_case ).replace(_snake_case ,''' ''' ).strip() return out_string def UpperCAmelCase ( self : Any ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Any = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case ,'''wb''' ) as fi: lowercase__ : Dict = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
16
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : str = """▁""" _SCREAMING_SNAKE_CASE : List[str] = {"""vocab_file""": """sentencepiece.bpe.model"""} _SCREAMING_SNAKE_CASE : List[str] = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model""" ), } } _SCREAMING_SNAKE_CASE : str = { """facebook/nllb-200-distilled-600M""": 1_0_2_4, } # fmt: off _SCREAMING_SNAKE_CASE : Optional[Any] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class __a ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] def __init__( self : Tuple , lowercase_ : Any , lowercase_ : Any="<s>" , lowercase_ : Tuple="</s>" , lowercase_ : Optional[int]="</s>" , lowercase_ : int="<s>" , lowercase_ : Union[str, Any]="<unk>" , lowercase_ : int="<pad>" , lowercase_ : Optional[Any]="<mask>" , lowercase_ : str=None , lowercase_ : str=None , lowercase_ : List[str]=None , lowercase_ : Dict = None , lowercase_ : Optional[Any]=None , lowercase_ : List[Any]=False , **lowercase_ : Optional[int] , ): UpperCamelCase__ : Dict =AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token UpperCamelCase__ : List[Any] ={} if sp_model_kwargs is None else sp_model_kwargs UpperCamelCase__ : Union[str, Any] =legacy_behaviour super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : str =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : Dict =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase__ : int ={'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase__ : List[Any] =1 UpperCamelCase__ : Optional[Any] =len(self.sp_model ) UpperCamelCase__ : Any ={ code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__SCREAMING_SNAKE_CASE ) } UpperCamelCase__ : str ={v: k for k, v in self.lang_code_to_id.items()} UpperCamelCase__ : str =len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCamelCase__ : List[str] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCamelCase__ : List[str] =list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCamelCase__ : Any =src_lang if src_lang is not None else '''eng_Latn''' UpperCamelCase__ : Optional[Any] =self.lang_code_to_id[self._src_lang] UpperCamelCase__ : Optional[Any] =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Union[str, Any] ): UpperCamelCase__ : Tuple =self.__dict__.copy() UpperCamelCase__ : Tuple =None UpperCamelCase__ : int =self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[int] , lowercase_ : Dict ): UpperCamelCase__ : int =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase__ : Optional[int] ={} UpperCamelCase__ : List[str] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _lowerCAmelCase ( self : str ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _lowerCAmelCase ( self : Tuple ): return self._src_lang @src_lang.setter def _lowerCAmelCase ( self : Optional[Any] , lowercase_ : Optional[Any] ): UpperCamelCase__ : Optional[Any] =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowerCAmelCase ( self : Union[str, Any] , lowercase_ : Dict , lowercase_ : str = None , lowercase_ : int = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] =[1] * len(self.prefix_tokens ) UpperCamelCase__ : int =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones def _lowerCAmelCase ( self : int , lowercase_ : Tuple , lowercase_ : Any = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCAmelCase ( self : Optional[int] , lowercase_ : Any , lowercase_ : str = None ): UpperCamelCase__ : Any =[self.sep_token_id] UpperCamelCase__ : Tuple =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Optional[int] , **lowercase_ : Union[str, Any] ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase__ : Union[str, Any] =src_lang UpperCamelCase__ : List[str] =self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any =self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] =tgt_lang_id return inputs def _lowerCAmelCase ( self : Optional[int] ): UpperCamelCase__ : Optional[int] ={self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCAmelCase ( self : Tuple , lowercase_ : str ): return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Tuple , lowercase_ : str ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase__ : Dict =self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _lowerCAmelCase ( self : Dict , lowercase_ : Tuple ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _lowerCAmelCase ( self : int , lowercase_ : Optional[int] ): UpperCamelCase__ : Tuple =''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowerCAmelCase ( self : int , lowercase_ : List[str] , lowercase_ : List[str] = None ): if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase__ : Dict =os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: UpperCamelCase__ : Optional[Any] =self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _lowerCAmelCase ( self : int , lowercase_ : str , lowercase_ : Dict = "eng_Latn" , lowercase_ : Optional[Any] = None , lowercase_ : Any = "fra_Latn" , **lowercase_ : Optional[Any] , ): UpperCamelCase__ : int =src_lang UpperCamelCase__ : int =tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Any ): return self.set_src_lang_special_tokens(self.src_lang ) def _lowerCAmelCase ( self : Tuple ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowerCAmelCase ( self : int , lowercase_ : int ): UpperCamelCase__ : int =self.lang_code_to_id[src_lang] if self.legacy_behaviour: UpperCamelCase__ : Tuple =[] UpperCamelCase__ : List[Any] =[self.eos_token_id, self.cur_lang_code] else: UpperCamelCase__ : Dict =[self.cur_lang_code] UpperCamelCase__ : Dict =[self.eos_token_id] def _lowerCAmelCase ( self : List[str] , lowercase_ : Dict ): UpperCamelCase__ : Union[str, Any] =self.lang_code_to_id[lang] if self.legacy_behaviour: UpperCamelCase__ : List[Any] =[] UpperCamelCase__ : List[Any] =[self.eos_token_id, self.cur_lang_code] else: UpperCamelCase__ : Tuple =[self.cur_lang_code] UpperCamelCase__ : Any =[self.eos_token_id]
352
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : Tuple = logging.getLogger(__name__) @dataclass(frozen=snake_case__ ) class __a : """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None @dataclass(frozen=snake_case__ ) class __a : """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if is_torch_available(): import torch from torch.utils.data import Dataset class __a ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 def __init__( self : Optional[int] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : Optional[int]=False , lowercase_ : bool = False , ): UpperCamelCase__ : Tuple =hans_processors[task]() UpperCamelCase__ : Union[str, Any] =os.path.join( lowercase_ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCamelCase__ : int =processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] =label_list[2], label_list[1] UpperCamelCase__ : List[Any] =label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCamelCase__ : Any =cached_features_file + '''.lock''' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) UpperCamelCase__ : Optional[int] =torch.load(lowercase_ ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) UpperCamelCase__ : str =( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('''Training examples: %s''' , len(lowercase_ ) ) UpperCamelCase__ : Tuple =hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('''Saving features into cached file %s''' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ): return len(self.features ) def __getitem__( self : Optional[int] , lowercase_ : Optional[Any] ): return self.features[i] def _lowerCAmelCase ( self : int ): return self.label_list if is_tf_available(): import tensorflow as tf class __a : """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 def __init__( self : Any , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : Union[str, Any]=False , lowercase_ : bool = False , ): UpperCamelCase__ : Any =hans_processors[task]() UpperCamelCase__ : Tuple =processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase__ , UpperCamelCase__ : Tuple =label_list[2], label_list[1] UpperCamelCase__ : Union[str, Any] =label_list UpperCamelCase__ : Any =processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCamelCase__ : Union[str, Any] =hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCamelCase__ : Optional[Any] =tf.data.Dataset.from_generator( lowercase_ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _lowerCAmelCase ( self : Optional[Any] ): return self.dataset def __len__( self : str ): return len(self.features ) def __getitem__( self : List[str] , lowercase_ : Dict ): return self.features[i] def _lowerCAmelCase ( self : Dict ): return self.label_list class __a ( snake_case__ ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] , lowercase_ : Union[str, Any] ): return self._create_examples(self._read_tsv(os.path.join(lowercase_ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def _lowerCAmelCase ( self : Tuple , lowercase_ : Optional[int] ): return self._create_examples(self._read_tsv(os.path.join(lowercase_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def _lowerCAmelCase ( self : List[Any] ): return ["contradiction", "entailment", "neutral"] def _lowerCAmelCase ( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[str] ): UpperCamelCase__ : Tuple =[] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCamelCase__ : str ='''%s-%s''' % (set_type, line[0]) UpperCamelCase__ : str =line[5] UpperCamelCase__ : Any =line[6] UpperCamelCase__ : Optional[int] =line[7][2:] if line[7].startswith('''ex''' ) else line[7] UpperCamelCase__ : str =line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def _lowerCAmelCase ( UpperCAmelCase : List[InputExample] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : PreTrainedTokenizer , ): '''simple docstring''' UpperCamelCase__ : List[str] ={label: i for i, label in enumerate(UpperCAmelCase )} UpperCamelCase__ : int =[] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase ) , desc='''convert examples to features''' ): if ex_index % 10_000 == 0: logger.info('''Writing example %d''' % (ex_index) ) UpperCamelCase__ : str =tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' , truncation=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , ) UpperCamelCase__ : str =label_map[example.label] if example.label in label_map else 0 UpperCamelCase__ : int =int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase , label=UpperCAmelCase , pairID=UpperCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(F'''guid: {example}''' ) logger.info(F'''features: {features[i]}''' ) return features _SCREAMING_SNAKE_CASE : List[str] = { """hans""": 3, } _SCREAMING_SNAKE_CASE : Tuple = { """hans""": HansProcessor, }
157
0
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCAmelCase ( _lowerCamelCase ): '''simple docstring''' @staticmethod @abstractmethod def __A ( lowerCAmelCase__ ) -> Dict: raise NotImplementedError() @abstractmethod def __A ( self ) -> Optional[int]: raise NotImplementedError()
113
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : int = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] lowerCAmelCase__ : Union[str, Any] = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def UpperCamelCase__ ( A__ , A__ ) -> List[str]: snake_case__ : Optional[Any] = { 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks snake_case__ : Dict = int(re.match(r'.*layer_(\d*).*' , A__ )[1] ) layer_number -= 3 return F"""h.{layer_number}.""" + key def UpperCamelCase__ ( A__ ) -> str: if dtype == torch.bool: return 1 / 8 snake_case__ : List[str] = re.search(r'[^\d](\d+)$' , str(A__ ) ) if bit_search is None: raise ValueError(F"""`dtype` is not a valid dtype: {dtype}.""" ) snake_case__ : Union[str, Any] = int(bit_search.groups()[0] ) return bit_size // 8 def UpperCamelCase__ ( A__ , A__ , A__ , A__ , A__ ) -> List[str]: # Construct model if bloom_config_file == "": snake_case__ : Union[str, Any] = BloomConfig() else: snake_case__ : int = BloomConfig.from_json_file(A__ ) if shard_model: snake_case__ : Tuple = os.listdir(A__ ) snake_case__ : str = sorted(filter(lambda A__ : s.startswith('layer' ) and "model_00" in s , A__ ) ) snake_case__ : str = {'weight_map': {}, 'metadata': {}} snake_case__ : Optional[int] = 0 snake_case__ : Tuple = None snake_case__ : Any = BloomConfig() for j, file in enumerate(A__ ): print('Processing file: {}'.format(A__ ) ) snake_case__ : str = None for i in range(A__ ): # load all TP files snake_case__ : Optional[int] = file.replace('model_00' , F"""model_0{i}""" ) snake_case__ : int = torch.load(os.path.join(A__ , A__ ) , map_location='cpu' ) # Rename keys in the transformers names snake_case__ : List[Any] = list(temp.keys() ) for key in keys: snake_case__ : List[Any] = temp.pop(A__ ) if tensors is None: snake_case__ : Optional[Any] = temp else: for key in tensors.keys(): if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case__ : Dict = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case__ : Optional[int] = torch.cat([tensors[key], temp[key]] , dim=A__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case__ : Dict = tensors[key] / pretraining_tp torch.save( A__ , os.path.join( A__ , 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) , str(len(A__ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): snake_case__ : List[Any] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: snake_case__ : Optional[int] = 'pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) , str(len(A__ ) ).zfill(5 ) ) snake_case__ : Dict = BloomConfig() snake_case__ : str = pytorch_dump_folder_path + '/' + CONFIG_NAME snake_case__ : int = total_size with open(A__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(A__ , WEIGHTS_NAME + '.index.json' ) , 'w' , encoding='utf-8' ) as f: snake_case__ : List[str] = json.dumps(A__ , indent=2 , sort_keys=A__ ) + '\n' f.write(A__ ) else: snake_case__ : int = BloomModel(A__ ) snake_case__ : Dict = os.listdir(A__ ) snake_case__ : Union[str, Any] = sorted(filter(lambda A__ : s.startswith('layer' ) and "model_00" in s , A__ ) ) snake_case__ : List[str] = None for i, file in enumerate(A__ ): snake_case__ : Dict = None for i in range(A__ ): # load all TP files snake_case__ : List[Any] = file.replace('model_00' , F"""model_0{i}""" ) snake_case__ : int = torch.load(os.path.join(A__ , A__ ) , map_location='cpu' ) # Rename keys in the transformers names snake_case__ : List[str] = list(temp.keys() ) for key in keys: snake_case__ : Any = temp.pop(A__ ) if tensors is None: snake_case__ : Union[str, Any] = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case__ : int = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case__ : Optional[Any] = torch.cat([tensors[key], temp[key]] , dim=A__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case__ : Optional[int] = tensors[key] / pretraining_tp snake_case__ : int = model.load_state_dict(A__ , strict=A__ ) assert not other_keys.unexpected_keys, F"""The keys {other_keys.unexpected_keys} are unexpected""" if missing_keys is None: snake_case__ : List[Any] = set(other_keys.missing_keys ) else: snake_case__ : Tuple = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F"""The keys {missing_keys} are missing""" # Save pytorch-model os.makedirs(A__ , exist_ok=A__ ) snake_case__ : Any = pytorch_dump_folder_path + '/' + WEIGHTS_NAME snake_case__ : List[Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" ) if config.torch_dtype is not None: snake_case__ : str = model.to(config.torch_dtype ) torch.save(model.state_dict() , A__ ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(A__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) lowerCAmelCase__ : Any = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
143
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _A = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase_ ) class A ( lowerCAmelCase_ ): def __init__( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" super().__init__(*__lowerCAmelCase, **__lowerCAmelCase ) requires_backends(self, '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__=None ): """simple docstring""" lowerCAmelCase_ = {} lowerCAmelCase_ = {} if prompt is not None: lowerCAmelCase_ = prompt if generate_kwargs is not None: lowerCAmelCase_ = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowerCAmelCase_ = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) lowerCAmelCase_ = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self, UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return super().__call__(__lowerCAmelCase, **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=None ): """simple docstring""" lowerCAmelCase_ = load_image(__lowerCAmelCase ) if prompt is not None: if not isinstance(__lowerCAmelCase, __lowerCAmelCase ): raise ValueError( f"Received an invalid text input, got - {type(__lowerCAmelCase )} - but expected a single string. " '''Note also that one single text can be provided for conditional image to text generation.''' ) lowerCAmelCase_ = self.model.config.model_type if model_type == "git": lowerCAmelCase_ = self.image_processor(images=__lowerCAmelCase, return_tensors=self.framework ) lowerCAmelCase_ = self.tokenizer(text=__lowerCAmelCase, add_special_tokens=__lowerCAmelCase ).input_ids lowerCAmelCase_ = [self.tokenizer.cls_token_id] + input_ids lowerCAmelCase_ = torch.tensor(__lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": lowerCAmelCase_ = self.image_processor(images=__lowerCAmelCase, header_text=__lowerCAmelCase, return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowerCAmelCase_ = self.image_processor(images=__lowerCAmelCase, return_tensors=self.framework ) lowerCAmelCase_ = self.tokenizer(__lowerCAmelCase, return_tensors=self.framework ) model_inputs.update(__lowerCAmelCase ) else: raise ValueError(f"Model type {model_type} does not support conditional text generation" ) else: lowerCAmelCase_ = self.image_processor(images=__lowerCAmelCase, return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowerCAmelCase_ = None return model_inputs def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=None ): """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''], __lowerCAmelCase ) and all(x is None for x in model_inputs['''input_ids'''] ) ): lowerCAmelCase_ = None if generate_kwargs is None: lowerCAmelCase_ = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowerCAmelCase_ = model_inputs.pop(self.model.main_input_name ) lowerCAmelCase_ = self.model.generate(__lowerCAmelCase, **__lowerCAmelCase, **__lowerCAmelCase ) return model_outputs def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = [] for output_ids in model_outputs: lowerCAmelCase_ = { '''generated_text''': self.tokenizer.decode( __lowerCAmelCase, skip_special_tokens=__lowerCAmelCase, ) } records.append(__lowerCAmelCase ) return records
358
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class A ( unittest.TestCase ): def __init__( self, UpperCamelCase__, UpperCamelCase__=7, UpperCamelCase__=3, UpperCamelCase__=30, UpperCamelCase__=400, UpperCamelCase__=True, UpperCamelCase__=None, UpperCamelCase__=True, UpperCamelCase__=[0.5, 0.5, 0.5], UpperCamelCase__=[0.5, 0.5, 0.5], UpperCamelCase__=True, UpperCamelCase__=1 / 255, UpperCamelCase__=True, ): """simple docstring""" lowerCAmelCase_ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = min_resolution lowerCAmelCase_ = max_resolution lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean lowerCAmelCase_ = image_std lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_pad def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=False ): """simple docstring""" if not batched: lowerCAmelCase_ = image_inputs[0] if isinstance(UpperCamelCase__, Image.Image ): lowerCAmelCase_ , lowerCAmelCase_ = image.size else: lowerCAmelCase_ , lowerCAmelCase_ = image.shape[1], image.shape[2] if w < h: lowerCAmelCase_ = int(self.size['''shortest_edge'''] * h / w ) lowerCAmelCase_ = self.size['''shortest_edge'''] elif w > h: lowerCAmelCase_ = self.size['''shortest_edge'''] lowerCAmelCase_ = int(self.size['''shortest_edge'''] * w / h ) else: lowerCAmelCase_ = self.size['''shortest_edge'''] lowerCAmelCase_ = self.size['''shortest_edge'''] else: lowerCAmelCase_ = [] for image in image_inputs: lowerCAmelCase_ , lowerCAmelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase_ = max(UpperCamelCase__, key=lambda UpperCamelCase__ : item[0] )[0] lowerCAmelCase_ = max(UpperCamelCase__, key=lambda UpperCamelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A ( __UpperCAmelCase , unittest.TestCase ): __snake_case = DeformableDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = DeformableDetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__, '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''do_rescale''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''do_pad''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''size''' ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad, UpperCamelCase__ ) lowerCAmelCase_ = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=UpperCamelCase__ ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, Image.Image ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__, batched=UpperCamelCase__ ) lowerCAmelCase_ = image_processing(UpperCamelCase__, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__, numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, np.ndarray ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCAmelCase_ = image_processing(UpperCamelCase__, return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__, batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__, torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, torch.Tensor ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCAmelCase_ = image_processing(UpperCamelCase__, return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__, batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''', '''r''' ) as f: lowerCAmelCase_ = json.loads(f.read() ) lowerCAmelCase_ = {'''image_id''': 3_9769, '''annotations''': target} # encode them lowerCAmelCase_ = DeformableDetrImageProcessor() lowerCAmelCase_ = image_processing(images=UpperCamelCase__, annotations=UpperCamelCase__, return_tensors='''pt''' ) # verify pixel values lowerCAmelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3], UpperCamelCase__, atol=1E-4 ) ) # verify area lowerCAmelCase_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''], UpperCamelCase__ ) ) # verify boxes lowerCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0], UpperCamelCase__, atol=1E-3 ) ) # verify image_id lowerCAmelCase_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''], UpperCamelCase__ ) ) # verify is_crowd lowerCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''], UpperCamelCase__ ) ) # verify class_labels lowerCAmelCase_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''], UpperCamelCase__ ) ) # verify orig_size lowerCAmelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''], UpperCamelCase__ ) ) # verify size lowerCAmelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''], UpperCamelCase__ ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''', '''r''' ) as f: lowerCAmelCase_ = json.loads(f.read() ) lowerCAmelCase_ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} lowerCAmelCase_ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowerCAmelCase_ = DeformableDetrImageProcessor(format='''coco_panoptic''' ) lowerCAmelCase_ = image_processing(images=UpperCamelCase__, annotations=UpperCamelCase__, masks_path=UpperCamelCase__, return_tensors='''pt''' ) # verify pixel values lowerCAmelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3], UpperCamelCase__, atol=1E-4 ) ) # verify area lowerCAmelCase_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''], UpperCamelCase__ ) ) # verify boxes lowerCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0], UpperCamelCase__, atol=1E-3 ) ) # verify image_id lowerCAmelCase_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''], UpperCamelCase__ ) ) # verify is_crowd lowerCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''], UpperCamelCase__ ) ) # verify class_labels lowerCAmelCase_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''], UpperCamelCase__ ) ) # verify masks lowerCAmelCase_ = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item(), UpperCamelCase__ ) # verify orig_size lowerCAmelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''], UpperCamelCase__ ) ) # verify size lowerCAmelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''], UpperCamelCase__ ) )
167
0
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
44
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
44
1
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 6008_5147_5143 ) -> int: try: lowerCamelCase__ : Optional[int] = int(_UpperCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) lowerCamelCase__ : Optional[int] = 2 lowerCamelCase__ : int = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 lowerCamelCase__ : int = i while n % i == 0: lowerCamelCase__ : str = n // i i += 1 return int(_UpperCAmelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
45
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> float: return 10 - x * x def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(_UpperCAmelCase ) * equation(_UpperCAmelCase ) >= 0: raise ValueError('Wrong space!' ) lowerCamelCase__ : Tuple = a while (b - a) >= 0.01: # Find middle point lowerCamelCase__ : Optional[int] = (a + b) / 2 # Check if middle point is root if equation(_UpperCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_UpperCAmelCase ) * equation(_UpperCAmelCase ) < 0: lowerCamelCase__ : Tuple = c else: lowerCamelCase__ : Optional[int] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
45
1
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowerCAmelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = "arrow" , **lowerCAmelCase__ , ) -> List[Any]: super().__init__( split=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ , streaming=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = load_from_cache_file SCREAMING_SNAKE_CASE = file_format SCREAMING_SNAKE_CASE = Spark( df=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , working_dir=lowerCAmelCase__ , **lowerCAmelCase__ , ) def __A ( self ) -> Tuple: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) SCREAMING_SNAKE_CASE = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowerCAmelCase__ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
113
def __snake_case ( _lowerCAmelCase : list ) -> list: if len(_lowerCAmelCase ) <= 1: return [tuple(_lowerCAmelCase )] A_ : Tuple = [] def generate(_lowerCAmelCase : int , _lowerCAmelCase : list ): A_ : List[str] = [0] * n res.append(tuple(_lowerCAmelCase ) ) A_ : int = 0 while i < n: if c[i] < i: if i % 2 == 0: A_ , A_ : str = arr[i], arr[0] else: A_ , A_ : List[str] = arr[i], arr[c[i]] res.append(tuple(_lowerCAmelCase ) ) c[i] += 1 A_ : Tuple = 0 else: A_ : Dict = 0 i += 1 generate(len(_lowerCAmelCase ) , _lowerCAmelCase ) return res if __name__ == "__main__": _lowerCAmelCase : str = input('''Enter numbers separated by a comma:\n''').strip() _lowerCAmelCase : str = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
300
0
import math def A_ ( _UpperCAmelCase , _UpperCAmelCase ): if ( not isinstance(_UpperCAmelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * power_factor def A_ ( _UpperCAmelCase , _UpperCAmelCase ): if ( not isinstance(_UpperCAmelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
127
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase : int _UpperCAmelCase : int class __lowercase : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: list[list[Edge]] = [[] for _ in range(lowerCAmelCase__)] SCREAMING_SNAKE_CASE_: Dict = size def __getitem__( self : Dict , lowerCAmelCase__ : int): return iter(self._graph[vertex]) @property def _SCREAMING_SNAKE_CASE ( self : Tuple): return self._size def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1.") if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size).") self._graph[from_vertex].append(Edge(lowerCAmelCase__ , lowerCAmelCase__)) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = deque([start_vertex]) SCREAMING_SNAKE_CASE_: list[int | None] = [None] * self.size SCREAMING_SNAKE_CASE_: List[Any] = 0 while queue: SCREAMING_SNAKE_CASE_: int = queue.popleft() SCREAMING_SNAKE_CASE_: str = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: SCREAMING_SNAKE_CASE_: Optional[int] = current_distance + edge.weight SCREAMING_SNAKE_CASE_: str = distances[edge.destination_vertex] if ( isinstance(lowerCAmelCase__ , lowerCAmelCase__) and new_distance >= dest_vertex_distance ): continue SCREAMING_SNAKE_CASE_: Any = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex) else: queue.append(edge.destination_vertex) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex.") return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
127
