code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowercase = logging.get_logger(__name__) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Optional[Any] = ["""pixel_values"""] def __init__( self , __lowercase = True , __lowercase = 32 , __lowercase=PILImageResampling.BILINEAR , __lowercase = True , **__lowercase , ) -> None: __UpperCamelCase :Optional[int] = do_resize __UpperCamelCase :Any = do_rescale __UpperCamelCase :str = size_divisor __UpperCamelCase :Dict = resample super().__init__(**__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase = None , **__lowercase) -> np.ndarray: __UpperCamelCase , __UpperCamelCase :int = get_image_size(__lowercase) # Rounds the height and width down to the closest multiple of size_divisor __UpperCamelCase :List[Any] = height // size_divisor * size_divisor __UpperCamelCase :List[str] = width // size_divisor * size_divisor __UpperCamelCase :str = resize(__lowercase , (new_h, new_w) , resample=__lowercase , data_format=__lowercase , **__lowercase) return image def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = None , **__lowercase) -> np.ndarray: return rescale(image=__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase = None , __lowercase = None , __lowercase=None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ) -> BatchFeature: __UpperCamelCase :Union[str, Any] = do_resize if do_resize is not None else self.do_resize __UpperCamelCase :Tuple = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase :List[str] = size_divisor if size_divisor is not None else self.size_divisor __UpperCamelCase :List[Any] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''') __UpperCamelCase :List[Any] = make_list_of_images(__lowercase) if not valid_images(__lowercase): raise ValueError('''Invalid image(s)''') # All transformations expect numpy arrays. __UpperCamelCase :Optional[Any] = [to_numpy_array(__lowercase) for img in images] if do_resize: __UpperCamelCase :List[str] = [self.resize(__lowercase , size_divisor=__lowercase , resample=__lowercase) for image in images] if do_rescale: __UpperCamelCase :Dict = [self.rescale(__lowercase , scale=1 / 255) for image in images] __UpperCamelCase :str = [to_channel_dimension_format(__lowercase , __lowercase) for image in images] __UpperCamelCase :int = {'''pixel_values''': images} return BatchFeature(data=__lowercase , tensor_type=__lowercase)
43
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCamelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : str = TextToVideoSDPipeline a__ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS a__ : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a__ : int = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def UpperCamelCase__ ( self) -> Optional[Any]: torch.manual_seed(0) __UpperCamelCase :str = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , ) __UpperCamelCase :Optional[int] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__lowercase , set_alpha_to_one=__lowercase , ) torch.manual_seed(0) __UpperCamelCase :Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) __UpperCamelCase :Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __UpperCamelCase :Optional[Any] = CLIPTextModel(__lowercase) __UpperCamelCase :Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') __UpperCamelCase :Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def UpperCamelCase__ ( self , __lowercase , __lowercase=0) -> Optional[int]: if str(__lowercase).startswith('''mps'''): __UpperCamelCase :List[Any] = torch.manual_seed(__lowercase) else: __UpperCamelCase :Tuple = torch.Generator(device=__lowercase).manual_seed(__lowercase) __UpperCamelCase :Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :int = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase :Optional[int] = self.get_dummy_components() __UpperCamelCase :Dict = TextToVideoSDPipeline(**__lowercase) __UpperCamelCase :Any = sd_pipe.to(__lowercase) sd_pipe.set_progress_bar_config(disable=__lowercase) __UpperCamelCase :Optional[Any] = self.get_dummy_inputs(__lowercase) __UpperCamelCase :int = '''np''' __UpperCamelCase :List[str] = sd_pipe(**__lowercase).frames __UpperCamelCase :Optional[Any] = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __UpperCamelCase :str = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase__ ( self) -> Tuple: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__lowercase , expected_max_diff=3E-3) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCamelCase__ ( self) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__lowercase , expected_max_diff=1E-2) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''') def UpperCamelCase__ ( self) -> Union[str, Any]: pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''') def UpperCamelCase__ ( self) -> Dict: pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''') def UpperCamelCase__ ( self) -> str: pass def UpperCamelCase__ ( self) -> List[str]: return super().test_progress_bar() @slow @skip_mps class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''') __UpperCamelCase :List[str] = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''') __UpperCamelCase :Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __UpperCamelCase :str = pipe.to('''cuda''') __UpperCamelCase :Optional[Any] = '''Spiderman is surfing''' __UpperCamelCase :Union[str, Any] = torch.Generator(device='''cpu''').manual_seed(0) __UpperCamelCase :List[Any] = pipe(__lowercase , generator=__lowercase , num_inference_steps=25 , output_type='''pt''').frames __UpperCamelCase :Optional[int] = video_frames.cpu().numpy() assert np.abs(expected_video - video).mean() < 5E-2 def UpperCamelCase__ ( self) -> int: __UpperCamelCase :str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''') __UpperCamelCase :Union[str, Any] = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''') __UpperCamelCase :str = pipe.to('''cuda''') __UpperCamelCase :Union[str, Any] = '''Spiderman is surfing''' __UpperCamelCase :int = torch.Generator(device='''cpu''').manual_seed(0) __UpperCamelCase :List[Any] = pipe(__lowercase , generator=__lowercase , num_inference_steps=2 , output_type='''pt''').frames __UpperCamelCase :Optional[Any] = video_frames.cpu().numpy() assert np.abs(expected_video - video).mean() < 5E-2
43
1
from math import pi, sqrt def A ( _lowercase ): if num <= 0: raise ValueError('''math domain error''' ) if num > 171.5: raise OverflowError('''math range error''' ) elif num - int(_A ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(_A ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def A ( ): assert gamma(0.5 ) == sqrt(_A ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __UpperCamelCase : List[Any] = 1.0 while num: __UpperCamelCase : str = float(input('Gamma of: ')) print(f"""gamma({num}) = {gamma(num)}""") print('\nEnter 0 to exit...')
355
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A ( _lowercase , _lowercase ): # Load checkpoint SCREAMING_SNAKE_CASE : Union[str, Any] = torch.load(_lowercase , map_location='''cpu''' ) SCREAMING_SNAKE_CASE : List[str] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository SCREAMING_SNAKE_CASE : int = {} for k, v in state_dict.items(): if "pred_layer" in k: SCREAMING_SNAKE_CASE : Optional[Any] = v else: SCREAMING_SNAKE_CASE : List[Any] = v SCREAMING_SNAKE_CASE : Dict = chkpt['''params'''] SCREAMING_SNAKE_CASE : Optional[Any] = {n: v for n, v in config.items() if not isinstance(_lowercase , (torch.FloatTensor, numpy.ndarray) )} SCREAMING_SNAKE_CASE : Any = chkpt['''dico_word2id'''] SCREAMING_SNAKE_CASE : str = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model SCREAMING_SNAKE_CASE : Dict = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME SCREAMING_SNAKE_CASE : List[str] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME SCREAMING_SNAKE_CASE : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(_lowercase , _lowercase ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_lowercase , indent=2 ) + '''\n''' ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : List[Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
258
0
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @require_torch def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset('''ashraq/esc50''' ) __SCREAMING_SNAKE_CASE : List[Any] = dataset['train']['audio'][-1]['array'] __SCREAMING_SNAKE_CASE : Tuple = audio_classifier(__UpperCamelCase , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [{'''score''': 0.5_01, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_99, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''' ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" pass @slow @require_torch def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __SCREAMING_SNAKE_CASE : Dict = load_dataset('''ashraq/esc50''' ) __SCREAMING_SNAKE_CASE : Optional[int] = dataset['train']['audio'][-1]['array'] __SCREAMING_SNAKE_CASE : Tuple = audio_classifier(__UpperCamelCase , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ {'''score''': 0.9_99, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_01, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __SCREAMING_SNAKE_CASE : str = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ [ {'''score''': 0.9_99, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_01, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __SCREAMING_SNAKE_CASE : Tuple = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5 ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ [ {'''score''': 0.9_99, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_01, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''' ) def UpperCAmelCase__ ( self : int ): """simple docstring""" pass
303
from abc import ABC, abstractmethod from argparse import ArgumentParser class __snake_case ( _lowerCamelCase ): @staticmethod @abstractmethod def __a ( __UpperCamelCase ) -> Dict: '''simple docstring''' raise NotImplementedError() @abstractmethod def __a ( self ) -> Optional[int]: '''simple docstring''' raise NotImplementedError()
143
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCamelCase : str = { '''configuration_nezha''': ['''NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NezhaConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ '''NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NezhaForNextSentencePrediction''', '''NezhaForMaskedLM''', '''NezhaForPreTraining''', '''NezhaForMultipleChoice''', '''NezhaForQuestionAnswering''', '''NezhaForSequenceClassification''', '''NezhaForTokenClassification''', '''NezhaModel''', '''NezhaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys __lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
204
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): @slow def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=_lowercase ).to(_lowercase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""google/mt5-small""" ) SCREAMING_SNAKE_CASE__ = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids SCREAMING_SNAKE_CASE__ = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids SCREAMING_SNAKE_CASE__ = model(input_ids.to(_lowercase ) , labels=labels.to(_lowercase ) ).loss SCREAMING_SNAKE_CASE__ = -(labels.shape[-1] * loss.item()) SCREAMING_SNAKE_CASE__ = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
204
1
"""simple docstring""" import re def __A ( a_ :str) -> str: if len(re.findall('''[ATCG]''' , a_)) != len(a_): raise ValueError('''Invalid Strand''') return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''')) if __name__ == "__main__": import doctest doctest.testmod()
160
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def __A ( a_ :List[Any]) -> Any: __a : Optional[int] = SwinvaConfig() __a : Optional[Any] = swinva_name.split('''_''') __a : str = name_split[1] if "to" in name_split[3]: __a : Any = int(name_split[3][-3:]) else: __a : str = int(name_split[3]) if "to" in name_split[2]: __a : str = int(name_split[2][-2:]) else: __a : Union[str, Any] = int(name_split[2][6:]) if model_size == "tiny": __a : str = 96 __a : List[Any] = (2, 2, 6, 2) __a : Any = (3, 6, 12, 24) elif model_size == "small": __a : int = 96 __a : int = (2, 2, 18, 2) __a : List[Any] = (3, 6, 12, 24) elif model_size == "base": __a : List[str] = 1_28 __a : List[Any] = (2, 2, 18, 2) __a : str = (4, 8, 16, 32) else: __a : str = 1_92 __a : List[str] = (2, 2, 18, 2) __a : List[str] = (6, 12, 24, 48) if "to" in swinva_name: __a : Tuple = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __a : str = 2_18_41 __a : Any = '''huggingface/label-files''' __a : Any = '''imagenet-22k-id2label.json''' __a : Optional[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) __a : Any = {int(a_): v for k, v in idalabel.items()} __a : Dict = idalabel __a : Dict = {v: k for k, v in idalabel.items()} else: __a : List[Any] = 10_00 __a : Any = '''huggingface/label-files''' __a : Union[str, Any] = '''imagenet-1k-id2label.json''' __a : Tuple = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) __a : Optional[Any] = {int(a_): v for k, v in idalabel.items()} __a : Dict = idalabel __a : Optional[Any] = {v: k for k, v in idalabel.items()} __a : Any = img_size __a : Tuple = num_classes __a : str = embed_dim __a : List[str] = depths __a : Dict = num_heads __a : List[Any] = window_size return config def __A ( a_ :Optional[int]) -> Dict: if "patch_embed.proj" in name: __a : Tuple = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''') if "patch_embed.norm" in name: __a : Any = name.replace('''patch_embed.norm''' , '''embeddings.norm''') if "layers" in name: __a : Optional[int] = '''encoder.''' + name if "attn.proj" in name: __a : Tuple = name.replace('''attn.proj''' , '''attention.output.dense''') if "attn" in name: __a : Dict = name.replace('''attn''' , '''attention.self''') if "norm1" in name: __a : List[Any] = name.replace('''norm1''' , '''layernorm_before''') if "norm2" in name: __a : Tuple = name.replace('''norm2''' , '''layernorm_after''') if "mlp.fc1" in name: __a : Any = name.replace('''mlp.fc1''' , '''intermediate.dense''') if "mlp.fc2" in name: __a : str = name.replace('''mlp.fc2''' , '''output.dense''') if "q_bias" in name: __a : Any = name.replace('''q_bias''' , '''query.bias''') if "k_bias" in name: __a : Tuple = name.replace('''k_bias''' , '''key.bias''') if "v_bias" in name: __a : List[Any] = name.replace('''v_bias''' , '''value.bias''') if "cpb_mlp" in name: __a : Union[str, Any] = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''') if name == "norm.weight": __a : Union[str, Any] = '''layernorm.weight''' if name == "norm.bias": __a : Optional[Any] = '''layernorm.bias''' if "head" in name: __a : Optional[int] = name.replace('''head''' , '''classifier''') else: __a : Optional[Any] = '''swinv2.''' + name return name def __A ( a_ :Dict , a_ :Dict) -> Dict: for key in orig_state_dict.copy().keys(): __a : Optional[int] = orig_state_dict.pop(a_) if "mask" in key: continue elif "qkv" in key: __a : Dict = key.split('''.''') __a : Union[str, Any] = int(key_split[1]) __a : List[str] = int(key_split[3]) __a : Optional[int] = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __a : int = val[:dim, :] __a : Any = val[dim : dim * 2, :] __a : Dict = val[-dim:, :] else: __a : str = val[:dim] __a : Optional[int] = val[ dim : dim * 2 ] __a : List[Any] = val[-dim:] else: __a : Any = val return orig_state_dict def __A ( a_ :Tuple , a_ :int) -> Union[str, Any]: __a : Dict = timm.create_model(a_ , pretrained=a_) timm_model.eval() __a : int = get_swinva_config(a_) __a : int = SwinvaForImageClassification(a_) model.eval() __a : Dict = convert_state_dict(timm_model.state_dict() , a_) model.load_state_dict(a_) __a : List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __a : int = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swinva_name.replace('''_''' , '''-'''))) __a : Optional[Any] = Image.open(requests.get(a_ , stream=a_).raw) __a : Optional[Any] = image_processor(images=a_ , return_tensors='''pt''') __a : Optional[Any] = timm_model(inputs['''pixel_values''']) __a : int = model(**a_).logits assert torch.allclose(a_ , a_ , atol=1e-3) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""") model.save_pretrained(a_) print(F"""Saving image processor to {pytorch_dump_folder_path}""") image_processor.save_pretrained(a_) model.push_to_hub( repo_path_or_name=Path(a_ , a_) , organization='''nandwalritik''' , commit_message='''Add model''' , ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
160
1
'''simple docstring''' def __A ( lowerCAmelCase_ ): return 10 - x * x def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): # Bolzano theory in order to find if there is a root between a and b if equation(__a ) * equation(__a ) >= 0: raise ValueError("""Wrong space!""" ) _UpperCAmelCase : Optional[Any] = a while (b - a) >= 0.01: # Find middle point _UpperCAmelCase : str = (a + b) / 2 # Check if middle point is root if equation(__a ) == 0.0: break # Decide the side to repeat the steps if equation(__a ) * equation(__a ) < 0: _UpperCAmelCase : List[Any] = c else: _UpperCAmelCase : List[Any] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
350
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def __A ( lowerCAmelCase_ ): return EnvironmentCommand() def __A ( lowerCAmelCase_ ): return EnvironmentCommand(args.accelerate_config_file ) class __lowerCAmelCase ( __a ): @staticmethod def snake_case_ (lowerCAmelCase__ ): _UpperCAmelCase : Tuple = parser.add_parser("""env""" ) download_parser.set_defaults(func=lowerCAmelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=lowerCAmelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=lowerCAmelCase__ ) def __init__(self , lowerCAmelCase__ , *lowerCAmelCase__ ): _UpperCAmelCase : str = accelerate_config_file def snake_case_ (self ): _UpperCAmelCase : Dict = """not installed""" if is_safetensors_available(): import safetensors _UpperCAmelCase : Any = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors _UpperCAmelCase : Optional[Any] = F"{safetensors.__version__} but is ignored because of PyTorch version too old." _UpperCAmelCase : str = """not installed""" _UpperCAmelCase : List[Any] = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file _UpperCAmelCase : List[str] = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(lowerCAmelCase__ ): _UpperCAmelCase : List[Any] = load_config_from_file(self._accelerate_config_file ).to_dict() _UpperCAmelCase : Optional[Any] = ( """\n""".join([F"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else F"\t{accelerate_config}" ) _UpperCAmelCase : Dict = """not installed""" _UpperCAmelCase : int = """NA""" if is_torch_available(): import torch _UpperCAmelCase : int = torch.__version__ _UpperCAmelCase : Optional[Any] = torch.cuda.is_available() _UpperCAmelCase : Optional[Any] = """not installed""" _UpperCAmelCase : Tuple = """NA""" if is_tf_available(): import tensorflow as tf _UpperCAmelCase : Dict = tf.__version__ try: # deprecated in v2.1 _UpperCAmelCase : List[str] = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool _UpperCAmelCase : Any = bool(tf.config.list_physical_devices("""GPU""" ) ) _UpperCAmelCase : Dict = """not installed""" _UpperCAmelCase : Optional[Any] = """not installed""" _UpperCAmelCase : Dict = """not installed""" _UpperCAmelCase : Tuple = """NA""" if is_flax_available(): import flax import jax import jaxlib _UpperCAmelCase : str = flax.__version__ _UpperCAmelCase : Optional[Any] = jax.__version__ _UpperCAmelCase : Optional[int] = jaxlib.__version__ _UpperCAmelCase : Tuple = jax.lib.xla_bridge.get_backend().platform _UpperCAmelCase : str = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": F"{safetensors_version}", """Accelerate version""": F"{accelerate_version}", """Accelerate config""": F"{accelerate_config_str}", """PyTorch version (GPU?)""": F"{pt_version} ({pt_cuda_available})", """Tensorflow version (GPU?)""": F"{tf_version} ({tf_cuda_available})", """Flax version (CPU?/GPU?/TPU?)""": F"{flax_version} ({jax_backend})", """Jax version""": F"{jax_version}", """JaxLib version""": F"{jaxlib_version}", """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(lowerCAmelCase__ ) ) return info @staticmethod def snake_case_ (lowerCAmelCase__ ): return "\n".join([F"- {prop}: {val}" for prop, val in d.items()] ) + "\n"
170
0
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> list: lowerCamelCase : Dict = len(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Union[str, Any] = [] for i in range(len(_SCREAMING_SNAKE_CASE ) - pat_len + 1 ): lowerCamelCase : Dict = True for j in range(_SCREAMING_SNAKE_CASE ): if s[i + j] != pattern[j]: lowerCamelCase : Optional[int] = False break if match_found: position.append(_SCREAMING_SNAKE_CASE ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
48
import random from .binary_exp_mod import bin_exp_mod def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=1000 ) -> List[str]: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCamelCase : List[Any] = n - 1 lowerCamelCase : Dict = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCamelCase : Optional[Any] = 0 while count < prec: lowerCamelCase : str = random.randint(2 ,n - 1 ) lowerCamelCase : Dict = bin_exp_mod(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) if b != 1: lowerCamelCase : str = True for _ in range(_SCREAMING_SNAKE_CASE ): if b == n - 1: lowerCamelCase : Tuple = False break lowerCamelCase : int = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[int] = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
48
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int]=False ): '''simple docstring''' UpperCamelCase__ : Tuple =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase__ : Optional[int] =[(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _lowerCAmelCase ( UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase__ : Union[str, Any] ='''''' else: UpperCamelCase__ : List[Any] ='''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : List[str] =state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) UpperCamelCase__ : List[str] =state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : Optional[int] =in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ : Optional[Any] =in_proj_bias[: config.hidden_size] UpperCamelCase__ : Tuple =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : Dict =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : Tuple =in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : Dict =in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( UpperCAmelCase : Any ): '''simple docstring''' UpperCamelCase__ : List[Any] =['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(UpperCAmelCase , UpperCAmelCase ) def _lowerCAmelCase ( UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : Optional[int] ): '''simple docstring''' UpperCamelCase__ : str =dct.pop(UpperCAmelCase ) UpperCamelCase__ : int =val def _lowerCAmelCase ( ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] ='''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ : Optional[int] =Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any]=True ): '''simple docstring''' UpperCamelCase__ : Dict =ViTConfig() # patch_size if model_name[-1] == "8": UpperCamelCase__ : List[Any] =8 # set labels if required if not base_model: UpperCamelCase__ : Any =1_000 UpperCamelCase__ : Any ='''huggingface/label-files''' UpperCamelCase__ : Dict ='''imagenet-1k-id2label.json''' UpperCamelCase__ : Union[str, Any] =json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCamelCase__ : Union[str, Any] ={int(UpperCAmelCase ): v for k, v in idalabel.items()} UpperCamelCase__ : Any =idalabel UpperCamelCase__ : Optional[int] ={v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: UpperCamelCase__ : Optional[Any] =384 UpperCamelCase__ : Optional[Any] =1_536 UpperCamelCase__ : List[Any] =12 UpperCamelCase__ : Optional[Any] =6 # load original model from torch hub UpperCamelCase__ : Tuple =torch.hub.load('''facebookresearch/dino:main''' , UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys UpperCamelCase__ : str =original_model.state_dict() if base_model: remove_classification_head_(UpperCAmelCase ) UpperCamelCase__ : List[Any] =create_rename_keys(UpperCAmelCase , base_model=UpperCAmelCase ) for src, dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) read_in_q_k_v(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # load HuggingFace model if base_model: UpperCamelCase__ : str =ViTModel(UpperCAmelCase , add_pooling_layer=UpperCAmelCase ).eval() else: UpperCamelCase__ : Any =ViTForImageClassification(UpperCAmelCase ).eval() model.load_state_dict(UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor UpperCamelCase__ : Any =ViTImageProcessor() UpperCamelCase__ : List[str] =image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCamelCase__ : Optional[int] =encoding['''pixel_values'''] UpperCamelCase__ : Optional[Any] =model(UpperCAmelCase ) if base_model: UpperCamelCase__ : Dict =original_model(UpperCAmelCase ) assert torch.allclose(UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: UpperCamelCase__ : Tuple =original_model(UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) _SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
157
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase : bool , UpperCAmelCase : bool ): '''simple docstring''' def run_func(UpperCAmelCase : List[str] ): @wraps(UpperCAmelCase ) def run_in_eager_mode(*UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ): return func(*UpperCAmelCase , **UpperCAmelCase ) @wraps(UpperCAmelCase ) @tf.function(experimental_compile=UpperCAmelCase ) def run_in_graph_mode(*UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Tuple ): return func(*UpperCAmelCase , **UpperCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _lowerCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ): '''simple docstring''' UpperCamelCase__ : Tuple =random.Random() UpperCamelCase__ : List[str] =[rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(UpperCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __a ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = "TensorFlow" @property def _lowerCAmelCase ( self : int ): return tf.__version__ def _lowerCAmelCase ( self : List[str] , lowercase_ : str , lowercase_ : int , lowercase_ : int ): # initialize GPU on separate process UpperCamelCase__ : Optional[int] =self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) UpperCamelCase__ : str =self._prepare_inference_func(lowercase_ , lowercase_ , lowercase_ ) return self._measure_speed(_inference ) def _lowerCAmelCase ( self : str , lowercase_ : str , lowercase_ : int , lowercase_ : int ): UpperCamelCase__ : List[str] =self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) UpperCamelCase__ : int =self._prepare_train_func(lowercase_ , lowercase_ , lowercase_ ) return self._measure_speed(_train ) def _lowerCAmelCase ( self : Any , lowercase_ : str , lowercase_ : int , lowercase_ : int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) UpperCamelCase__ : Optional[Any] =self._prepare_inference_func(lowercase_ , lowercase_ , lowercase_ ) return self._measure_memory(_inference ) def _lowerCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : int , lowercase_ : int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowercase_ ) UpperCamelCase__ : Tuple =self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) UpperCamelCase__ : List[Any] =self._prepare_train_func(lowercase_ , lowercase_ , lowercase_ ) return self._measure_memory(_train ) def _lowerCAmelCase ( self : Union[str, Any] , lowercase_ : str , lowercase_ : int , lowercase_ : int ): UpperCamelCase__ : Optional[Any] =self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) UpperCamelCase__ : Dict =( hasattr(lowercase_ , '''architectures''' ) and isinstance(config.architectures , lowercase_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCamelCase__ : Dict ='''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model UpperCamelCase__ : List[str] =__import__('''transformers''' , fromlist=[model_class] ) UpperCamelCase__ : Optional[int] =getattr(lowercase_ , lowercase_ ) UpperCamelCase__ : Optional[int] =model_cls(lowercase_ ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: UpperCamelCase__ : Any =TF_MODEL_MAPPING[config.__class__](lowercase_ ) # encoder-decoder has vocab size saved differently UpperCamelCase__ : Optional[int] =config.vocab_size if hasattr(lowercase_ , '''vocab_size''' ) else config.encoder.vocab_size UpperCamelCase__ : List[Any] =random_input_ids(lowercase_ , lowercase_ , lowercase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowercase_ , decoder_input_ids=lowercase_ , training=lowercase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowercase_ , training=lowercase_ ) UpperCamelCase__ : Dict =encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def _lowerCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : int , lowercase_ : int ): UpperCamelCase__ : List[str] =self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) UpperCamelCase__ : Optional[Any] =( hasattr(lowercase_ , '''architectures''' ) and isinstance(config.architectures , lowercase_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCamelCase__ : Tuple ='''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model UpperCamelCase__ : List[Any] =__import__('''transformers''' , fromlist=[model_class] ) UpperCamelCase__ : Dict =getattr(lowercase_ , lowercase_ ) UpperCamelCase__ : Tuple =model_cls(lowercase_ ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: UpperCamelCase__ : Optional[int] =TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowercase_ ) # encoder-decoder has vocab size saved differently UpperCamelCase__ : str =config.vocab_size if hasattr(lowercase_ , '''vocab_size''' ) else config.encoder.vocab_size UpperCamelCase__ : Union[str, Any] =random_input_ids(lowercase_ , lowercase_ , lowercase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): UpperCamelCase__ : Optional[Any] =model(lowercase_ , decoder_input_ids=lowercase_ , labels=lowercase_ , training=lowercase_ )[0] UpperCamelCase__ : Dict =tf.gradients(lowercase_ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): UpperCamelCase__ : Dict =model(lowercase_ , labels=lowercase_ , training=lowercase_ )[0] UpperCamelCase__ : List[str] =tf.gradients(lowercase_ , model.trainable_variables ) return gradients UpperCamelCase__ : List[Any] =encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def _lowerCAmelCase ( self : Tuple , lowercase_ : Union[str, Any] ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(lowercase_ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCamelCase__ : int =timeit.repeat( lowercase_ , repeat=self.args.repeat , number=10 , ) return min(lowercase_ ) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def _lowerCAmelCase ( self : Dict , lowercase_ : Callable[[], None] ): logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) UpperCamelCase__ : Tuple =start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) UpperCamelCase__ : List[str] ='''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() UpperCamelCase__ : Optional[Any] =nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) UpperCamelCase__ : Dict =nvml.nvmlDeviceGetMemoryInfo(lowercase_ ) UpperCamelCase__ : str =meminfo.used UpperCamelCase__ : int =Memory(lowercase_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) UpperCamelCase__ : Union[str, Any] =None else: UpperCamelCase__ : Optional[int] =measure_peak_memory_cpu(lowercase_ ) UpperCamelCase__ : Dict =Memory(lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else memory_bytes if self.args.trace_memory_line_by_line: UpperCamelCase__ : Tuple =stop_memory_tracing(lowercase_ ) if memory is None: UpperCamelCase__ : List[Any] =summary.total else: UpperCamelCase__ : List[Any] =None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
157
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = """mra""" def __init__( self : List[str] , UpperCamelCase__ : Union[str, Any]=5_0_2_6_5 , UpperCamelCase__ : Optional[Any]=7_6_8 , UpperCamelCase__ : Dict=1_2 , UpperCamelCase__ : Optional[int]=1_2 , UpperCamelCase__ : int=3_0_7_2 , UpperCamelCase__ : Optional[int]="gelu" , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : str=5_1_2 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : Optional[Any]=0.0_2 , UpperCamelCase__ : int=1E-5 , UpperCamelCase__ : str="absolute" , UpperCamelCase__ : Any=4 , UpperCamelCase__ : Optional[Any]="full" , UpperCamelCase__ : Optional[Any]=0 , UpperCamelCase__ : Union[str, Any]=0 , UpperCamelCase__ : List[str]=1 , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : Dict=2 , **UpperCamelCase__ : Any , ): """simple docstring""" super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = type_vocab_size UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = block_per_row UpperCamelCase = approx_mode UpperCamelCase = initial_prior_first_n_blocks UpperCamelCase = initial_prior_diagonal_n_blocks
28
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _A : Union[str, Any] =False class _lowercase ( unittest.TestCase ): pass @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) lowerCamelCase__ : List[Any] = torch.manual_seed(0 ) lowerCamelCase__ : List[Any] = pipe( image=UpperCamelCase__ , generator=UpperCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images lowerCamelCase__ : List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : Tuple = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
41
0
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class snake_case__ : def __init__( self : int , __a : Tuple , __a : List[Any]=2 , __a : Union[str, Any]=3 , __a : Any=4 , __a : List[str]=2 , __a : int=7 , __a : List[str]=True , __a : Optional[int]=True , __a : Union[str, Any]=True , __a : Dict=True , __a : int=99 , __a : Union[str, Any]=36 , __a : Dict=3 , __a : Any=4 , __a : int=37 , __a : Tuple="gelu" , __a : Optional[Any]=0.1 , __a : str=0.1 , __a : Union[str, Any]=512 , __a : Union[str, Any]=16 , __a : str=2 , __a : List[Any]=0.0_2 , __a : Union[str, Any]=6 , __a : int=6 , __a : Any=3 , __a : Optional[int]=4 , __a : Union[str, Any]=None , __a : List[str]=1000 , ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = parent __snake_case : Any = batch_size __snake_case : str = num_channels __snake_case : List[Any] = image_size __snake_case : Dict = patch_size __snake_case : Optional[Any] = text_seq_length __snake_case : str = is_training __snake_case : str = use_input_mask __snake_case : int = use_token_type_ids __snake_case : Dict = use_labels __snake_case : Union[str, Any] = vocab_size __snake_case : Union[str, Any] = hidden_size __snake_case : Any = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : Dict = intermediate_size __snake_case : Dict = hidden_act __snake_case : Tuple = hidden_dropout_prob __snake_case : List[str] = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : Dict = type_vocab_size __snake_case : Optional[Any] = type_sequence_label_size __snake_case : str = initializer_range __snake_case : Optional[int] = coordinate_size __snake_case : int = shape_size __snake_case : Any = num_labels __snake_case : Any = num_choices __snake_case : List[str] = scope __snake_case : List[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __snake_case : str = text_seq_length __snake_case : str = (image_size // patch_size) ** 2 + 1 __snake_case : int = self.text_seq_length + self.image_seq_length def A_ ( self : Optional[int] ) -> str: '''simple docstring''' __snake_case : int = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __snake_case : int = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : str = bbox[i, j, 3] __snake_case : Dict = bbox[i, j, 1] __snake_case : Union[str, Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : Any = bbox[i, j, 2] __snake_case : Dict = bbox[i, j, 0] __snake_case : Any = t __snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Optional[int] = None if self.use_input_mask: __snake_case : Tuple = random_attention_mask([self.batch_size, self.text_seq_length] ) __snake_case : Tuple = None if self.use_token_type_ids: __snake_case : Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __snake_case : List[Any] = None __snake_case : Optional[int] = None if self.use_labels: __snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __snake_case : Optional[int] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def A_ ( self : List[Any] , __a : List[str] , __a : str , __a : int , __a : Optional[Any] , __a : str , __a : Optional[int] , __a : str , __a : Dict ) -> Optional[Any]: '''simple docstring''' __snake_case : Dict = LayoutLMvaModel(config=__a ) model.to(__a ) model.eval() # text + image __snake_case : List[str] = model(__a , pixel_values=__a ) __snake_case : Optional[int] = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a ) __snake_case : List[str] = model(__a , bbox=__a , pixel_values=__a , token_type_ids=__a ) __snake_case : Tuple = model(__a , bbox=__a , pixel_values=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __snake_case : str = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __snake_case : Tuple = model(pixel_values=__a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def A_ ( self : Dict , __a : Optional[Any] , __a : Optional[Any] , __a : int , __a : int , __a : List[str] , __a : List[str] , __a : Tuple , __a : List[str] ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = self.num_labels __snake_case : Union[str, Any] = LayoutLMvaForSequenceClassification(__a ) model.to(__a ) model.eval() __snake_case : List[str] = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : int , __a : Optional[int] , __a : Dict , __a : Union[str, Any] , __a : Union[str, Any] , __a : Any , __a : List[Any] , __a : Optional[Any] , __a : Any ) -> Union[str, Any]: '''simple docstring''' __snake_case : Optional[Any] = self.num_labels __snake_case : Optional[Any] = LayoutLMvaForTokenClassification(config=__a ) model.to(__a ) model.eval() __snake_case : Tuple = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def A_ ( self : Optional[Any] , __a : Dict , __a : Any , __a : List[Any] , __a : Optional[Any] , __a : Union[str, Any] , __a : Any , __a : str , __a : Tuple ) -> Tuple: '''simple docstring''' __snake_case : Any = LayoutLMvaForQuestionAnswering(config=__a ) model.to(__a ) model.eval() __snake_case : Optional[Any] = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : Dict ) -> Dict: '''simple docstring''' __snake_case : Any = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Optional[Any] = config_and_inputs __snake_case : Dict = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class snake_case__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = False A__ = False A__ = False A__ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) A__ = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def A_ ( self : Dict , __a : List[str] , __a : List[str] , __a : Optional[Any] , __a : Union[str, Any] , __a : Optional[Any] ) -> int: '''simple docstring''' # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def A_ ( self : Any ) -> str: '''simple docstring''' __snake_case : Optional[Any] = LayoutLMvaModelTester(self ) __snake_case : str = ConfigTester(self , config_class=__a , hidden_size=37 ) def A_ ( self : Dict , __a : Dict , __a : int , __a : Tuple=False ) -> Union[str, Any]: '''simple docstring''' __snake_case : int = copy.deepcopy(__a ) if model_class in get_values(__a ): __snake_case : Union[str, Any] = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(__a , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__a ): __snake_case : Union[str, Any] = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__a ) elif model_class in get_values(__a ): __snake_case : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) __snake_case : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) elif model_class in [ *get_values(__a ), ]: __snake_case : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) elif model_class in [ *get_values(__a ), ]: __snake_case : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__a , ) return inputs_dict def A_ ( self : Tuple ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A_ ( self : List[str] ) -> str: '''simple docstring''' __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def A_ ( self : str ) -> Any: '''simple docstring''' __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : int = type self.model_tester.create_and_check_model(*__a ) def A_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def A_ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) def A_ ( self : List[str] ) -> List[Any]: '''simple docstring''' __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) @slow def A_ ( self : Union[str, Any] ) -> str: '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Optional[int] = LayoutLMvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def a_ ( ) -> str: __snake_case : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class snake_case__ ( unittest.TestCase ): @cached_property def A_ ( self : Any ) -> Dict: '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=__a ) if is_vision_available() else None @slow def A_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' __snake_case : Optional[Any] = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(__a ) __snake_case : int = self.default_image_processor __snake_case : Tuple = prepare_img() __snake_case : Tuple = image_processor(images=__a , return_tensors='pt' ).pixel_values.to(__a ) __snake_case : Optional[int] = torch.tensor([[1, 2]] ) __snake_case : int = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __snake_case : Union[str, Any] = model( input_ids=input_ids.to(__a ) , bbox=bbox.to(__a ) , pixel_values=pixel_values.to(__a ) , ) # verify the logits __snake_case : List[str] = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , __a ) __snake_case : int = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(__a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1e-4 ) )
0
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def a_ ( _UpperCAmelCase : List[Any] ) -> Tuple: __snake_case : str = [] embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', f'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', f'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', f'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', f'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def a_ ( _UpperCAmelCase : int ,_UpperCAmelCase : Optional[int] ) -> List[str]: __snake_case : Tuple = [] attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', f'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', f'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', f'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', f'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def a_ ( _UpperCAmelCase : Union[str, Any] ) -> Dict: __snake_case : Union[str, Any] = [] token.append((f'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') ) return token def a_ ( ) -> Optional[Any]: __snake_case : Any = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def a_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[Any] ) -> Tuple: __snake_case : List[str] = 'imagenet-1k-id2label.json' __snake_case : Dict = 10_00 __snake_case : Union[str, Any] = 'huggingface/label-files' __snake_case : str = num_labels __snake_case : str = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase ,_UpperCAmelCase ,repo_type='dataset' ) ) ,'r' ) ) __snake_case : Tuple = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} __snake_case : Optional[Any] = idalabel __snake_case : str = {v: k for k, v in idalabel.items()} __snake_case : Dict = CvtConfig(num_labels=_UpperCAmelCase ,idalabel=_UpperCAmelCase ,labelaid=_UpperCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' ,1 )[-1][4:6] == "13": __snake_case : Tuple = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' ,1 )[-1][4:6] == "21": __snake_case : str = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __snake_case : Dict = [2, 2, 20] __snake_case : Any = [3, 12, 16] __snake_case : Tuple = [1_92, 7_68, 10_24] __snake_case : str = CvtForImageClassification(_UpperCAmelCase ) __snake_case : List[Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) __snake_case : int = image_size __snake_case : int = torch.load(_UpperCAmelCase ,map_location=torch.device('cpu' ) ) __snake_case : List[Any] = OrderedDict() __snake_case : Union[str, Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __snake_case : Optional[Any] = list_of_state_dict + cls_token(_UpperCAmelCase ) __snake_case : Tuple = list_of_state_dict + embeddings(_UpperCAmelCase ) for cnt in range(config.depth[idx] ): __snake_case : Optional[int] = list_of_state_dict + attention(_UpperCAmelCase ,_UpperCAmelCase ) __snake_case : str = list_of_state_dict + final() for gg in list_of_state_dict: print(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): __snake_case : List[str] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": A__ : Dict = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=3_8_4, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A__ : Tuple = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __a = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
'''simple docstring''' __a = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __a = frozenset(["prompt", "negative_prompt"]) __a = frozenset([]) __a = frozenset(["image"]) __a = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __a = frozenset(["image"]) __a = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __a = frozenset(["prompt", "image", "negative_prompt"]) __a = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __a = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __a = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __a = frozenset(["image", "mask_image"]) __a = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __a = frozenset(["example_image", "image", "mask_image"]) __a = frozenset(["class_labels"]) __a = frozenset(["class_labels"]) __a = frozenset(["batch_size"]) __a = frozenset([]) __a = frozenset(["batch_size"]) __a = frozenset([]) __a = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __a = frozenset(["prompt", "negative_prompt"]) __a = frozenset(["input_tokens"]) __a = frozenset(["input_tokens"])
35
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
353
"""simple docstring""" from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets UpperCAmelCase = """\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } """ UpperCAmelCase = """\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. """ UpperCAmelCase = """ Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"pearson\": Pearson Correlation \"spearmanr\": Spearman Correlation \"matthews_correlation\": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> glue_metric = datasets.load_metric('glue', 'stsb') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)}) {'pearson': 1.0, 'spearmanr': 1.0} >>> glue_metric = datasets.load_metric('glue', 'cola') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def lowercase ( a__ : int , a__ : Tuple ) -> Optional[Any]: return float((preds == labels).mean() ) def lowercase ( a__ : Optional[Any] , a__ : int ) -> Optional[int]: _UpperCamelCase = simple_accuracy(a__ , a__ ) _UpperCamelCase = float(fa_score(y_true=a__ , y_pred=a__ ) ) return { "accuracy": acc, "f1": fa, } def lowercase ( a__ : Any , a__ : Union[str, Any] ) -> Any: _UpperCamelCase = float(pearsonr(a__ , a__ )[0] ) _UpperCamelCase = float(spearmanr(a__ , a__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]: if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def _UpperCamelCase ( self : int , __UpperCamelCase : int , __UpperCamelCase : List[Any] ) -> Any: if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(__UpperCamelCase , __UpperCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(__UpperCamelCase , __UpperCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(__UpperCamelCase , __UpperCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(__UpperCamelCase , __UpperCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
54