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any]=12 , __UpperCamelCase : Optional[Any]=7 , __UpperCamelCase : List[str]=True , __UpperCamelCase : List[Any]=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : int=99 , __UpperCamelCase : str=32 , __UpperCamelCase : int=32 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : Any=37 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : str=512 , __UpperCamelCase : Optional[Any]=0.0_2 , __UpperCamelCase : Optional[Any]=0 , __UpperCamelCase : List[str]=None , ) -> int: _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCamelCase ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(__UpperCamelCase ) def _UpperCamelCase ( self : Dict ) -> List[str]: return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _UpperCamelCase ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Dict ) -> Tuple: _UpperCamelCase = TFBlipTextModel(config=__UpperCamelCase ) _UpperCamelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , training=__UpperCamelCase ) _UpperCamelCase = model(__UpperCamelCase , training=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCamelCase ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _lowercase , unittest.TestCase): snake_case__ = (TFBlipTextModel,) if is_tf_available() else () snake_case__ = False snake_case__ = False snake_case__ = False def _UpperCamelCase ( self : Union[str, Any] ) -> List[str]: _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def _UpperCamelCase ( self : List[Any] ) -> Dict: self.config_tester.run_common_tests() def _UpperCamelCase ( self : List[Any] ) -> str: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCamelCase ( self : Tuple ) -> Tuple: pass def _UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def _UpperCamelCase ( self : Tuple ) -> List[Any]: pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def _UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def _UpperCamelCase ( self : List[Any] ) -> Any: pass @slow def _UpperCamelCase ( self : str ) -> Optional[int]: for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def _UpperCamelCase ( self : Tuple , __UpperCamelCase : List[str]=True ) -> Union[str, Any]: super().test_pt_tf_model_equivalence(allow_missing_keys=__UpperCamelCase )
256
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments UpperCAmelCase = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ ( _lowercase): snake_case__ = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''}) snake_case__ = field(default=_lowercase , metadata={'''help''': '''Whether to SortishSamler or not.'''}) snake_case__ = field( default=_lowercase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''}) snake_case__ = field(default=_lowercase , metadata={'''help''': '''whether to use adafactor'''}) snake_case__ = field( default=_lowercase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''}) snake_case__ = field( default=_lowercase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''}) snake_case__ = field(default=_lowercase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''}) snake_case__ = field( default=_lowercase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''}) snake_case__ = field( default='''linear''' , metadata={'''help''': F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys())}'''} , )
256
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __UpperCamelCase = 25_0004 __UpperCamelCase = 25_0020 @require_sentencepiece @require_tokenizers class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = MBartTokenizer SCREAMING_SNAKE_CASE_ = MBartTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def a_ ( self) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing snake_case_ = MBartTokenizer(lowerCAmelCase__, keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def a_ ( self) -> Dict: snake_case_ = MBartTokenizer(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = tokenizer.tokenize('This is a test') self.assertListEqual(lowerCAmelCase__, ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) snake_case_ = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowerCAmelCase__, [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ], ) snake_case_ = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ], ) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__, [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ], ) def a_ ( self) -> Any: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case_ = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): snake_case_ = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__, **lowerCAmelCase__) snake_case_ = self.tokenizer_class.from_pretrained(lowerCAmelCase__, **lowerCAmelCase__) snake_case_ = tempfile.mkdtemp() snake_case_ = tokenizer_r.save_pretrained(lowerCAmelCase__) snake_case_ = tokenizer_p.save_pretrained(lowerCAmelCase__) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files)) snake_case_ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f) self.assertSequenceEqual(lowerCAmelCase__, lowerCAmelCase__) # Checks everything loads correctly in the same way snake_case_ = tokenizer_r.from_pretrained(lowerCAmelCase__) snake_case_ = tokenizer_p.from_pretrained(lowerCAmelCase__) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__, lowerCAmelCase__)) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase__) # Save tokenizer rust, legacy_format=True snake_case_ = tempfile.mkdtemp() snake_case_ = tokenizer_r.save_pretrained(lowerCAmelCase__, legacy_format=lowerCAmelCase__) snake_case_ = tokenizer_p.save_pretrained(lowerCAmelCase__) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase__, lowerCAmelCase__) # Checks everything loads correctly in the same way snake_case_ = tokenizer_r.from_pretrained(lowerCAmelCase__) snake_case_ = tokenizer_p.from_pretrained(lowerCAmelCase__) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__, lowerCAmelCase__)) shutil.rmtree(lowerCAmelCase__) # Save tokenizer rust, legacy_format=False snake_case_ = tempfile.mkdtemp() snake_case_ = tokenizer_r.save_pretrained(lowerCAmelCase__, legacy_format=lowerCAmelCase__) snake_case_ = tokenizer_p.save_pretrained(lowerCAmelCase__) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way snake_case_ = tokenizer_r.from_pretrained(lowerCAmelCase__) snake_case_ = tokenizer_p.from_pretrained(lowerCAmelCase__) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__, lowerCAmelCase__)) shutil.rmtree(lowerCAmelCase__) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase ( unittest.TestCase ): SCREAMING_SNAKE_CASE_ = "facebook/mbart-large-en-ro" SCREAMING_SNAKE_CASE_ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] SCREAMING_SNAKE_CASE_ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] SCREAMING_SNAKE_CASE_ = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def a_ ( cls) -> Tuple: snake_case_ = MBartTokenizer.from_pretrained( cls.checkpoint_name, src_lang='en_XX', tgt_lang='ro_RO') snake_case_ = 1 return cls def a_ ( self) -> str: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'], 25_0001) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'], 25_0004) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'], 25_0020) def a_ ( self) -> Any: snake_case_ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens, lowerCAmelCase__) def a_ ( self) -> Any: self.assertIn(lowerCAmelCase__, self.tokenizer.all_special_ids) snake_case_ = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] snake_case_ = self.tokenizer.decode(lowerCAmelCase__, skip_special_tokens=lowerCAmelCase__) snake_case_ = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__, lowerCAmelCase__) self.assertNotIn(self.tokenizer.eos_token, lowerCAmelCase__) def a_ ( self) -> str: snake_case_ = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0], lowerCAmelCase__) snake_case_ = 10 snake_case_ = self.tokenizer(lowerCAmelCase__, max_length=lowerCAmelCase__, truncation=lowerCAmelCase__).input_ids[0] self.assertEqual(ids[-2], 2) self.assertEqual(ids[-1], lowerCAmelCase__) self.assertEqual(len(lowerCAmelCase__), lowerCAmelCase__) def a_ ( self) -> str: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR']), [25_0026, 25_0001]) def a_ ( self) -> List[Any]: snake_case_ = tempfile.mkdtemp() snake_case_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase__) snake_case_ = MBartTokenizer.from_pretrained(lowerCAmelCase__) self.assertDictEqual(new_tok.fairseq_tokens_to_ids, lowerCAmelCase__) @require_torch def a_ ( self) -> int: snake_case_ = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=lowerCAmelCase__, return_tensors='pt') snake_case_ = shift_tokens_right(batch['labels'], self.tokenizer.pad_token_id) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def a_ ( self) -> str: snake_case_ = self.tokenizer( self.src_text, text_target=self.tgt_text, padding=lowerCAmelCase__, truncation=lowerCAmelCase__, max_length=len(self.expected_src_tokens), return_tensors='pt', ) snake_case_ = shift_tokens_right(batch['labels'], self.tokenizer.pad_token_id) self.assertIsInstance(lowerCAmelCase__, lowerCAmelCase__) self.assertEqual((2, 14), batch.input_ids.shape) self.assertEqual((2, 14), batch.attention_mask.shape) snake_case_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, lowerCAmelCase__) self.assertEqual(2, batch.decoder_input_ids[0, -1]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, []) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id, EN_CODE]) def a_ ( self) -> Optional[Any]: snake_case_ = self.tokenizer(self.src_text, padding=lowerCAmelCase__, truncation=lowerCAmelCase__, max_length=3, return_tensors='pt') snake_case_ = self.tokenizer( text_target=self.tgt_text, padding=lowerCAmelCase__, truncation=lowerCAmelCase__, max_length=10, return_tensors='pt') snake_case_ = targets['input_ids'] snake_case_ = shift_tokens_right(lowerCAmelCase__, self.tokenizer.pad_token_id) self.assertEqual(batch.input_ids.shape[1], 3) self.assertEqual(batch.decoder_input_ids.shape[1], 10) @require_torch def a_ ( self) -> Any: snake_case_ = self.tokenizer._build_translation_inputs( 'A test', return_tensors='pt', src_lang='en_XX', tgt_lang='ar_AR') self.assertEqual( nested_simplify(lowerCAmelCase__), { # A, test, EOS, en_XX 'input_ids': [[62, 3034, 2, 25_0004]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_0001, }, )
312
"""simple docstring""" from math import pi def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
312
1
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple ) -> List[Any]: '''simple docstring''' def count_of_possible_combinations(UpperCAmelCase_ : List[Any] ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(A_ ) def __UpperCAmelCase ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] ) -> Dict: '''simple docstring''' def count_of_possible_combinations_with_dp_array( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __snake_case : str = sum( count_of_possible_combinations_with_dp_array(target - item , A_ ) for item in array ) __snake_case : Optional[Any] = answer return answer __snake_case : str = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(A_ , A_ ) def __UpperCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' __snake_case : List[str] = [0] * (target + 1) __snake_case : Optional[int] = 1 for i in range(1 , target + 1 ): for j in range(A_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _a : Tuple= 3 _a : str= 5 _a : Optional[int]= [1, 2, 5] print(combination_sum_iv(n, array, target))
172
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel __UpperCamelCase : int = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE ( A_ , A_ ): # save results if os.path.exists(A_ ): if os.path.exists(os.path.join(A_ , '''config.json''' ) ) and os.path.isfile( os.path.join(A_ , '''config.json''' ) ): os.remove(os.path.join(A_ , '''config.json''' ) ) if os.path.exists(os.path.join(A_ , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(A_ , '''pytorch_model.bin''' ) ): os.remove(os.path.join(A_ , '''pytorch_model.bin''' ) ) else: os.makedirs(A_ ) model.save_pretrained(A_ ) def __SCREAMING_SNAKE_CASE ( A_ , A_=False ): lowerCAmelCase__ : Optional[Any] = 2 if unlogit: lowerCAmelCase__ : Union[str, Any] = torch.pow(A_ , A_ ) lowerCAmelCase__ : Optional[Any] = p * torch.log(A_ ) lowerCAmelCase__ : List[Any] = 0 return -plogp.sum(dim=-1 ) def __SCREAMING_SNAKE_CASE ( A_ ): logger.info('''lv, h >\t''' + '''\t'''.join(f'{x + 1}' for x in range(len(A_ ) ) ) ) for row in range(len(A_ ) ): if tensor.dtype != torch.long: logger.info(f'layer {row + 1}:\t' + '''\t'''.join(f'{x:.5f}' for x in tensor[row].cpu().data ) ) else: logger.info(f'layer {row + 1}:\t' + '''\t'''.join(f'{x:d}' for x in tensor[row].cpu().data ) ) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_=True , A_=True , A_=None , A_=False ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = model.config.num_hidden_layers, model.config.num_attention_heads lowerCAmelCase__ : Dict = torch.zeros(A_ , A_ ).to(args.device ) lowerCAmelCase__ : int = torch.zeros(A_ , A_ ).to(args.device ) if head_mask is None: lowerCAmelCase__ : Union[str, Any] = torch.ones(A_ , A_ ).to(args.device ) head_mask.requires_grad_(requires_grad=A_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ : Optional[int] = 0.0 lowerCAmelCase__ : Optional[int] = 0.0 for step, inputs in enumerate(tqdm(A_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): lowerCAmelCase__ : Any = tuple(t.to(args.device ) for t in inputs ) ((lowerCAmelCase__) ,) : List[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowerCAmelCase__ : Any = model(A_ , labels=A_ , head_mask=A_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(A_ ): lowerCAmelCase__ : Dict = entropy(attn.detach() , A_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(A_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowerCAmelCase__ : Any = 2 lowerCAmelCase__ : Dict = torch.pow(torch.pow(A_ , A_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-2_0 if not args.dont_normalize_global_importance: lowerCAmelCase__ : List[Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(A_ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(A_ ) logger.info('''Head ranked by importance scores''' ) lowerCAmelCase__ : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowerCAmelCase__ : Optional[int] = torch.arange( head_importance.numel() , device=args.device ) lowerCAmelCase__ : int = head_ranks.view_as(A_ ) print_ad_tensor(A_ ) return attn_entropy, head_importance, total_loss def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = compute_heads_importance(A_ , A_ , A_ , compute_entropy=A_ ) lowerCAmelCase__ : Union[str, Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , A_ , original_score * args.masking_threshold ) lowerCAmelCase__ : Union[str, Any] = torch.ones_like(A_ ) lowerCAmelCase__ : List[str] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowerCAmelCase__ : int = original_score while current_score >= original_score * args.masking_threshold: lowerCAmelCase__ : Union[str, Any] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowerCAmelCase__ : str = float('''Inf''' ) lowerCAmelCase__ : List[Any] = head_importance.view(-1 ).sort()[1] if len(A_ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads lowerCAmelCase__ : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) lowerCAmelCase__ : int = new_head_mask.view(-1 ) lowerCAmelCase__ : Optional[int] = 0.0 lowerCAmelCase__ : Union[str, Any] = new_head_mask.view_as(A_ ) lowerCAmelCase__ : Tuple = new_head_mask.clone().detach() print_ad_tensor(A_ ) # Compute metric and head importance again lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = compute_heads_importance( A_ , A_ , A_ , compute_entropy=A_ , head_mask=A_ ) lowerCAmelCase__ : Tuple = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , A_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('''Final head mask''' ) print_ad_tensor(A_ ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ : Optional[Any] = datetime.now() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = compute_heads_importance( A_ , A_ , A_ , compute_entropy=A_ , compute_importance=A_ , head_mask=A_ ) lowerCAmelCase__ : Optional[Any] = 1 / loss lowerCAmelCase__ : Tuple = datetime.now() - before_time lowerCAmelCase__ : int = sum(p.numel() for p in model.parameters() ) lowerCAmelCase__ : List[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(A_ ) ) } for k, v in heads_to_prune.items(): if isinstance(A_ , A_ ): lowerCAmelCase__ : int = [ v, ] assert sum(len(A_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(A_ ) lowerCAmelCase__ : List[Any] = sum(p.numel() for p in model.parameters() ) lowerCAmelCase__ : Any = datetime.now() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : int = compute_heads_importance( A_ , A_ , A_ , compute_entropy=A_ , compute_importance=A_ , head_mask=A_ , actually_pruned=A_ , ) lowerCAmelCase__ : int = 1 / loss lowerCAmelCase__ : Dict = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , A_ , A_ , pruned_num_params / original_num_params * 1_00 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , A_ , A_ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 1_00 ) save_model(A_ , args.output_dir ) def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=A_ , type=A_ , required=A_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=A_ , type=A_ , required=A_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=A_ , type=A_ , required=A_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=A_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=A_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=A_ , type=A_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=A_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=A_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=A_ , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=A_ , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=1_28 , type=A_ , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=A_ , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=A_ , default=42 ) parser.add_argument('''--local_rank''' , type=A_ , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=A_ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=A_ , default='''''' , help='''Can be used for distant debugging.''' ) lowerCAmelCase__ : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=A_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowerCAmelCase__ : Union[str, Any] = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) lowerCAmelCase__ : str = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowerCAmelCase__ : Dict = torch.device('''cuda''' , args.local_rank ) lowerCAmelCase__ : Union[str, Any] = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowerCAmelCase__ : List[str] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowerCAmelCase__ : Dict = nn.parallel.DistributedDataParallel( A_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=A_ ) elif args.n_gpu > 1: lowerCAmelCase__ : List[Any] = nn.DataParallel(A_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=A_ ) torch.save(A_ , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , A_ ) # Prepare dataset lowerCAmelCase__ : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowerCAmelCase__ : Union[str, Any] = (torch.from_numpy(A_ ),) lowerCAmelCase__ : Tuple = TensorDataset(*A_ ) lowerCAmelCase__ : Optional[int] = RandomSampler(A_ ) lowerCAmelCase__ : Dict = DataLoader(A_ , sampler=A_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(A_ , A_ , A_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowerCAmelCase__ : Tuple = mask_heads(A_ , A_ , A_ ) prune_heads(A_ , A_ , A_ , A_ ) if __name__ == "__main__": main()
106
0
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _A ( A__ ): """simple docstring""" __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = 0.0_1 with locka.acquire(): with pytest.raises(__SCREAMING_SNAKE_CASE ): __lowercase = time.time() locka.acquire(__SCREAMING_SNAKE_CASE ) assert time.time() - _start > timeout def _A ( A__ ): """simple docstring""" __lowercase = "a" * 1000 + ".lock" __lowercase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(__SCREAMING_SNAKE_CASE ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __lowercase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__SCREAMING_SNAKE_CASE ): locka.acquire(0 )
369
'''simple docstring''' from math import sqrt def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and ( number >= 0 ), "'number' must been an int and positive" __lowercase = True # 0 and 1 are none primes. if number <= 1: __lowercase = False for divisor in range(2 , int(round(sqrt(A__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowercase = False break # precondition assert isinstance(A__ , A__ ), "'status' must been from type bool" return status def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowercase = list(range(2 , n + 1 ) ) __lowercase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(A__ ) ): for j in range(i + 1 , len(A__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowercase = 0 # filters actual prime numbers. __lowercase = [x for x in begin_list if x != 0] # precondition assert isinstance(A__ , A__ ), "'ans' must been from type list" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n > 2), "'N' must been an int and > 2" __lowercase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(A__ ): ans.append(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type list" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and number >= 0, "'number' must been an int and >= 0" __lowercase = [] # this list will be returns of the function. # potential prime number factors. __lowercase = 2 __lowercase = number if number == 0 or number == 1: ans.append(A__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(A__ ): while quotient != 1: if is_prime(A__ ) and (quotient % factor == 0): ans.append(A__ ) quotient /= factor else: factor += 1 else: ans.append(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type list" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowercase = 0 # prime factorization of 'number' __lowercase = prime_factorization(A__ ) __lowercase = max(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type int" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowercase = 0 # prime factorization of 'number' __lowercase = prime_factorization(A__ ) __lowercase = min(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type int" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , A__ ), "compare bust been from type bool" return number % 2 == 0 def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , A__ ), "compare bust been from type bool" return number % 2 != 0 def _A ( A__ ): """simple docstring""" assert ( isinstance(A__ , A__ ) and (number > 2) and is_even(A__ ) ), "'number' must been an int, even and > 2" __lowercase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowercase = get_prime_numbers(A__ ) __lowercase = len(A__ ) # run variable for while-loops. __lowercase = 0 __lowercase = None # exit variable. for break up the loops __lowercase = True while i < len_pn and loop: __lowercase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowercase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(A__ , A__ ) and (len(A__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _A ( A__ , A__ ): """simple docstring""" assert ( isinstance(A__ , A__ ) and isinstance(A__ , A__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowercase = 0 while numbera != 0: __lowercase = numbera % numbera __lowercase = numbera __lowercase = rest # precondition assert isinstance(A__ , A__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _A ( A__ , A__ ): """simple docstring""" assert ( isinstance(A__ , A__ ) and isinstance(A__ , A__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowercase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowercase = prime_factorization(A__ ) __lowercase = prime_factorization(A__ ) elif numbera == 1 or numbera == 1: __lowercase = [] __lowercase = [] __lowercase = max(A__ , A__ ) __lowercase = 0 __lowercase = 0 __lowercase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowercase = prime_fac_a.count(A__ ) __lowercase = prime_fac_a.count(A__ ) for _ in range(max(A__ , A__ ) ): ans *= n else: __lowercase = prime_fac_a.count(A__ ) for _ in range(A__ ): ans *= n done.append(A__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowercase = prime_fac_a.count(A__ ) for _ in range(A__ ): ans *= n done.append(A__ ) # precondition assert isinstance(A__ , A__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n >= 0), "'number' must been a positive int" __lowercase = 0 __lowercase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(A__ ): ans += 1 # precondition assert isinstance(A__ , A__ ) and is_prime( A__ ), "'ans' must been a prime number and from type int" return ans def _A ( A__ , A__ ): """simple docstring""" assert ( is_prime(A__ ) and is_prime(A__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowercase = p_number_a + 1 # jump to the next number __lowercase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(A__ ): number += 1 while number < p_number_a: ans.append(A__ ) number += 1 # fetch the next prime number. while not is_prime(A__ ): number += 1 # precondition assert ( isinstance(A__ , A__ ) and ans[0] != p_number_a and ans[len(A__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n >= 1), "'n' must been int and >= 1" __lowercase = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(A__ ) # precondition assert ans[0] == 1 and ans[len(A__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and ( number > 1 ), "'number' must been an int and >= 1" __lowercase = get_divisors(A__ ) # precondition assert ( isinstance(A__ , A__ ) and (divisors[0] == 1) and (divisors[len(A__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _A ( A__ , A__ ): """simple docstring""" assert ( isinstance(A__ , A__ ) and isinstance(A__ , A__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowercase = gcd(abs(A__ ) , abs(A__ ) ) # precondition assert ( isinstance(A__ , A__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n >= 0), "'n' must been a int and >= 0" __lowercase = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n >= 0), "'n' must been an int and >= 0" __lowercase = 0 __lowercase = 1 __lowercase = 1 # this will be return for _ in range(n - 1 ): __lowercase = ans ans += fiba __lowercase = tmp return ans
52
0
"""simple docstring""" from math import factorial class A_ : """simple docstring""" def __init__( self :List[str] , lowercase_ :List[str] , lowercase_ :Optional[int] ) -> Union[str, Any]: UpperCAmelCase = real if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [1] * rank else: UpperCAmelCase = rank def __repr__( self :List[str] ) -> Optional[Any]: return ( f"""{self.real}+""" f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def UpperCAmelCase__ ( self :Tuple ) -> Union[str, Any]: UpperCAmelCase = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowercase_ ) def __add__( self :Tuple , lowercase_ :str ) -> Any: if not isinstance(lowercase_ , lowercase_ ): return Dual(self.real + other , self.duals ) UpperCAmelCase = self.duals.copy() UpperCAmelCase = other.duals.copy() if len(lowercase_ ) > len(lowercase_ ): o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) elif len(lowercase_ ) < len(lowercase_ ): s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) UpperCAmelCase = [] for i in range(len(lowercase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowercase_ ) __UpperCamelCase = __add__ def __sub__( self :List[Any] , lowercase_ :int ) -> str: return self + other * -1 def __mul__( self :int , lowercase_ :List[str] ) -> Tuple: if not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowercase_ ) UpperCAmelCase = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowercase_ ) __UpperCamelCase = __mul__ def __truediv__( self :Tuple , lowercase_ :List[Any] ) -> Tuple: if not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowercase_ ) raise ValueError def __floordiv__( self :Tuple , lowercase_ :Optional[Any] ) -> Dict: if not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowercase_ ) raise ValueError def __pow__( self :Tuple , lowercase_ :List[Any] ) -> Any: if n < 0 or isinstance(lowercase_ , lowercase_ ): raise ValueError('power must be a positive integer' ) if n == 0: return 1 if n == 1: return self UpperCAmelCase = self for _ in range(n - 1 ): x *= self return x def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): if not callable(lowercase_ ): raise ValueError('differentiate() requires a function as input for func' ) if not isinstance(lowercase_ , (float, int) ): raise ValueError('differentiate() requires a float as input for position' ) if not isinstance(lowercase_ , lowercase_ ): raise ValueError('differentiate() requires an int as input for order' ) UpperCAmelCase = Dual(lowercase_ , 1 ) UpperCAmelCase = func(lowercase_ ) if order == 0: return result.real return result.duals[order - 1] * factorial(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod() def _lowerCAmelCase ( lowercase_ ): return y**2 * y**4 print(differentiate(f, 9, 2))
78
'''simple docstring''' import math import unittest def lowerCamelCase ( UpperCAmelCase__ : int ) -> bool: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Dict ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): with self.assertRaises(lowercase_ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
239
0