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class __lowerCAmelCase : def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' return None class __lowerCAmelCase : def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' return None class __lowerCAmelCase ( unittest.TestCase): _lowercase : Any = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _lowercase ( self ) -> Dict: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCAmelCase__ , "tf" , 1_2 , **lowerCAmelCase__ ) @require_torch @slow def _lowercase ( self ) -> str: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCAmelCase__ , "pt" , 1_2 , **lowerCAmelCase__ ) @require_torch @slow def _lowercase ( self ) -> List[Any]: '''simple docstring''' from transformers import BertModel a__ : Union[str, Any] =["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(lowerCAmelCase__ ) ) vocab_file.flush() a__ : Union[str, Any] =BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: a__ : Any =BertModel(BertConfig(vocab_size=len(lowerCAmelCase__ ) ) ) model.save_pretrained(lowerCAmelCase__ ) self._test_export(lowerCAmelCase__ , "pt" , 1_2 , lowerCAmelCase__ ) @require_tf @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: a__ : Optional[int] =self._test_export(lowerCAmelCase__ , "tf" , 1_2 , **lowerCAmelCase__ ) a__ : List[str] =quantize(Path(lowerCAmelCase__ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCAmelCase__ ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def _lowercase ( self ) -> Any: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: a__ : List[str] =self._test_export(lowerCAmelCase__ , "pt" , 1_2 , **lowerCAmelCase__ ) a__ : List[Any] =quantize(lowerCAmelCase__ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCAmelCase__ ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> str: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: a__ : Any =Path(lowerCAmelCase__ ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) return path except Exception as e: self.fail(lowerCAmelCase__ ) @require_torch @require_tokenizers @slow def _lowercase ( self ) -> int: '''simple docstring''' from transformers import BertModel a__ : List[Any] =BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) a__ : int =BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(lowerCAmelCase__ , lowerCAmelCase__ , "pt" ) @require_tf @require_tokenizers @slow def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' from transformers import TFBertModel a__ : Any =TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) a__ : str =BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(lowerCAmelCase__ , lowerCAmelCase__ , "tf" ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' a__ : int =FeatureExtractionPipeline(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : int =["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] a__ , a__ , a__ , a__ : str =infer_shapes(lowerCAmelCase__ , lowerCAmelCase__ ) # Assert all variables are present self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , lowerCAmelCase__ ) self.assertSequenceEqual(variable_names[3:] , lowerCAmelCase__ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : int =["input_ids", "attention_mask", "token_type_ids"] a__ : Any ={"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} a__ , a__ : Tuple =ensure_valid_input(FuncContiguousArgs() , lowerCAmelCase__ , lowerCAmelCase__ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCAmelCase__ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCAmelCase__ ) , set(lowerCAmelCase__ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCAmelCase__ , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) a__ , a__ : Any =ensure_valid_input(FuncNonContiguousArgs() , lowerCAmelCase__ , lowerCAmelCase__ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCAmelCase__ ) , 1 ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : List[Any] =generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
95
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline a_ :List[Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase_ ) class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any], **_snake_case : str ) ->Dict: super().__init__(**_snake_case ) if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self : Union[str, Any], _snake_case : Union[np.ndarray, bytes, str], **_snake_case : Tuple ) ->Dict: return super().__call__(_snake_case, **_snake_case ) def lowercase_ ( self : Tuple, **_snake_case : Any ) ->Union[str, Any]: snake_case__ : str = {} if "candidate_labels" in kwargs: snake_case__ : str = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: snake_case__ : str = kwargs['hypothesis_template'] return preprocess_params, {}, {} def lowercase_ ( self : Dict, _snake_case : str, _snake_case : Optional[int]=None, _snake_case : List[str]="This is a sound of {}." ) ->int: if isinstance(_snake_case, _snake_case ): if audio.startswith('http://' ) or audio.startswith('https://' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png snake_case__ : List[Any] = requests.get(_snake_case ).content else: with open(_snake_case, 'rb' ) as f: snake_case__ : Union[str, Any] = f.read() if isinstance(_snake_case, _snake_case ): snake_case__ : List[Any] = ffmpeg_read(_snake_case, self.feature_extractor.sampling_rate ) if not isinstance(_snake_case, np.ndarray ): raise ValueError('We expect a numpy ndarray as input' ) if len(audio.shape ) != 1: raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' ) snake_case__ : Tuple = self.feature_extractor( [audio], sampling_rate=self.feature_extractor.sampling_rate, return_tensors='pt' ) snake_case__ : int = candidate_labels snake_case__ : int = [hypothesis_template.format(_snake_case ) for x in candidate_labels] snake_case__ : Optional[int] = self.tokenizer(_snake_case, return_tensors=self.framework, padding=_snake_case ) snake_case__ : List[Any] = [text_inputs] return inputs def lowercase_ ( self : Optional[int], _snake_case : Optional[Any] ) ->int: snake_case__ : Optional[int] = model_inputs.pop('candidate_labels' ) snake_case__ : str = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0], _snake_case ): snake_case__ : Optional[Any] = text_inputs[0] else: # Batching case. snake_case__ : int = text_inputs[0][0] snake_case__ : Any = self.model(**_snake_case, **_snake_case ) snake_case__ : List[Any] = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_audio, } return model_outputs def lowercase_ ( self : Union[str, Any], _snake_case : str ) ->List[str]: snake_case__ : int = model_outputs.pop('candidate_labels' ) snake_case__ : List[Any] = model_outputs['logits'][0] if self.framework == "pt": snake_case__ : Tuple = logits.softmax(dim=0 ) snake_case__ : Union[str, Any] = probs.tolist() else: raise ValueError('`tf` framework not supported.' ) snake_case__ : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_snake_case, _snake_case ), key=lambda _snake_case : -x[0] ) ] return result
277
0
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int = 100 ) -> Any: __lowerCAmelCase : Optional[Any] = set() __lowerCAmelCase : Union[str, Any] = 0 __lowerCAmelCase : List[Any] = n + 1 # maximum limit for a in range(2 , SCREAMING_SNAKE_CASE ): for b in range(2 , SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[Any] = a**b # calculates the current power collect_powers.add(SCREAMING_SNAKE_CASE ) # adds the result to the set return len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
360
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list ) -> Dict: _enforce_args(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if n == 0: return 0 __lowerCAmelCase : Union[str, Any] = float("""-inf""" ) for i in range(1 , n + 1 ): __lowerCAmelCase : Union[str, Any] = max( SCREAMING_SNAKE_CASE , prices[i - 1] + naive_cut_rod_recursive(n - i , SCREAMING_SNAKE_CASE ) ) return max_revue def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list ) -> List[str]: _enforce_args(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list , SCREAMING_SNAKE_CASE :list ) -> List[str]: if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: __lowerCAmelCase : str = float("""-inf""" ) for i in range(1 , n + 1 ): __lowerCAmelCase : List[Any] = max( SCREAMING_SNAKE_CASE , prices[i - 1] + _top_down_cut_rod_recursive(n - i , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) __lowerCAmelCase : List[str] = max_revenue return max_rev[n] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list ) -> Union[str, Any]: _enforce_args(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. __lowerCAmelCase : Optional[int] = [float("""-inf""" ) for _ in range(n + 1 )] __lowerCAmelCase : List[str] = 0 for i in range(1 , n + 1 ): __lowerCAmelCase : Optional[Any] = max_rev[i] for j in range(1 , i + 1 ): __lowerCAmelCase : Optional[int] = max(SCREAMING_SNAKE_CASE , prices[j - 1] + max_rev[i - j] ) __lowerCAmelCase : Optional[int] = max_revenue_i return max_rev[n] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list ) -> List[Any]: if n < 0: __lowerCAmelCase : Any = F'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(SCREAMING_SNAKE_CASE ) if n > len(SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = ( """Each integral piece of rod must have a corresponding price. """ F'''Got n = {n} but length of prices = {len(SCREAMING_SNAKE_CASE )}''' ) raise ValueError(SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: __lowerCAmelCase : Tuple = [6, 10, 12, 15, 20, 23] __lowerCAmelCase : List[str] = len(SCREAMING_SNAKE_CASE ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. __lowerCAmelCase : Union[str, Any] = 36 __lowerCAmelCase : Optional[int] = top_down_cut_rod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = bottom_up_cut_rod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = naive_cut_rod_recursive(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
232
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer a__ : Optional[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast a__ : int = TaTokenizerFast a__ : List[Any] = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys a__ : List[Any] = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
80
import string def UpperCamelCase (lowercase_: str ) -> None: for key in range(len(string.ascii_uppercase ) ): A__ : Dict = """""" for symbol in message: if symbol in string.ascii_uppercase: A__ : Dict = string.ascii_uppercase.find(lowercase_ ) A__ : Optional[int] = num - key if num < 0: A__ : Optional[int] = num + len(string.ascii_uppercase ) A__ : Any = translated + string.ascii_uppercase[num] else: A__ : Optional[Any] = translated + symbol print(f"""Decryption using Key #{key}: {translated}""" ) def UpperCamelCase () -> None: A__ : Optional[Any] = input("""Encrypted message: """ ) A__ : Optional[Any] = message.upper() decrypt(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
192
0
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
176
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Dict = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" ,out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) snake_case : List[str] = MaskFormerConfig(backbone_config=lowercase ) snake_case : List[Any] = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok snake_case : Dict = 847 snake_case : List[str] = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok snake_case : Union[str, Any] = 150 snake_case : List[Any] = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok snake_case : Union[str, Any] = 171 snake_case : int = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO snake_case : Optional[Any] = 133 snake_case : Optional[Any] = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok snake_case : Tuple = 19 snake_case : int = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok snake_case : int = 65 snake_case : Any = """mapillary-vistas-id2label.json""" snake_case : Optional[Any] = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) snake_case : List[Any] = {int(lowercase ): v for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: snake_case : Union[str, Any] = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> str: snake_case : Tuple = dct.pop(lowercase ) snake_case : int = val def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: snake_case : List[str] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): snake_case : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) snake_case : Tuple = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) snake_case : Optional[Any] = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case : Optional[Any] = in_proj_weight[:dim, :] snake_case : Optional[int] = in_proj_bias[: dim] snake_case : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] snake_case : Tuple = in_proj_bias[ dim : dim * 2 ] snake_case : List[Any] = in_proj_weight[ -dim :, : ] snake_case : Any = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Any: # fmt: off snake_case : int = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) snake_case : Any = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) snake_case : Tuple = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case : Optional[int] = in_proj_weight[: hidden_size, :] snake_case : Any = in_proj_bias[:config.hidden_size] snake_case : Any = in_proj_weight[hidden_size : hidden_size * 2, :] snake_case : int = in_proj_bias[hidden_size : hidden_size * 2] snake_case : Any = in_proj_weight[-hidden_size :, :] snake_case : Union[str, Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) snake_case : Dict = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) snake_case : str = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case : Dict = in_proj_weight[: hidden_size, :] snake_case : Dict = in_proj_bias[:config.hidden_size] snake_case : List[Any] = in_proj_weight[hidden_size : hidden_size * 2, :] snake_case : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] snake_case : Tuple = in_proj_weight[-hidden_size :, :] snake_case : str = in_proj_bias[-hidden_size :] # fmt: on def SCREAMING_SNAKE_CASE__ ( ) -> torch.Tensor: snake_case : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case : Any = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase = False ) -> Dict: snake_case : List[str] = get_maskformer_config(lowercase ) # load original state_dict with open(lowercase ,"""rb""" ) as f: snake_case : Optional[Any] = pickle.load(lowercase ) snake_case : Optional[Any] = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys snake_case : str = create_rename_keys(lowercase ) for src, dest in rename_keys: rename_key(lowercase ,lowercase ,lowercase ) read_in_swin_q_k_v(lowercase ,config.backbone_config ) read_in_decoder_q_k_v(lowercase ,lowercase ) # update to torch tensors for key, value in state_dict.items(): snake_case : List[Any] = torch.from_numpy(lowercase ) # load 🤗 model snake_case : int = MaskFormerForInstanceSegmentation(lowercase ) model.eval() for name, param in model.named_parameters(): print(lowercase ,param.shape ) snake_case , snake_case : Optional[int] = model.load_state_dict(lowercase ,strict=lowercase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowercase ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results snake_case : List[str] = prepare_img() if "vistas" in model_name: snake_case : Optional[int] = 65 elif "cityscapes" in model_name: snake_case : int = 65535 else: snake_case : List[str] = 255 snake_case : List[Any] = True if """ade""" in model_name else False snake_case : Optional[int] = MaskFormerImageProcessor(ignore_index=lowercase ,reduce_labels=lowercase ) snake_case : Tuple = image_processor(lowercase ,return_tensors="""pt""" ) snake_case : str = model(**lowercase ) print("""Logits:""" ,outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": snake_case : Union[str, Any] = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,lowercase ,atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) image_processor.save_pretrained(lowercase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCamelCase : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
176
1
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _A ( *A__ , A__ = None , A__=True , A__=2 ): """simple docstring""" from .. import __version__ __lowercase = take_from __lowercase = () if not isinstance(args[0] , A__ ): __lowercase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(A__ ).base_version ) >= version.parse(A__ ): raise ValueError( F"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" F" version {__version__} is >= {version_name}" ) __lowercase = None if isinstance(A__ , A__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(A__ ),) __lowercase = F"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(A__ , A__ ): values += (getattr(A__ , A__ ),) __lowercase = F"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: __lowercase = F"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: __lowercase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , A__ , stacklevel=A__ ) if isinstance(A__ , A__ ) and len(A__ ) > 0: __lowercase = inspect.getouterframes(inspect.currentframe() )[1] __lowercase = call_frame.filename __lowercase = call_frame.lineno __lowercase = call_frame.function __lowercase , __lowercase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(A__ ) == 0: return elif len(A__ ) == 1: return values[0] return values
104
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : Tuple = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) UpperCAmelCase_ : Tuple = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(__snake_case ) ), } , features=__snake_case , ) return dataset @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : str = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=__snake_case ) return filename # FILE_CONTENT + files __UpperCAmelCase = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.txt' UpperCAmelCase_ : Tuple = FILE_CONTENT with open(__snake_case , 'w' ) as f: f.write(__snake_case ) return filename @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' import bza UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' UpperCAmelCase_ : str = bytes(__snake_case , 'utf-8' ) with bza.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' import gzip UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) UpperCAmelCase_ : Dict = bytes(__snake_case , 'utf-8' ) with gzip.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCAmelCase_ : Any = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' UpperCAmelCase_ : Any = bytes(__snake_case , 'utf-8' ) with lza.frame.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : List[Any] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(__snake_case , 'w' ) as archive: archive.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] , __snake_case : List[Any] ): '''simple docstring''' import tarfile UpperCAmelCase_ : Any = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' import lzma UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' UpperCAmelCase_ : Any = bytes(__snake_case , 'utf-8' ) with lzma.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[int] , __snake_case : Optional[Any] ): '''simple docstring''' import zipfile UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCAmelCase_ : Tuple = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' UpperCAmelCase_ : List[str] = bytes(__snake_case , 'utf-8' ) with zstd.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.xml' UpperCAmelCase_ : List[Any] = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(__snake_case , 'w' ) as f: f.write(__snake_case ) return filename __UpperCAmelCase = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __UpperCAmelCase = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __UpperCAmelCase = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __UpperCAmelCase = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __UpperCAmelCase = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = datasets.Dataset.from_dict(__snake_case ) UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(__snake_case ) ) as con: UpperCAmelCase_ : List[Any] = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(__snake_case , 'w' , newline='' ) as f: UpperCAmelCase_ : Tuple = csv.DictWriter(__snake_case , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(__snake_case , 'w' , newline='' ) as f: UpperCAmelCase_ : Optional[Any] = csv.DictWriter(__snake_case , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Any ): '''simple docstring''' import bza UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(__snake_case , 'rb' ) as f: UpperCAmelCase_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(__snake_case , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : int , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : int = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) UpperCAmelCase_ : Dict = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(__snake_case , 'wb' ) as f: UpperCAmelCase_ : List[Any] = pq.ParquetWriter(__snake_case , schema=__snake_case ) UpperCAmelCase_ : Any = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__snake_case ) )] for k in DATA[0]} , schema=__snake_case ) writer.write_table(__snake_case ) writer.close() return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) UpperCAmelCase_ : Optional[int] = {'data': DATA} with open(__snake_case , 'w' ) as f: json.dump(__snake_case , __snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) UpperCAmelCase_ : Tuple = {'data': DATA_DICT_OF_LISTS} with open(__snake_case , 'w' ) as f: json.dump(__snake_case , __snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : int = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA_312: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' import gzip UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(__snake_case , 'rb' ) as orig_file: with gzip.open(__snake_case , 'wb' ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int , __snake_case : Any ): '''simple docstring''' import gzip UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(__snake_case , 'rb' ) as orig_file: with gzip.open(__snake_case , 'wb' ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : str , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('nested' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : str , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Any , __snake_case : Any , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.join('nested' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = ['0', '1', '2', '3'] UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = ['0', '1', '2', '3'] UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Dict = ['0', '1', '2', '3'] UpperCAmelCase_ : List[str] = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : str , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] , __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename('unsupported.ext' ) ) f.write(__snake_case , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : Tuple = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(__snake_case , 'w' , encoding='utf-8' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
29
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = '▁' _snake_case = {'vocab_file': 'sentencepiece.bpe.model'} _snake_case = { 'vocab_file': { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model' ), } } _snake_case = { 'xlm-roberta-base': 512, 'xlm-roberta-large': 512, 'xlm-roberta-large-finetuned-conll02-dutch': 512, 'xlm-roberta-large-finetuned-conll02-spanish': 512, 'xlm-roberta-large-finetuned-conll03-english': 512, 'xlm-roberta-large-finetuned-conll03-german': 512, } class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Any = ['input_ids', 'attention_mask'] def __init__( self , _UpperCamelCase , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<mask>" , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" _lowercase : int = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token _lowercase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) _lowercase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) _lowercase : Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _lowercase : Tuple = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowercase : str = 1 _lowercase : int = len(self.sp_model ) + self.fairseq_offset _lowercase : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): """simple docstring""" _lowercase : int = self.__dict__.copy() _lowercase : int = None _lowercase : int = self.sp_model.serialized_model_proto() return state def __setstate__( self , _UpperCamelCase ): """simple docstring""" _lowercase : List[str] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _lowercase : str = {} _lowercase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowercase : Tuple = [self.cls_token_id] _lowercase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1, 1] + ([0] * len(_UpperCamelCase )) + [1] def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" _lowercase : List[Any] = [self.sep_token_id] _lowercase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowerCamelCase ( self ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _lowerCamelCase ( self ): """simple docstring""" _lowercase : str = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowercase : Dict = self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : Any = "".join(_UpperCamelCase ).replace(_UpperCamelCase , " " ).strip() return out_string def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowercase : Any = os.path.join( _UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , "wb" ) as fi: _lowercase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