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : str , __UpperCAmelCase : List[Any] ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): _A = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = "sgugger/tiny-distilbert-classification" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , only_pretrain_model=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = AutoConfig.from_pretrained(__UpperCAmelCase ) _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase , [config] ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = AutoConfig.from_pretrained(__UpperCAmelCase ) _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase , [config] ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = AutoConfig.from_pretrained(__UpperCAmelCase ) _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase , [config] ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCAmelCase ( self : int ): '''simple docstring''' _A = "patrickvonplaten/t5-tiny-random" _A = AutoConfig.from_pretrained(__UpperCAmelCase ) _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase , configs=[config] ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU" ) ) == 0 , "Cannot do xla on CPU." ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__UpperCAmelCase , save_to_csv=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__UpperCAmelCase , "inf_time.csv" ) , inference_memory_csv_file=os.path.join(__UpperCAmelCase , "inf_mem.csv" ) , env_info_csv_file=os.path.join(__UpperCAmelCase , "env.csv" ) , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCAmelCase , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "env.csv" ) ).exists() ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__UpperCAmelCase : Any ): self.assertTrue(hasattr(__UpperCAmelCase , "sequential" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "cumulative" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "current" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__UpperCAmelCase , "log.txt" ) , log_print=__UpperCAmelCase , trace_memory_line_by_line=__UpperCAmelCase , eager_mode=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "log.txt" ) ).exists() )
174
'''simple docstring''' import fire from utils import calculate_rouge, save_json def __lowercase ( __lowercase , __lowercase , __lowercase=None , **__lowercase ) -> Optional[int]: '''simple docstring''' _A = [x.strip() for x in open(__lowercase ).readlines()] _A = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] _A = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
174
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer a__ : Optional[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast a__ : int = TaTokenizerFast a__ : List[Any] = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys a__ : List[Any] = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
80
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar UpperCAmelCase__ : Tuple = TypeVar("""T""") class a__ ( Generic[T] ): """simple docstring""" def __init__( self : str , UpperCAmelCase__ : bool = True ) ->None: """simple docstring""" SCREAMING_SNAKE_CASE : dict[T, list[T]] = {} # dictionary of lists SCREAMING_SNAKE_CASE : Dict = directed def _lowercase ( self : int , UpperCAmelCase__ : T , UpperCAmelCase__ : T ) ->GraphAdjacencyList[T]: """simple docstring""" if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCAmelCase__ ) self.adj_list[destination_vertex].append(UpperCAmelCase__ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : int = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : str = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: SCREAMING_SNAKE_CASE : Tuple = [destination_vertex] SCREAMING_SNAKE_CASE : str = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCAmelCase__ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: SCREAMING_SNAKE_CASE : Optional[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: SCREAMING_SNAKE_CASE : Dict = [destination_vertex] SCREAMING_SNAKE_CASE : List[Any] = [] return self def __repr__( self : Dict ) ->str: """simple docstring""" return pformat(self.adj_list )
245
0
"""simple docstring""" import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class lowerCamelCase_( A__ ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=1_0_2_4 , lowerCamelCase__=1_0_2_4 , lowerCamelCase__=3.6 ): _lowerCamelCase = tokenizer _lowerCamelCase = tokenizer.bos_token_id _lowerCamelCase = dataset _lowerCamelCase = seq_length _lowerCamelCase = seq_length * chars_per_token * num_of_sequences def __iter__( self ): _lowerCamelCase = iter(self.dataset ) _lowerCamelCase = True while more_examples: _lowerCamelCase , _lowerCamelCase = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(lowerCamelCase__ )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: _lowerCamelCase = False break _lowerCamelCase = tokenizer(lowerCamelCase__ , truncation=lowerCamelCase__ )['''input_ids'''] _lowerCamelCase = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(lowerCamelCase__ ) , self.seq_length ): _lowerCamelCase = all_token_ids[i : i + self.seq_length] if len(lowerCamelCase__ ) == self.seq_length: yield torch.tensor(lowerCamelCase__ ) def lowerCAmelCase_( lowercase_ : Tuple ) -> List[str]: _lowerCamelCase = {'''streaming''': True} _lowerCamelCase = load_dataset(args.dataset_name , split='''train''' , **lowercase_ ) _lowerCamelCase = ConstantLengthDataset(lowercase_ , lowercase_ , seq_length=args.seq_length ) _lowerCamelCase = DataLoader(lowercase_ , batch_size=args.batch_size ) return eval_dataloader def lowerCAmelCase_( lowercase_ : List[Any] ) -> int: model.eval() _lowerCamelCase = [] for step, batch in enumerate(lowercase_ ): with torch.no_grad(): _lowerCamelCase = model(lowercase_ , labels=lowercase_ ) _lowerCamelCase = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(lowercase_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _lowerCamelCase = torch.mean(torch.cat(lowercase_ ) ) try: _lowerCamelCase = torch.exp(lowercase_ ) except OverflowError: _lowerCamelCase = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator __SCREAMING_SNAKE_CASE : Optional[Any] = Accelerator() # Parse configuration __SCREAMING_SNAKE_CASE : Union[str, Any] = HfArgumentParser(EvaluationArguments) __SCREAMING_SNAKE_CASE : Dict = parser.parse_args() set_seed(args.seed) # Logging __SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) # Load model and tokenizer __SCREAMING_SNAKE_CASE : Optional[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) __SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader __SCREAMING_SNAKE_CASE : int = create_dataloader(args) # Prepare everything with our `accelerator`. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('''Evaluating and saving model after training''') __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = evaluate(args) logger.info(F"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
73
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : List[str] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
73
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
302
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
302
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ : Optional[Any] = { "configuration_xlm_roberta": [ "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig", "XLMRobertaOnnxConfig", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = ["XLMRobertaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = ["XLMRobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", "XLMRobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : int = [ "FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FlaxXLMRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys lowercase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
180
lowercase__ : Optional[int] = [ "DownloadConfig", "DownloadManager", "DownloadMode", "StreamingDownloadManager", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
180
1
lowerCamelCase : str = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
204
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class A: '''simple docstring''' UpperCamelCase = BlenderbotConfig UpperCamelCase = {} UpperCamelCase = '''gelu''' def __init__( self : int , A_ : Optional[int] , A_ : List[str]=13 , A_ : str=7 , A_ : Any=True , A_ : Any=False , A_ : Optional[Any]=99 , A_ : List[str]=32 , A_ : List[str]=2 , A_ : Dict=4 , A_ : List[str]=37 , A_ : List[str]=0.1 , A_ : Optional[int]=0.1 , A_ : str=20 , A_ : str=2 , A_ : Optional[Any]=1 , A_ : int=0 , ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = eos_token_id lowerCamelCase_ = pad_token_id lowerCamelCase_ = bos_token_id def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase_ = prepare_blenderbot_inputs_dict(A_ , A_ , A_ ) return config, inputs_dict def a__ ( self : Tuple , A_ : Union[str, Any] , A_ : List[str] ) -> int: """simple docstring""" lowerCamelCase_ = TFBlenderbotModel(config=A_ ).get_decoder() lowerCamelCase_ = inputs_dict['input_ids'] lowerCamelCase_ = input_ids[:1, :] lowerCamelCase_ = inputs_dict['attention_mask'][:1, :] lowerCamelCase_ = inputs_dict['head_mask'] lowerCamelCase_ = 1 # first forward pass lowerCamelCase_ = model(A_ , attention_mask=A_ , head_mask=A_ , use_cache=A_ ) lowerCamelCase_ , lowerCamelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase_ = model(A_ , attention_mask=A_ )[0] lowerCamelCase_ = model(A_ , attention_mask=A_ , past_key_values=A_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase_ = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A_ , A_ , rtol=1E-3 ) def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] , lowercase : Any , lowercase : Tuple , lowercase : List[Any]=None , lowercase : List[str]=None , lowercase : List[Any]=None , lowercase : Tuple=None , lowercase : Union[str, Any]=None , ): '''simple docstring''' if attention_mask is None: lowerCamelCase_ = tf.cast(tf.math.not_equal(lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () UpperCamelCase = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () UpperCamelCase = ( { '''conversational''': TFBlenderbotForConditionalGeneration, '''feature-extraction''': TFBlenderbotModel, '''summarization''': TFBlenderbotForConditionalGeneration, '''text2text-generation''': TFBlenderbotForConditionalGeneration, '''translation''': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = TFBlenderbotModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A_ ) @require_tokenizers @require_tf class A( unittest.TestCase ): '''simple docstring''' UpperCamelCase = ['''My friends are cool but they eat too many carbs.'''] UpperCamelCase = '''facebook/blenderbot-400M-distill''' @cached_property def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def a__ ( self : List[Any] ) -> str: """simple docstring""" lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def a__ ( self : str ) -> str: """simple docstring""" lowerCamelCase_ = self.tokenizer(self.src_text , return_tensors='tf' ) lowerCamelCase_ = self.model.generate( model_inputs.input_ids , ) lowerCamelCase_ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=A_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
204
1
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class snake_case__ (A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :Any = BertJapaneseTokenizer __lowerCAmelCase :List[Any] = False __lowerCAmelCase :Dict = True def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" super().setUp() a__ : Any = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] a__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Any: """simple docstring""" a__ : Dict = """こんにちは、世界。 \nこんばんは、世界。""" a__ : List[Any] = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tuple: """simple docstring""" a__ : int = self.get_input_output_texts(__lowercase ) a__ : str = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) a__ : Tuple = tokenizer.decode(__lowercase , clean_up_tokenization_spaces=__lowercase ) return text, ids def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Union[str, Any] = self.tokenizer_class(self.vocab_file ) a__ : Union[str, Any] = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" ) self.assertListEqual(__lowercase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : Any = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""" ) self.assertIsNotNone(__lowercase ) a__ : Dict = """こんにちは、世界。\nこんばんは、世界。""" a__ : List[str] = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) a__ : Dict = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(__lowercase , """wb""" ) as handle: pickle.dump(__lowercase , __lowercase ) with open(__lowercase , """rb""" ) as handle: a__ : Optional[Any] = pickle.load(__lowercase ) a__ : Union[str, Any] = tokenizer_new.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : Dict = MecabTokenizer(mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" try: a__ : List[Any] = MecabTokenizer(mecab_dic="""unidic_lite""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" try: a__ : Tuple = MecabTokenizer(mecab_dic="""unidic""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : List[Any] = MecabTokenizer(do_lower_case=__lowercase , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" try: a__ : Union[str, Any] = MecabTokenizer( do_lower_case=__lowercase , normalize_text=__lowercase , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" a__ : List[Any] = MecabTokenizer(normalize_text=__lowercase , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , ) @require_sudachi def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" a__ : str = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""" ) self.assertIsNotNone(__lowercase ) a__ : Tuple = """こんにちは、世界。\nこんばんは、世界。""" a__ : Tuple = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) a__ : Optional[int] = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(__lowercase , """wb""" ) as handle: pickle.dump(__lowercase , __lowercase ) with open(__lowercase , """rb""" ) as handle: a__ : Dict = pickle.load(__lowercase ) a__ : str = tokenizer_new.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) @require_sudachi def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" a__ : List[str] = SudachiTokenizer(sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : Optional[int] = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国""", """人""", """参政""", """権"""] ) @require_sudachi def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : Union[str, Any] = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人""", """参政権"""] ) @require_sudachi def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" a__ : Any = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人参政権"""] ) @require_sudachi def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : str = SudachiTokenizer(do_lower_case=__lowercase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" a__ : Optional[int] = SudachiTokenizer(normalize_text=__lowercase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , ) @require_sudachi def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : Tuple = SudachiTokenizer(trim_whitespace=__lowercase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" a__ : Optional[int] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""" ) self.assertIsNotNone(__lowercase ) a__ : Dict = """こんにちは、世界。\nこんばんは、世界。""" a__ : Optional[int] = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) a__ : str = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(__lowercase , """wb""" ) as handle: pickle.dump(__lowercase , __lowercase ) with open(__lowercase , """rb""" ) as handle: a__ : Optional[int] = pickle.load(__lowercase ) a__ : Optional[int] = tokenizer_new.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) @require_jumanpp def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" a__ : int = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" a__ : List[Any] = JumanppTokenizer(do_lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : Optional[Any] = JumanppTokenizer(normalize_text=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : List[str] = JumanppTokenizer(trim_whitespace=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : Any = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" a__ : List[str] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] a__ : str = {} for i, token in enumerate(__lowercase ): a__ : Optional[Any] = i a__ : List[Any] = WordpieceTokenizer(vocab=__lowercase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こんにちは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) , ["""こん""", """##ばんは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : List[Any] = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" ) a__ : Any = tokenizer.subword_tokenizer a__ : Optional[Any] = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" ) self.assertListEqual(__lowercase , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] ) a__ : Union[str, Any] = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" ) self.assertListEqual(__lowercase , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : Any = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" ) a__ : Optional[int] = tokenizer.encode("""ありがとう。""" , add_special_tokens=__lowercase ) a__ : Dict = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__lowercase ) a__ : Tuple = tokenizer.build_inputs_with_special_tokens(__lowercase ) a__ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class snake_case__ (A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :List[Any] = BertJapaneseTokenizer __lowerCAmelCase :List[Any] = False def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" super().setUp() a__ : Dict = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] a__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__( self , **__lowercase ) -> Tuple: """simple docstring""" return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Any: """simple docstring""" a__ : str = """こんにちは、世界。 \nこんばんは、世界。""" a__ : Optional[Any] = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" a__ : Optional[int] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""" ) a__ : Dict = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" ) self.assertListEqual( __lowercase , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2] ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" a__ : Optional[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] a__ : List[str] = {} for i, token in enumerate(__lowercase ): a__ : Optional[Any] = i a__ : Dict = CharacterTokenizer(vocab=__lowercase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こ""", """ん""", """に""", """ち""", """は"""] ) self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""] ) def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" a__ : int = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" ) a__ : Optional[int] = tokenizer.encode("""ありがとう。""" , add_special_tokens=__lowercase ) a__ : List[str] = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__lowercase ) a__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(__lowercase ) a__ : List[str] = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class snake_case__ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : Tuple = """cl-tohoku/bert-base-japanese""" a__ : int = AutoTokenizer.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) class snake_case__ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" a__ : Any = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertTokenizer.from_pretrained(__lowercase ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) ) a__ : int = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertJapaneseTokenizer.from_pretrained(__lowercase ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) )
362
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _lowercase : Any ="\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _lowercase : str ="\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" _lowercase : Optional[Any] ="\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case__ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase = False , __lowercase = False , __lowercase = False , __lowercase = False , ) -> Any: """simple docstring""" a__ : Any = len(references[0] ) if any(len(__lowercase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) a__ : str = [[refs[i] for refs in references] for i in range(__lowercase )] a__ : int = TER( normalized=__lowercase , no_punct=__lowercase , asian_support=__lowercase , case_sensitive=__lowercase , ) a__ : Optional[int] = sb_ter.corpus_score(__lowercase , __lowercase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
266
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ :Dict = logging.get_logger(__name__) A_ :Union[str, Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __A ( a ): """simple docstring""" UpperCamelCase__ : Any ="""megatron-bert""" def __init__( self , lowerCamelCase__=29056 , lowerCamelCase__=1024 , lowerCamelCase__=24 , lowerCamelCase__=16 , lowerCamelCase__=4096 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=1E-12 , lowerCamelCase__=0 , lowerCamelCase__="absolute" , lowerCamelCase__=True , **lowerCamelCase__ , ): """simple docstring""" super().__init__(pad_token_id=lowerCamelCase__ , **lowerCamelCase__ ) __UpperCamelCase : List[str] =vocab_size __UpperCamelCase : Tuple =hidden_size __UpperCamelCase : Optional[int] =num_hidden_layers __UpperCamelCase : str =num_attention_heads __UpperCamelCase : int =hidden_act __UpperCamelCase : int =intermediate_size __UpperCamelCase : Optional[int] =hidden_dropout_prob __UpperCamelCase : List[Any] =attention_probs_dropout_prob __UpperCamelCase : List[str] =max_position_embeddings __UpperCamelCase : Optional[int] =type_vocab_size __UpperCamelCase : Optional[Any] =initializer_range __UpperCamelCase : Dict =layer_norm_eps __UpperCamelCase : Optional[int] =position_embedding_type __UpperCamelCase : Union[str, Any] =use_cache
71
'''simple docstring''' import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() UpperCAmelCase : Tuple = { 'bart': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'bert': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-base-cased-finetuned-mrpc': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'dpr': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'gpt2': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlnet': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm-roberta': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'transfo-xl': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'openai-gpt': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'roberta': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'layoutlm': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'roberta-large-mnli': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'camembert': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'flaubert': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert-base-distilled-squad': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert-visual-feature-encoder': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'ctrl': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'albert': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 't5': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'electra': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'wav2vec2': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def a__ ( a__ , a__ , a__ , a__ , a__=False , a__=True ): """simple docstring""" if model_type not in MODEL_CLASSES: raise ValueError(F'Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: __SCREAMING_SNAKE_CASE = cached_file(a__ , a__ , force_download=not use_cached_models ) __SCREAMING_SNAKE_CASE = config_class.from_json_file(a__ ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True print(F'Building TensorFlow model from configuration: {config}' ) __SCREAMING_SNAKE_CASE = model_class(a__ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): __SCREAMING_SNAKE_CASE = cached_file( a__ , a__ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: __SCREAMING_SNAKE_CASE = load_pytorch_checkpoint_in_tfa_model(a__ , a__ ) if compare_with_pt_model: __SCREAMING_SNAKE_CASE = tf_model(tf_model.dummy_inputs , training=a__ ) # build the network __SCREAMING_SNAKE_CASE = torch.load(a__ , map_location="""cpu""" ) __SCREAMING_SNAKE_CASE = pt_model_class.from_pretrained( pretrained_model_name_or_path=a__ , config=a__ , state_dict=a__ ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = pt_model(**pt_model.dummy_inputs ) __SCREAMING_SNAKE_CASE = pto[0].numpy() __SCREAMING_SNAKE_CASE = tfo[0].numpy() __SCREAMING_SNAKE_CASE = np.amax(np.abs(np_pt - np_tf ) ) print(F'Max absolute difference between models outputs {diff}' ) assert diff <= 2E-2, F'Error, model absolute difference is >2e-2: {diff}' # Save pytorch-model print(F'Save TensorFlow model to {tf_dump_path}' ) tf_model.save_weights(a__ , save_format="""h5""" ) def a__ ( a__ , a__ , a__=None , a__=None , a__=False , a__=False , a__=False , a__=False , ): """simple docstring""" if args_model_type is None: __SCREAMING_SNAKE_CASE = list(MODEL_CLASSES.keys() ) else: __SCREAMING_SNAKE_CASE = [args_model_type] for j, model_type in enumerate(a__ , start=1 ): print("""=""" * 1_00 ) print(F' Converting model type {j}/{len(a__ )}: {model_type}' ) print("""=""" * 1_00 ) if model_type not in MODEL_CLASSES: raise ValueError(F'Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: __SCREAMING_SNAKE_CASE = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: __SCREAMING_SNAKE_CASE = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(a__ , a__ ) , start=1 ): print("""-""" * 1_00 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F' Skipping finetuned checkpoint {model_shortcut_name}' ) continue __SCREAMING_SNAKE_CASE = model_shortcut_name elif only_convert_finetuned_models: print(F' Skipping not finetuned checkpoint {model_shortcut_name}' ) continue print( F' Converting checkpoint {i}/{len(a__ )}: {model_shortcut_name} - model_type {model_type}' ) print("""-""" * 1_00 ) if config_shortcut_name in aws_config_map: __SCREAMING_SNAKE_CASE = cached_file(a__ , a__ , force_download=not use_cached_models ) else: __SCREAMING_SNAKE_CASE = config_shortcut_name if model_shortcut_name in aws_model_maps: __SCREAMING_SNAKE_CASE = cached_file(a__ , a__ , force_download=not use_cached_models ) else: __SCREAMING_SNAKE_CASE = model_shortcut_name if os.path.isfile(a__ ): __SCREAMING_SNAKE_CASE = """converted_model""" convert_pt_checkpoint_to_tf( model_type=a__ , pytorch_checkpoint_path=a__ , config_file=a__ , tf_dump_path=os.path.join(a__ , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=a__ , ) if remove_cached_files: os.remove(a__ ) os.remove(a__ ) if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.' ) parser.add_argument( '--model_type', default=None, type=str, help=( f"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ 'convert all the models from AWS.' ), ) parser.add_argument( '--pytorch_checkpoint_path', default=None, type=str, help=( 'Path to the PyTorch checkpoint path or shortcut name to download from AWS. ' 'If not given, will download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--config_file', default=None, type=str, help=( 'The config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture. If not given and ' '--pytorch_checkpoint_path is not given or is a shortcut name ' 'use the configuration associated to the shortcut name on the AWS' ), ) parser.add_argument( '--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.' ) parser.add_argument( '--use_cached_models', action='store_true', help='Use cached models if possible instead of updating to latest checkpoint versions.', ) parser.add_argument( '--remove_cached_files', action='store_true', help='Remove pytorch models after conversion (save memory when converting in batches).', ) parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.') UpperCAmelCase : List[Any] = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
267
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Tuple = logging.get_logger(__name__) A_ : Dict = { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/config.json', # See all XGLM models at https://huggingface.co/models?filter=xglm } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Tuple ='''xglm''' a : List[Any] =['''past_key_values'''] a : Union[str, Any] ={ '''num_attention_heads''': '''attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowerCamelCase=2_5_6_0_0_8 , _lowerCamelCase=2_0_4_8 , _lowerCamelCase=1_0_2_4 , _lowerCamelCase=4_0_9_6 , _lowerCamelCase=2_4 , _lowerCamelCase=1_6 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , **_lowerCamelCase , ): UpperCamelCase_: Optional[Any] = vocab_size UpperCamelCase_: Optional[int] = max_position_embeddings UpperCamelCase_: List[str] = d_model UpperCamelCase_: List[Any] = ffn_dim UpperCamelCase_: List[Any] = num_layers UpperCamelCase_: List[Any] = attention_heads UpperCamelCase_: Tuple = activation_function UpperCamelCase_: Tuple = dropout UpperCamelCase_: Tuple = attention_dropout UpperCamelCase_: Optional[Any] = activation_dropout UpperCamelCase_: List[str] = layerdrop UpperCamelCase_: Any = init_std UpperCamelCase_: Any = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase_: Union[str, Any] = use_cache super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , )
292
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def snake_case (UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: int = [False] * len(UpperCAmelCase__ ) UpperCamelCase_: Any = [-1] * len(UpperCAmelCase__ ) def dfs(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: Tuple = True UpperCamelCase_: Optional[int] = c for u in graph[v]: if not visited[u]: dfs(UpperCAmelCase__ , 1 - c ) for i in range(len(UpperCAmelCase__ ) ): if not visited[i]: dfs(UpperCAmelCase__ , 0 ) for i in range(len(UpperCAmelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph A_ : Dict = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
292
1
"""simple docstring""" from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Optional[int] = CustomTokenizer pass
33
"""simple docstring""" def lowercase ( __snake_case : int ): if n == 1 or not isinstance(__snake_case , __snake_case ): return 0 elif n == 2: return 1 else: lowercase_ : Dict = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def lowercase ( __snake_case : int ): lowercase_ : str = 0 lowercase_ : List[str] = 2 while digits < n: index += 1 lowercase_ : Any = len(str(fibonacci(__snake_case ) ) ) return index def lowercase ( __snake_case : int = 1_0_0_0 ): return fibonacci_digits_index(__snake_case ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
33
1
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCAmelCase__ ( nn.Module ): def __init__( self : Any , snake_case__ : int = 1_6 , snake_case__ : int = 8_8 , snake_case__ : Optional[int] = None , snake_case__ : int = 1 , snake_case__ : float = 0.0 , snake_case__ : int = 3_2 , snake_case__ : Optional[int] = None , snake_case__ : bool = False , snake_case__ : Optional[int] = None , snake_case__ : Optional[int] = None , snake_case__ : str = "geglu" , snake_case__ : Optional[int] = None , ): '''simple docstring''' super().__init__() UpperCAmelCase__ : List[str] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , num_layers=__SCREAMING_SNAKE_CASE , dropout=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , cross_attention_dim=__SCREAMING_SNAKE_CASE , attention_bias=__SCREAMING_SNAKE_CASE , sample_size=__SCREAMING_SNAKE_CASE , num_vector_embeds=__SCREAMING_SNAKE_CASE , activation_fn=__SCREAMING_SNAKE_CASE , num_embeds_ada_norm=__SCREAMING_SNAKE_CASE , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference UpperCAmelCase__ : List[Any] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` UpperCAmelCase__ : Dict = [7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` UpperCAmelCase__ : Optional[int] = [1, 0] def __a ( self : int , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Union[str, Any]=None , snake_case__ : Any=None , snake_case__ : Optional[Any]=None , snake_case__ : bool = True , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = hidden_states UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : List[Any] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens UpperCAmelCase__ : List[str] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] UpperCAmelCase__ : Any = self.transformer_index_for_condition[i] UpperCAmelCase__ : Tuple = self.transformers[transformer_index]( __SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , cross_attention_kwargs=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] UpperCAmelCase__ : List[Any] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) UpperCAmelCase__ : Tuple = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__SCREAMING_SNAKE_CASE )
363
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Any )-> Any: '''simple docstring''' UpperCAmelCase__ : List[str] = [1] for i in range(2 , snake_case ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : str = list(range(snake_case ) ) # Find permutation while factorials: UpperCAmelCase__ : str = factorials.pop() UpperCAmelCase__ , UpperCAmelCase__ : int = divmod(snake_case , snake_case ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
298
0
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging A__ : Optional[int] = logging.get_logger(__name__) def UpperCamelCase( __UpperCamelCase : int ,__UpperCamelCase : Optional[Any] ): try: with open(__UpperCamelCase ,'''rb''' ) as flax_state_f: lowerCAmelCase_ : List[Any] = from_bytes(__UpperCamelCase ,flax_state_f.read() ) except UnpicklingError as e: try: with open(__UpperCamelCase ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__UpperCamelCase ,__UpperCamelCase ) def UpperCamelCase( __UpperCamelCase : int ,__UpperCamelCase : Optional[int] ): try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowerCAmelCase_ : Dict = flatten_dict(jax.tree_util.tree_map(lambda __UpperCamelCase : x.dtype == jnp.bfloataa ,__UpperCamelCase ) ).values() if any(__UpperCamelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowerCAmelCase_ : Optional[Any] = jax.tree_util.tree_map( lambda __UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params ,__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = '''''' lowerCAmelCase_ : Optional[int] = flatten_dict(__UpperCamelCase ,sep='''.''' ) lowerCAmelCase_ : List[Any] = pt_model.state_dict() # keep track of unexpected & missing keys lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : int = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowerCAmelCase_ : Any = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowerCAmelCase_ : int = flax_key_tuple_array[:-1] + ['''weight'''] lowerCAmelCase_ : Tuple = jnp.transpose(__UpperCamelCase ,(3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowerCAmelCase_ : str = flax_key_tuple_array[:-1] + ['''weight'''] lowerCAmelCase_ : Optional[Any] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowerCAmelCase_ : Optional[int] = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(__UpperCamelCase ): lowerCAmelCase_ : str = ( flax_key_tuple_string.replace('''_0''' ,'''.0''' ) .replace('''_1''' ,'''.1''' ) .replace('''_2''' ,'''.2''' ) .replace('''_3''' ,'''.3''' ) .replace('''_4''' ,'''.4''' ) .replace('''_5''' ,'''.5''' ) .replace('''_6''' ,'''.6''' ) .replace('''_7''' ,'''.7''' ) .replace('''_8''' ,'''.8''' ) .replace('''_9''' ,'''.9''' ) ) lowerCAmelCase_ : Tuple = '''.'''.join(__UpperCamelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowerCAmelCase_ : List[Any] = np.asarray(__UpperCamelCase ) if not isinstance(__UpperCamelCase ,np.ndarray ) else flax_tensor lowerCAmelCase_ : Any = torch.from_numpy(__UpperCamelCase ) # remove from missing keys missing_keys.remove(__UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__UpperCamelCase ) pt_model.load_state_dict(__UpperCamelCase ) # re-transform missing_keys to list lowerCAmelCase_ : Dict = list(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(__UpperCamelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) return pt_model
103
import warnings from functools import wraps from typing import Callable def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Callable ) -> Callable: '''simple docstring''' @wraps(SCREAMING_SNAKE_CASE_ ) def _inner_fn(*SCREAMING_SNAKE_CASE_: int , **SCREAMING_SNAKE_CASE_: Union[str, Any] ): warnings.warn( (F'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , SCREAMING_SNAKE_CASE_ , ) return fn(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return _inner_fn
68
0
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> tuple[int, int]: """simple docstring""" if b == 0: return (1, 0) ((__lowerCamelCase) , (__lowerCamelCase)) = extended_euclid(UpperCamelCase__ , a % b ) __lowerCamelCase = a // b return (y, x - k * y) def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: """simple docstring""" ((__lowerCamelCase) , (__lowerCamelCase)) = extended_euclid(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = na * na __lowerCamelCase = ra * x * na + ra * y * na return (n % m + m) % m def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: """simple docstring""" ((__lowerCamelCase) , (__lowerCamelCase)) = extended_euclid(UpperCamelCase__ , UpperCamelCase__ ) if b < 0: __lowerCamelCase = (b % n + n) % n return b def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: """simple docstring""" __lowerCamelCase , __lowerCamelCase = invert_modulo(UpperCamelCase__ , UpperCamelCase__ ), invert_modulo(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = na * na __lowerCamelCase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
351
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __A = logging.get_logger(__name__) __A = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''whisper''' snake_case_ = ['''past_key_values'''] snake_case_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCamelCase__=51_865 , lowerCamelCase__=80 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=1_536 , lowerCamelCase__=1_536 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=50_257 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="gelu" , lowerCamelCase__=256 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=1_500 , lowerCamelCase__=448 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=None , lowerCamelCase__=[220, 50_256] , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=False , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__=7 , **lowerCamelCase__ , ) -> str: '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = num_mel_bins __lowerCamelCase = d_model __lowerCamelCase = encoder_layers __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_attention_heads __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = use_cache __lowerCamelCase = encoder_layers __lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCamelCase = max_source_positions __lowerCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __lowerCamelCase = classifier_proj_size __lowerCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks __lowerCamelCase = median_filter_width super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , suppress_tokens=lowerCamelCase__ , begin_suppress_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __lowerCamelCase = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: __lowerCamelCase = {0: 'batch'} else: __lowerCamelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase__ , direction='inputs' ) return common_inputs def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = 22_050 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 220 , ) -> Mapping[str, Any]: '''simple docstring''' __lowerCamelCase = OrderedDict() __lowerCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase__ , framework=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , time_duration=lowerCamelCase__ , frequency=lowerCamelCase__ , ) __lowerCamelCase = encoder_inputs['input_features'].shape[2] __lowerCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __lowerCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = encoder_inputs.pop('input_features' ) __lowerCamelCase = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: __lowerCamelCase = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def lowercase_ ( self ) -> float: '''simple docstring''' return 1e-3
348
0
def UpperCamelCase__ ( A__ = 400_0000 ) -> int: snake_case__ : Union[str, Any] = [0, 1] snake_case__ : List[str] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 snake_case__ : Union[str, Any] = 0 for j in range(len(a__ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'''{solution() = }''')
143
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=3_0 , __UpperCamelCase=4_0_0 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=True , __UpperCamelCase=1 / 2_5_5 , __UpperCamelCase=True , ): """simple docstring""" UpperCamelCase_ = size if size is not None else {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean UpperCamelCase_ = image_std UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_pad def lowerCamelCase_ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=False ): """simple docstring""" if not batched: UpperCamelCase_ = image_inputs[0] if isinstance(__UpperCamelCase , Image.Image ): UpperCamelCase_ , UpperCamelCase_ = image.size else: UpperCamelCase_ , UpperCamelCase_ = image.shape[1], image.shape[2] if w < h: UpperCamelCase_ = int(self.size["""shortest_edge"""] * h / w ) UpperCamelCase_ = self.size["""shortest_edge"""] elif w > h: UpperCamelCase_ = self.size["""shortest_edge"""] UpperCamelCase_ = int(self.size["""shortest_edge"""] * w / h ) else: UpperCamelCase_ = self.size["""shortest_edge"""] UpperCamelCase_ = self.size["""shortest_edge"""] else: UpperCamelCase_ = [] for image in image_inputs: UpperCamelCase_ , UpperCamelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase_ = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[0] )[0] UpperCamelCase_ = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : str = YolosImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = YolosImageProcessingTester(self ) @property def lowerCamelCase_ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """size""" ) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) UpperCamelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2, """longest_edge""": 8_4} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase_ = self.image_processing_class(do_resize=__UpperCamelCase , do_normalize=__UpperCamelCase , do_rescale=__UpperCamelCase ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors UpperCamelCase_ = image_processing_a.pad(__UpperCamelCase , return_tensors="""pt""" ) UpperCamelCase_ = image_processing_a(__UpperCamelCase , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: UpperCamelCase_ = json.loads(f.read() ) UpperCamelCase_ = {"""image_id""": 3_9_7_6_9, """annotations""": target} # encode them UpperCamelCase_ = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) UpperCamelCase_ = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify area UpperCamelCase_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes UpperCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1e-3 ) ) # verify image_id UpperCamelCase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd UpperCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels UpperCamelCase_ = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify orig_size UpperCamelCase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size UpperCamelCase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: UpperCamelCase_ = json.loads(f.read() ) UpperCamelCase_ = {"""file_name""": """000000039769.png""", """image_id""": 3_9_7_6_9, """segments_info""": target} UpperCamelCase_ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCamelCase_ = YolosImageProcessor(format="""coco_panoptic""" ) UpperCamelCase_ = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , masks_path=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify area UpperCamelCase_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes UpperCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1e-3 ) ) # verify image_id UpperCamelCase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd UpperCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels UpperCamelCase_ = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify masks UpperCamelCase_ = 8_2_2_8_7_3 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __UpperCamelCase ) # verify orig_size UpperCamelCase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size UpperCamelCase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) )
122
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase: Tuple = logging.get_logger(__name__) lowerCAmelCase: List[str] = "▁" lowerCAmelCase: Tuple = {"vocab_file": "sentencepiece.bpe.model"} lowerCAmelCase: List[Any] = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } lowerCAmelCase: List[str] = { "facebook/mbart-large-50-one-to-many-mmt": 1_0_2_4, } # fmt: off lowerCAmelCase: Union[str, Any] = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] class a__( lowercase_ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = ["input_ids", "attention_mask"] lowercase__ = [] lowercase__ = [] def __init__( self : List[Any] , __snake_case : Optional[int] , __snake_case : List[Any]=None , __snake_case : List[str]=None , __snake_case : Optional[int]="</s>" , __snake_case : List[str]="</s>" , __snake_case : str="<s>" , __snake_case : str="<unk>" , __snake_case : List[Any]="<pad>" , __snake_case : List[Any]="<mask>" , __snake_case : Optional[Any] = None , **__snake_case : Any , ): a : List[Any] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token a : str = {} if sp_model_kwargs is None else sp_model_kwargs a : Union[str, Any] = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=a__ , tgt_lang=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) a : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a__ ) ) a : Tuple = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token a : Any = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a : Optional[Any] = 1 a : Dict = len(self.sp_model ) a : str = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(a__ ) } a : Optional[Any] = {v: k for k, v in self.lang_code_to_id.items()} a : Tuple = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) a : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} a : List[str] = src_lang if src_lang is not None else 'en_XX' a : Dict = self.lang_code_to_id[self._src_lang] a : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowercase_ ( self : int ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowercase_ ( self : List[str] ): return self._src_lang @src_lang.setter def lowercase_ ( self : Optional[int] , __snake_case : Any ): a : Optional[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Union[str, Any] ): a : Optional[int] = self.__dict__.copy() a : Optional[int] = None return state def __setstate__( self : Any , __snake_case : Optional[int] ): a : Dict = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): a : Any = {} a : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self : Optional[int] ): a : List[Any] = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase_ ( self : List[Any] , __snake_case : Union[str, Any] ): return self.sp_model.encode(a__ , out_type=a__ ) def lowercase_ ( self : List[Any] , __snake_case : Dict ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a : List[str] = self.sp_model.PieceToId(a__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase_ ( self : List[Any] , __snake_case : Optional[int] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase_ ( self : List[str] , __snake_case : int ): a : List[str] = [] a : List[Any] = '' a : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a__ ) + token a : str = True a : Optional[Any] = [] else: current_sub_tokens.append(a__ ) a : Union[str, Any] = False out_string += self.sp_model.decode(a__ ) return out_string.strip() def lowercase_ ( self : Dict , __snake_case : Dict , __snake_case : Any = None ): if not os.path.isdir(a__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a : Union[str, Any] = os.path.join( a__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ , 'wb' ) as fi: a : List[Any] = self.sp_model.serialized_model_proto() fi.write(a__ ) return (out_vocab_file,) def lowercase_ ( self : Dict , __snake_case : str , __snake_case : int = None , __snake_case : Optional[int] = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) a : Union[str, Any] = [1] * len(self.prefix_tokens ) a : Tuple = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(a__ )) + suffix_ones return prefix_ones + ([0] * len(a__ )) + ([0] * len(a__ )) + suffix_ones def lowercase_ ( self : List[str] , __snake_case : Any , __snake_case : str = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase_ ( self : int , __snake_case : List[str] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[str] , **__snake_case : Union[str, Any] ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) a : List[str] = src_lang a : Dict = self(a__ , add_special_tokens=a__ , return_tensors=a__ , **a__ ) a : Optional[Any] = self.convert_tokens_to_ids(a__ ) a : Optional[int] = tgt_lang_id return inputs def lowercase_ ( self : int , __snake_case : Dict , __snake_case : int = "en_XX" , __snake_case : str = None , __snake_case : List[Any] = "ro_RO" , **__snake_case : Optional[int] , ): a : int = src_lang a : int = tgt_lang return super().prepare_seqaseq_batch(a__ , a__ , **a__ ) def lowercase_ ( self : Tuple ): return self.set_src_lang_special_tokens(self.src_lang ) def lowercase_ ( self : Tuple ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase_ ( self : List[Any] , __snake_case : Dict ): a : List[str] = self.lang_code_to_id[src_lang] a : Union[str, Any] = [self.cur_lang_code_id] a : Union[str, Any] = [self.eos_token_id] def lowercase_ ( self : List[str] , __snake_case : Dict ): a : Optional[int] = self.lang_code_to_id[tgt_lang] a : Optional[int] = [self.cur_lang_code_id] a : List[Any] = [self.eos_token_id]
354
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase: List[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Optional[int] = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Dict = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowerCAmelCase: Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
96
0
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva A = '''''' A = '''''' A = '''''' A = 1 # (0 is vertical, 1 is horizontal) def __A ( ) -> None: __a , __a : List[Any] = get_dataset(a_ , a_) print('''Processing...''') __a , __a , __a : Dict = update_image_and_anno(a_ , a_ , a_) for index, image in enumerate(a_): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __a : List[Any] = random_chars(32) __a : Union[str, Any] = paths[index].split(os.sep)[-1].rsplit('''.''' , 1)[0] __a : Tuple = F"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(F"""/{file_root}.jpg""" , a_ , [cva.IMWRITE_JPEG_QUALITY, 85]) print(F"""Success {index+1}/{len(a_)} with {file_name}""") __a : List[Any] = [] for anno in new_annos[index]: __a : Dict = F"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(a_) with open(F"""/{file_root}.txt""" , '''w''') as outfile: outfile.write('''\n'''.join(line for line in annos_list)) def __A ( a_ :str , a_ :str) -> tuple[list, list]: __a : List[str] = [] __a : int = [] for label_file in glob.glob(os.path.join(a_ , '''*.txt''')): __a : List[str] = label_file.split(os.sep)[-1].rsplit('''.''' , 1)[0] with open(a_) as in_file: __a : Tuple = in_file.readlines() __a : List[str] = os.path.join(a_ , F"""{label_name}.jpg""") __a : int = [] for obj_list in obj_lists: __a : Optional[Any] = obj_list.rstrip('''\n''').split(''' ''') boxes.append( [ int(obj[0]), float(obj[1]), float(obj[2]), float(obj[3]), float(obj[4]), ]) if not boxes: continue img_paths.append(a_) labels.append(a_) return img_paths, labels def __A ( a_ :list , a_ :list , a_ :int = 1) -> tuple[list, list, list]: __a : List[Any] = [] __a : Dict = [] __a : str = [] for idx in range(len(a_)): __a : Tuple = [] __a : int = img_list[idx] path_list.append(a_) __a : Union[str, Any] = anno_list[idx] __a : Union[str, Any] = cva.imread(a_) if flip_type == 1: __a : Optional[Any] = cva.flip(a_ , a_) for bbox in img_annos: __a : List[str] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]]) elif flip_type == 0: __a : Optional[int] = cva.flip(a_ , a_) for bbox in img_annos: __a : List[str] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]]) new_annos_lists.append(a_) new_imgs_list.append(a_) return new_imgs_list, new_annos_lists, path_list def __A ( a_ :int = 32) -> str: assert number_char > 1, "The number of character should greater than 1" __a : List[Any] = ascii_lowercase + digits return "".join(random.choice(a_) for _ in range(a_)) if __name__ == "__main__": main() print('''DONE ✅''')
160
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=True , ): __a : Dict = parent __a : List[str] = batch_size __a : str = num_channels __a : Optional[int] = image_size __a : Tuple = min_resolution __a : str = max_resolution __a : List[str] = do_resize __a : Dict = size_divisor __a : Dict = do_rescale def _lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = GLPNImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): __a : str = GLPNImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size_divisor''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''resample''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_rescale''' ) ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _lowerCamelCase ( self ): # Initialize image_processing __a : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __a : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _lowerCamelCase ( self ): # Initialize image_processing __a : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __a : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
160
1
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCamelCase = False class _a ( unittest.TestCase): def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : int=32 )-> Optional[int]: set_seed(0 ) lowerCAmelCase__ : List[Any] = UNetaDModel(sample_size=_SCREAMING_SNAKE_CASE , in_channels=3 , out_channels=3 ) lowerCAmelCase__ : Union[str, Any] = torch.optim.SGD(model.parameters() , lr=0.0001 ) return model, optimizer @slow def UpperCAmelCase__( self : int )-> Any: lowerCAmelCase__ : Union[str, Any] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowerCAmelCase__ : int = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : Dict = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=_SCREAMING_SNAKE_CASE , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowerCAmelCase__ : str = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(_SCREAMING_SNAKE_CASE ) for _ in range(4 )] lowerCAmelCase__ : Any = [torch.randn((4, 3, 32, 32) ).to(_SCREAMING_SNAKE_CASE ) for _ in range(4 )] lowerCAmelCase__ : Optional[int] = [torch.randint(0 , 1000 , (4,) ).long().to(_SCREAMING_SNAKE_CASE ) for _ in range(4 )] # train with a DDPM scheduler lowerCAmelCase__ : Optional[Any] = self.get_model_optimizer(resolution=32 ) model.train().to(_SCREAMING_SNAKE_CASE ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase__ : Optional[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase__ : str = model(_SCREAMING_SNAKE_CASE , timesteps[i] ).sample lowerCAmelCase__ : Any = torch.nn.functional.mse_loss(_SCREAMING_SNAKE_CASE , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowerCAmelCase__ : List[str] = self.get_model_optimizer(resolution=32 ) model.train().to(_SCREAMING_SNAKE_CASE ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase__ : Tuple = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase__ : str = model(_SCREAMING_SNAKE_CASE , timesteps[i] ).sample lowerCAmelCase__ : Union[str, Any] = torch.nn.functional.mse_loss(_SCREAMING_SNAKE_CASE , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-5 ) ) self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-5 ) )
364
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) lowerCamelCase = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) lowerCamelCase = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) lowerCamelCase = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) lowerCamelCase = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) lowerCamelCase = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _a ( _BaseAutoModelClass): _a : List[str] = FLAX_MODEL_MAPPING lowerCamelCase = auto_class_update(FlaxAutoModel) class _a ( _BaseAutoModelClass): _a : Union[str, Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowerCamelCase = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class _a ( _BaseAutoModelClass): _a : Optional[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowerCamelCase = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class _a ( _BaseAutoModelClass): _a : Tuple = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowerCamelCase = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class _a ( _BaseAutoModelClass): _a : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class _a ( _BaseAutoModelClass): _a : Union[str, Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class _a ( _BaseAutoModelClass): _a : str = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowerCamelCase = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class _a ( _BaseAutoModelClass): _a : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class _a ( _BaseAutoModelClass): _a : List[Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowerCamelCase = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class _a ( _BaseAutoModelClass): _a : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowerCamelCase = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class _a ( _BaseAutoModelClass): _a : List[Any] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCamelCase = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class _a ( _BaseAutoModelClass): _a : List[Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowerCamelCase = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class _a ( _BaseAutoModelClass): _a : Optional[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowerCamelCase = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
211
0
def lowercase_ ( _lowerCamelCase : dict): lowercase__ : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowercase__ : set[int] = set() return any( node not in visited and depth_first_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) for node in graph) def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : int , _lowerCamelCase : set , _lowerCamelCase : set): visited.add(_lowerCamelCase) rec_stk.add(_lowerCamelCase) for node in graph[vertex]: if node not in visited: if depth_first_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(_lowerCamelCase) return False if __name__ == "__main__": from doctest import testmod testmod()