199
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : int = 'Wav2Vec2FeatureExtractor' _SCREAMING_SNAKE_CASE : List[str] = 'AutoTokenizer' def __init__( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" super().__init__(_UpperCamelCase , _UpperCamelCase ) _lowercase : List[Any] = self.feature_extractor _lowercase : Optional[Any] = False @classmethod def _lowerCamelCase ( cls , _UpperCamelCase , **_UpperCamelCase ): """simple docstring""" try: return super().from_pretrained(_UpperCamelCase , **_UpperCamelCase ) except OSError: warnings.warn( f'''Loading a tokenizer inside {cls.__name__} from a config that does not''' " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , _UpperCamelCase , ) _lowercase : Dict = WavaVecaFeatureExtractor.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) _lowercase : str = WavaVecaCTCTokenizer.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) return cls(feature_extractor=_UpperCamelCase , tokenizer=_UpperCamelCase ) def __call__( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_UpperCamelCase , **_UpperCamelCase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) _lowercase : int = kwargs.pop("raw_speech" ) else: _lowercase : List[Any] = kwargs.pop("audio" , _UpperCamelCase ) _lowercase : List[Any] = kwargs.pop("sampling_rate" , _UpperCamelCase ) _lowercase : Union[str, Any] = kwargs.pop("text" , _UpperCamelCase ) if len(_UpperCamelCase ) > 0: _lowercase : int = args[0] _lowercase : Any = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: _lowercase : Dict = self.feature_extractor(_UpperCamelCase , *_UpperCamelCase , sampling_rate=_UpperCamelCase , **_UpperCamelCase ) if text is not None: _lowercase : Union[str, Any] = self.tokenizer(_UpperCamelCase , **_UpperCamelCase ) if text is None: return inputs elif audio is None: return encodings else: _lowercase : int = encodings["input_ids"] return inputs def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*_UpperCamelCase , **_UpperCamelCase ) _lowercase : List[Any] = kwargs.pop("input_features" , _UpperCamelCase ) _lowercase : Any = kwargs.pop("labels" , _UpperCamelCase ) if len(_UpperCamelCase ) > 0: _lowercase : Any = args[0] _lowercase : Any = args[1:] if input_features is not None: _lowercase : Any = self.feature_extractor.pad(_UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase ) if labels is not None: _lowercase : int = self.tokenizer.pad(_UpperCamelCase , **_UpperCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: _lowercase : Optional[Any] = labels["input_ids"] return input_features def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @contextmanager def _lowerCamelCase ( self ): """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) _lowercase : Optional[Any] = True _lowercase : Dict = self.tokenizer yield _lowercase : List[str] = self.feature_extractor _lowercase : List[str] = False
199
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase_ : '''simple docstring''' def __init__( self : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Any=3 , __UpperCAmelCase : List[Any]=4 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : int=7 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Union[str, Any]=99 , __UpperCAmelCase : Tuple=36 , __UpperCAmelCase : Optional[Any]=3 , __UpperCAmelCase : List[str]=4 , __UpperCAmelCase : Union[str, Any]=37 , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : int=512 , __UpperCAmelCase : str=16 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : Any=6 , __UpperCAmelCase : Tuple=6 , __UpperCAmelCase : Optional[int]=3 , __UpperCAmelCase : int=4 , __UpperCAmelCase : str=None , __UpperCAmelCase : Tuple=1_000 , ) ->str: """simple docstring""" a = parent a = batch_size a = num_channels a = image_size a = patch_size a = text_seq_length a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = coordinate_size a = shape_size a = num_labels a = num_choices a = scope a = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) a = text_seq_length a = (image_size // patch_size) ** 2 + 1 a = self.text_seq_length + self.image_seq_length def __lowerCAmelCase ( self : Dict ) ->Any: """simple docstring""" a = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) a = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: a = bbox[i, j, 3] a = bbox[i, j, 1] a = t if bbox[i, j, 2] < bbox[i, j, 0]: a = bbox[i, j, 2] a = bbox[i, j, 0] a = t a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.text_seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) a = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] ) ->Dict: """simple docstring""" a = LayoutLMvaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # text + image a = model(__UpperCAmelCase , pixel_values=__UpperCAmelCase ) a = model( __UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) a = model(__UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) a = model(__UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only a = model(__UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only a = model(pixel_values=__UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple ) ->List[str]: """simple docstring""" a = self.num_labels a = LayoutLMvaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model( __UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any ) ->int: """simple docstring""" a = self.num_labels a = LayoutLMvaForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model( __UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __lowerCAmelCase ( self : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] ) ->str: """simple docstring""" a = LayoutLMvaForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model( __UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowercase_ ( lowercase , lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = False __snake_case = False __snake_case = False __snake_case = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) __snake_case = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : str ) ->Tuple: """simple docstring""" return True def __lowerCAmelCase ( self : Union[str, Any] ) ->Dict: """simple docstring""" a = LayoutLMvaModelTester(self ) a = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : str=False ) ->Optional[int]: """simple docstring""" a = copy.deepcopy(__UpperCAmelCase ) if model_class in get_values(__UpperCAmelCase ): a = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(__UpperCAmelCase , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__UpperCAmelCase ): a = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) elif model_class in get_values(__UpperCAmelCase ): a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) elif model_class in [ *get_values(__UpperCAmelCase ), ]: a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) elif model_class in [ *get_values(__UpperCAmelCase ), ]: a = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__UpperCAmelCase , ) return inputs_dict def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Tuple ) ->Union[str, Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->str: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def __lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) def __lowerCAmelCase ( self : int ) ->List[Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) @slow def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = LayoutLMvaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def _a ( ) -> List[Any]: a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__UpperCAmelCase ) if is_vision_available() else None @slow def __lowerCAmelCase ( self : Union[str, Any] ) ->Dict: """simple docstring""" a = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(__UpperCAmelCase ) a = self.default_image_processor a = prepare_img() a = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).pixel_values.to(__UpperCAmelCase ) a = torch.tensor([[1, 2]] ) a = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass a = model( input_ids=input_ids.to(__UpperCAmelCase ) , bbox=bbox.to(__UpperCAmelCase ) , pixel_values=pixel_values.to(__UpperCAmelCase ) , ) # verify the logits a = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , __UpperCAmelCase ) a = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __UpperCAmelCase , atol=1e-4 ) )
0
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _a ( a :List[Any] ) -> Optional[int]: a = [] embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", F"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", F"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", F"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", F"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def _a ( a :List[Any] , a :Optional[int] ) -> Dict: a = [] attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def _a ( a :Any ) -> List[Any]: a = [] token.append((F"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') ) return token def _a ( ) -> Optional[int]: a = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def _a ( a :Tuple , a :Optional[int] , a :List[Any] , a :Union[str, Any] ) -> Optional[int]: a = '''imagenet-1k-id2label.json''' a = 1_000 a = '''huggingface/label-files''' a = num_labels a = json.load(open(cached_download(hf_hub_url(a , a , repo_type='''dataset''' ) ) , '''r''' ) ) a = {int(a ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} a = a = CvtConfig(num_labels=a , idalabel=a , labelaid=a ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": a = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": a = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: a = [2, 2, 20] a = [3, 12, 16] a = [192, 768, 1_024] a = CvtForImageClassification(a ) a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) a = image_size a = torch.load(a , map_location=torch.device('''cpu''' ) ) a = OrderedDict() a = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: a = list_of_state_dict + cls_token(a ) a = list_of_state_dict + embeddings(a ) for cnt in range(config.depth[idx] ): a = list_of_state_dict + attention(a , a ) a = list_of_state_dict + final() for gg in list_of_state_dict: print(a ) for i in range(len(a ) ): a = original_weights[list_of_state_dict[i][1]] model.load_state_dict(a ) model.save_pretrained(a ) image_processor.save_pretrained(a ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase__ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
0
1
from PIL import Image def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Any = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_lowercase ) -> int: return int(128 + factor * (c - 128) ) return img.point(_lowercase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 __a = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
365
from __future__ import annotations from fractions import Fraction def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Tuple = 11 UpperCAmelCase_ : int = int('''1''' + '''0''' * digit_len ) for num in range(_lowercase , _lowercase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_lowercase , _lowercase ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 UpperCAmelCase_ : Any = 10 return solutions def lowerCamelCase__ ( _lowercase = 2 ): '''simple docstring''' UpperCAmelCase_ : Tuple = 1.0 for fraction in fraction_list(_lowercase ): UpperCAmelCase_ : Optional[Any] = Fraction(_lowercase ) result *= frac.denominator / frac.numerator return int(_lowercase ) if __name__ == "__main__": print(solution())
235
0
def a__ ( __UpperCamelCase ): return "".join([hex(__UpperCamelCase )[2:].zfill(2 ).upper() for byte in list(__UpperCamelCase )] ) def a__ ( __UpperCamelCase ): # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(__UpperCamelCase ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__UpperCamelCase ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 1_6 ) for i in range(0 , len(__UpperCamelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
118
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification A : Tuple = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co A : Dict = "main" # Default branch name A : List[str] = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) A : Tuple = "aaaaaaa" # This commit does not exist, so we should 404. A : int = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes A : Tuple = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def a__ ( ): print("Welcome!" ) yield print("Bye!" ) @contextlib.contextmanager def a__ ( ): print("Bonjour!" ) yield print("Au revoir!" ) class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : Union[str, Any] ) -> Any: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("transformers" ) is not None class lowerCamelCase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def __A ( self : Tuple , __magic_name__ : Union[str, Any] ) -> Union[str, Any]: with ContextManagers([] ): print("Transformers are awesome!" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , "Transformers are awesome!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def __A ( self : Dict , __magic_name__ : Union[str, Any] ) -> int: with ContextManagers([context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Welcome!\nTransformers are awesome!\nBye!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def __A ( self : Tuple , __magic_name__ : str ) -> Union[str, Any]: with ContextManagers([context_fr(), context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n" ) @require_torch def __A ( self : List[str] ) -> Union[str, Any]: self.assertEqual(find_labels(__magic_name__ ) , ["labels"] ) self.assertEqual(find_labels(__magic_name__ ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(__magic_name__ ) , ["start_positions", "end_positions"] ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" pass self.assertEqual(find_labels(__magic_name__ ) , ["labels"] ) @require_tf def __A ( self : List[str] ) -> Optional[Any]: self.assertEqual(find_labels(__magic_name__ ) , ["labels"] ) self.assertEqual(find_labels(__magic_name__ ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(__magic_name__ ) , ["start_positions", "end_positions"] ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" pass self.assertEqual(find_labels(__magic_name__ ) , ["labels"] ) @require_flax def __A ( self : int ) -> Tuple: # Flax models don't have labels self.assertEqual(find_labels(__magic_name__ ) , [] ) self.assertEqual(find_labels(__magic_name__ ) , [] ) self.assertEqual(find_labels(__magic_name__ ) , [] ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" pass self.assertEqual(find_labels(__magic_name__ ) , [] )
118
1
'''simple docstring''' from scipy.stats import pearsonr import datasets UpperCAmelCase : Dict = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ UpperCAmelCase : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ UpperCAmelCase : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=False ) -> Optional[Any]: """simple docstring""" if return_pvalue: __SCREAMING_SNAKE_CASE = pearsonr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )[0] )}
356
'''simple docstring''' import os def a__ ( a__ = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(a__ ) , a__ ) ) as input_file: __SCREAMING_SNAKE_CASE = [ [int(a__ ) for element in line.split(""",""" )] for line in input_file.readlines() ] __SCREAMING_SNAKE_CASE = len(a__ ) __SCREAMING_SNAKE_CASE = len(matrix[0] ) __SCREAMING_SNAKE_CASE = [[-1 for _ in range(a__ )] for _ in range(a__ )] for i in range(a__ ): __SCREAMING_SNAKE_CASE = matrix[i][0] for j in range(1 , a__ ): for i in range(a__ ): __SCREAMING_SNAKE_CASE = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , a__ ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
331
0
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1 ): if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): _snake_case = [] for old_item in old_list: _snake_case = old_item.replace("""in_layers.0""" , """norm1""" ) _snake_case = new_item.replace("""in_layers.2""" , """conv1""" ) _snake_case = new_item.replace("""out_layers.0""" , """norm2""" ) _snake_case = new_item.replace("""out_layers.3""" , """conv2""" ) _snake_case = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) _snake_case = new_item.replace("""skip_connection""" , """conv_shortcut""" ) _snake_case = shave_segments(_SCREAMING_SNAKE_CASE , n_shave_prefix_segments=_SCREAMING_SNAKE_CASE ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): _snake_case = [] for old_item in old_list: _snake_case = old_item _snake_case = new_item.replace("""norm.weight""" , """group_norm.weight""" ) _snake_case = new_item.replace("""norm.bias""" , """group_norm.bias""" ) _snake_case = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) _snake_case = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) _snake_case = shave_segments(_SCREAMING_SNAKE_CASE , n_shave_prefix_segments=_SCREAMING_SNAKE_CASE ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _snake_case = old_checkpoint[path] _snake_case = old_tensor.shape[0] // 3 _snake_case = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) _snake_case = old_tensor.shape[0] // config["""num_head_channels"""] // 3 _snake_case = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _snake_case, _snake_case, _snake_case = old_tensor.split(channels // num_heads , dim=1 ) _snake_case = query.reshape(_SCREAMING_SNAKE_CASE ) _snake_case = key.reshape(_SCREAMING_SNAKE_CASE ) _snake_case = value.reshape(_SCREAMING_SNAKE_CASE ) for path in paths: _snake_case = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _snake_case = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) _snake_case = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) _snake_case = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: _snake_case = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _snake_case = old_checkpoint[path["""old"""]][:, :, 0] else: _snake_case = old_checkpoint[path["""old"""]] def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = {} _snake_case = checkpoint["""time_embed.0.weight"""] _snake_case = checkpoint["""time_embed.0.bias"""] _snake_case = checkpoint["""time_embed.2.weight"""] _snake_case = checkpoint["""time_embed.2.bias"""] _snake_case = checkpoint["""input_blocks.0.0.weight"""] _snake_case = checkpoint["""input_blocks.0.0.bias"""] _snake_case = checkpoint["""out.0.weight"""] _snake_case = checkpoint["""out.0.bias"""] _snake_case = checkpoint["""out.2.weight"""] _snake_case = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only _snake_case = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) _snake_case = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(_SCREAMING_SNAKE_CASE ) } # Retrieves the keys for the middle blocks only _snake_case = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) _snake_case = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(_SCREAMING_SNAKE_CASE ) } # Retrieves the keys for the output blocks only _snake_case = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) _snake_case = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(_SCREAMING_SNAKE_CASE ) } for i in range(1 , _SCREAMING_SNAKE_CASE ): _snake_case = (i - 1) // (config["""num_res_blocks"""] + 1) _snake_case = (i - 1) % (config["""num_res_blocks"""] + 1) _snake_case = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] _snake_case = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: _snake_case = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] _snake_case = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue _snake_case = renew_resnet_paths(_SCREAMING_SNAKE_CASE ) _snake_case = {"""old""": f"""input_blocks.{i}.0""", """new""": f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} _snake_case = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , additional_replacements=[meta_path, resnet_op] , config=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ): _snake_case = renew_attention_paths(_SCREAMING_SNAKE_CASE ) _snake_case = { """old""": f"""input_blocks.{i}.1""", """new""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } _snake_case = { f"""input_blocks.{i}.1.qkv.bias""": { """key""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", """query""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", """value""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { """key""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", """query""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", """value""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , attention_paths_to_split=_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE , ) _snake_case = middle_blocks[0] _snake_case = middle_blocks[1] _snake_case = middle_blocks[2] _snake_case = renew_resnet_paths(_SCREAMING_SNAKE_CASE ) assign_to_checkpoint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE ) _snake_case = renew_resnet_paths(_SCREAMING_SNAKE_CASE ) assign_to_checkpoint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE ) _snake_case = renew_attention_paths(_SCREAMING_SNAKE_CASE ) _snake_case = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , attention_paths_to_split=_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE ): _snake_case = i // (config["""num_res_blocks"""] + 1) _snake_case = i % (config["""num_res_blocks"""] + 1) _snake_case = [shave_segments(_SCREAMING_SNAKE_CASE , 2 ) for name in output_blocks[i]] _snake_case = {} for layer in output_block_layers: _snake_case, _snake_case = layer.split(""".""" )[0], shave_segments(_SCREAMING_SNAKE_CASE , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(_SCREAMING_SNAKE_CASE ) else: _snake_case = [layer_name] if len(_SCREAMING_SNAKE_CASE ) > 1: _snake_case = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] _snake_case = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] _snake_case = renew_resnet_paths(_SCREAMING_SNAKE_CASE ) _snake_case = renew_resnet_paths(_SCREAMING_SNAKE_CASE ) _snake_case = {"""old""": f"""output_blocks.{i}.0""", """new""": f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=_SCREAMING_SNAKE_CASE ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _snake_case = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) _snake_case = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] _snake_case = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(_SCREAMING_SNAKE_CASE ) == 2: _snake_case = [] if len(_SCREAMING_SNAKE_CASE ): _snake_case = renew_attention_paths(_SCREAMING_SNAKE_CASE ) _snake_case = { """old""": f"""output_blocks.{i}.1""", """new""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } _snake_case = { f"""output_blocks.{i}.1.qkv.bias""": { """key""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", """query""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", """value""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { """key""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", """query""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", """value""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=_SCREAMING_SNAKE_CASE , ) else: _snake_case = renew_resnet_paths(_SCREAMING_SNAKE_CASE , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _snake_case = """.""".join(["""output_blocks""", str(_SCREAMING_SNAKE_CASE ), path["""old"""]] ) _snake_case = """.""".join(["""up_blocks""", str(_SCREAMING_SNAKE_CASE ), """resnets""", str(_SCREAMING_SNAKE_CASE ), path["""new"""]] ) _snake_case = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: __lowerCAmelCase = json.loads(f.read()) __lowerCAmelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __lowerCAmelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __lowerCAmelCase = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) __lowerCAmelCase = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) __lowerCAmelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