87
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar UpperCamelCase = TypeVar('''T''') class snake_case_ ( Generic[T] ): __A : deque[T] # Cache store of keys __A : set[T] # References of the keys in cache __A : int = 10 # Maximum capacity of cache def __init__( self : Union[str, Any] , lowercase_ : int ) -> None: lowercase__ : int = deque() lowercase__ : str = set() if not n: lowercase__ : str = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: lowercase__ : List[Any] = n def __UpperCamelCase ( self : Dict , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase__ : Dict = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def __UpperCamelCase ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Optional[int] ) -> str: return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
87
1
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = r"\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n" class a_ ( _snake_case ): @add_start_docstrings(_lowercase) def __call__( self :Union[str, Any] , _lowercase :torch.LongTensor , _lowercase :torch.FloatTensor , **_lowercase :List[str]) -> bool: raise NotImplementedError('''StoppingCriteria needs to be subclassed''') class a_ ( _snake_case ): def __init__( self :Optional[int] , _lowercase :int , _lowercase :Optional[int] = None) -> List[Any]: UpperCAmelCase_ = max_length UpperCAmelCase_ = max_position_embeddings @add_start_docstrings(_lowercase) def __call__( self :Dict , _lowercase :torch.LongTensor , _lowercase :torch.FloatTensor , **_lowercase :Any) -> bool: UpperCAmelCase_ = input_ids.shape[-1] UpperCAmelCase_ = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( '''This is a friendly reminder - the current text generation call will exceed the model\'s predefined ''' f"maximum length ({self.max_position_embeddings}). Depending on the model, you may observe " '''exceptions, performance degradation, or nothing at all.''') return is_done class a_ ( _snake_case ): def __init__( self :Optional[int] , _lowercase :int , _lowercase :int) -> str: warnings.warn( '''The class `MaxNewTokensCriteria` is deprecated. ''' f"Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` " '''with `max_length = start_length + max_new_tokens` instead.''' , _lowercase , ) UpperCAmelCase_ = start_length UpperCAmelCase_ = max_new_tokens UpperCAmelCase_ = start_length + max_new_tokens @add_start_docstrings(_lowercase) def __call__( self :Any , _lowercase :torch.LongTensor , _lowercase :torch.FloatTensor , **_lowercase :Union[str, Any]) -> bool: return input_ids.shape[-1] >= self.max_length class a_ ( _snake_case ): def __init__( self :Any , _lowercase :float , _lowercase :Optional[float] = None) -> Union[str, Any]: UpperCAmelCase_ = max_time UpperCAmelCase_ = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(_lowercase) def __call__( self :List[str] , _lowercase :torch.LongTensor , _lowercase :torch.FloatTensor , **_lowercase :Union[str, Any]) -> bool: return time.time() - self.initial_timestamp > self.max_time class a_ ( _snake_case ): @add_start_docstrings(_lowercase) def __call__( self :int , _lowercase :torch.LongTensor , _lowercase :torch.FloatTensor , **_lowercase :Optional[Any]) -> bool: return any(criteria(_lowercase , _lowercase) for criteria in self) @property def __a ( self :Any) -> Optional[int]: for stopping_criterium in self: if isinstance(_lowercase , _lowercase): return stopping_criterium.max_length elif isinstance(_lowercase , _lowercase): return stopping_criterium.max_length return None def A ( __UpperCAmelCase , __UpperCAmelCase ) -> StoppingCriteriaList: '''simple docstring''' UpperCAmelCase_ = stopping_criteria.max_length UpperCAmelCase_ = deepcopy(__UpperCAmelCase ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('''You set different `max_length` for stopping criteria and `max_length` parameter''' , __UpperCAmelCase ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=__UpperCAmelCase ) ) return new_stopping_criteria
344
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class a_ ( _snake_case ): UpperCamelCase__ : Dict ="openai/whisper-base" UpperCamelCase__ : int =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) UpperCamelCase__ : Any ="transcriber" UpperCamelCase__ : Optional[int] =WhisperProcessor UpperCamelCase__ : List[str] =WhisperForConditionalGeneration UpperCamelCase__ : List[Any] =["audio"] UpperCamelCase__ : Union[str, Any] =["text"] def __a ( self :int , _lowercase :Any) -> Tuple: return self.pre_processor(_lowercase , return_tensors='''pt''').input_features def __a ( self :Dict , _lowercase :Tuple) -> Any: return self.model.generate(inputs=_lowercase) def __a ( self :int , _lowercase :Union[str, Any]) -> Optional[Any]: return self.pre_processor.batch_decode(_lowercase , skip_special_tokens=_lowercase)[0]
344
1
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> float: return round(float(moles / volume ) * nfactor ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> float: return round(float((moles * 0.0821 * temperature) / (volume) ) ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> float: return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> float: return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
20
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self ,snake_case ,snake_case=7 ,snake_case=3 ,snake_case=18 ,snake_case=30 ,snake_case=400 ,snake_case=True ,snake_case=None ,snake_case=True ,snake_case=None ,): '''simple docstring''' lowercase : Dict = size if size is not None else {"""shortest_edge""": 20} lowercase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowercase : str = parent lowercase : int = batch_size lowercase : str = num_channels lowercase : int = image_size lowercase : List[str] = min_resolution lowercase : str = max_resolution lowercase : Dict = do_resize lowercase : Dict = size lowercase : Dict = do_center_crop lowercase : str = crop_size def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : Any= MobileNetVaImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = MobileNetVaImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case ,"""do_resize""" ) ) self.assertTrue(hasattr(snake_case ,"""size""" ) ) self.assertTrue(hasattr(snake_case ,"""do_center_crop""" ) ) self.assertTrue(hasattr(snake_case ,"""crop_size""" ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) lowercase : int = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,Image.Image ) # Test not batched input lowercase : Dict = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : Tuple = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ,numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,np.ndarray ) # Test not batched input lowercase : Optional[Any] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : List[str] = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ,torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,torch.Tensor ) # Test not batched input lowercase : Optional[int] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : List[str] = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
20
1
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: if len(lowerCamelCase__ ) != 2 or len(a[0] ) != 2 or len(lowerCamelCase__ ) != 2 or len(b[0] ) != 2: raise Exception('Matrices are not 2x2' ) __lowerCamelCase : List[str] = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowerCamelCase__ ) ) ] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowerCamelCase__ ) ) ] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Any: if len(lowerCamelCase__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('Odd matrices are not supported!' ) __lowerCamelCase : str = len(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = matrix_length // 2 __lowerCamelCase : List[Any] = [[a[i][j] for j in range(lowerCamelCase__ , lowerCamelCase__ )] for i in range(lowerCamelCase__ )] __lowerCamelCase : Union[str, Any] = [ [a[i][j] for j in range(lowerCamelCase__ , lowerCamelCase__ )] for i in range(lowerCamelCase__ , lowerCamelCase__ ) ] __lowerCamelCase : Optional[int] = [[a[i][j] for j in range(lowerCamelCase__ )] for i in range(lowerCamelCase__ )] __lowerCamelCase : List[Any] = [[a[i][j] for j in range(lowerCamelCase__ )] for i in range(lowerCamelCase__ , lowerCamelCase__ )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[str]: return len(lowerCamelCase__ ), len(matrix[0] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[int]: print('\n'.join(str(lowerCamelCase__ ) for line in matrix ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Any: if matrix_dimensions(lowerCamelCase__ ) == (2, 2): return default_matrix_multiplication(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = split_matrix(lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = split_matrix(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = actual_strassen(lowerCamelCase__ , matrix_subtraction(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase : Tuple = actual_strassen(matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase : Any = actual_strassen(matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase : List[str] = actual_strassen(lowerCamelCase__ , matrix_subtraction(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase : Union[str, Any] = actual_strassen(matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) , matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase : Optional[Any] = actual_strassen(matrix_subtraction(lowerCamelCase__ , lowerCamelCase__ ) , matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase : Dict = actual_strassen(matrix_subtraction(lowerCamelCase__ , lowerCamelCase__ ) , matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase : int = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase : Optional[Any] = matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : Dict = matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : int = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) , lowerCamelCase__ ) # construct the new matrix from our 4 quadrants __lowerCamelCase : Dict = [] for i in range(len(lowerCamelCase__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowerCamelCase__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: if matrix_dimensions(lowerCamelCase__ )[1] != matrix_dimensions(lowerCamelCase__ )[0]: __lowerCamelCase : Union[str, Any] = ( 'Unable to multiply these matrices, please check the dimensions.\n' F"Matrix A: {matrixa}\n" F"Matrix B: {matrixa}" ) raise Exception(lowerCamelCase__ ) __lowerCamelCase : List[Any] = matrix_dimensions(lowerCamelCase__ ) __lowerCamelCase : Dict = matrix_dimensions(lowerCamelCase__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowerCamelCase : Any = max(*lowerCamelCase__ , *lowerCamelCase__ ) __lowerCamelCase : Tuple = int(math.pow(2 , math.ceil(math.loga(lowerCamelCase__ ) ) ) ) __lowerCamelCase : Union[str, Any] = matrixa __lowerCamelCase : Any = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , lowerCamelCase__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCamelCase__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCamelCase__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) __lowerCamelCase : Any = actual_strassen(lowerCamelCase__ , lowerCamelCase__ ) # Removing the additional zeros for i in range(0 , lowerCamelCase__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCamelCase__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": a =[ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] a =[[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
359
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller a =3 def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> int: print('Generating primitive root of p' ) while True: __lowerCamelCase : Tuple = random.randrange(3 , lowerCamelCase__ ) if pow(lowerCamelCase__ , 2 , lowerCamelCase__ ) == 1: continue if pow(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...' ) __lowerCamelCase : List[str] = rabin_miller.generate_large_prime(lowerCamelCase__ ) # select large prime number. __lowerCamelCase : Dict = primitive_root(lowerCamelCase__ ) # one primitive root on modulo p. __lowerCamelCase : Optional[int] = random.randrange(3 , lowerCamelCase__ ) # private_key -> have to be greater than 2 for safety. __lowerCamelCase : List[Any] = cryptomath.find_mod_inverse(pow(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase : int = (key_size, e_a, e_a, p) __lowerCamelCase : str = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> None: if os.path.exists(F"{name}_pubkey.txt" ) or os.path.exists(F"{name}_privkey.txt" ): print('\nWARNING:' ) print( F"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" 'Use a different name or delete these files and re-run this program.' ) sys.exit() __lowerCamelCase , __lowerCamelCase : List[Any] = generate_key(lowerCamelCase__ ) print(F"\nWriting public key to file {name}_pubkey.txt..." ) with open(F"{name}_pubkey.txt" , 'w' ) as fo: fo.write(F"{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}" ) print(F"Writing private key to file {name}_privkey.txt..." ) with open(F"{name}_privkey.txt" , 'w' ) as fo: fo.write(F"{private_key[0]},{private_key[1]}" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print('Making key files...' ) make_key_files('elgamal' , 2_0_4_8 ) print('Key files generation successful' ) if __name__ == "__main__": main()
113
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowercase ( metaclass=__UpperCAmelCase): __lowerCAmelCase : str = ["""flax""", """transformers"""] def __init__( self : Dict , *_lowerCamelCase : Optional[int] , **_lowerCamelCase : Tuple ): """simple docstring""" requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls : Union[str, Any] , *_lowerCamelCase : Tuple , **_lowerCamelCase : int ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls : str , *_lowerCamelCase : Dict , **_lowerCamelCase : int ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) class lowercase ( metaclass=__UpperCAmelCase): __lowerCAmelCase : Optional[int] = ["""flax""", """transformers"""] def __init__( self : Optional[Any] , *_lowerCamelCase : List[Any] , **_lowerCamelCase : str ): """simple docstring""" requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls : Tuple , *_lowerCamelCase : str , **_lowerCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls : List[Any] , *_lowerCamelCase : str , **_lowerCamelCase : Dict ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) class lowercase ( metaclass=__UpperCAmelCase): __lowerCAmelCase : Tuple = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_lowerCamelCase : str , **_lowerCamelCase : List[str] ): """simple docstring""" requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls : Union[str, Any] , *_lowerCamelCase : int , **_lowerCamelCase : List[str] ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls : int , *_lowerCamelCase : List[str] , **_lowerCamelCase : Dict ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) class lowercase ( metaclass=__UpperCAmelCase): __lowerCAmelCase : Dict = ["""flax""", """transformers"""] def __init__( self : Any , *_lowerCamelCase : int , **_lowerCamelCase : Optional[int] ): """simple docstring""" requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls : List[str] , *_lowerCamelCase : Optional[int] , **_lowerCamelCase : str ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls : int , *_lowerCamelCase : List[str] , **_lowerCamelCase : Optional[int] ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] )
167
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" A_ : Dict = nn.Parameter(_UpperCAmelCase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" A_ : Optional[Any] = nn.Parameter(_UpperCAmelCase ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Optional[int] = np.asarray(weights[0] ) A_ : Optional[Any] = np.asarray(weights[1] ) A_ : Union[str, Any] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(_UpperCAmelCase ).view(-1 , _UpperCAmelCase ).contiguous().transpose(0 , 1 ) , ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : int = np.asarray(weights[0] ) A_ : Optional[int] = np.asarray(weights[1] ) A_ : int = np.asarray(weights[2] ) A_ : List[str] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(_UpperCAmelCase ).view(-1 , _UpperCAmelCase ).contiguous().transpose(0 , 1 ) , ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : List[Any] = weights[0][0][0] A_ : Any = np.asarray(layer_norm_a[0] ) A_ : List[str] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) , ) # lsh weights + output A_ : List[str] = weights[0][1] if len(_UpperCAmelCase ) < 4: set_layer_weights_in_torch_lsh(_UpperCAmelCase , torch_block.attention , _UpperCAmelCase ) else: set_layer_weights_in_torch_local(_UpperCAmelCase , torch_block.attention , _UpperCAmelCase ) # intermediate weighs A_ : Dict = weights[2][0][1][2] # Chunked Feed Forward if len(_UpperCAmelCase ) == 4: A_ : Tuple = intermediate_weights[2] # layernorm 2 A_ : List[Any] = np.asarray(intermediate_weights[0][0] ) A_ : List[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) , ) # intermediate dense A_ : Optional[int] = np.asarray(intermediate_weights[1][0] ) A_ : List[str] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(_UpperCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_UpperCAmelCase ) , ) # intermediate out A_ : List[str] = np.asarray(intermediate_weights[4][0] ) A_ : int = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(_UpperCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_UpperCAmelCase ) , ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Any = torch_model.reformer # word embeds A_ : str = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(_UpperCAmelCase ) , ) if isinstance(weights[3] , _UpperCAmelCase ): A_ : Tuple = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): A_ : Tuple = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" A_ : Tuple = nn.Parameter(torch.tensor(_UpperCAmelCase ) ) A_ : str = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( _UpperCAmelCase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): A_ : Tuple = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # output layer norm A_ : int = np.asarray(weights[7][0] ) A_ : str = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) , ) # output embeddings A_ : Optional[Any] = np.asarray(weights[9][0] ) A_ : Tuple = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(_UpperCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_UpperCAmelCase ) , ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Optional[Any] = ReformerConfig.from_json_file(_UpperCAmelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) A_ : Optional[Any] = ReformerModelWithLMHead(_UpperCAmelCase ) with open(_UpperCAmelCase , '''rb''' ) as f: A_ : Union[str, Any] = pickle.load(_UpperCAmelCase )['''weights'''] set_model_weights_in_torch(_UpperCAmelCase , _UpperCAmelCase , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _UpperCAmelCase ) if __name__ == "__main__": _lowerCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _lowerCamelCase : Dict = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
167
1
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" assert column_title.isupper() _lowerCAmelCase = 0 _lowerCAmelCase = len(a_ ) - 1 _lowerCAmelCase = 0 while index >= 0: _lowerCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , a_ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
364
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(snake_case_ ) , '''Tatoeba directory does not exist.''' ) class UpperCAmelCase ( unittest.TestCase ): @cached_property def lowercase__ ( self : int ) -> Any: _lowerCAmelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=__snake_case ) @slow def lowercase__ ( self : Dict ) -> int: self.resolver.convert_models(["""heb-eng"""] ) @slow def lowercase__ ( self : Optional[int] ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=__snake_case ) assert mmeta["long_pair"] == "heb-eng"
220
0
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor __A : Dict = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> None: warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
154
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __UpperCamelCase ( _A : Optional[Any] , _A : List[str]=7 ) ->str: """simple docstring""" lowerCamelCase_ =None if token is not None: lowerCamelCase_ ={"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} # The id of a workflow (not of a workflow run) lowerCamelCase_ ="""636036""" lowerCamelCase_ =f'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' lowerCamelCase_ =requests.get(_A , headers=_A ).json() return result["workflow_runs"] def __UpperCamelCase ( _A : Optional[int] ) ->int: """simple docstring""" lowerCamelCase_ =get_daily_ci_runs(_A ) lowerCamelCase_ =None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowerCamelCase_ =workflow_run["""id"""] break return workflow_run_id def __UpperCamelCase ( _A : Any , _A : int , _A : Tuple ) ->Tuple: """simple docstring""" lowerCamelCase_ =get_last_daily_ci_runs(_A ) if workflow_run_id is not None: lowerCamelCase_ =get_artifacts_links(worflow_run_id=_A , token=_A ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowerCamelCase_ =artifacts_links[artifact_name] download_artifact( artifact_name=_A , artifact_url=_A , output_dir=_A , token=_A ) def __UpperCamelCase ( _A : int , _A : Any , _A : Optional[int] ) ->List[Any]: """simple docstring""" get_last_daily_ci_artifacts(_A , _A , _A ) lowerCamelCase_ ={} for artifact_name in artifact_names: lowerCamelCase_ =os.path.join(_A , f'{artifact_name}.zip' ) if os.path.isfile(_A ): lowerCamelCase_ ={} with zipfile.ZipFile(_A ) as z: for filename in z.namelist(): if not os.path.isdir(_A ): # read the file with z.open(_A ) as f: lowerCamelCase_ =f.read().decode("""UTF-8""" ) return results
154
1
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration snake_case__ : Optional[Any] = pytest.mark.integration snake_case__ : Union[str, Any] = {'comet'} snake_case__ : Tuple = importlib.util.find_spec('fairseq') is not None snake_case__ : List[str] = {'code_eval'} snake_case__ : Optional[int] = os.name == 'nt' snake_case__ : Optional[int] = {'bertscore', 'frugalscore', 'perplexity'} snake_case__ : Optional[Any] = importlib.util.find_spec('transformers') is not None def _a ( lowerCamelCase: Optional[Any] ) -> List[str]: '''simple docstring''' @wraps(lowerCamelCase ) def wrapper(self: Union[str, Any] , lowerCamelCase: Any ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('''"test requires Fairseq"''' ) else: test_case(self , lowerCamelCase ) return wrapper def _a ( lowerCamelCase: Optional[Any] ) -> Dict: '''simple docstring''' @wraps(lowerCamelCase ) def wrapper(self: Optional[int] , lowerCamelCase: List[Any] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('''"test requires transformers"''' ) else: test_case(self , lowerCamelCase ) return wrapper def _a ( lowerCamelCase: List[str] ) -> Dict: '''simple docstring''' @wraps(lowerCamelCase ) def wrapper(self: Any , lowerCamelCase: Union[str, Any] ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('''"test not supported on Windows"''' ) else: test_case(self , lowerCamelCase ) return wrapper def _a ( ) -> List[Any]: '''simple docstring''' __A = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @local class A_ ( parameterized.TestCase ): lowerCAmelCase__ = {} lowerCAmelCase__ = None @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''' ) def _lowerCAmelCase (self :Optional[int] , _UpperCamelCase :List[Any] )-> Dict: __A = '''[...]''' __A = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , _UpperCamelCase ) ).module_path ) __A = datasets.load.import_main_class(metric_module.__name__ , dataset=_UpperCamelCase ) # check parameters __A = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(_UpperCamelCase , metric_module.__name__ ): with self.use_local_metrics(): try: __A = doctest.testmod(_UpperCamelCase , verbose=_UpperCamelCase , raise_on_error=_UpperCamelCase ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def _lowerCAmelCase (self :Optional[int] , _UpperCamelCase :List[Any] )-> List[Any]: __A = '''[...]''' __A = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , _UpperCamelCase ) ).module_path ) # run doctest with self.use_local_metrics(): __A = doctest.testmod(_UpperCamelCase , verbose=_UpperCamelCase , raise_on_error=_UpperCamelCase ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def _lowerCAmelCase (self :Optional[int] , _UpperCamelCase :int , _UpperCamelCase :Dict )-> Any: if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](_UpperCamelCase ): yield else: yield @contextmanager def _lowerCAmelCase (self :List[Any] )-> str: def load_local_metric(_UpperCamelCase :int , *_UpperCamelCase :int , **_UpperCamelCase :List[Any] ): return load_metric(os.path.join('''metrics''' , _UpperCamelCase ) , *_UpperCamelCase , **_UpperCamelCase ) with patch('''datasets.load_metric''' ) as mock_load_metric: __A = load_local_metric yield @classmethod def _lowerCAmelCase (cls :Any , _UpperCamelCase :Optional[Any] )-> Dict: def wrapper(_UpperCamelCase :List[str] ): __A = contextmanager(_UpperCamelCase ) __A = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('''bleurt''' ) def _a ( lowerCamelCase: Any ) -> Optional[Any]: '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('''sv''' , '''''' , '''''' ) # handle pytest cli flags class A_ ( _lowerCamelCase ): def _lowerCAmelCase (self :Tuple , _UpperCamelCase :Optional[Any] )-> Tuple: assert len(input_dict['''input_ids'''] ) == 2 return np.array([1.0_3, 1.0_4] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor: __A = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('''bertscore''' ) def _a ( lowerCamelCase: Union[str, Any] ) -> Optional[int]: '''simple docstring''' import torch def bert_cos_score_idf(lowerCamelCase: Any , lowerCamelCase: Optional[Any] , *lowerCamelCase: Union[str, Any] , **lowerCamelCase: str ): return torch.tensor([[1.0, 1.0, 1.0]] * len(lowerCamelCase ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('''bert_score.scorer.get_model''' ), patch( '''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf: __A = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('''comet''' ) def _a ( lowerCamelCase: Dict ) -> Any: '''simple docstring''' def load_from_checkpoint(lowerCamelCase: Dict ): class A_ : def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :Optional[int] , *_UpperCamelCase :str , **_UpperCamelCase :List[str] )-> Dict: assert len(_UpperCamelCase ) == 2 __A = [0.1_9, 0.9_2] return scores, sum(_UpperCamelCase ) / len(_UpperCamelCase ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('''comet.download_model''' ) as mock_download_model: __A = None with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint: __A = load_from_checkpoint yield def _a ( ) -> List[str]: '''simple docstring''' __A = load_metric(os.path.join('''metrics''' , '''seqeval''' ) ) __A = '''ERROR''' __A = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(lowerCamelCase , match=re.escape(lowerCamelCase ) ): metric.compute(predictions=[] , references=[] , scheme=lowerCamelCase )
250
import math def _a ( lowerCamelCase: int ) -> int: '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): __A = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCamelCase ) if number < 1: __A = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCamelCase ) elif number == 1: return 3 elif number == 2: return 5 else: __A = int(math.log(number // 3 , 2 ) ) + 2 __A = [3, 5] __A = 2 __A = 3 for block in range(1 , lowerCamelCase ): for _ in range(lowerCamelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): snake_case__ : Optional[Any] = 0 try: snake_case__ : int = proth(number) except ValueError: print(f'ValueError: there is no {number}th Proth number') continue print(f'The {number}th Proth number: {value}')
250
1
def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): """simple docstring""" a :Tuple = len(UpperCAmelCase_ ) a :Union[str, Any] = len(UpperCAmelCase_ ) a :Optional[Any] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] a :Union[str, Any] = True for i in range(UpperCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: a :List[str] = True if a[i].islower(): a :Union[str, Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
94