341
'''simple docstring''' __lowerCAmelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): # Make sure the supplied data is a bytes-like object if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(_SCREAMING_SNAKE_CASE ) _snake_case = """""".join(bin(_SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data ) _snake_case = len(_SCREAMING_SNAKE_CASE ) % 6 != 0 if padding_needed: # The padding that will be added later _snake_case = b"""=""" * ((6 - len(_SCREAMING_SNAKE_CASE ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_SCREAMING_SNAKE_CASE ) % 6) else: _snake_case = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 6 ) ).encode() + padding ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = ( """argument should be a bytes-like object or ASCII string, """ f"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(_SCREAMING_SNAKE_CASE ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): try: _snake_case = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) _snake_case = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _snake_case = encoded_data[:-padding] _snake_case = """""".join( bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _snake_case = """""".join( bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data ) _snake_case = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 8 ) ] return bytes(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
341
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase ( A_ , unittest.TestCase ): """simple docstring""" snake_case_ = ShapEImgaImgPipeline snake_case_ = ["image"] snake_case_ = ["image"] snake_case_ = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] snake_case_ = False @property def lowercase_ ( self ) -> Dict: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> Any: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> Any: '''simple docstring''' return self.time_input_dim * 4 @property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return 8 @property def lowercase_ ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCamelCase = CLIPVisionModel(snake_case__ ) return model @property def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = CLIPImageProcessor( crop_size=224 , do_center_crop=snake_case__ , do_normalize=snake_case__ , do_resize=snake_case__ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def lowercase_ ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } __lowerCamelCase = PriorTransformer(**snake_case__ ) return model @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**snake_case__ ) return model def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_image_encoder __lowerCamelCase = self.dummy_image_processor __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=snake_case__ , clip_sample=snake_case__ , clip_sample_range=1.0 , ) __lowerCamelCase = { "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "renderer": renderer, "scheduler": scheduler, } return components def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> List[Any]: '''simple docstring''' __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith('mps' ): __lowerCamelCase = torch.manual_seed(snake_case__ ) else: __lowerCamelCase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) __lowerCamelCase = { "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = "cpu" __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**snake_case__ ) __lowerCamelCase = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(snake_case__ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = torch_device == "cpu" __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=snake_case__ , relax_max_difference=snake_case__ , ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**snake_case__ ) __lowerCamelCase = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(snake_case__ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**snake_case__ , num_images_per_prompt=snake_case__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) __lowerCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) __lowerCamelCase = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) __lowerCamelCase = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) __lowerCamelCase = torch.Generator(device=snake_case__ ).manual_seed(0 ) __lowerCamelCase = pipe( snake_case__ , generator=snake_case__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
360
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __A = logging.get_logger(__name__) __A = TypeVar("DatasetType", Dataset, IterableDataset) def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[List[float]] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" ) if i == 0: __lowerCamelCase , __lowerCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ ) else: return _interleave_iterable_datasets( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : int = 0 , ) -> DatasetType: """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" ) if i == 0: __lowerCamelCase , __lowerCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ ) else: return _concatenate_iterable_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ )
348
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class a_ (_UpperCAmelCase ): __lowerCAmelCase : str = """realm""" def __init__( self , snake_case_=3_0_5_2_2 , snake_case_=7_6_8 , snake_case_=1_2_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=8 , snake_case_=3_0_7_2 , snake_case_="gelu_new" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=2_5_6 , snake_case_=1_0 , snake_case_=1E-3 , snake_case_=5 , snake_case_=3_2_0 , snake_case_=1_3_3_5_3_7_1_8 , snake_case_=5_0_0_0 , snake_case_=1 , snake_case_=0 , snake_case_=2 , **snake_case_ , ): super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) # Common config _lowerCAmelCase : List[str] = vocab_size _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : Optional[Any] = hidden_size _lowerCAmelCase : Optional[int] = retriever_proj_size _lowerCAmelCase : List[str] = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Any = num_candidates _lowerCAmelCase : List[Any] = intermediate_size _lowerCAmelCase : str = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : List[str] = type_vocab_size _lowerCAmelCase : Any = layer_norm_eps # Reader config _lowerCAmelCase : List[str] = span_hidden_size _lowerCAmelCase : Dict = max_span_width _lowerCAmelCase : List[Any] = reader_layer_norm_eps _lowerCAmelCase : Optional[Any] = reader_beam_size _lowerCAmelCase : List[Any] = reader_seq_len # Retrieval config _lowerCAmelCase : List[str] = num_block_records _lowerCAmelCase : Dict = searcher_beam_size
309
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class __lowercase (_UpperCAmelCase ): _UpperCamelCase = """table-transformer""" _UpperCamelCase = ["""past_key_values"""] _UpperCamelCase = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , A_=True , A_=None , A_=3 , A_=100 , A_=6 , A_=2048 , A_=8 , A_=6 , A_=2048 , A_=8 , A_=0.0 , A_=0.0 , A_=True , A_="relu" , A_=256 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=1.0 , A_=False , A_="sine" , A_="resnet50" , A_=True , A_=False , A_=1 , A_=5 , A_=2 , A_=1 , A_=1 , A_=5 , A_=2 , A_=0.1 , **A_ , ) ->Any: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __lowerCAmelCase : Optional[Any] = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(A_ , A_ ): __lowerCAmelCase : int = backbone_config.get('''model_type''' ) __lowerCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __lowerCAmelCase : Any = config_class.from_dict(A_ ) # set timm attributes to None __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : List[str] = None, None, None __lowerCAmelCase : Tuple = use_timm_backbone __lowerCAmelCase : Optional[Any] = backbone_config __lowerCAmelCase : List[str] = num_channels __lowerCAmelCase : Tuple = num_queries __lowerCAmelCase : int = d_model __lowerCAmelCase : List[Any] = encoder_ffn_dim __lowerCAmelCase : Optional[int] = encoder_layers __lowerCAmelCase : List[str] = encoder_attention_heads __lowerCAmelCase : str = decoder_ffn_dim __lowerCAmelCase : Union[str, Any] = decoder_layers __lowerCAmelCase : Any = decoder_attention_heads __lowerCAmelCase : Optional[int] = dropout __lowerCAmelCase : Any = attention_dropout __lowerCAmelCase : Tuple = activation_dropout __lowerCAmelCase : Optional[Any] = activation_function __lowerCAmelCase : List[str] = init_std __lowerCAmelCase : Tuple = init_xavier_std __lowerCAmelCase : Any = encoder_layerdrop __lowerCAmelCase : List[Any] = decoder_layerdrop __lowerCAmelCase : Optional[Any] = encoder_layers __lowerCAmelCase : Optional[Any] = auxiliary_loss __lowerCAmelCase : Optional[Any] = position_embedding_type __lowerCAmelCase : Tuple = backbone __lowerCAmelCase : Any = use_pretrained_backbone __lowerCAmelCase : int = dilation # Hungarian matcher __lowerCAmelCase : Dict = class_cost __lowerCAmelCase : List[str] = bbox_cost __lowerCAmelCase : int = giou_cost # Loss coefficients __lowerCAmelCase : Optional[Any] = mask_loss_coefficient __lowerCAmelCase : Tuple = dice_loss_coefficient __lowerCAmelCase : int = bbox_loss_coefficient __lowerCAmelCase : List[Any] = giou_loss_coefficient __lowerCAmelCase : int = eos_coefficient super().__init__(is_encoder_decoder=A_ , **A_ ) @property def UpperCamelCase__ ( self ) ->int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCamelCase__ ( self ) ->int: '''simple docstring''' return self.d_model class __lowercase (_UpperCAmelCase ): _UpperCamelCase = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def UpperCamelCase__ ( self ) ->float: '''simple docstring''' return 1e-5 @property def UpperCamelCase__ ( self ) ->int: '''simple docstring''' return 12
275
0
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase : int = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( _a , unittest.TestCase ): lowercase__ = PegasusTokenizer lowercase__ = PegasusTokenizerFast lowercase__ = True lowercase__ = True def _UpperCAmelCase ( self : Any): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase_ = PegasusTokenizer(lowerCAmelCase_) tokenizer.save_pretrained(self.tmpdirname) @cached_property def _UpperCAmelCase ( self : Any): """simple docstring""" return PegasusTokenizer.from_pretrained("""google/pegasus-large""") def _UpperCAmelCase ( self : str , **lowerCAmelCase_ : int): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Dict): """simple docstring""" return ("This is a test", "This is a test") def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = '</s>' lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_) , lowerCAmelCase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_) , lowerCAmelCase_) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<pad>""") self.assertEqual(vocab_keys[1] , """</s>""") self.assertEqual(vocab_keys[-1] , """v""") self.assertEqual(len(lowerCAmelCase_) , 1_1_0_3) def _UpperCAmelCase ( self : Dict): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname) lowercase_ = self.tokenizer_class.from_pretrained(self.tmpdirname) lowercase_ = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowercase_ = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_).input_ids[0] lowercase_ = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_).input_ids[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase_ = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowercase_ = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowercase_ = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_).input_ids[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 lowercase_ = 'To ensure a smooth flow of bank resolutions.' lowercase_ = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowercase_ = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_).input_ids[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3]) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = ['This is going to be way too long.' * 1_5_0, 'short example'] lowercase_ = ['not super long but more than 5 tokens', 'tiny'] lowercase_ = self._large_tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""") lowercase_ = self._large_tokenizer( text_target=lowerCAmelCase_ , max_length=5 , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""") assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(lowerCAmelCase_) == 2 # input_ids, attention_mask. @slow def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = {'input_ids': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( _a , unittest.TestCase ): lowercase__ = PegasusTokenizer lowercase__ = PegasusTokenizerFast lowercase__ = True lowercase__ = True def _UpperCAmelCase ( self : List[str]): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase_ = PegasusTokenizer(lowerCAmelCase_ , offset=0 , mask_token_sent=lowerCAmelCase_ , mask_token="""[MASK]""") tokenizer.save_pretrained(self.tmpdirname) @cached_property def _UpperCAmelCase ( self : str): """simple docstring""" return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""") def _UpperCAmelCase ( self : List[Any] , **lowerCAmelCase_ : Optional[int]): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" return ("This is a test", "This is a test") def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname) lowercase_ = self.tokenizer_class.from_pretrained(self.tmpdirname) lowercase_ = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowercase_ = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_).input_ids[0] lowercase_ = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_).input_ids[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) @require_torch def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = ['This is going to be way too long.' * 1_0_0_0, 'short example'] lowercase_ = ['not super long but more than 5 tokens', 'tiny'] lowercase_ = self._large_tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""") lowercase_ = self._large_tokenizer( text_target=lowerCAmelCase_ , max_length=5 , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""") assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(lowerCAmelCase_) == 2 # input_ids, attention_mask. def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowercase_ = self._large_tokenizer(lowerCAmelCase_).input_ids self.assertListEqual( lowerCAmelCase_ , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
368
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = 0 if start < end: lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ , lowercase_ = _in_place_partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) count += _in_place_quick_sort(__lowerCAmelCase , __lowerCAmelCase , p - 1 ) count += _in_place_quick_sort(__lowerCAmelCase , p + 1 , __lowerCAmelCase ) return count def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = 0 lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ = start - 1 for index in range(__lowerCAmelCase , __lowerCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowercase_ = new_pivot_index + 1 lowercase_ = a[new_pivot_index] lowercase_ = a[index] lowercase_ = temp lowercase_ = a[new_pivot_index + 1] lowercase_ = a[end] lowercase_ = temp return new_pivot_index + 1, count UpperCAmelCase : Union[str, Any] = TemporaryFile() UpperCAmelCase : Optional[int] = 100 # 1000 elements are to be sorted UpperCAmelCase , UpperCAmelCase : List[str] = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase : List[str] = np.load(outfile) UpperCAmelCase : List[Any] = len(M) - 1 UpperCAmelCase : Optional[int] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
313
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __snake_case : def __init__( self : Tuple , _lowercase : Optional[Any] , _lowercase : Dict=13 , _lowercase : Optional[int]=7 , _lowercase : int=True , _lowercase : List[str]=True , _lowercase : str=True , _lowercase : Optional[Any]=True , _lowercase : int=99 , _lowercase : Tuple=32 , _lowercase : Dict=2 , _lowercase : Any=4 , _lowercase : List[Any]=37 , _lowercase : Any="gelu" , _lowercase : Any=0.1 , _lowercase : Tuple=0.1 , _lowercase : Optional[int]=5_12 , _lowercase : int=16 , _lowercase : str=2 , _lowercase : int=0.02 , _lowercase : Dict=3 , _lowercase : Any=4 , _lowercase : List[Any]=None , _lowercase : Optional[Any]=0 , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope SCREAMING_SNAKE_CASE__ = projection_dim def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) SCREAMING_SNAKE_CASE__ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self : Any , _lowercase : str , _lowercase : Optional[int] , _lowercase : List[str] , _lowercase : Optional[int] , _lowercase : Union[str, Any] , _lowercase : List[str] , _lowercase : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = TFDPRContextEncoder(config=_lowercase ) SCREAMING_SNAKE_CASE__ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase ) SCREAMING_SNAKE_CASE__ = model(_lowercase , token_type_ids=_lowercase ) SCREAMING_SNAKE_CASE__ = model(_lowercase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __a ( self : int , _lowercase : Dict , _lowercase : Any , _lowercase : List[Any] , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Optional[int] , _lowercase : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = TFDPRQuestionEncoder(config=_lowercase ) SCREAMING_SNAKE_CASE__ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase ) SCREAMING_SNAKE_CASE__ = model(_lowercase , token_type_ids=_lowercase ) SCREAMING_SNAKE_CASE__ = model(_lowercase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __a ( self : Any , _lowercase : Any , _lowercase : Union[str, Any] , _lowercase : str , _lowercase : int , _lowercase : Optional[Any] , _lowercase : str , _lowercase : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = TFDPRReader(config=_lowercase ) SCREAMING_SNAKE_CASE__ = model(_lowercase , attention_mask=_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class __snake_case ( snake_case__ , snake_case__ , unittest.TestCase ): lowerCAmelCase_ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowerCAmelCase_ = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = TFDPRModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def __a ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*_lowercase ) def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*_lowercase ) def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*_lowercase ) @slow def __a ( self : Any ): """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = TFDPRContextEncoder.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = TFDPRContextEncoder.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = TFDPRQuestionEncoder.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = TFDPRReader.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_tf class __snake_case ( unittest.TestCase ): @slow def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) SCREAMING_SNAKE_CASE__ = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]] ) # [CLS] hello, is my dog cute? [SEP] SCREAMING_SNAKE_CASE__ = model(_lowercase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ = tf.constant( [ [ 0.03_23_62_53, 0.12_75_33_35, 0.16_81_85_09, 0.00_27_97_86, 0.3_89_69_33, 0.24_26_49_45, 0.2_17_89_71, -0.02_33_52_27, -0.08_48_19_59, -0.14_32_41_17, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
219
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger _a = get_logger(__name__) class __lowerCamelCase ( enum.Enum): """simple docstring""" UpperCamelCase__ = "all_checks" UpperCamelCase__ = "basic_checks" UpperCamelCase__ = "no_checks" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None )-> str: """simple docstring""" if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) _UpperCAmelCase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] _UpperCAmelCase = ' for ' + verification_name if verification_name is not None else '' if len(__lowerCAmelCase ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" def __A ( __lowerCAmelCase , __lowerCAmelCase )-> int: """simple docstring""" if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise ExpectedMoreSplits(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise UnexpectedSplits(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) _UpperCAmelCase = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__lowerCAmelCase ) > 0: raise NonMatchingSplitsSizesError(str(__lowerCAmelCase ) ) logger.info('All the splits matched successfully.' ) def __A ( __lowerCAmelCase , __lowerCAmelCase = True )-> dict: """simple docstring""" if record_checksum: _UpperCAmelCase = shaaaa() with open(__lowerCAmelCase , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'' ): m.update(__lowerCAmelCase ) _UpperCAmelCase = m.hexdigest() else: _UpperCAmelCase = None return {"num_bytes": os.path.getsize(__lowerCAmelCase ), "checksum": checksum} def __A ( __lowerCAmelCase )-> List[str]: """simple docstring""" if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
39
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class UpperCAmelCase : def __init__( self :List[Any] , lowercase_ :List[Any] , lowercase_ :int=13 , lowercase_ :List[Any]=7 , lowercase_ :Dict=True , lowercase_ :List[str]=True , lowercase_ :Dict=True , lowercase_ :List[str]=True , lowercase_ :List[str]=99 , lowercase_ :List[Any]=32 , lowercase_ :Dict=2 , lowercase_ :Optional[int]=4 , lowercase_ :List[str]=37 , lowercase_ :Dict="gelu" , lowercase_ :Tuple=0.1 , lowercase_ :Any=0.1 , lowercase_ :List[Any]=5_12 , lowercase_ :Tuple=16 , lowercase_ :Any=2 , lowercase_ :Optional[Any]=0.0_2 , lowercase_ :Optional[int]=3 , lowercase_ :List[Any]=4 , lowercase_ :str=None , )-> int: A__ = parent A__ = 13 A__ = 7 A__ = True A__ = True A__ = True A__ = True A__ = 99 A__ = 3_84 A__ = 2 A__ = 4 A__ = 37 A__ = 'gelu' A__ = 0.1 A__ = 0.1 A__ = 5_12 A__ = 16 A__ = 2 A__ = 0.0_2 A__ = 3 A__ = 4 A__ = 1_28 A__ = 2 A__ = 9 A__ = 1 A__ = None def UpperCAmelCase_ ( self :Any )-> List[str]: A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowercase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self :Any , lowercase_ :Optional[int] , lowercase_ :Any , lowercase_ :str , lowercase_ :Tuple , lowercase_ :Optional[Any] , lowercase_ :Optional[int] , lowercase_ :str )-> int: A__ = TFConvBertModel(config=lowercase_ ) A__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A__ = [input_ids, input_mask] A__ = model(lowercase_ ) A__ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :List[str] , lowercase_ :List[Any] , lowercase_ :List[str] , lowercase_ :Tuple , lowercase_ :Optional[Any] , lowercase_ :Any , lowercase_ :Dict )-> Union[str, Any]: A__ = TFConvBertForMaskedLM(config=lowercase_ ) A__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } A__ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self :int , lowercase_ :List[str] , lowercase_ :Union[str, Any] , lowercase_ :List[Any] , lowercase_ :Tuple , lowercase_ :Optional[int] , lowercase_ :str , lowercase_ :Tuple )-> str: A__ = self.num_labels A__ = TFConvBertForSequenceClassification(config=lowercase_ ) A__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } A__ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self :Dict , lowercase_ :int , lowercase_ :Optional[int] , lowercase_ :Union[str, Any] , lowercase_ :Optional[int] , lowercase_ :str , lowercase_ :Optional[int] , lowercase_ :List[Any] )-> Any: A__ = self.num_choices A__ = TFConvBertForMultipleChoice(config=lowercase_ ) A__ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) A__ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) A__ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) A__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } A__ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self :Tuple , lowercase_ :Union[str, Any] , lowercase_ :Union[str, Any] , lowercase_ :str , lowercase_ :Tuple , lowercase_ :Dict , lowercase_ :Optional[int] , lowercase_ :Any )-> Optional[Any]: A__ = self.num_labels A__ = TFConvBertForTokenClassification(config=lowercase_ ) A__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } A__ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self :List[str] , lowercase_ :List[str] , lowercase_ :Optional[int] , lowercase_ :List[Any] , lowercase_ :List[str] , lowercase_ :Tuple , lowercase_ :Optional[Any] , lowercase_ :int )-> Any: A__ = TFConvBertForQuestionAnswering(config=lowercase_ ) A__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } A__ = model(lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self :str )-> Tuple: A__ = self.prepare_config_and_inputs() ( A__ ) = config_and_inputs A__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): __lowercase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __lowercase = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __lowercase = False __lowercase = False __lowercase = False def UpperCAmelCase_ ( self :Dict )-> Any: A__ = TFConvBertModelTester(self ) A__ = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCAmelCase_ ( self :int )-> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self :Any )-> str: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase_ ( self :Union[str, Any] )-> Tuple: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def UpperCAmelCase_ ( self :Dict )-> int: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase_ ) def UpperCAmelCase_ ( self :int )-> Optional[int]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) def UpperCAmelCase_ ( self :List[str] )-> Tuple: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def UpperCAmelCase_ ( self :Union[str, Any] )-> Tuple: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @slow def UpperCAmelCase_ ( self :str )-> int: A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True A__ = True if hasattr(lowercase_ , "use_cache" ): A__ = True A__ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A__ = getattr(self.model_tester , "key_length" , lowercase_ ) for model_class in self.all_model_classes: A__ = self._prepare_for_class(lowercase_ , lowercase_ ) A__ = model_class(lowercase_ ) A__ = len(model(lowercase_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ , saved_model=lowercase_ ) A__ = os.path.join(lowercase_ , "saved_model" , "1" ) A__ = tf.keras.models.load_model(lowercase_ ) A__ = model(lowercase_ ) if self.is_encoder_decoder: A__ = outputs['encoder_hidden_states'] A__ = outputs['encoder_attentions'] else: A__ = outputs['hidden_states'] A__ = outputs['attentions'] self.assertEqual(len(lowercase_ ) , lowercase_ ) A__ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowercase_ ) , lowercase_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCAmelCase_ ( self :int )-> int: A__ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(lowercase_ ) def UpperCAmelCase_ ( self :int )-> Dict: A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True A__ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) A__ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A__ = getattr(self.model_tester , "key_length" , lowercase_ ) A__ = getattr(self.model_tester , "key_length" , lowercase_ ) def check_decoder_attentions_output(lowercase_ :Optional[Any] ): A__ = len(lowercase_ ) self.assertEqual(out_len % 2 , 0 ) A__ = outputs.decoder_attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowercase_ :str ): A__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: A__ = True A__ = False A__ = model_class(lowercase_ ) A__ = model(self._prepare_for_class(lowercase_ , lowercase_ ) ) A__ = len(lowercase_ ) self.assertEqual(config.output_hidden_states , lowercase_ ) check_encoder_attentions_output(lowercase_ ) if self.is_encoder_decoder: A__ = model_class(lowercase_ ) A__ = model(self._prepare_for_class(lowercase_ , lowercase_ ) ) self.assertEqual(config.output_hidden_states , lowercase_ ) check_decoder_attentions_output(lowercase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A__ = True A__ = model_class(lowercase_ ) A__ = model(self._prepare_for_class(lowercase_ , lowercase_ ) ) self.assertEqual(config.output_hidden_states , lowercase_ ) check_encoder_attentions_output(lowercase_ ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(lowercase_ ) A__ = model(self._prepare_for_class(lowercase_ , lowercase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase_ ) ) self.assertEqual(model.config.output_hidden_states , lowercase_ ) check_encoder_attentions_output(lowercase_ ) @require_tf class UpperCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase_ ( self :List[Any] )-> str: A__ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) A__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A__ = model(lowercase_ )[0] A__ = [1, 6, 7_68] self.assertEqual(output.shape , lowercase_ ) A__ = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase_ , atol=1E-4 )
351
'''simple docstring''' def UpperCamelCase ( ): A__ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] A__ = 6 A__ = 1 A__ = 19_01 A__ = 0 while year < 20_01: day += 7 if (year % 4 == 0 and year % 1_00 != 0) or (year % 4_00 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 A__ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 A__ = day - 29 else: if day > days_per_month[month - 1]: month += 1 A__ = day - days_per_month[month - 2] if month > 12: year += 1 A__ = 1 if year < 20_01 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
123
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : Optional[Any]=1_0 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : int=3_2 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Any=3_7 , lowerCAmelCase_ : Union[str, Any]="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Dict=1_0 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : Optional[Any]="divided_space_time" , lowerCAmelCase_ : Dict=None , ): """simple docstring""" _A: str = parent _A: Any = batch_size _A: Dict = image_size _A: Tuple = num_channels _A: str = patch_size _A: Any = num_frames _A: Dict = is_training _A: str = use_labels _A: Optional[int] = hidden_size _A: List[str] = num_hidden_layers _A: Any = num_attention_heads _A: Tuple = intermediate_size _A: Optional[Any] = hidden_act _A: Any = hidden_dropout_prob _A: Optional[int] = attention_probs_dropout_prob _A: int = attention_type _A: Any = initializer_range _A: List[str] = scope _A: int = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token _A: Optional[Any] = (image_size // patch_size) ** 2 _A: Tuple = (num_frames) * self.num_patches_per_frame + 1 def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _A: List[Any] = None if self.use_labels: _A: List[Any] = ids_tensor([self.batch_size] , self.num_labels ) _A: List[Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) _A: Union[str, Any] = self.num_labels return config def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: List[Any] = TimesformerModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Union[str, Any] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: str = TimesformerForVideoClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Optional[Any] = model(lowerCAmelCase_ ) # verify the logits shape _A: List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Tuple = self.prepare_config_and_inputs() _A , _A , _A: List[str] = config_and_inputs _A: List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[Any] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () __UpperCamelCase : int = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) __UpperCamelCase : str = False __UpperCamelCase : Any = False __UpperCamelCase : Dict = False __UpperCamelCase : Any = False def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Tuple = TimesformerModelTester(self ) _A: int = ConfigTester( self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict=False ): """simple docstring""" _A: Tuple = copy.deepcopy(lowerCAmelCase_ ) if return_labels: if model_class in get_values(lowerCAmelCase_ ): _A: Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def __magic_name__ ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def __magic_name__ ( self : int ): """simple docstring""" pass def __magic_name__ ( self : Any ): """simple docstring""" _A , _A: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Optional[int] = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A: Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def __magic_name__ ( self : int ): """simple docstring""" _A , _A: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: List[str] = model_class(lowerCAmelCase_ ) _A: str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: Dict = [*signature.parameters.keys()] _A: int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase_ ) @slow def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A: List[Any] = TimesformerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" if not self.has_attentions: pass else: _A , _A: Dict = self.model_tester.prepare_config_and_inputs_for_common() _A: List[Any] = True for model_class in self.all_model_classes: _A: Optional[Any] = self.model_tester.seq_length _A: Optional[Any] = self.model_tester.num_frames _A: Dict = True _A: Union[str, Any] = False _A: List[str] = True _A: Optional[int] = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _A: str = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: Tuple = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _A: Optional[int] = True _A: Dict = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _A: int = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: List[Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) _A: Dict = len(lowerCAmelCase_ ) # Check attention is always last and order is fine _A: List[str] = True _A: List[Any] = True _A: Union[str, Any] = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _A: int = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase_ ) ) _A: Optional[Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ): _A: Union[str, Any] = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _A: Dict = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: Optional[Any] = outputs.hidden_states _A: str = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _A: Optional[int] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _A , _A: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Dict = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: Optional[int] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase__ ( ) -> Optional[Any]: _A: List[str] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) _A: Dict = np.load(a ) return list(a ) @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[Any] = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( lowerCAmelCase_ ) _A: List[Any] = self.default_image_processor _A: List[Any] = prepare_video() _A: int = image_processor(video[:8] , return_tensors='''pt''' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _A: Dict = model(**lowerCAmelCase_ ) # verify the logits _A: List[Any] = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _A: List[Any] = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
121
UpperCAmelCase__ : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def lowerCamelCase__ ( a , a , a ) -> list[str]: _A: Union[str, Any] = set() # keep track of all the paths to be checked _A: Union[str, Any] = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _A: Any = queue.pop(0 ) # get the last node from the path _A: Union[str, Any] = path[-1] if node not in explored: _A: str = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _A: Optional[int] = list(a ) new_path.append(a ) queue.append(a ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(a ) # in case there's no path between the 2 nodes return [] def lowerCamelCase__ ( a , a , a ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _A: Any = [start] _A: List[str] = set(a ) # Keep tab on distances from `start` node. _A: Optional[int] = {start: 0, target: -1} while queue: _A: Union[str, Any] = queue.pop(0 ) if node == target: _A: Dict = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(a ) queue.append(a ) _A: List[Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
121
1
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase: Tuple = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase: Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
358
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase: Any = logging.get_logger(__name__) UpperCAmelCase: List[str] = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = "instructblip_vision_model" def __init__( self ,UpperCAmelCase_=14_08 ,UpperCAmelCase_=61_44 ,UpperCAmelCase_=39 ,UpperCAmelCase_=16 ,UpperCAmelCase_=2_24 ,UpperCAmelCase_=14 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=1E-6 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=1E-10 ,UpperCAmelCase_=True ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Tuple = intermediate_size _lowercase : List[Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = patch_size _lowercase : Optional[Any] = image_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[Any] = attention_dropout _lowercase : List[Any] = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : Tuple = qkv_bias @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : List[Any] = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "instructblip_qformer" def __init__( self ,UpperCAmelCase_=3_05_22 ,UpperCAmelCase_=7_68 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=30_72 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=0 ,UpperCAmelCase_="absolute" ,UpperCAmelCase_=2 ,UpperCAmelCase_=14_08 ,**UpperCAmelCase_ ,): super().__init__(pad_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : List[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : Optional[Any] = hidden_act _lowercase : int = intermediate_size _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : List[Any] = max_position_embeddings _lowercase : Tuple = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Any = position_embedding_type _lowercase : Dict = cross_attention_frequency _lowercase : Optional[Any] = encoder_hidden_size @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : Dict = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : str = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "instructblip" SCREAMING_SNAKE_CASE_ : List[str] = True def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=32 ,**UpperCAmelCase_ ): super().__init__(**UpperCAmelCase_ ) if vision_config is None: _lowercase : str = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: _lowercase : Any = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: _lowercase : Optional[int] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) _lowercase : int = InstructBlipVisionConfig(**UpperCAmelCase_ ) _lowercase : Optional[int] = InstructBlipQFormerConfig(**UpperCAmelCase_ ) _lowercase : Dict = text_config["""model_type"""] if """model_type""" in text_config else """opt""" _lowercase : str = CONFIG_MAPPING[text_model_type](**UpperCAmelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : Union[str, Any] = self.text_config.is_encoder_decoder _lowercase : List[str] = num_query_tokens _lowercase : List[str] = self.vision_config.hidden_size _lowercase : Dict = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : Union[str, Any] = 1.0 _lowercase : Dict = 0.02 @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowercase : int = self.vision_config.to_dict() _lowercase : Any = self.qformer_config.to_dict() _lowercase : Any = self.text_config.to_dict() _lowercase : Optional[int] = self.__class__.model_type return output
336
0
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class lowercase_ (_lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 4_2 SCREAMING_SNAKE_CASE : Tuple = None def _A ( A__ , A__=0.9_9_9 , A__="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(A__ ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A__ ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) __lowercase = [] for i in range(A__ ): __lowercase = i / num_diffusion_timesteps __lowercase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A__ ) / alpha_bar_fn(A__ ) , A__ ) ) return torch.tensor(A__ , dtype=torch.floataa ) class lowercase_ (_lowerCamelCase , _lowerCamelCase ): """simple docstring""" @register_to_config def __init__( self : Tuple ,lowercase__ : int = 1_0_0_0 ,lowercase__ : str = "fixed_small_log" ,lowercase__ : bool = True ,lowercase__ : Optional[float] = 1.0 ,lowercase__ : str = "epsilon" ,lowercase__ : str = "squaredcos_cap_v2" ,): if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) __lowercase = betas_for_alpha_bar(_UpperCamelCase ) __lowercase = 1.0 - self.betas __lowercase = torch.cumprod(self.alphas ,dim=0 ) __lowercase = torch.tensor(1.0 ) # standard deviation of the initial noise distribution __lowercase = 1.0 # setable values __lowercase = None __lowercase = torch.from_numpy(np.arange(0 ,_UpperCamelCase )[::-1].copy() ) __lowercase = variance_type def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : torch.FloatTensor ,lowercase__ : Optional[int] = None ): return sample def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ,lowercase__ : Union[str, torch.device] = None ): __lowercase = num_inference_steps __lowercase = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __lowercase = (np.arange(0 ,_UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __lowercase = torch.from_numpy(_UpperCamelCase ).to(_UpperCamelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : str ,lowercase__ : Tuple=None ,lowercase__ : Any=None ,lowercase__ : Any=None ): if prev_timestep is None: __lowercase = t - 1 __lowercase = self.alphas_cumprod[t] __lowercase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __lowercase = 1 - alpha_prod_t __lowercase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __lowercase = self.betas[t] else: __lowercase = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __lowercase = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __lowercase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __lowercase = torch.log(torch.clamp(_UpperCamelCase ,min=1e-2_0 ) ) __lowercase = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __lowercase = variance.log() __lowercase = beta.log() __lowercase = (predicted_variance + 1) / 2 __lowercase = frac * max_log + (1 - frac) * min_log return variance def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : torch.FloatTensor ,lowercase__ : int ,lowercase__ : torch.FloatTensor ,lowercase__ : Optional[int] = None ,lowercase__ : Any=None ,lowercase__ : bool = True ,): __lowercase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __lowercase , __lowercase = torch.split(_UpperCamelCase ,sample.shape[1] ,dim=1 ) else: __lowercase = None # 1. compute alphas, betas if prev_timestep is None: __lowercase = t - 1 __lowercase = self.alphas_cumprod[t] __lowercase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __lowercase = 1 - alpha_prod_t __lowercase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __lowercase = self.betas[t] __lowercase = self.alphas[t] else: __lowercase = 1 - alpha_prod_t / alpha_prod_t_prev __lowercase = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __lowercase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __lowercase = model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`" ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __lowercase = torch.clamp( _UpperCamelCase ,-self.config.clip_sample_range ,self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __lowercase = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __lowercase = 0 if t > 0: __lowercase = randn_tensor( model_output.shape ,dtype=model_output.dtype ,generator=_UpperCamelCase ,device=model_output.device ) __lowercase = self._get_variance( _UpperCamelCase ,predicted_variance=_UpperCamelCase ,prev_timestep=_UpperCamelCase ,) if self.variance_type == "fixed_small_log": __lowercase = variance elif self.variance_type == "learned_range": __lowercase = (0.5 * variance).exp() else: raise ValueError( F"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`" ''' for the UnCLIPScheduler.''' ) __lowercase = variance * variance_noise __lowercase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=_UpperCamelCase ,pred_original_sample=_UpperCamelCase ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : torch.FloatTensor ,lowercase__ : torch.FloatTensor ,lowercase__ : torch.IntTensor ,): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples __lowercase = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype ) __lowercase = timesteps.to(original_samples.device ) __lowercase = alphas_cumprod[timesteps] ** 0.5 __lowercase = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __lowercase = sqrt_alpha_prod.unsqueeze(-1 ) __lowercase = (1 - alphas_cumprod[timesteps]) ** 0.5 __lowercase = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __lowercase = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __lowercase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
104
import argparse import copy def _a ( lowerCamelCase: List[Any] ) -> List[str]: '''simple docstring''' __A = {} with open(lowerCamelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __A = [] _list.append([line.split()[1], line.split()[2]] ) __A = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __A = [] _list.append([line.split()[0], line.split()[2]] ) __A = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def _a ( lowerCamelCase: Any , lowerCamelCase: Optional[Any] ) -> Dict: '''simple docstring''' with open(lowerCamelCase ) as f: __A = f.read(1 ) __A = start_node __A = [] __A = start_node __A = 0 while visiting not in first_solution: __A = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCamelCase ) and k[0] not in first_solution: __A = k[1] __A = k[0] first_solution.append(lowerCamelCase ) __A = distance_of_first_solution + int(lowerCamelCase ) __A = best_node first_solution.append(lowerCamelCase ) __A = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __A = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def _a ( lowerCamelCase: List[str] , lowerCamelCase: Any ) -> Any: '''simple docstring''' __A = [] for n in solution[1:-1]: __A = solution.index(lowerCamelCase ) for kn in solution[1:-1]: __A = solution.index(lowerCamelCase ) if n == kn: continue __A = copy.deepcopy(lowerCamelCase ) __A = kn __A = n __A = 0 for k in _tmp[:-1]: __A = _tmp[_tmp.index(lowerCamelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __A = distance + int(i[1] ) _tmp.append(lowerCamelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __A = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCamelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def _a ( lowerCamelCase: Optional[int] , lowerCamelCase: Dict , lowerCamelCase: Any , lowerCamelCase: Optional[int] , lowerCamelCase: Union[str, Any] ) -> Any: '''simple docstring''' __A = 1 __A = first_solution __A = [] __A = distance_of_first_solution __A = solution while count <= iters: __A = find_neighborhood(lowerCamelCase , lowerCamelCase ) __A = 0 __A = neighborhood[index_of_best_solution] __A = len(lowerCamelCase ) - 1 __A = False while not found: __A = 0 while i < len(lowerCamelCase ): if best_solution[i] != solution[i]: __A = best_solution[i] __A = solution[i] break __A = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __A = True __A = best_solution[:-1] __A = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __A = cost __A = solution else: __A = index_of_best_solution + 1 __A = neighborhood[index_of_best_solution] if len(lowerCamelCase ) >= size: tabu_list.pop(0 ) __A = count + 1 return best_solution_ever, best_cost def _a ( lowerCamelCase: List[str]=None ) -> str: '''simple docstring''' __A = generate_neighbours(args.File ) __A , __A = generate_first_solution( args.File , lowerCamelCase ) __A , __A = tabu_search( lowerCamelCase , lowerCamelCase , lowerCamelCase , args.Iterations , args.Size , ) print(F"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
117
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["""GLPNFeatureExtractor"""] lowercase = ["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
35
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. lowercase = direct_transformers_import(PATH_TO_TRANSFORMERS) lowercase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowercase = re.compile(R"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") lowercase = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def lowerCamelCase_ ( UpperCamelCase__ : str ): '''simple docstring''' UpperCamelCase__ = None # source code of `config_class` UpperCamelCase__ = inspect.getsource(UpperCamelCase__ ) UpperCamelCase__ = _re_checkpoint.findall(UpperCamelCase__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): UpperCamelCase__ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link UpperCamelCase__ = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: UpperCamelCase__ = ckpt_name break return checkpoint def lowerCamelCase_ ( ): '''simple docstring''' UpperCamelCase__ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue UpperCamelCase__ = get_checkpoint_from_config_class(UpperCamelCase__ ) UpperCamelCase__ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: UpperCamelCase__ = '''\n'''.join(sorted(UpperCamelCase__ ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