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : List[str] = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """informer""" _SCREAMING_SNAKE_CASE = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : str = "student_t" , SCREAMING_SNAKE_CASE_ : str = "nll" , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : List[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, bool]] = "mean" , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : int = 6_4 , SCREAMING_SNAKE_CASE_ : int = 3_2 , SCREAMING_SNAKE_CASE_ : int = 3_2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : str = "gelu" , SCREAMING_SNAKE_CASE_ : float = 0.05 , SCREAMING_SNAKE_CASE_ : float = 0.1 , SCREAMING_SNAKE_CASE_ : float = 0.1 , SCREAMING_SNAKE_CASE_ : float = 0.1 , SCREAMING_SNAKE_CASE_ : float = 0.1 , SCREAMING_SNAKE_CASE_ : int = 1_0_0 , SCREAMING_SNAKE_CASE_ : float = 0.02 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : str = "prob" , SCREAMING_SNAKE_CASE_ : int = 5 , SCREAMING_SNAKE_CASE_ : bool = True , **SCREAMING_SNAKE_CASE_ : int , ): # time series specific configuration lowerCAmelCase_ : Dict = prediction_length lowerCAmelCase_ : List[str] = context_length or prediction_length lowerCAmelCase_ : List[Any] = distribution_output lowerCAmelCase_ : int = loss lowerCAmelCase_ : Optional[int] = input_size lowerCAmelCase_ : Tuple = num_time_features lowerCAmelCase_ : List[str] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCAmelCase_ : int = scaling lowerCAmelCase_ : List[Any] = num_dynamic_real_features lowerCAmelCase_ : Union[str, Any] = num_static_real_features lowerCAmelCase_ : Optional[int] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) lowerCAmelCase_ : str = cardinality else: lowerCAmelCase_ : Any = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) lowerCAmelCase_ : Optional[int] = embedding_dimension else: lowerCAmelCase_ : Union[str, Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase_ : Optional[int] = num_parallel_samples # Transformer architecture configuration lowerCAmelCase_ : Any = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase_ : Any = d_model lowerCAmelCase_ : Union[str, Any] = encoder_attention_heads lowerCAmelCase_ : Optional[Any] = decoder_attention_heads lowerCAmelCase_ : Any = encoder_ffn_dim lowerCAmelCase_ : List[str] = decoder_ffn_dim lowerCAmelCase_ : Optional[Any] = encoder_layers lowerCAmelCase_ : Tuple = decoder_layers lowerCAmelCase_ : Optional[int] = dropout lowerCAmelCase_ : Dict = attention_dropout lowerCAmelCase_ : int = activation_dropout lowerCAmelCase_ : Dict = encoder_layerdrop lowerCAmelCase_ : str = decoder_layerdrop lowerCAmelCase_ : Union[str, Any] = activation_function lowerCAmelCase_ : Union[str, Any] = init_std lowerCAmelCase_ : Union[str, Any] = use_cache # Informer lowerCAmelCase_ : Optional[int] = attention_type lowerCAmelCase_ : Any = sampling_factor lowerCAmelCase_ : int = distil super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def SCREAMING_SNAKE_CASE__ ( self : Any ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
224
0
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class A ( lowerCamelCase_ ): __UpperCAmelCase : int = '''efficientformer''' def __init__(self : List[str] , __UpperCAmelCase : List[int] = [3, 2, 6, 4] , __UpperCAmelCase : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , __UpperCAmelCase : List[bool] = [True, True, True, True] , __UpperCAmelCase : int = 4_4_8 , __UpperCAmelCase : int = 3_2 , __UpperCAmelCase : int = 4 , __UpperCAmelCase : int = 7 , __UpperCAmelCase : int = 5 , __UpperCAmelCase : int = 8 , __UpperCAmelCase : int = 4 , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : int = 1_6 , __UpperCAmelCase : int = 3 , __UpperCAmelCase : int = 3 , __UpperCAmelCase : int = 3 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : bool = True , __UpperCAmelCase : bool = True , __UpperCAmelCase : float = 1E-5 , __UpperCAmelCase : str = "gelu" , __UpperCAmelCase : float = 0.02 , __UpperCAmelCase : float = 1E-12 , __UpperCAmelCase : int = 2_2_4 , __UpperCAmelCase : float = 1E-05 , **__UpperCAmelCase : Dict , ) -> None: """simple docstring""" super().__init__(**__snake_case ) UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = hidden_sizes UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = depths UpperCAmelCase__ = mlp_expansion_ratio UpperCAmelCase__ = downsamples UpperCAmelCase__ = dim UpperCAmelCase__ = key_dim UpperCAmelCase__ = attention_ratio UpperCAmelCase__ = resolution UpperCAmelCase__ = pool_size UpperCAmelCase__ = downsample_patch_size UpperCAmelCase__ = downsample_stride UpperCAmelCase__ = downsample_pad UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = num_metaad_blocks UpperCAmelCase__ = distillation UpperCAmelCase__ = use_layer_scale UpperCAmelCase__ = layer_scale_init_value UpperCAmelCase__ = image_size UpperCAmelCase__ = batch_norm_eps
371
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive", [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ], ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, ) -> Any: '''simple docstring''' UpperCAmelCase__ = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } UpperCAmelCase__ , UpperCAmelCase__ = input_paths_and_base_extractors[compression_format] if input_path is None: UpperCAmelCase__ = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) assert base_extractor.is_extractable(__A ) UpperCAmelCase__ = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(__A, __A ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase__ = file_path.read_text(encoding="utf-8" ) else: UpperCAmelCase__ = output_path.read_text(encoding="utf-8" ) UpperCAmelCase__ = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive", [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ], ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = { "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } UpperCAmelCase__ = input_paths[compression_format] if input_path is None: UpperCAmelCase__ = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) UpperCAmelCase__ = Extractor.infer_extractor_format(__A ) assert extractor_format is not None UpperCAmelCase__ = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(__A, __A, __A ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase__ = file_path.read_text(encoding="utf-8" ) else: UpperCAmelCase__ = output_path.read_text(encoding="utf-8" ) UpperCAmelCase__ = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.fixture def lowerCAmelCase_ ( __A, __A ) -> List[str]: '''simple docstring''' import tarfile UpperCAmelCase__ = tmp_path / "data_dot_dot" directory.mkdir() UpperCAmelCase__ = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(__A, "w" ) as f: f.add(__A, arcname=os.path.join("..", text_file.name ) ) return path @pytest.fixture def lowerCAmelCase_ ( __A ) -> Dict: '''simple docstring''' import tarfile UpperCAmelCase__ = tmp_path / "data_sym_link" directory.mkdir() UpperCAmelCase__ = directory / "tar_file_with_sym_link.tar" os.symlink("..", directory / "subdir", target_is_directory=__A ) with tarfile.TarFile(__A, "w" ) as f: f.add(str(directory / "subdir" ), arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log", [("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")], ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A, __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } UpperCAmelCase__ = insecure_tar_files[insecure_tar_file] UpperCAmelCase__ = tmp_path / "extracted" TarExtractor.extract(__A, __A ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowerCAmelCase_ ( __A ) -> Any: '''simple docstring''' UpperCAmelCase__ = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 UpperCAmelCase__ = ( B"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" B"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" B"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" B"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open("wb" ) as f: f.write(__A ) assert zipfile.is_zipfile(str(__A ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__A ) # but we're right
143
0
def _UpperCamelCase ( snake_case__, snake_case__ ) -> str: __UpperCAmelCase : int = "" for word_or_phrase in separated: if not isinstance(snake_case__, snake_case__ ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(snake_case__ ) if __name__ == "__main__": from doctest import testmod testmod()
157
import math import random from typing import Any from .hill_climbing import SearchProblem def _UpperCamelCase ( snake_case__, snake_case__ = True, snake_case__ = math.inf, snake_case__ = -math.inf, snake_case__ = math.inf, snake_case__ = -math.inf, snake_case__ = False, snake_case__ = 100, snake_case__ = 0.01, snake_case__ = 1, ) -> Any: __UpperCAmelCase : Dict = False __UpperCAmelCase : Dict = search_prob __UpperCAmelCase : Tuple = start_temperate __UpperCAmelCase : Dict = [] __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : int = None while not search_end: __UpperCAmelCase : str = current_state.score() if best_state is None or current_score > best_state.score(): __UpperCAmelCase : Union[str, Any] = current_state scores.append(snake_case__ ) iterations += 1 __UpperCAmelCase : List[str] = None __UpperCAmelCase : int = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __UpperCAmelCase : str = random.randint(0, len(snake_case__ ) - 1 ) # picking a random neighbor __UpperCAmelCase : Tuple = neighbors.pop(snake_case__ ) __UpperCAmelCase : List[str] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __UpperCAmelCase : Dict = change * -1 # in case we are finding minimum if change > 0: # improves the solution __UpperCAmelCase : int = picked_neighbor else: __UpperCAmelCase : List[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __UpperCAmelCase : Union[str, Any] = picked_neighbor __UpperCAmelCase : int = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __UpperCAmelCase : Optional[Any] = True else: __UpperCAmelCase : int = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(snake_case__ ), snake_case__ ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _snake_case = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _snake_case = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) # starting the problem with initial coordinates (12, 47) _snake_case = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _snake_case = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) def _UpperCamelCase ( snake_case__, snake_case__ ) -> Tuple: return (3 * x**2) - (6 * y) _snake_case = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _snake_case = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'{local_min.score()}' ) _snake_case = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _snake_case = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'{local_min.score()}' )
157
1
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCamelCase__ : Any = get_logger(__name__) class lowerCamelCase_ : '''simple docstring''' lowercase_ = "dummy_data" lowercase_ = "datasets" lowercase_ = False def __init__( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Union[Version, str] , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[List[Callable]] = None , ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = dataset_name SCREAMING_SNAKE_CASE_ = cache_dir SCREAMING_SNAKE_CASE_ = use_local_dummy_data SCREAMING_SNAKE_CASE_ = config # download_callbacks take a single url as input SCREAMING_SNAKE_CASE_ = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root SCREAMING_SNAKE_CASE_ = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general SCREAMING_SNAKE_CASE_ = str(_lowerCAmelCase ) # to be downloaded SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None @property def lowerCAmelCase_ ( self : Dict ): if self._dummy_file is None: SCREAMING_SNAKE_CASE_ = self.download_dummy_data() return self._dummy_file @property def lowerCAmelCase_ ( self : str ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def lowerCAmelCase_ ( self : List[str] ): return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) SCREAMING_SNAKE_CASE_ = cached_path( _lowerCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_lowerCAmelCase , force_extract=_lowerCAmelCase ) return os.path.join(_lowerCAmelCase , self.dummy_file_name ) @property def lowerCAmelCase_ ( self : str ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowerCAmelCase_ ( self : Union[str, Any] ): if self._bucket_url is None: SCREAMING_SNAKE_CASE_ = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def lowerCAmelCase_ ( self : Union[str, Any] ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : List[str] , *_lowerCAmelCase : int ): if self.load_existing_dummy_data: # dummy data is downloaded and tested SCREAMING_SNAKE_CASE_ = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned SCREAMING_SNAKE_CASE_ = self.dummy_file_name # special case when data_url is a dict if isinstance(_lowerCAmelCase , _lowerCAmelCase ): return self.create_dummy_data_dict(_lowerCAmelCase , _lowerCAmelCase ) elif isinstance(_lowerCAmelCase , (list, tuple) ): return self.create_dummy_data_list(_lowerCAmelCase , _lowerCAmelCase ) else: return self.create_dummy_data_single(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : List[str] , *_lowerCAmelCase : Optional[int] ): return self.download_and_extract(_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] ): return self.download_and_extract(_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : int , *_lowerCAmelCase : Any , **_lowerCAmelCase : Optional[Any] ): return path def lowerCAmelCase_ ( self : Dict ): return {} def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] ): SCREAMING_SNAKE_CASE_ = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): for single_url in single_urls: download_callback(_lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ = single_urls download_callback(_lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = [os.path.join(_lowerCAmelCase , urllib.parse.quote_plus(Path(_lowerCAmelCase ).name ) ) for x in single_urls] else: SCREAMING_SNAKE_CASE_ = single_urls SCREAMING_SNAKE_CASE_ = os.path.join(_lowerCAmelCase , urllib.parse.quote_plus(Path(_lowerCAmelCase ).name ) ) SCREAMING_SNAKE_CASE_ = value # make sure that values are unique if all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique SCREAMING_SNAKE_CASE_ = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one SCREAMING_SNAKE_CASE_ = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _lowerCAmelCase ) ) for url in data_url ) SCREAMING_SNAKE_CASE_ = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): SCREAMING_SNAKE_CASE_ = [data_url[0]] * len(_lowerCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus SCREAMING_SNAKE_CASE_ = os.path.join(_lowerCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(_lowerCAmelCase ) return dummy_data_list def lowerCAmelCase_ ( self : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): for download_callback in self.download_callbacks: download_callback(_lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus SCREAMING_SNAKE_CASE_ = os.path.join(_lowerCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(_lowerCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowerCAmelCase_ ( self : Tuple ): pass def lowerCAmelCase_ ( self : List[Any] ): pass def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : Any ): def _iter_archive_members(_lowerCAmelCase : Tuple ): # this preserves the order of the members inside the ZIP archive SCREAMING_SNAKE_CASE_ = Path(self.dummy_file ).parent SCREAMING_SNAKE_CASE_ = path.relative_to(_lowerCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: SCREAMING_SNAKE_CASE_ = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = _iter_archive_members(_lowerCAmelCase ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(_lowerCAmelCase ).as_posix(), file_path.open('rb' ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : List[Any] ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = [paths] for path in paths: if os.path.isfile(_lowerCAmelCase ): if os.path.basename(_lowerCAmelCase ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_lowerCAmelCase ): if os.path.basename(_lowerCAmelCase ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(_lowerCAmelCase ): if filename.startswith(('.', '__') ): continue yield os.path.join(_lowerCAmelCase , _lowerCAmelCase )
210
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase__ : Dict = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[int] ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
210
1
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( _SCREAMING_SNAKE_CASE ,unittest.TestCase): """simple docstring""" lowercase = BlenderbotSmallTokenizer lowercase = False def __lowercase ( self : List[str] ) -> List[Any]: super().setUp() lowerCAmelCase_ : Optional[Any] = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""] lowerCAmelCase_ : Union[str, Any] = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) lowerCAmelCase_ : Any = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""] lowerCAmelCase_ : List[str] = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""} lowerCAmelCase_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase ) ) def __lowercase ( self : Any , **lowerCamelCase : int ) -> Dict: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def __lowercase ( self : Tuple , lowerCamelCase : Tuple ) -> Union[str, Any]: lowerCAmelCase_ : List[Any] = """adapt act apte""" lowerCAmelCase_ : List[str] = """adapt act apte""" return input_text, output_text def __lowercase ( self : str ) -> int: lowerCAmelCase_ : Dict = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase_ : Dict = """adapt act apte""" lowerCAmelCase_ : Optional[Any] = ["""adapt""", """act""", """ap@@""", """te"""] lowerCAmelCase_ : int = tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : int = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] lowerCAmelCase_ : Optional[Any] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , lowerCamelCase ) def __lowercase ( self : List[Any] ) -> Union[str, Any]: lowerCAmelCase_ : int = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) assert tok("""sam""" ).input_ids == [13_84] lowerCAmelCase_ : int = """I am a small frog.""" lowerCAmelCase_ : Dict = tok([src_text] , padding=lowerCamelCase , truncation=lowerCamelCase )["""input_ids"""] lowerCAmelCase_ : int = tok.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __lowercase ( self : Tuple ) -> Optional[int]: lowerCAmelCase_ : int = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) lowerCAmelCase_ : int = """I am a small frog .""" lowerCAmelCase_ : Dict = """.""" lowerCAmelCase_ : Any = tok(lowerCamelCase )["""input_ids"""] lowerCAmelCase_ : List[Any] = tok(lowerCamelCase )["""input_ids"""] assert encoded[-1] == encoded_dot[0]
120
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __A : Any = [ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] __A : Any = [ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def UpperCamelCase_ ( A__ : str , A__ : str ): '''simple docstring''' lowerCAmelCase_ : Dict = { """word_embeddings.weight""": """word_embeddings.weight""", """word_embeddings.norm.weight""": """word_embeddings_layernorm.weight""", """word_embeddings.norm.bias""": """word_embeddings_layernorm.bias""", """weight""": """ln_f.weight""", """bias""": """ln_f.bias""", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks lowerCAmelCase_ : List[str] = int(re.match(R""".*layer_(\d*).*""" , A__ )[1] ) layer_number -= 3 return f'h.{layer_number}.' + key def UpperCamelCase_ ( A__ : List[str] ): '''simple docstring''' if dtype == torch.bool: return 1 / 8 lowerCAmelCase_ : List[str] = re.search(R"""[^\d](\d+)$""" , str(A__ ) ) if bit_search is None: raise ValueError(f'`dtype` is not a valid dtype: {dtype}.' ) lowerCAmelCase_ : Dict = int(bit_search.groups()[0] ) return bit_size // 8 def UpperCamelCase_ ( A__ : int , A__ : Tuple , A__ : Any , A__ : Tuple , A__ : List[str] ): '''simple docstring''' if bloom_config_file == "": lowerCAmelCase_ : Any = BloomConfig() else: lowerCAmelCase_ : Any = BloomConfig.from_json_file(A__ ) if shard_model: lowerCAmelCase_ : Any = os.listdir(A__ ) lowerCAmelCase_ : Optional[int] = sorted(filter(lambda A__ : s.startswith("""layer""" ) and "model_00" in s , A__ ) ) lowerCAmelCase_ : Optional[Any] = {"""weight_map""": {}, """metadata""": {}} lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : Optional[int] = BloomConfig() for j, file in enumerate(A__ ): print("""Processing file: {}""".format(A__ ) ) lowerCAmelCase_ : List[str] = None for i in range(A__ ): # load all TP files lowerCAmelCase_ : Optional[Any] = file.replace("""model_00""" , f'model_0{i}' ) lowerCAmelCase_ : Optional[int] = torch.load(os.path.join(A__ , A__ ) , map_location="""cpu""" ) # Rename keys in the transformers names lowerCAmelCase_ : str = list(temp.keys() ) for key in keys: lowerCAmelCase_ : Optional[int] = temp.pop(A__ ) if tensors is None: lowerCAmelCase_ : str = temp else: for key in tensors.keys(): if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase_ : int = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase_ : List[str] = torch.cat([tensors[key], temp[key]] , dim=A__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase_ : Optional[int] = tensors[key] / pretraining_tp torch.save( A__ , os.path.join( A__ , """pytorch_model_{}-of-{}.bin""".format(str(j + 1 ).zfill(5 ) , str(len(A__ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): lowerCAmelCase_ : str = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: lowerCAmelCase_ : Tuple = """pytorch_model_{}-of-{}.bin""".format( str(j + 1 ).zfill(5 ) , str(len(A__ ) ).zfill(5 ) ) lowerCAmelCase_ : str = BloomConfig() lowerCAmelCase_ : List[Any] = pytorch_dump_folder_path + """/""" + CONFIG_NAME lowerCAmelCase_ : List[Any] = total_size with open(A__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) with open(os.path.join(A__ , WEIGHTS_NAME + """.index.json""" ) , """w""" , encoding="""utf-8""" ) as f: lowerCAmelCase_ : Optional[int] = json.dumps(A__ , indent=2 , sort_keys=A__ ) + """\n""" f.write(A__ ) else: lowerCAmelCase_ : int = BloomModel(A__ ) lowerCAmelCase_ : Union[str, Any] = os.listdir(A__ ) lowerCAmelCase_ : Tuple = sorted(filter(lambda A__ : s.startswith("""layer""" ) and "model_00" in s , A__ ) ) lowerCAmelCase_ : List[Any] = None for i, file in enumerate(A__ ): lowerCAmelCase_ : List[Any] = None for i in range(A__ ): # load all TP files lowerCAmelCase_ : str = file.replace("""model_00""" , f'model_0{i}' ) lowerCAmelCase_ : Optional[Any] = torch.load(os.path.join(A__ , A__ ) , map_location="""cpu""" ) # Rename keys in the transformers names lowerCAmelCase_ : Union[str, Any] = list(temp.keys() ) for key in keys: lowerCAmelCase_ : str = temp.pop(A__ ) if tensors is None: lowerCAmelCase_ : int = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase_ : Optional[Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase_ : Optional[Any] = torch.cat([tensors[key], temp[key]] , dim=A__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase_ : Union[str, Any] = tensors[key] / pretraining_tp lowerCAmelCase_ : Optional[int] = model.load_state_dict(A__ , strict=A__ ) assert not other_keys.unexpected_keys, f'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: lowerCAmelCase_ : Any = set(other_keys.missing_keys ) else: lowerCAmelCase_ : List[Any] = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(A__ , exist_ok=A__ ) lowerCAmelCase_ : Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME lowerCAmelCase_ : Tuple = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' ) if config.torch_dtype is not None: lowerCAmelCase_ : Any = model.to(config.torch_dtype ) torch.save(model.state_dict() , A__ ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(A__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) __A : Dict = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
120
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(UpperCAmelCase__ ) * abs(UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
101
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class A__ ( _snake_case ): lowercase = 42 lowercase = 42 class A__ ( nn.Module ): lowercase = 42 lowercase = (16, 32, 96, 256) lowercase = jnp.floataa def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) A_ = [] for i in range(len(self.block_out_channels ) - 1 ): A_ = self.block_out_channels[i] A_ = self.block_out_channels[i + 1] A_ = nn.Conv( UpperCamelCase__ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(UpperCamelCase__ ) A_ = nn.Conv( UpperCamelCase__ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(UpperCamelCase__ ) A_ = blocks A_ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = self.conv_in(UpperCamelCase__ ) A_ = nn.silu(UpperCamelCase__ ) for block in self.blocks: A_ = block(UpperCamelCase__ ) A_ = nn.silu(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return embedding @flax_register_to_config class A__ ( nn.Module , _snake_case , _snake_case ): lowercase = 32 lowercase = 4 lowercase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowercase = False lowercase = (320, 640, 1_280, 1_280) lowercase = 2 lowercase = 8 lowercase = None lowercase = 1_280 lowercase = 0.0 lowercase = False lowercase = jnp.floataa lowercase = True lowercase = 0 lowercase = "rgb" lowercase = (16, 32, 96, 256) def snake_case_ ( self , UpperCamelCase__ ) -> FrozenDict: '''simple docstring''' # init input tensors A_ = (1, self.in_channels, self.sample_size, self.sample_size) A_ = jnp.zeros(UpperCamelCase__ , dtype=jnp.floataa ) A_ = jnp.ones((1,) , dtype=jnp.intaa ) A_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) A_ = (1, 3, self.sample_size * 8, self.sample_size * 8) A_ = jnp.zeros(UpperCamelCase__ , dtype=jnp.floataa ) A_ , A_ = jax.random.split(UpperCamelCase__ ) A_ = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )["params"] def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.block_out_channels A_ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. A_ = self.num_attention_heads or self.attention_head_dim # input A_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time A_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) A_ = FlaxTimestepEmbedding(UpperCamelCase__ , dtype=self.dtype ) A_ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) A_ = self.only_cross_attention if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = (num_attention_heads,) * len(self.down_block_types ) # down A_ = [] A_ = [] A_ = block_out_channels[0] A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) for i, down_block_type in enumerate(self.down_block_types ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": A_ = FlaxCrossAttnDownBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: A_ = FlaxDownBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(UpperCamelCase__ ) for _ in range(self.layers_per_block ): A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) if not is_final_block: A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) A_ = down_blocks A_ = controlnet_down_blocks # mid A_ = block_out_channels[-1] A_ = FlaxUNetMidBlockaDCrossAttn( in_channels=UpperCamelCase__ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1.0 , UpperCamelCase__ = True , UpperCamelCase__ = False , ) -> Union[FlaxControlNetOutput, Tuple]: '''simple docstring''' A_ = self.controlnet_conditioning_channel_order if channel_order == "bgr": A_ = jnp.flip(UpperCamelCase__ , axis=1 ) # 1. time if not isinstance(UpperCamelCase__ , jnp.ndarray ): A_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(UpperCamelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0: A_ = timesteps.astype(dtype=jnp.floataa ) A_ = jnp.expand_dims(UpperCamelCase__ , 0 ) A_ = self.time_proj(UpperCamelCase__ ) A_ = self.time_embedding(UpperCamelCase__ ) # 2. pre-process A_ = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) ) A_ = self.conv_in(UpperCamelCase__ ) A_ = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) ) A_ = self.controlnet_cond_embedding(UpperCamelCase__ ) sample += controlnet_cond # 3. down A_ = (sample,) for down_block in self.down_blocks: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ , A_ = down_block(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) else: A_ , A_ = down_block(UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) # 5. contronet blocks A_ = () for down_block_res_sample, controlnet_block in zip(UpperCamelCase__ , self.controlnet_down_blocks ): A_ = controlnet_block(UpperCamelCase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) A_ = controlnet_down_block_res_samples A_ = self.controlnet_mid_block(UpperCamelCase__ ) # 6. scaling A_ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=UpperCamelCase__ , mid_block_res_sample=UpperCamelCase__ )
101
1
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __a = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __a = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def __UpperCAmelCase ( a_: List[str], a_: Tuple, a_: List[str] ): _UpperCAmelCase : List[Any] = SavedModel() _UpperCAmelCase : str = [] with open(os.path.join(a_, "utils", "tf_ops", "onnx.json" ) ) as f: _UpperCAmelCase : Optional[Any] = json.load(a_ )["opsets"] for i in range(1, opset + 1 ): onnx_ops.extend(onnx_opsets[str(a_ )] ) with open(a_, "rb" ) as f: saved_model.ParseFromString(f.read() ) _UpperCAmelCase : List[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _UpperCAmelCase : Optional[Any] = sorted(a_ ) _UpperCAmelCase : Optional[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(a_ ) if strict and len(a_ ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(a_ ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*a_, sep="\n" ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) __a = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
145