35
1
'''simple docstring''' from __future__ import annotations import time UpperCAmelCase : Dict = list[tuple[int, int]] UpperCAmelCase : List[str] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCAmelCase : List[str] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Node | None ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = pos_x __SCREAMING_SNAKE_CASE = pos_y __SCREAMING_SNAKE_CASE = (pos_y, pos_x) __SCREAMING_SNAKE_CASE = goal_x __SCREAMING_SNAKE_CASE = goal_y __SCREAMING_SNAKE_CASE = parent class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : tuple[int, int] , __SCREAMING_SNAKE_CASE : tuple[int, int] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = Node(start[1] , start[0] , goal[1] , goal[0] , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = Node(goal[1] , goal[0] , goal[1] , goal[0] , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [self.start] __SCREAMING_SNAKE_CASE = False def UpperCAmelCase__ ( self : str ) -> Path | None: """simple docstring""" while self.node_queue: __SCREAMING_SNAKE_CASE = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: __SCREAMING_SNAKE_CASE = True return self.retrace_path(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_successors(__SCREAMING_SNAKE_CASE ) for node in successors: self.node_queue.append(__SCREAMING_SNAKE_CASE ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Node ) -> list[Node]: """simple docstring""" __SCREAMING_SNAKE_CASE = [] for action in delta: __SCREAMING_SNAKE_CASE = parent.pos_x + action[1] __SCREAMING_SNAKE_CASE = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , __SCREAMING_SNAKE_CASE ) ) return successors def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Node | None ) -> Path: """simple docstring""" __SCREAMING_SNAKE_CASE = node __SCREAMING_SNAKE_CASE = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __SCREAMING_SNAKE_CASE = current_node.parent path.reverse() return path class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = BreadthFirstSearch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = BreadthFirstSearch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = False def UpperCAmelCase__ ( self : List[str] ) -> Path | None: """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: __SCREAMING_SNAKE_CASE = self.fwd_bfs.node_queue.pop(0 ) __SCREAMING_SNAKE_CASE = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: __SCREAMING_SNAKE_CASE = True return self.retrace_bidirectional_path( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = current_bwd_node __SCREAMING_SNAKE_CASE = current_fwd_node __SCREAMING_SNAKE_CASE = { self.fwd_bfs: self.fwd_bfs.get_successors(__SCREAMING_SNAKE_CASE ), self.bwd_bfs: self.bwd_bfs.get_successors(__SCREAMING_SNAKE_CASE ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__SCREAMING_SNAKE_CASE ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Node , __SCREAMING_SNAKE_CASE : Node ) -> Path: """simple docstring""" __SCREAMING_SNAKE_CASE = self.fwd_bfs.retrace_path(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.bwd_bfs.retrace_path(__SCREAMING_SNAKE_CASE ) bwd_path.pop() bwd_path.reverse() __SCREAMING_SNAKE_CASE = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() UpperCAmelCase : List[str] = (0, 0) UpperCAmelCase : Optional[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCAmelCase : Union[str, Any] = time.time() UpperCAmelCase : int = BreadthFirstSearch(init, goal) UpperCAmelCase : int = bfs.search() UpperCAmelCase : Optional[Any] = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) UpperCAmelCase : Tuple = time.time() UpperCAmelCase : List[Any] = BidirectionalBreadthFirstSearch(init, goal) UpperCAmelCase : str = bd_bfs.search() UpperCAmelCase : Any = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
267
'''simple docstring''' class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = name __SCREAMING_SNAKE_CASE = value __SCREAMING_SNAKE_CASE = weight def __repr__( self : str ) -> Union[str, Any]: """simple docstring""" return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" return self.value def UpperCAmelCase__ ( self : Any ) -> str: """simple docstring""" return self.name def UpperCAmelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.weight def UpperCAmelCase__ ( self : int ) -> Tuple: """simple docstring""" return self.value / self.weight def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = [] for i in range(len(a__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = sorted(a__ , key=a__ , reverse=a__ ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.0, 0.0 for i in range(len(a__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def a__ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
267
1
from collections.abc import Sequence def A(__a: Sequence[float] , __a: bool = False ): if not arr: return 0 lowerCAmelCase_ = 0 if allow_empty_subarrays else float("-inf" ) lowerCAmelCase_ = 0.0 for num in arr: lowerCAmelCase_ = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowerCAmelCase_ = max(__a , __a ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() lowerCamelCase__ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'''{max_subarray_sum(nums) = }''')
22
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def A(__a: Dict , __a: List[str]=None ): require_version(deps[pkg] , __a )
22
1
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE_ (UpperCamelCase = 4 ) -> list[list[int]]: lowerCamelCase__ : Union[str, Any] = abs(UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(UpperCamelCase )] for y in range(UpperCamelCase )] def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> list[list[int]]: return reverse_row(transpose(UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> list[list[int]]: return reverse_row(reverse_column(UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> list[list[int]]: return reverse_column(transpose(UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> list[list[int]]: lowerCamelCase__ : List[Any] = [list(UpperCamelCase ) for x in zip(*UpperCamelCase )] return matrix def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> list[list[int]]: lowerCamelCase__ : str = matrix[::-1] return matrix def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> list[list[int]]: lowerCamelCase__ : int = [x[::-1] for x in matrix] return matrix def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> None: for i in matrix: print(*UpperCamelCase ) if __name__ == "__main__": _A : str =make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) _A : Optional[int] =make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) _A : List[str] =make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
41
'''simple docstring''' from __future__ import annotations _A : Any ={ '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class _lowercase : def __init__( self: Tuple , UpperCamelCase__: dict[str, list[str]] , UpperCamelCase__: str ): lowerCamelCase__ : str = graph # mapping node to its parent in resulting breadth first tree lowerCamelCase__ : dict[str, str | None] = {} lowerCamelCase__ : Any = source_vertex def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : List[str] = {self.source_vertex} lowerCamelCase__ : List[str] = None lowerCamelCase__ : Tuple = [self.source_vertex] # first in first out queue while queue: lowerCamelCase__ : Tuple = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCamelCase__ ) lowerCamelCase__ : List[str] = vertex queue.append(UpperCamelCase__ ) def lowerCamelCase_ ( self: str , UpperCamelCase__: str ): if target_vertex == self.source_vertex: return self.source_vertex lowerCamelCase__ : Tuple = self.parent.get(UpperCamelCase__ ) if target_vertex_parent is None: lowerCamelCase__ : int = ( F'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(UpperCamelCase__ ) return self.shortest_path(UpperCamelCase__ ) + F'''->{target_vertex}''' if __name__ == "__main__": _A : int =Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
41
1
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal a__ : Tuple = logging.get_logger(__name__) a__ : Optional[Any] = TypeVar('''DatasetType''', Dataset, IterableDataset) def UpperCAmelCase_( a__ , a__ = None , a__ = None , a__ = None , a__ = None , a__ = "first_exhausted" , ): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(_snake_case ): if not isinstance(_snake_case , (Dataset, IterableDataset) ): if isinstance(_snake_case , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ '''is an empty dataset dictionary.''' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(_snake_case )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_snake_case ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_snake_case ).__name__}.""" ) if i == 0: SCREAMING_SNAKE_CASE : Union[str, Any] = ( (Dataset, IterableDataset) if isinstance(_snake_case , _snake_case ) else (IterableDataset, Dataset) ) elif not isinstance(_snake_case , _snake_case ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( _snake_case , _snake_case , _snake_case , info=_snake_case , split=_snake_case , stopping_strategy=_snake_case ) else: return _interleave_iterable_datasets( _snake_case , _snake_case , _snake_case , info=_snake_case , split=_snake_case , stopping_strategy=_snake_case ) def UpperCAmelCase_( a__ , a__ = None , a__ = None , a__ = 0 , ): """simple docstring""" if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(_snake_case ): if not isinstance(_snake_case , (Dataset, IterableDataset) ): if isinstance(_snake_case , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ '''is an empty dataset dictionary.''' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(_snake_case )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_snake_case ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_snake_case ).__name__}.""" ) if i == 0: SCREAMING_SNAKE_CASE : Dict = ( (Dataset, IterableDataset) if isinstance(_snake_case , _snake_case ) else (IterableDataset, Dataset) ) elif not isinstance(_snake_case , _snake_case ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_snake_case , info=_snake_case , split=_snake_case , axis=_snake_case ) else: return _concatenate_iterable_datasets(_snake_case , info=_snake_case , split=_snake_case , axis=_snake_case )
351
def UpperCAmelCase_( a__ ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Tuple = 1 while repunit: SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_( a__ = 1_000_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(a__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"{solution() = }")
19
0
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": a :str = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) a :Union[str, Any] = parser.parse_args() a :List[str] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
132
import re import string import numpy as np import datasets UpperCAmelCase : List[str] = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" UpperCAmelCase : str = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" UpperCAmelCase : Dict = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): """simple docstring""" def __A ( self ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def __A ( self , A , A , A=None , A=False , A=False , A=False , ) -> List[str]: '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: lowerCamelCase = np.array([re.sub(A , """""" , A ) for x in predictions] ) lowerCamelCase = np.array([re.sub(A , """""" , A ) for x in references] ) else: lowerCamelCase = np.asarray(A ) lowerCamelCase = np.asarray(A ) if ignore_case: lowerCamelCase = np.char.lower(A ) lowerCamelCase = np.char.lower(A ) if ignore_punctuation: lowerCamelCase = string.punctuation.maketrans("""""" , """""" , string.punctuation ) lowerCamelCase = np.char.translate(A , table=A ) lowerCamelCase = np.char.translate(A , table=A ) if ignore_numbers: lowerCamelCase = string.digits.maketrans("""""" , """""" , string.digits ) lowerCamelCase = np.char.translate(A , table=A ) lowerCamelCase = np.char.translate(A , table=A ) lowerCamelCase = predictions == references return {"exact_match": np.mean(A ) * 1_00}
252
0
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Dict ): # ===== initialization ===== A__ = Mock() A__ = conn, Mock() A__ = iter([1, None] ) A__ = lambda _lowerCamelCase : next(_lowerCamelCase ) # ===== invoke ===== send_file(filename="mytext.txt" , testing=_lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
354
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase : def __init__( self :Optional[Any] , lowercase_ :int , lowercase_ :Union[str, Any]=13 , lowercase_ :Union[str, Any]=10 , lowercase_ :Any=3 , lowercase_ :Tuple=2 , lowercase_ :List[Any]=2 , lowercase_ :int=True , lowercase_ :int=True , lowercase_ :List[str]=32 , lowercase_ :Dict=5 , lowercase_ :List[Any]=4 , lowercase_ :List[Any]=37 , lowercase_ :List[Any]="gelu" , lowercase_ :int=0.1 , lowercase_ :List[Any]=0.1 , lowercase_ :List[Any]=10 , lowercase_ :int=0.0_2 , lowercase_ :Union[str, Any]="divided_space_time" , lowercase_ :Tuple=None , )-> Tuple: A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = patch_size A__ = num_frames A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = attention_type A__ = initializer_range A__ = scope A__ = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token A__ = (image_size // patch_size) ** 2 A__ = (num_frames) * self.num_patches_per_frame + 1 def UpperCAmelCase_ ( self :str )-> str: A__ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self :int )-> Any: A__ = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) A__ = self.num_labels return config def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :List[str] , lowercase_ :List[Any] , lowercase_ :Tuple )-> Optional[int]: A__ = TimesformerModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self :List[str] , lowercase_ :Tuple , lowercase_ :Tuple , lowercase_ :Dict )-> Tuple: A__ = TimesformerForVideoClassification(lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_ ) # verify the logits shape A__ = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowercase_ ) def UpperCAmelCase_ ( self :Optional[Any] )-> str: A__ = self.prepare_config_and_inputs() A__, A__, A__ = config_and_inputs A__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): __lowercase = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () __lowercase = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) __lowercase = False __lowercase = False __lowercase = False __lowercase = False def UpperCAmelCase_ ( self :Union[str, Any] )-> Optional[int]: A__ = TimesformerModelTester(self ) A__ = ConfigTester( self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :int , lowercase_ :Dict , lowercase_ :int=False )-> str: A__ = copy.deepcopy(lowercase_ ) if return_labels: if model_class in get_values(lowercase_ ): A__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) return inputs_dict def UpperCAmelCase_ ( self :Union[str, Any] )-> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def UpperCAmelCase_ ( self :List[Any] )-> Tuple: pass def UpperCAmelCase_ ( self :Dict )-> Optional[Any]: A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) ) def UpperCAmelCase_ ( self :Union[str, Any] )-> Dict: A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase_ ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCAmelCase_ ( self :Optional[Any] )-> Optional[int]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase_ ( self :Dict )-> Optional[int]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowercase_ ) @slow def UpperCAmelCase_ ( self :Any )-> List[Any]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TimesformerModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCAmelCase_ ( self :List[str] )-> str: if not self.has_attentions: pass else: A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: A__ = self.model_tester.seq_length A__ = self.model_tester.num_frames A__ = True A__ = False A__ = True A__ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) A__ = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) A__ = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) A__ = len(lowercase_ ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) self.assertEqual(out_len + 1 , len(lowercase_ ) ) A__ = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def UpperCAmelCase_ ( self :List[Any] )-> List[str]: def check_hidden_states_output(lowercase_ :Dict , lowercase_ :int , lowercase_ :List[Any] ): A__ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) A__ = outputs.hidden_states A__ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase_ ) , lowercase_ ) A__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase ( ): A__ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) A__ = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self :Optional[Any] )-> int: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self :int )-> Any: A__ = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( lowercase_ ) A__ = self.default_image_processor A__ = prepare_video() A__ = image_processor(video[:8] , return_tensors="pt" ).to(lowercase_ ) # forward pass with torch.no_grad(): A__ = model(**lowercase_ ) # verify the logits A__ = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowercase_ ) A__ = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) )
123
0
'''simple docstring''' from __future__ import annotations a__ : Dict ={ '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class snake_case : """simple docstring""" def __init__( self : int , __A : dict[str, list[str]] , __A : str ): __UpperCamelCase = graph # mapping node to its parent in resulting breadth first tree __UpperCamelCase = {} __UpperCamelCase = source_vertex def _lowerCamelCase ( self : Any ): __UpperCamelCase = {self.source_vertex} __UpperCamelCase = None __UpperCamelCase = [self.source_vertex] # first in first out queue while queue: __UpperCamelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__A ) __UpperCamelCase = vertex queue.append(__A ) def _lowerCamelCase ( self : Union[str, Any] , __A : str ): if target_vertex == self.source_vertex: return self.source_vertex __UpperCamelCase = self.parent.get(__A ) if target_vertex_parent is None: __UpperCamelCase = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(__A ) return self.shortest_path(__A ) + f'''->{target_vertex}''' if __name__ == "__main__": a__ : Any =Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
53
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class a__ ( snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = SpeechTaTokenizer __lowerCamelCase = False __lowerCamelCase = True def UpperCamelCase ( self ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ = SpeechTaTokenizer(lowercase ) A__ = AddedToken("<mask>" , lstrip=lowercase , rstrip=lowercase ) A__ = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self , lowercase ) -> Union[str, Any]: '''simple docstring''' A__ = "this is a test" A__ = "this is a test" return input_text, output_text def UpperCamelCase ( self , lowercase , lowercase=False , lowercase=20 , lowercase=5 ) -> Optional[Any]: '''simple docstring''' A__ , A__ = self.get_input_output_texts(lowercase ) A__ = tokenizer.encode(lowercase , add_special_tokens=lowercase ) A__ = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) return text, ids def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = "<pad>" A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase ) , lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase ) , lowercase ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-4] , "œ" ) self.assertEqual(vocab_keys[-2] , "<mask>" ) self.assertEqual(vocab_keys[-1] , "<ctc_blank>" ) self.assertEqual(len(lowercase ) , 81 ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = self.get_tokenizers(do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): A__ = tokenizer.vocab_size A__ = len(lowercase ) self.assertNotEqual(lowercase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A__ = ["aaaaa bbbbbb", "cccccccccdddddddd"] A__ = tokenizer.add_tokens(lowercase ) A__ = tokenizer.vocab_size A__ = len(lowercase ) self.assertNotEqual(lowercase , 0 ) self.assertEqual(lowercase , lowercase ) self.assertEqual(lowercase , len(lowercase ) ) self.assertEqual(lowercase , all_size + len(lowercase ) ) A__ = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=lowercase ) self.assertGreaterEqual(len(lowercase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) A__ = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} A__ = tokenizer.add_special_tokens(lowercase ) A__ = tokenizer.vocab_size A__ = len(lowercase ) self.assertNotEqual(lowercase , 0 ) self.assertEqual(lowercase , lowercase ) self.assertEqual(lowercase , len(lowercase ) ) self.assertEqual(lowercase , all_size_a + len(lowercase ) ) A__ = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=lowercase ) self.assertGreaterEqual(len(lowercase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' pass def UpperCamelCase ( self ) -> Any: '''simple docstring''' pass def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = self.get_tokenizer() A__ = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(lowercase , [SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) A__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) A__ = tokenizer.convert_tokens_to_ids(lowercase ) # fmt: off self.assertListEqual(lowercase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on A__ = tokenizer.convert_ids_to_tokens(lowercase ) self.assertListEqual( lowercase , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off A__ = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name="microsoft/speecht5_asr" , revision="c5ef64c71905caeccde0e4462ef3f9077224c524" , sequences=lowercase , )
68
0
"""simple docstring""" import re def lowerCamelCase ( _UpperCamelCase : str ) -> str: '''simple docstring''' if len(re.findall("""[ATCG]""" , _UpperCamelCase ) ) != len(_UpperCamelCase ): raise ValueError("""Invalid Strand""" ) return dna.translate(dna.maketrans("""ATCG""" , """TAGC""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" from collections.abc import Sequence def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCamelCase ) ) def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float: '''simple docstring''' __UpperCAmelCase : Dict = 0.0 for coeff in reversed(_UpperCamelCase ): __UpperCAmelCase : Any = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase : str = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
320
0
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :str = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __SCREAMING_SNAKE_CASE :List[str] = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } __SCREAMING_SNAKE_CASE :Optional[Any] = {'''allegro/herbert-base-cased''': 514} __SCREAMING_SNAKE_CASE :Optional[int] = {} class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Tuple = HerbertTokenizer def __init__( self : Dict , snake_case_ : Union[str, Any]=None , snake_case_ : Any=None , snake_case_ : Dict=None , snake_case_ : List[Any]="<s>" , snake_case_ : Tuple="<unk>" , snake_case_ : Dict="<pad>" , snake_case_ : List[str]="<mask>" , snake_case_ : int="</s>" , **snake_case_ : str , ): super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , sep_token=snake_case_ , **snake_case_ , ) def lowercase ( self : str , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): _UpperCAmelCase = [self.cls_token_id] _UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase ( self : Union[str, Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None , snake_case_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] def lowercase ( self : Any , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : List[Any] , snake_case_ : str , snake_case_ : Optional[str] = None ): _UpperCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
22