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Dict = 1 _UpperCAmelCase : Tuple = 3 _UpperCAmelCase : Any = (3_2, 3_2) _UpperCAmelCase : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=lowerCAmelCase__ , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , ) return model @property def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : int = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) return CLIPTextModel(lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Any = self.dummy_cond_unet_upscale _UpperCAmelCase : Union[str, Any] = DDPMScheduler() _UpperCAmelCase : str = DDIMScheduler(prediction_type="v_prediction" ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : List[Any] = self.dummy_text_encoder _UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase : Optional[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : int = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionUpscalePipeline( unet=lowerCAmelCase__ , low_res_scheduler=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , max_noise_level=3_5_0 , ) _UpperCAmelCase : str = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : str = "A painting of a squirrel eating a burger" _UpperCAmelCase : Union[str, Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : Optional[int] = sd_pipe( [prompt] , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : Any = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : Dict = sd_pipe( [prompt] , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , return_dict=lowerCAmelCase__ , )[0] _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _UpperCAmelCase : Optional[Any] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" _UpperCAmelCase : Any = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Optional[Any] = self.dummy_cond_unet_upscale _UpperCAmelCase : Tuple = DDPMScheduler() _UpperCAmelCase : Dict = DDIMScheduler(prediction_type="v_prediction" ) _UpperCAmelCase : str = self.dummy_vae _UpperCAmelCase : Optional[Any] = self.dummy_text_encoder _UpperCAmelCase : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase : Dict = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : List[str] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : List[Any] = StableDiffusionUpscalePipeline( unet=lowerCAmelCase__ , low_res_scheduler=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , max_noise_level=3_5_0 , ) _UpperCAmelCase : Any = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = "A painting of a squirrel eating a burger" _UpperCAmelCase : Optional[Any] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase : int = output.images assert image.shape[0] == 2 _UpperCAmelCase : Tuple = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe( [prompt] , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase : Any = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" _UpperCAmelCase : Any = self.dummy_cond_unet_upscale _UpperCAmelCase : Any = DDPMScheduler() _UpperCAmelCase : Optional[int] = DDIMScheduler(prediction_type="v_prediction" ) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : List[Any] = self.dummy_text_encoder _UpperCAmelCase : List[str] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase : Dict = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : Optional[int] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((6_4, 6_4) ) # put models in fp16, except vae as it overflows in fp16 _UpperCAmelCase : Tuple = unet.half() _UpperCAmelCase : Dict = text_encoder.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : List[Any] = StableDiffusionUpscalePipeline( unet=lowerCAmelCase__ , low_res_scheduler=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , max_noise_level=3_5_0 , ) _UpperCAmelCase : str = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Dict = "A painting of a squirrel eating a burger" _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = sd_pipe( [prompt] , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , ).images _UpperCAmelCase : str = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCAmelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) _UpperCAmelCase : Tuple = "stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase : str = StableDiffusionUpscalePipeline.from_pretrained(lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() _UpperCAmelCase : Union[str, Any] = "a cat sitting on a park bench" _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , output_type="np" , ) _UpperCAmelCase : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCAmelCase : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) _UpperCAmelCase : Optional[Any] = "stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase : Optional[Any] = StableDiffusionUpscalePipeline.from_pretrained( lowerCAmelCase__ , torch_dtype=torch.floataa , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() _UpperCAmelCase : Dict = "a cat sitting on a park bench" _UpperCAmelCase : Tuple = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , output_type="np" , ) _UpperCAmelCase : str = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCAmelCase : int = "stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase : Any = StableDiffusionUpscalePipeline.from_pretrained( lowerCAmelCase__ , torch_dtype=torch.floataa , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCAmelCase : Tuple = "a cat sitting on a park bench" _UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , output_type="np" , ) _UpperCAmelCase : Union[str, Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
145
1
from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def snake_case_ ( ) -> int: lowercase__: Union[str, Any] = ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=__a ) lowercase__: Tuple = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=__a ) env_command_parser(subparsers=__a ) launch_command_parser(subparsers=__a ) tpu_command_parser(subparsers=__a ) test_command_parser(subparsers=__a ) # Let's go lowercase__: int = parser.parse_args() if not hasattr(__a , 'func' ): parser.print_help() exit(1 ) # Run args.func(__a ) if __name__ == "__main__": main()
355
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class __a ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=30 , lowerCAmelCase__=400 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=1 / 255 , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=True , ) -> List[str]: '''simple docstring''' # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowercase__: Dict = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333} lowercase__: Tuple = parent lowercase__: Optional[Any] = batch_size lowercase__: Any = num_channels lowercase__: str = min_resolution lowercase__: Dict = max_resolution lowercase__: Any = do_resize lowercase__: str = size lowercase__: Any = do_rescale lowercase__: Union[str, Any] = rescale_factor lowercase__: Optional[int] = do_normalize lowercase__: Union[str, Any] = image_mean lowercase__: List[str] = image_std lowercase__: Optional[Any] = do_pad def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int: '''simple docstring''' if not batched: lowercase__: List[Any] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): lowercase__ , lowercase__: List[str] = image.size else: lowercase__ , lowercase__: str = image.shape[1], image.shape[2] if w < h: lowercase__: Optional[int] = int(self.size['shortest_edge'] * h / w ) lowercase__: int = self.size['shortest_edge'] elif w > h: lowercase__: Tuple = self.size['shortest_edge'] lowercase__: int = int(self.size['shortest_edge'] * w / h ) else: lowercase__: Tuple = self.size['shortest_edge'] lowercase__: Optional[Any] = self.size['shortest_edge'] else: lowercase__: str = [] for image in image_inputs: lowercase__ , lowercase__: Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__: Union[str, Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] lowercase__: Any = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __a ( __UpperCamelCase , unittest.TestCase ): __lowercase : Tuple = DetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: Optional[int] = DetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'image_std' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_rescale' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'rescale_factor' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'size' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_pad' ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1_333} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) lowercase__: str = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__ ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' # Initialize image_processing lowercase__: Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__: str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input lowercase__: Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowercase__ , lowercase__: Tuple = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ , lowercase__: Union[str, Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) lowercase__: Dict = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' # Initialize image_processing lowercase__: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__: Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input lowercase__: Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowercase__ , lowercase__: Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__: Union[str, Any] = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values lowercase__ , lowercase__: Dict = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' # Initialize image_processing lowercase__: Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__: Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input lowercase__: Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowercase__ , lowercase__: Dict = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__: Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values lowercase__ , lowercase__: Optional[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' # prepare image and target lowercase__: Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: lowercase__: Optional[int] = json.loads(f.read() ) lowercase__: Optional[Any] = {'image_id': 39_769, 'annotations': target} # encode them lowercase__: Optional[Any] = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' ) lowercase__: List[Any] = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors='pt' ) # verify pixel values lowercase__: Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , lowerCAmelCase__ ) lowercase__: Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) # verify area lowercase__: List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowerCAmelCase__ ) ) # verify boxes lowercase__: Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowerCAmelCase__ ) lowercase__: int = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowerCAmelCase__ , atol=1E-3 ) ) # verify image_id lowercase__: List[Any] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowerCAmelCase__ ) ) # verify is_crowd lowercase__: Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowerCAmelCase__ ) ) # verify class_labels lowercase__: List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowerCAmelCase__ ) ) # verify orig_size lowercase__: Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowerCAmelCase__ ) ) # verify size lowercase__: Tuple = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowerCAmelCase__ ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' # prepare image, target and masks_path lowercase__: List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: lowercase__: Tuple = json.loads(f.read() ) lowercase__: Tuple = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target} lowercase__: List[str] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them lowercase__: Dict = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' ) lowercase__: Dict = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors='pt' ) # verify pixel values lowercase__: Any = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , lowerCAmelCase__ ) lowercase__: Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) # verify area lowercase__: str = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowerCAmelCase__ ) ) # verify boxes lowercase__: Dict = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowerCAmelCase__ ) lowercase__: str = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowerCAmelCase__ , atol=1E-3 ) ) # verify image_id lowercase__: Optional[int] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowerCAmelCase__ ) ) # verify is_crowd lowercase__: List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowerCAmelCase__ ) ) # verify class_labels lowercase__: Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowerCAmelCase__ ) ) # verify masks lowercase__: str = 822_873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , lowerCAmelCase__ ) # verify orig_size lowercase__: Optional[int] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowerCAmelCase__ ) ) # verify size lowercase__: Optional[int] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowerCAmelCase__ ) )
288
0
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging __UpperCAmelCase = logging.get_logger(__name__) class UpperCamelCase__ : """simple docstring""" SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = None @staticmethod def lowerCamelCase_ ( ): '''simple docstring''' raise NotImplementedError def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : str , **lowerCamelCase_ : Any ): '''simple docstring''' raise NotImplementedError def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' raise NotImplementedError def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def lowerCamelCase_ ( cls : Optional[Any] ): '''simple docstring''' return f'''`pip install {cls.pip_package or cls.name}`''' class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''optuna''' @staticmethod def lowerCamelCase_ ( ): '''simple docstring''' return is_optuna_available() def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Any , lowerCamelCase_ : int , lowerCamelCase_ : str , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return run_hp_search_optuna(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : str ): '''simple docstring''' return default_hp_space_optuna(lowerCamelCase_ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''ray''' SCREAMING_SNAKE_CASE__ = '''\'ray[tune]\'''' @staticmethod def lowerCamelCase_ ( ): '''simple docstring''' return is_ray_available() def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : str , **lowerCamelCase_ : Any ): '''simple docstring''' return run_hp_search_ray(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return default_hp_space_ray(lowerCamelCase_ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''sigopt''' @staticmethod def lowerCamelCase_ ( ): '''simple docstring''' return is_sigopt_available() def lowerCamelCase_ ( self : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : str , **lowerCamelCase_ : str ): '''simple docstring''' return run_hp_search_sigopt(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Dict ): '''simple docstring''' return default_hp_space_sigopt(lowerCamelCase_ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''wandb''' @staticmethod def lowerCamelCase_ ( ): '''simple docstring''' return is_wandb_available() def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): '''simple docstring''' return run_hp_search_wandb(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : int ): '''simple docstring''' return default_hp_space_wandb(lowerCamelCase_ ) __UpperCAmelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def __A ( ): """simple docstring""" SCREAMING_SNAKE_CASE : int = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowerCamelCase_ ) > 0: SCREAMING_SNAKE_CASE : List[Any] = available_backends[0].name if len(lowerCamelCase_ ) > 1: logger.info( f'''{len(lowerCamelCase_ )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( """No hyperparameter search backend available.\n""" + """\n""".join( f''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
323
'''simple docstring''' from __future__ import annotations __UpperCAmelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCamelCase__ : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : dict[str, list[str]] , lowerCamelCase_ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = graph # mapping node to its parent in resulting breadth first tree SCREAMING_SNAKE_CASE : dict[str, str | None] = {} SCREAMING_SNAKE_CASE : List[str] = source_vertex def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {self.source_vertex} SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Optional[Any] = [self.source_vertex] # first in first out queue while queue: SCREAMING_SNAKE_CASE : str = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = vertex queue.append(lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex SCREAMING_SNAKE_CASE : Optional[Any] = self.parent.get(lowerCamelCase_ ) if target_vertex_parent is None: SCREAMING_SNAKE_CASE : Tuple = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(lowerCamelCase_ ) return self.shortest_path(lowerCamelCase_ ) + f'''->{target_vertex}''' if __name__ == "__main__": __UpperCAmelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
323
1
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if len(__lowerCAmelCase ) < 2: return collection def circle_sort_util(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: _a : Tuple = False if low == high: return swapped _a : Any = low _a : Any = high while left < right: if collection[left] > collection[right]: _a : Union[str, Any] = ( collection[right], collection[left], ) _a : str = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _a : Dict = ( collection[right + 1], collection[left], ) _a : Union[str, Any] = True _a : List[str] = low + int((high - low) / 2 ) _a : int = circle_sort_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _a : Union[str, Any] = circle_sort_util(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) return swapped or left_swap or right_swap _a : Optional[int] = True while is_not_sorted is True: _a : Optional[Any] = circle_sort_util(__lowerCAmelCase , 0 , len(__lowerCAmelCase ) - 1 ) return collection if __name__ == "__main__": _snake_case = input('Enter numbers separated by a comma:\n').strip() _snake_case = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
362
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _snake_case = HUGGINGFACE_HUB_CACHE _snake_case = 'config.json' _snake_case = 'diffusion_pytorch_model.bin' _snake_case = 'diffusion_flax_model.msgpack' _snake_case = 'model.onnx' _snake_case = 'diffusion_pytorch_model.safetensors' _snake_case = 'weights.pb' _snake_case = 'https://huggingface.co' _snake_case = default_cache_path _snake_case = 'diffusers_modules' _snake_case = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) _snake_case = ['fp16', 'non-ema'] _snake_case = '.self_attn'
324
0
'''simple docstring''' from math import pi def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] ): """simple docstring""" return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
254
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _snake_case : Union[str, Any] = 0 _snake_case : List[str] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case : List[Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _snake_case : int = tuple[int, int] class a : """simple docstring""" def __init__( self : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : Node | None , ) -> None: __snake_case : List[str] = pos_x __snake_case : List[str] = pos_y __snake_case : Dict = (pos_y, pos_x) __snake_case : List[Any] = goal_x __snake_case : Union[str, Any] = goal_y __snake_case : int = g_cost __snake_case : List[Any] = parent __snake_case : Optional[Any] = self.calculate_heuristic() __snake_case : Union[str, Any] = self.g_cost + self.h_cost def __snake_case ( self : Optional[int] ) -> float: __snake_case : Union[str, Any] = self.pos_x - self.goal_x __snake_case : Tuple = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowerCamelCase ) + abs(lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Optional[int] , lowerCamelCase : Node ) -> bool: return self.f_cost < other.f_cost class a : """simple docstring""" def __init__( self : List[Any] , lowerCamelCase : TPosition , lowerCamelCase : TPosition ) -> Optional[Any]: __snake_case : Any = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCamelCase ) __snake_case : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , lowerCamelCase ) __snake_case : str = [self.start] __snake_case : list[Node] = [] __snake_case : int = False def __snake_case ( self : Tuple ) -> list[TPosition]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __snake_case : Dict = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowerCamelCase ) self.closed_nodes.append(lowerCamelCase ) __snake_case : Tuple = self.get_successors(lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCamelCase ) else: # retrieve the best current path __snake_case : Any = self.open_nodes.pop(self.open_nodes.index(lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCamelCase ) else: self.open_nodes.append(lowerCamelCase ) return [self.start.pos] def __snake_case ( self : Optional[Any] , lowerCamelCase : Node ) -> list[Node]: __snake_case : int = [] for action in delta: __snake_case : Tuple = parent.pos_x + action[1] __snake_case : Tuple = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCamelCase , lowerCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCamelCase , ) ) return successors def __snake_case ( self : Optional[Any] , lowerCamelCase : Node | None ) -> list[TPosition]: __snake_case : List[Any] = node __snake_case : Optional[int] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __snake_case : Tuple = current_node.parent path.reverse() return path class a : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase : TPosition , lowerCamelCase : TPosition ) -> None: __snake_case : str = AStar(lowerCamelCase , lowerCamelCase ) __snake_case : int = AStar(lowerCamelCase , lowerCamelCase ) __snake_case : int = False def __snake_case ( self : str ) -> list[TPosition]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __snake_case : Optional[int] = self.fwd_astar.open_nodes.pop(0 ) __snake_case : str = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowerCamelCase , lowerCamelCase ) self.fwd_astar.closed_nodes.append(lowerCamelCase ) self.bwd_astar.closed_nodes.append(lowerCamelCase ) __snake_case : Optional[Any] = current_bwd_node __snake_case : Any = current_fwd_node __snake_case : int = { self.fwd_astar: self.fwd_astar.get_successors(lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowerCamelCase ) else: # retrieve the best current path __snake_case : Optional[int] = astar.open_nodes.pop( astar.open_nodes.index(lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowerCamelCase ) else: astar.open_nodes.append(lowerCamelCase ) return [self.fwd_astar.start.pos] def __snake_case ( self : Any , lowerCamelCase : Node , lowerCamelCase : Node ) -> list[TPosition]: __snake_case : Optional[int] = self.fwd_astar.retrace_path(lowerCamelCase ) __snake_case : Optional[Any] = self.bwd_astar.retrace_path(lowerCamelCase ) bwd_path.pop() bwd_path.reverse() __snake_case : int = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _snake_case : Dict = (0, 0) _snake_case : Any = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _snake_case : List[Any] = time.time() _snake_case : Dict = AStar(init, goal) _snake_case : Optional[int] = a_star.search() _snake_case : Optional[Any] = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _snake_case : List[str] = time.time() _snake_case : Any = BidirectionalAStar(init, goal) _snake_case : List[str] = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
123
0
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: UpperCAmelCase__ = model_type_to_module_name(A__ ) UpperCAmelCase__ = importlib.import_module(F'''.{module_name}''' , """transformers.models""" ) try: return getattr(A__ , A__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(A__ , """__name__""" , A__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. UpperCAmelCase__ = importlib.import_module("""transformers""" ) if hasattr(A__ , A__ ): return getattr(A__ , A__ ) return None def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, str]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[bool, str]] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : bool = False , **SCREAMING_SNAKE_CASE__ : Tuple , ): '''simple docstring''' UpperCAmelCase__ = get_file_from_repo( A__ , A__ , cache_dir=A__ , force_download=A__ , resume_download=A__ , proxies=A__ , use_auth_token=A__ , revision=A__ , local_files_only=A__ , ) if resolved_config_file is None: logger.info( """Could not locate the image processor configuration file, will try to use the model config instead.""" ) return {} with open(A__ , encoding="""utf-8""" ) as reader: return json.load(A__ ) class lowerCAmelCase_ : def __init__( self : Union[str, Any] ): """simple docstring""" raise EnvironmentError( """AutoImageProcessor is designed to be instantiated """ """using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( cls : Tuple , _UpperCAmelCase : Dict , **_UpperCAmelCase : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = kwargs.pop("""config""" , _UpperCAmelCase ) UpperCAmelCase__ = kwargs.pop("""trust_remote_code""" , _UpperCAmelCase ) UpperCAmelCase__ = True UpperCAmelCase__ = ImageProcessingMixin.get_image_processor_dict(_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase__ = config_dict.get("""image_processor_type""" , _UpperCAmelCase ) UpperCAmelCase__ = None if "AutoImageProcessor" in config_dict.get("""auto_map""" , {} ): UpperCAmelCase__ = config_dict["""auto_map"""]["""AutoImageProcessor"""] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: UpperCAmelCase__ = config_dict.pop("""feature_extractor_type""" , _UpperCAmelCase ) if feature_extractor_class is not None: logger.warning( """Could not find image processor class in the image processor config or the model config. Loading""" """ based on pattern matching with the model's feature extractor configuration.""" ) UpperCAmelCase__ = feature_extractor_class.replace("""FeatureExtractor""" , """ImageProcessor""" ) if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): UpperCAmelCase__ = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] UpperCAmelCase__ = feature_extractor_auto_map.replace("""FeatureExtractor""" , """ImageProcessor""" ) logger.warning( """Could not find image processor auto map in the image processor config or the model config.""" """ Loading based on pattern matching with the model's feature extractor configuration.""" ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ = AutoConfig.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) # It could be in `config.image_processor_type`` UpperCAmelCase__ = getattr(_UpperCAmelCase , """image_processor_type""" , _UpperCAmelCase ) if hasattr(_UpperCAmelCase , """auto_map""" ) and "AutoImageProcessor" in config.auto_map: UpperCAmelCase__ = config.auto_map["""AutoImageProcessor"""] if image_processor_class is not None: UpperCAmelCase__ = image_processor_class_from_name(_UpperCAmelCase ) UpperCAmelCase__ = image_processor_auto_map is not None UpperCAmelCase__ = image_processor_class is not None or type(_UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING UpperCAmelCase__ = resolve_trust_remote_code( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if has_remote_code and trust_remote_code: UpperCAmelCase__ = get_class_from_dynamic_module( _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase__ = kwargs.pop("""code_revision""" , _UpperCAmelCase ) if os.path.isdir(_UpperCAmelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING: UpperCAmelCase__ = IMAGE_PROCESSOR_MAPPING[type(_UpperCAmelCase )] return image_processor_class.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] ): """simple docstring""" IMAGE_PROCESSOR_MAPPING.register(_UpperCAmelCase , _UpperCAmelCase )
350
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : List[str] = """cvt""" def __init__( self : List[Any] , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=[7, 3, 3] , _UpperCAmelCase : Optional[Any]=[4, 2, 2] , _UpperCAmelCase : List[Any]=[2, 1, 1] , _UpperCAmelCase : Optional[int]=[64, 1_92, 3_84] , _UpperCAmelCase : Any=[1, 3, 6] , _UpperCAmelCase : Tuple=[1, 2, 10] , _UpperCAmelCase : Union[str, Any]=[4.0, 4.0, 4.0] , _UpperCAmelCase : Optional[int]=[0.0, 0.0, 0.0] , _UpperCAmelCase : Dict=[0.0, 0.0, 0.0] , _UpperCAmelCase : Dict=[0.0, 0.0, 0.1] , _UpperCAmelCase : Optional[int]=[True, True, True] , _UpperCAmelCase : Dict=[False, False, True] , _UpperCAmelCase : Dict=["dw_bn", "dw_bn", "dw_bn"] , _UpperCAmelCase : int=[3, 3, 3] , _UpperCAmelCase : Optional[int]=[1, 1, 1] , _UpperCAmelCase : List[Any]=[2, 2, 2] , _UpperCAmelCase : Union[str, Any]=[1, 1, 1] , _UpperCAmelCase : str=[1, 1, 1] , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Dict=1E-12 , **_UpperCAmelCase : Any , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) UpperCAmelCase__ = num_channels UpperCAmelCase__ = patch_sizes UpperCAmelCase__ = patch_stride UpperCAmelCase__ = patch_padding UpperCAmelCase__ = embed_dim UpperCAmelCase__ = num_heads UpperCAmelCase__ = depth UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = attention_drop_rate UpperCAmelCase__ = drop_rate UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = cls_token UpperCAmelCase__ = qkv_projection_method UpperCAmelCase__ = kernel_qkv UpperCAmelCase__ = padding_kv UpperCAmelCase__ = stride_kv UpperCAmelCase__ = padding_q UpperCAmelCase__ = stride_q UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps
61
0
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : int ): """simple docstring""" __magic_name__ : List[str] = u for i in range(1 , lowerCAmelCase ): __magic_name__ : str = temp * (u - i) return temp def lowerCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = int(input('enter the numbers of values: ' ) ) __magic_name__ : list[list[float]] = [] for _ in range(lowerCAmelCase ): y.append([] ) for i in range(lowerCAmelCase ): for j in range(lowerCAmelCase ): y[i].append(lowerCAmelCase ) __magic_name__ : Optional[int] = 0 print('enter the values of parameters in a list: ' ) __magic_name__ : Tuple = list(map(lowerCAmelCase , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(lowerCAmelCase ): __magic_name__ : Dict = float(input() ) __magic_name__ : Tuple = int(input('enter the value to interpolate: ' ) ) __magic_name__ : str = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , lowerCAmelCase ): for j in range(n - i ): __magic_name__ : List[Any] = y[j + 1][i - 1] - y[j][i - 1] __magic_name__ : List[str] = y[0][0] for i in range(1 , lowerCAmelCase ): summ += (ucal(lowerCAmelCase , lowerCAmelCase ) * y[0][i]) / math.factorial(lowerCAmelCase ) print(f'the value at {value} is {summ}' ) if __name__ == "__main__": main()
331
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : List[Any] , _A : str , _A : str=13 , _A : Union[str, Any]=7 , _A : Tuple=True , _A : Dict=True , _A : List[str]=True , _A : Optional[int]=True , _A : Dict=99 , _A : Optional[Any]=32 , _A : Optional[int]=5 , _A : str=4 , _A : str=37 , _A : Tuple="gelu" , _A : Any=0.1 , _A : Dict=0.1 , _A : str=512 , _A : Tuple=16 , _A : str=2 , _A : int=0.02 , _A : int=False , _A : List[str]=True , _A : List[Any]="None" , _A : List[str]=3 , _A : Optional[Any]=4 , _A : Dict=None , ) -> Dict: __magic_name__ : Union[str, Any] = parent __magic_name__ : Any = batch_size __magic_name__ : Optional[int] = seq_length __magic_name__ : List[str] = is_training __magic_name__ : Optional[Any] = use_input_mask __magic_name__ : Dict = use_token_type_ids __magic_name__ : str = use_labels __magic_name__ : int = vocab_size __magic_name__ : List[Any] = hidden_size __magic_name__ : Dict = num_hidden_layers __magic_name__ : Dict = num_attention_heads __magic_name__ : Tuple = intermediate_size __magic_name__ : Any = hidden_act __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Any = type_vocab_size __magic_name__ : Union[str, Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : str = num_labels __magic_name__ : Tuple = num_choices __magic_name__ : Any = relative_attention __magic_name__ : str = position_biased_input __magic_name__ : str = pos_att_type __magic_name__ : Union[str, Any] = scope def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : List[Any] = None if self.use_input_mask: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __magic_name__ : int = None if self.use_token_type_ids: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : List[str] = None __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.get_config() __magic_name__ : Union[str, Any] = 300 return config def __lowerCAmelCase ( self : int , _A : Dict ) -> Tuple: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __lowerCAmelCase ( self : Any , _A : Optional[int] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int] , _A : Any , _A : str , _A : List[Any] ) -> List[Any]: __magic_name__ : Dict = DebertaModel(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[Any] = model(_A , attention_mask=_A , token_type_ids=_A )[0] __magic_name__ : Optional[int] = model(_A , token_type_ids=_A )[0] __magic_name__ : List[str] = model(_A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __lowerCAmelCase ( self : Any , _A : Union[str, Any] , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Optional[int] ) -> Dict: __magic_name__ : List[str] = DebertaForMaskedLM(config=_A ) model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : str , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[int] , _A : str , _A : Union[str, Any] , _A : Any ) -> Union[str, Any]: __magic_name__ : Optional[int] = self.num_labels __magic_name__ : Optional[Any] = DebertaForSequenceClassification(_A ) model.to(_A ) model.eval() __magic_name__ : Any = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_A ) def __lowerCAmelCase ( self : Tuple , _A : str , _A : str , _A : int , _A : str , _A : int , _A : Optional[int] , _A : List[str] ) -> Optional[int]: __magic_name__ : str = self.num_labels __magic_name__ : int = DebertaForTokenClassification(config=_A ) model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[Any] , _A : str , _A : Tuple , _A : Optional[int] , _A : Any , _A : Optional[int] , _A : Dict , _A : Union[str, Any] ) -> List[Any]: __magic_name__ : int = DebertaForQuestionAnswering(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[int] = model( _A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : int = config_and_inputs __magic_name__ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) A_ : Tuple = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) A_ : Union[str, Any] = True A_ : Any = False A_ : Dict = False A_ : str = False A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : List[str] = DebertaModelTester(self ) __magic_name__ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : List[str] ) -> Tuple: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : Any ) -> str: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_A ) def __lowerCAmelCase ( self : str ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : str ) -> Optional[Any]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : int = DebertaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='Model not available yet' ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: pass @slow def __lowerCAmelCase ( self : Dict ) -> Tuple: __magic_name__ : int = DebertaModel.from_pretrained('microsoft/deberta-base' ) __magic_name__ : List[Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) __magic_name__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __magic_name__ : Optional[int] = model(_A , attention_mask=_A )[0] # compare the actual values for a slice. __magic_name__ : Tuple = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
331
1
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=13,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=[1, 2, 1],__SCREAMING_SNAKE_CASE=[2, 2, 4],__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=2.0,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE="gelu",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=10,__SCREAMING_SNAKE_CASE=8,): '''simple docstring''' __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = embed_dim __lowerCAmelCase = depths __lowerCAmelCase = num_heads __lowerCAmelCase = window_size __lowerCAmelCase = mlp_ratio __lowerCAmelCase = qkv_bias __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = drop_path_rate __lowerCAmelCase = hidden_act __lowerCAmelCase = use_absolute_embeddings __lowerCAmelCase = patch_norm __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = initializer_range __lowerCAmelCase = is_training __lowerCAmelCase = scope __lowerCAmelCase = use_labels __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = encoder_stride def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size],self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self ): '''simple docstring''' return SwinvaConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,embed_dim=self.embed_dim,depths=self.depths,num_heads=self.num_heads,window_size=self.window_size,mlp_ratio=self.mlp_ratio,qkv_bias=self.qkv_bias,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,drop_path_rate=self.drop_path_rate,hidden_act=self.hidden_act,use_absolute_embeddings=self.use_absolute_embeddings,path_norm=self.patch_norm,layer_norm_eps=self.layer_norm_eps,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = SwinvaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = SwinvaForMaskedImageModeling(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = SwinvaForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = SwinvaForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): a : int =( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) a : int =( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) a : str =False a : int =False a : Optional[int] =False a : Any =False def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SwinvaModelTester(self ) __lowerCAmelCase = ConfigTester(self,config_class=__SCREAMING_SNAKE_CASE,embed_dim=37 ) def lowerCamelCase__ ( self ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE,nn.Linear ) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1],__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = outputs.attentions __lowerCAmelCase = len(self.model_tester.depths ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = config.window_size**2 __lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) self.assertListEqual( list(attentions[0].shape[-3:] ),[self.model_tester.num_heads[0], window_size_squared, window_size_squared],) __lowerCAmelCase = len(__SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ) if hasattr(self.model_tester,"""num_hidden_states_types""" ): __lowerCAmelCase = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __lowerCAmelCase = 2 self.assertEqual(out_len + added_hidden_states,len(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) self.assertListEqual( list(self_attentions[0].shape[-3:] ),[self.model_tester.num_heads[0], window_size_squared, window_size_squared],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = getattr( self.model_tester,"""expected_num_hidden_layers""",len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # Swinv2 has a different seq_length __lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[num_patches, self.model_tester.embed_dim],) __lowerCAmelCase = outputs.reshaped_hidden_states self.assertEqual(len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = reshaped_hidden_states[0].shape __lowerCAmelCase = ( reshaped_hidden_states[0].view(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,height * width ).permute(0,2,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ),[num_patches, self.model_tester.embed_dim],) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowerCAmelCase = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = 3 __lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowerCAmelCase = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,(padded_height, padded_width) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def lowerCamelCase__ ( self ): '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = SwinvaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(__SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=__SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',) @require_vision @require_torch class _UpperCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( __SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowerCAmelCase = image_processor(images=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**__SCREAMING_SNAKE_CASE ) # verify the logits __lowerCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__SCREAMING_SNAKE_CASE,atol=1e-4 ) )
363
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : str =KandinskyVaaInpaintPipeline a : int =["""image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] a : str =[ """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] a : Optional[int] =[ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a : Dict =False @property def lowerCamelCase__ ( self ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.time_input_dim @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 1_00 @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __lowerCAmelCase = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def lowerCamelCase__ ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.dummy_unet __lowerCAmelCase = self.dummy_movq __lowerCAmelCase = DDIMScheduler( num_train_timesteps=10_00,beta_schedule="""linear""",beta_start=0.0_0085,beta_end=0.012,clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,steps_offset=1,prediction_type="""epsilon""",thresholding=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(seed + 1 ) ).to( __SCREAMING_SNAKE_CASE ) # create init_image __lowerCAmelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = image.cpu().permute(0,2,3,1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __lowerCAmelCase = np.ones((64, 64),dtype=np.floataa ) __lowerCAmelCase = 0 if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = output.images __lowerCAmelCase = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ),return_dict=__SCREAMING_SNAKE_CASE,)[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def lowerCamelCase__ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) __lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __lowerCAmelCase = np.ones((7_68, 7_68),dtype=np.floataa ) __lowerCAmelCase = 0 __lowerCAmelCase = """a hat""" __lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""",torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""",torch_dtype=torch.floataa ) __lowerCAmelCase = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase , __lowerCAmelCase = pipe_prior( __SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=5,negative_prompt="""""",).to_tuple() __lowerCAmelCase = pipeline( image=__SCREAMING_SNAKE_CASE,mask_image=__SCREAMING_SNAKE_CASE,image_embeds=__SCREAMING_SNAKE_CASE,negative_image_embeds=__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=1_00,height=7_68,width=7_68,output_type="""np""",) __lowerCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
46
0
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return getitem, k def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' return setitem, k, v def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return delitem, k def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ ): '''simple docstring''' try: return fun(lowerCAmelCase__ , *lowerCAmelCase__ ), None except Exception as e: return None, e lowercase__ :Dict = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) lowercase__ :Optional[int] = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] lowercase__ :Optional[Any] = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] lowercase__ :Dict = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] lowercase__ :Dict = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowercase__ :List[str] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( '''operations''' , ( pytest.param(_add_items , id='''add items''' ), pytest.param(_overwrite_items , id='''overwrite items''' ), pytest.param(_delete_items , id='''delete items''' ), pytest.param(_access_absent_items , id='''access absent items''' ), pytest.param(_add_with_resize_up , id='''add with resize up''' ), pytest.param(_add_with_resize_down , id='''add with resize down''' ), ) , ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = HashMap(initial_block_size=4 ) lowercase = {} for _, (fun, *args) in enumerate(lowerCAmelCase__ ): lowercase , lowercase = _run_operation(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ ) lowercase , lowercase = _run_operation(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ ) assert my_res == py_res assert str(lowerCAmelCase__ ) == str(lowerCAmelCase__ ) assert set(lowerCAmelCase__ ) == set(lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) assert set(my.items() ) == set(py.items() ) def UpperCamelCase ( ): '''simple docstring''' def is_public(lowerCAmelCase__ ) -> bool: return not name.startswith('''_''' ) lowercase = {name for name in dir({} ) if is_public(lowerCAmelCase__ )} lowercase = {name for name in dir(HashMap() ) if is_public(lowerCAmelCase__ )} assert dict_public_names > hash_public_names
101
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') lowercase = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(lowerCAmelCase__ ): os.makedirs(lowerCAmelCase__ ) lowercase = model.state_dict() def to_tf_var_name(lowerCAmelCase__ ): for patt, repl in iter(lowerCAmelCase__ ): lowercase = name.replace(lowerCAmelCase__ , lowerCAmelCase__ ) return f'bert/{name}' def create_tf_var(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = tf.dtypes.as_dtype(tensor.dtype ) lowercase = tf.get_variable(dtype=lowerCAmelCase__ , shape=tensor.shape , name=lowerCAmelCase__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowerCAmelCase__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowercase = to_tf_var_name(lowerCAmelCase__ ) lowercase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowercase = torch_tensor.T lowercase = create_tf_var(tensor=lowerCAmelCase__ , name=lowerCAmelCase__ , session=lowerCAmelCase__ ) tf.keras.backend.set_value(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = session.run(lowerCAmelCase__ ) print(f'Successfully created {tf_name}: {np.allclose(lowerCAmelCase__ , lowerCAmelCase__ )}' ) lowercase = tf.train.Saver(tf.trainable_variables() ) saver.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def UpperCamelCase ( lowerCAmelCase__=None ): '''simple docstring''' lowercase = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Directory in which to save tensorflow model''' ) lowercase = parser.parse_args(lowerCAmelCase__ ) lowercase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowerCAmelCase__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
101
1
import os import pytest from attr import dataclass lowercase__ : int = "us-east-1" # defaults region @dataclass class a__ : a : str a : int = """arn:aws:iam::558105141721:role/sagemaker_execution_role""" a : str = { """task_name""": """mnli""", """per_device_train_batch_size""": 16, """per_device_eval_batch_size""": 16, """do_train""": True, """do_eval""": True, """do_predict""": True, """output_dir""": """/opt/ml/model""", """overwrite_output_dir""": True, """max_steps""": 500, """save_steps""": 5500, } a : Dict = {**hyperparameters, """max_steps""": 1000} @property def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' return F'''{self.framework}-transfromers-test''' @property def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' return F'''./tests/sagemaker/scripts/{self.framework}''' @property def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class") def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Tuple: a = SageMakerTestEnvironment(framework=request.cls.framework)
180
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : Dict = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: a = k.replace(__UpperCamelCase , __UpperCamelCase) if k.startswith("encoder"): a = k.replace(".attn" , ".self_attn") a = k.replace("norm1" , "self_attn_layer_norm") a = k.replace("norm2" , "final_layer_norm") elif k.startswith("decoder"): a = k.replace("norm1" , "self_attn_layer_norm") a = k.replace("norm2" , "encoder_attn_layer_norm") a = k.replace("norm3" , "final_layer_norm") return k def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> str: a = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: a = sd.pop(__UpperCamelCase) a = k.replace("layernorm_embedding" , "layer_norm") assert new_k not in sd a = v lowercase__ : Optional[Any] = ["START"] @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> int: a = torch.load(__UpperCamelCase , map_location="cpu") a = model["model"] a = BlenderbotConfig.from_json_file(__UpperCamelCase) a = BlenderbotForConditionalGeneration(__UpperCamelCase) a = m.model.state_dict().keys() a = [] a = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue a = rename_state_dict_key(__UpperCamelCase) if new_k not in valid_keys: failures.append([k, new_k]) else: a = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__UpperCamelCase) m.model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase) m.half() m.save_pretrained(__UpperCamelCase) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) lowercase__ : str = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
180
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __A = logging.get_logger(__name__) class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Dict = ["""pixel_values"""] def __init__( self : List[Any] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 2_5_5 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , **UpperCamelCase__ : Optional[int] , )-> None: '''simple docstring''' super().__init__(**UpperCamelCase__) __lowerCAmelCase: int = size if size is not None else {"shortest_edge": 2_5_6} __lowerCAmelCase: str = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__) __lowerCAmelCase: Any = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} __lowerCAmelCase: Optional[Any] = get_size_dict(UpperCamelCase__ , param_name="crop_size") __lowerCAmelCase: str = do_resize __lowerCAmelCase: Any = size __lowerCAmelCase: Dict = resample __lowerCAmelCase: Tuple = do_center_crop __lowerCAmelCase: str = crop_size __lowerCAmelCase: List[Any] = do_rescale __lowerCAmelCase: int = rescale_factor __lowerCAmelCase: List[Any] = do_normalize __lowerCAmelCase: Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCAmelCase: Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase_ ( self : Tuple , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict , )-> np.ndarray: '''simple docstring''' __lowerCAmelCase: int = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") __lowerCAmelCase: Optional[Any] = get_resize_output_image_size(UpperCamelCase__ , size=size["shortest_edge"] , default_to_square=UpperCamelCase__) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Optional[int] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Tuple , )-> np.ndarray: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = get_size_dict(UpperCamelCase__) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(UpperCamelCase__ , size=(size["height"], size["width"]) , data_format=UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int])-> np.ndarray: '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Dict , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[Any] , )-> np.ndarray: '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : Optional[Any] , )-> Dict: '''simple docstring''' __lowerCAmelCase: Any = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase: str = size if size is not None else self.size __lowerCAmelCase: Tuple = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__) __lowerCAmelCase: List[str] = resample if resample is not None else self.resample __lowerCAmelCase: str = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase: Tuple = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase: List[Any] = get_size_dict(UpperCamelCase__ , param_name="crop_size") __lowerCAmelCase: List[Any] = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase: Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase: Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase: Union[str, Any] = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase: Tuple = image_std if image_std is not None else self.image_std __lowerCAmelCase: Union[str, Any] = make_list_of_images(UpperCamelCase__) if not valid_images(UpperCamelCase__): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. __lowerCAmelCase: Tuple = [to_numpy_array(UpperCamelCase__) for image in images] if do_resize: __lowerCAmelCase: Union[str, Any] = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__) for image in images] if do_center_crop: __lowerCAmelCase: Optional[Any] = [self.center_crop(image=UpperCamelCase__ , size=UpperCamelCase__) for image in images] if do_rescale: __lowerCAmelCase: Optional[Any] = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__) for image in images] if do_normalize: __lowerCAmelCase: List[str] = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__) for image in images] __lowerCAmelCase: Optional[Any] = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__) for image in images] __lowerCAmelCase: List[str] = {"pixel_values": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__) def lowercase_ ( self : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Tuple] = None)-> Dict: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCamelCase__) != len(UpperCamelCase__): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits") if is_torch_tensor(UpperCamelCase__): __lowerCAmelCase: Optional[int] = target_sizes.numpy() __lowerCAmelCase: List[Any] = [] for idx in range(len(UpperCamelCase__)): __lowerCAmelCase: List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode="bilinear" , align_corners=UpperCamelCase__) __lowerCAmelCase: Optional[Any] = resized_logits[0].argmax(dim=0) semantic_segmentation.append(UpperCamelCase__) else: __lowerCAmelCase: Tuple = logits.argmax(dim=1) __lowerCAmelCase: Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
217
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class snake_case : SCREAMING_SNAKE_CASE_ : Optional[Union[str, Path]] = None SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : Optional[Dict] = None SCREAMING_SNAKE_CASE_ : Optional[str] = None SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = True SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : int = 1 SCREAMING_SNAKE_CASE_ : Optional[Union[str, bool]] = None SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : Optional[Dict] = None SCREAMING_SNAKE_CASE_ : Optional[str] = None def lowercase_ ( self : str)-> "DownloadConfig": '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase__) for k, v in self.__dict__.items()})
217
1
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase = 9, 14 # noqa: F841 __lowerCamelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] __lowerCamelCase = defaultdict(A__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) __lowerCamelCase = mst(A__ ) __lowerCamelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: __lowerCamelCase = tuple(answer[:2] ) __lowerCamelCase = tuple(edge[::-1] ) assert edge in result or reverse in result
29
import string import numpy def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , A__ ) class lowerCamelCase__: UpperCAmelCase__ : Optional[int] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCAmelCase__ : Optional[int] = numpy.vectorize(lambda __lowerCamelCase: x % 36) UpperCAmelCase__ : List[Any] = numpy.vectorize(__lowerCamelCase) def __init__( self: List[Any] , UpperCamelCase_: numpy.ndarray ): __lowerCamelCase = self.modulus(UpperCamelCase_ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __lowerCamelCase = encrypt_key.shape[0] def lowerCAmelCase__ ( self: str , UpperCamelCase_: str ): return self.key_string.index(UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: int ): return self.key_string[round(UpperCamelCase_ )] def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowerCamelCase = det % len(self.key_string ) __lowerCamelCase = len(self.key_string ) if greatest_common_divisor(UpperCamelCase_ , len(self.key_string ) ) != 1: __lowerCamelCase = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str ): __lowerCamelCase = [char for char in text.upper() if char in self.key_string] __lowerCamelCase = chars[-1] while len(UpperCamelCase_ ) % self.break_key != 0: chars.append(UpperCamelCase_ ) return "".join(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = self.process_text(text.upper() ) __lowerCamelCase = """""" for i in range(0 , len(UpperCamelCase_ ) - self.break_key + 1 , self.break_key ): __lowerCamelCase = text[i : i + self.break_key] __lowerCamelCase = [self.replace_letters(UpperCamelCase_ ) for char in batch] __lowerCamelCase = numpy.array([vec] ).T __lowerCamelCase = self.modulus(self.encrypt_key.dot(UpperCamelCase_ ) ).T.tolist()[ 0 ] __lowerCamelCase = """""".join( self.replace_digits(UpperCamelCase_ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowerCamelCase = det % len(self.key_string ) __lowerCamelCase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __lowerCamelCase = i break __lowerCamelCase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = self.make_decrypt_key() __lowerCamelCase = self.process_text(text.upper() ) __lowerCamelCase = """""" for i in range(0 , len(UpperCamelCase_ ) - self.break_key + 1 , self.break_key ): __lowerCamelCase = text[i : i + self.break_key] __lowerCamelCase = [self.replace_letters(UpperCamelCase_ ) for char in batch] __lowerCamelCase = numpy.array([vec] ).T __lowerCamelCase = self.modulus(decrypt_key.dot(UpperCamelCase_ ) ).T.tolist()[0] __lowerCamelCase = """""".join( self.replace_digits(UpperCamelCase_ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = int(input("""Enter the order of the encryption key: """ ) ) __lowerCamelCase = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(A__ ): __lowerCamelCase = [int(A__ ) for x in input().split()] hill_matrix.append(A__ ) __lowerCamelCase = HillCipher(numpy.array(A__ ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) __lowerCamelCase = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": __lowerCamelCase = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(A__ ) ) elif option == "2": __lowerCamelCase = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
29
1