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowercase_ ( a__ ): def __init__( self , a , a , a = None , a = None , a = False , **a , ): super().__init__(features=a , cache_dir=a , keep_in_memory=a , **a ) UpperCamelCase__ = Sql( cache_dir=a , features=a , sql=a , con=a , **a , ) def __a ( self ): UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , ) # Build dataset for splits UpperCamelCase__ = self.builder.as_dataset( split="train" , verification_mode=a , in_memory=self.keep_in_memory ) return dataset class lowercase_ : def __init__( self , a , a , a , a = None , a = None , **a , ): if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCamelCase__ = dataset UpperCamelCase__ = name UpperCamelCase__ = con UpperCamelCase__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCamelCase__ = num_proc UpperCamelCase__ = to_sql_kwargs def __a ( self ): UpperCamelCase__ = self.to_sql_kwargs.pop("sql" , a ) UpperCamelCase__ = self.to_sql_kwargs.pop("con" , a ) UpperCamelCase__ = self.to_sql_kwargs.pop("index" , a ) UpperCamelCase__ = self._write(index=a , **self.to_sql_kwargs ) return written def __a ( self , a ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = args UpperCamelCase__ = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs UpperCamelCase__ = query_table( table=self.dataset.data , key=slice(a , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCamelCase__ = batch.to_pandas() UpperCamelCase__ = df.to_sql(self.name , self.con , index=a , **a ) return num_rows or len(a ) def __a ( self , a , **a ): UpperCamelCase__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCamelCase__ , UpperCamelCase__ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a , a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
80
0
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _snake_case = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def _A ( snake_case ) -> Union[str, Any]: if isinstance(__lowerCamelCase , torch.Tensor ): return image elif isinstance(__lowerCamelCase , PIL.Image.Image ): _lowercase : Any = [image] _lowercase : List[Any] = [trans(img.convert("RGB" ) ) for img in image] _lowercase : Union[str, Any] = torch.stack(__lowerCamelCase ) return image class a__ ( A_ ): def __init__( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM _lowercase : List[str] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=snake_case__ , scheduler=snake_case__ ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : str = min(int(num_inference_steps * strength ) , snake_case__ ) _lowercase : Optional[int] = max(num_inference_steps - init_timestep , 0 ) _lowercase : Any = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" if not isinstance(snake_case__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case__ )}''' ) _lowercase : str = image.to(device=snake_case__ , dtype=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(snake_case__ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) _lowercase : Union[str, Any] = init_latents.shape _lowercase : Optional[int] = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) # get latents print("add noise to latents at timestep" , snake_case__ ) _lowercase : Dict = self.scheduler.add_noise(snake_case__ , snake_case__ , snake_case__ ) _lowercase : Tuple = init_latents return latents @torch.no_grad() def __call__( self , _UpperCamelCase = None , _UpperCamelCase = 0.8 , _UpperCamelCase = 1 , _UpperCamelCase = None , _UpperCamelCase = 0.0 , _UpperCamelCase = 50 , _UpperCamelCase = None , _UpperCamelCase = "pil" , _UpperCamelCase = True , ): """simple docstring""" self.check_inputs(snake_case__ ) # 2. Preprocess image _lowercase : Dict = preprocess(snake_case__ ) # 3. set timesteps self.scheduler.set_timesteps(snake_case__ , device=self.device ) _lowercase : List[str] = self.get_timesteps(snake_case__ , snake_case__ , self.device ) _lowercase : Optional[Any] = timesteps[:1].repeat(snake_case__ ) # 4. Prepare latent variables _lowercase : Any = self.prepare_latents(snake_case__ , snake_case__ , snake_case__ , self.unet.dtype , self.device , snake_case__ ) _lowercase : Union[str, Any] = latents # 5. Denoising loop for t in self.progress_bar(snake_case__ ): # 1. predict noise model_output _lowercase : Dict = self.unet(snake_case__ , snake_case__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _lowercase : Optional[int] = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , eta=snake_case__ , use_clipped_model_output=snake_case__ , generator=snake_case__ , ).prev_sample _lowercase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) _lowercase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowercase : Union[str, Any] = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=snake_case__ )
360
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case = '▁' _snake_case = {'vocab_file': 'spiece.model'} _snake_case = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _snake_case = { 'google/pegasus-xsum': 512, } _snake_case = logging.get_logger(__name__) class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self , _UpperCamelCase , _UpperCamelCase="<pad>" , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<mask_2>" , _UpperCamelCase="<mask_1>" , _UpperCamelCase=None , _UpperCamelCase=103 , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" _lowercase : Tuple = offset if additional_special_tokens is not None: if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(_UpperCamelCase )}, but is''' f''' {type(_UpperCamelCase )}''' ) _lowercase : Dict = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_UpperCamelCase ) , self.offset - 1 ) ] if len(set(_UpperCamelCase ) ) != len(_UpperCamelCase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) _lowercase : List[str] = additional_special_tokens_extended else: _lowercase : Dict = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] _lowercase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , mask_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token_sent=_UpperCamelCase , offset=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) _lowercase : Union[str, Any] = mask_token_sent _lowercase : str = vocab_file _lowercase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) # add special tokens to encoder dict _lowercase : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) _lowercase : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def _lowerCamelCase ( self ): """simple docstring""" return len(self.sp_model ) + self.offset def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" _lowercase : Optional[Any] = self.__dict__.copy() _lowercase : Union[str, Any] = None return state def __setstate__( self , _UpperCamelCase ): """simple docstring""" _lowercase : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _lowercase : List[Any] = {} _lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] _lowercase : int = self.sp_model.piece_to_id(_UpperCamelCase ) return sp_id + self.offset def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: _lowercase : Any = self.sp_model.IdToPiece(index - self.offset ) return token def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : Optional[int] = [] _lowercase : Optional[Any] = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_UpperCamelCase ) + token _lowercase : Tuple = [] else: current_sub_tokens.append(_UpperCamelCase ) out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def _lowerCamelCase ( self , _UpperCamelCase=False ): """simple docstring""" return 1 def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : int = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_UpperCamelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowercase : List[Any] = os.path.join( _UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , "wb" ) as fi: _lowercase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
199
0
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __snake_case( _lowerCAmelCase ) -> Any: snake_case__ : int = torch.load(_lowerCAmelCase , map_location="""cpu""" ) if "model" in sd.keys(): snake_case__ : Union[str, Any] = torch.load(_lowerCAmelCase , map_location="""cpu""" )["""model"""] # pop unnecessary weights snake_case__ : Dict = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCAmelCase ) snake_case__ : Optional[int] = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: snake_case__ : Tuple = sd.pop(_lowerCAmelCase ) snake_case__ : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: snake_case__ : str = sd[key] # We split QKV in separate Q,K,V snake_case__ : str = key.replace(""".qkv_proj.""" , """.q_proj.""" ) snake_case__ : Any = key.replace(""".qkv_proj.""" , """.k_proj.""" ) snake_case__ : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) snake_case__ : str = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 snake_case__ , snake_case__ , snake_case__ : Dict = torch.split(_lowerCAmelCase , depth // 3 , dim=0 ) snake_case__ : int = q snake_case__ : List[Any] = k snake_case__ : Any = v del sd[key] return sd @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ) -> Any: snake_case__ : Any = load_checkpoint(_lowerCAmelCase ) if config is not None: snake_case__ : Any = OPTConfig.from_pretrained(_lowerCAmelCase ) else: snake_case__ : Union[str, Any] = OPTConfig() snake_case__ : List[Any] = OPTModel(_lowerCAmelCase ).half().eval() model.load_state_dict(_lowerCAmelCase ) # Check results Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") __a = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
35
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger() def __A ( a_ :int , a_ :str , a_ :LevitConfig , a_ :Path , a_ :bool = True) -> Union[str, Any]: print(F"""Converting {name}...""") with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": __a : Optional[int] = timm.create_model('''levit_128s''' , pretrained=a_) else: __a : List[Any] = timm.create_model('''levit_128''' , pretrained=a_) if hidden_sizes == 1_92: __a : List[Any] = timm.create_model('''levit_192''' , pretrained=a_) if hidden_sizes == 2_56: __a : Any = timm.create_model('''levit_256''' , pretrained=a_) if hidden_sizes == 3_84: __a : Optional[int] = timm.create_model('''levit_384''' , pretrained=a_) from_model.eval() __a : Dict = LevitForImageClassificationWithTeacher(a_).eval() __a : Optional[int] = OrderedDict() __a : Tuple = from_model.state_dict() __a : Dict = list(from_model.state_dict().keys()) __a : str = list(our_model.state_dict().keys()) print(len(a_) , len(a_)) for i in range(len(a_)): __a : int = weights[og_keys[i]] our_model.load_state_dict(a_) __a : Union[str, Any] = torch.randn((2, 3, 2_24, 2_24)) __a : Union[str, Any] = from_model(a_) __a : Optional[int] = our_model(a_).logits assert torch.allclose(a_ , a_), "The model logits don't match the original one." __a : List[Any] = name print(a_) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name) __a : Tuple = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name) print(F"""Pushed {checkpoint_name}""") def __A ( a_ :Path , a_ :str = None , a_ :bool = True) -> Optional[Any]: __a : List[Any] = '''imagenet-1k-id2label.json''' __a : Tuple = 10_00 __a : List[str] = (1, num_labels) __a : Union[str, Any] = '''huggingface/label-files''' __a : Dict = num_labels __a : List[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) __a : str = {int(a_): v for k, v in idalabel.items()} __a : int = idalabel __a : List[str] = {v: k for k, v in idalabel.items()} __a : Optional[int] = partial(a_ , num_labels=a_ , idalabel=a_ , labelaid=a_) __a : Optional[int] = { '''levit-128S''': 1_28, '''levit-128''': 1_28, '''levit-192''': 1_92, '''levit-256''': 2_56, '''levit-384''': 3_84, } __a : int = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , a_ , names_to_config[model_name] , a_ , a_) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , a_ , a_ , a_ , a_) return config, expected_shape if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) A = parser.parse_args() A = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
160
0
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCamelCase_ : Dict = logging.get_logger(__name__) @add_end_docstrings( _SCREAMING_SNAKE_CASE, r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ", ) class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self , __A ) -> np.ndarray: if self.framework == "tf": a =tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": a =torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__A ) else: raise ValueError('''Unsupported framework''' ) return masked_index def SCREAMING_SNAKE_CASE ( self , __A ) -> np.ndarray: a =self.get_masked_index(__A ) a =np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , f'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def SCREAMING_SNAKE_CASE ( self , __A ) -> str: if isinstance(__A , __A ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A=None , **__A ) -> Dict[str, GenericTensor]: if return_tensors is None: a =self.framework a =self.tokenizer(__A , return_tensors=__A ) self.ensure_exactly_one_mask_token(__A ) return model_inputs def SCREAMING_SNAKE_CASE ( self , __A ) -> Optional[int]: a =self.model(**__A ) a =model_inputs['''input_ids'''] return model_outputs def SCREAMING_SNAKE_CASE ( self , __A , __A=5 , __A=None ) -> Any: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: a =target_ids.shape[0] a =model_outputs['''input_ids'''][0] a =model_outputs['''logits'''] if self.framework == "tf": a =tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] a =outputs.numpy() a =outputs[0, masked_index, :] a =stable_softmax(__A , axis=-1 ) if target_ids is not None: a =tf.gather_nd(tf.squeeze(__A , 0 ) , target_ids.reshape(-1 , 1 ) ) a =tf.expand_dims(__A , 0 ) a =tf.math.top_k(__A , k=__A ) a , a =topk.values.numpy(), topk.indices.numpy() else: a =torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__A ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample a =outputs[0, masked_index, :] a =logits.softmax(dim=-1 ) if target_ids is not None: a =probs[..., target_ids] a , a =probs.topk(__A ) a =[] a =values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): a =[] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place a =input_ids.numpy().copy() if target_ids is not None: a =target_ids[p].tolist() a =p # Filter padding out: a =tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back a =self.tokenizer.decode(__A , skip_special_tokens=__A ) a ={'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(__A ) result.append(__A ) if single_mask: return result[0] return result def SCREAMING_SNAKE_CASE ( self , __A , __A=None ) -> List[Any]: if isinstance(__A , __A ): a =[targets] try: a =self.tokenizer.get_vocab() except Exception: a ={} a =[] for target in targets: a =vocab.get(__A , __A ) if id_ is None: a =self.tokenizer( __A , add_special_tokens=__A , return_attention_mask=__A , return_token_type_ids=__A , max_length=1 , truncation=__A , )['''input_ids'''] if len(__A ) == 0: logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' '''We cannot replace it with anything meaningful, ignoring it''' ) continue a =input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) a =list(set(__A ) ) if len(__A ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) a =np.array(__A ) return target_ids def SCREAMING_SNAKE_CASE ( self , __A=None , __A=None ) -> Any: a ={} if targets is not None: a =self.get_target_ids(__A , __A ) a =target_ids if top_k is not None: a =top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , __A , *__A , **__A ) -> Optional[int]: a =super().__call__(__A , **__A ) if isinstance(__A , __A ) and len(__A ) == 1: return outputs[0] return outputs
215
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def _A ( lowercase ): """simple docstring""" a ={} a =tokenizer(example['''content'''] , truncation=lowercase )['''input_ids'''] a =len(example['''content'''] ) / len(output['''input_ids'''] ) return output lowerCamelCase_ : Optional[int] = HfArgumentParser(PretokenizationArguments) lowerCamelCase_ : Optional[Any] = parser.parse_args() if args.num_workers is None: lowerCamelCase_ : Tuple = multiprocessing.cpu_count() lowerCamelCase_ : Any = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCamelCase_ : Any = time.time() lowerCamelCase_ : int = load_dataset(args.dataset_name, split="""train""") print(F'Dataset loaded in {time.time()-t_start:.2f}s') lowerCamelCase_ : List[str] = time.time() lowerCamelCase_ : str = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'Dataset tokenized in {time.time()-t_start:.2f}s') lowerCamelCase_ : Union[str, Any] = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'Data pushed to the hub in {time.time()-t_start:.2f}s')
215
1
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__: str = logging.get_logger(__name__) UpperCamelCase__: str = {"vocab_file": "vocab.json"} UpperCamelCase__: Optional[int] = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } UpperCamelCase__: List[str] = {"mgp-str": 27} class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any]="[GO]" , __snake_case : List[Any]="[GO]" , __snake_case : Union[str, Any]="[s]" , __snake_case : Optional[Any]="[GO]" , **__snake_case : List[Any] ) -> Union[str, Any]: super().__init__( unk_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , pad_token=__snake_case , **__snake_case , ) with open(__snake_case , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase : Union[str, Any] = json.load(__snake_case ) UpperCAmelCase : Optional[int] = {v: k for k, v in self.vocab.items()} @property def A ( self : Union[str, Any] ) -> List[str]: return len(self.vocab ) def A ( self : Dict ) -> List[Any]: return dict(self.vocab , **self.added_tokens_encoder ) def A ( self : int , __snake_case : Union[str, Any] ) -> Dict: UpperCAmelCase : int = [] for s in text: char_tokens.extend(__snake_case ) return char_tokens def A ( self : Optional[int] , __snake_case : List[str] ) -> List[Any]: return self.vocab.get(__snake_case , self.vocab.get(self.unk_token ) ) def A ( self : Optional[Any] , __snake_case : Optional[int] ) -> int: return self.decoder.get(__snake_case ) def A ( self : Union[str, Any] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__snake_case ) ) return UpperCAmelCase : List[str] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + '''\n''' ) return (vocab_file,)
23
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __A =pytest.mark.integration @require_faiss class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(lowercase ) for x in np.arange(30 ).tolist()]} ) return dset def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: import faiss lowerCamelCase_ = self._create_dummy_dataset() lowerCamelCase_ = dset.map( lambda lowercase , lowercase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=lowercase , keep_in_memory=lowercase ) lowerCamelCase_ = dset.add_faiss_index("vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: import faiss lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: import faiss lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(lowercase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: from elasticsearch import Elasticsearch lowerCamelCase_ = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} lowerCamelCase_ = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=lowercase ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> Tuple: import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertRaises(lowercase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase_ = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase ) self.assertRaises(lowercase , index.search_batch , queries[0] ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Any: import faiss lowerCamelCase_ = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase_ = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(lowercase ): lowerCamelCase_ = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: import faiss lowerCamelCase_ = faiss.IndexFlat(5 ) lowerCamelCase_ = FaissIndex(custom_index=lowercase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase_ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase_ ( lowerCamelCase__ ): import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase_ = "index.faiss" lowerCamelCase_ = F'mock://{index_name}' index.save(lowerCamelCase__ , storage_options=mockfs.storage_options ) lowerCamelCase_ = FaissIndex.load(lowerCamelCase__ , storage_options=mockfs.storage_options ) lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowerCamelCase__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ = Elasticsearch() lowerCamelCase_ = {"acknowledged": True} lowerCamelCase_ = ElasticSearchIndex(es_client=lowercase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query lowerCamelCase_ = "foo" lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase_ = "foo" lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase_ = ["foo", "bar", "foobar"] lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([1, 1, 1] , lowercase ) # batched queries with timeout lowerCamelCase_ = ["foo", "bar", "foobar"] lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase , request_timeout=30 ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([1, 1, 1] , lowercase )
19
0
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def __a ( UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer A = flax_key_tuple[:-1] + ("""weight""",) A = torch.permute(UpperCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(UpperCAmelCase ): # linear layer A = flax_key_tuple[:-1] + ("""weight""",) A = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: A = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[int]: """simple docstring""" if "metadata" in layer: A = layer.split("""metadata""" ) A = """""".join(split_layer[0] )[:-1] A = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: A = layer.split("""kvstore""" ) A = """""".join(split_layer[0] )[:-1] A = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: A = layer.split("""/""" ) A = """/""".join(split_layer[:-1] ) A = (split_layer[-1],) if "kvstore/path" in layer: A = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: A = """file""" else: A = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def __a ( UpperCAmelCase , UpperCAmelCase ) ->Optional[int]: """simple docstring""" A = rename_keys(UpperCAmelCase ) A = {} for k, v in current_block.items(): A = v A = new_current_block torch.save(UpperCAmelCase , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = WEIGHTS_NAME ) ->Union[str, Any]: """simple docstring""" A = convert_file_size_to_int(UpperCAmelCase ) A = [] A = {} A = 0 A = 0 os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: A = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] A = flatten_dict(UpperCAmelCase , sep="""/""" ) A = {} for layer in checkpoint_info.keys(): A , A , A = get_key_and_tensorstore_dict( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if curr_real_layer_name in all_layers: A = content else: A = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file A = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() A = torch.tensor(UpperCAmelCase ) A = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts A , A = rename_base_flax_keys(tuple(key.split("""/""" ) ) , UpperCAmelCase ) A = """/""".join(UpperCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: A = os.path.join( UpperCAmelCase , weights_name.replace(""".bin""" , f"""-{len(UpperCAmelCase )+1:05d}-of-???.bin""" ) ) rename_and_save_block(UpperCAmelCase , UpperCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block A = {} A = 0 A = raw_weights.to(getattr(UpperCAmelCase , UpperCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block A = os.path.join(UpperCAmelCase , weights_name.replace(""".bin""" , f"""-{len(UpperCAmelCase )+1:05d}-of-???.bin""" ) ) rename_and_save_block(UpperCAmelCase , UpperCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(UpperCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index A = {} A = {} for idx, shard in enumerate(UpperCAmelCase ): A = weights_name.replace( """.bin""" , f"""-{idx+1:05d}-of-{len(UpperCAmelCase ):05d}.bin""" ) # len(sharded_state_dicts):05d} A = os.path.join(UpperCAmelCase , weights_name.replace(""".bin""" , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(UpperCAmelCase , os.path.join(UpperCAmelCase , UpperCAmelCase ) ) A = shard for key in shard: A = shard_file # Add the metadata A = {"""total_size""": total_size} A = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(UpperCAmelCase , UpperCAmelCase ) , """w""" , encoding="""utf-8""" ) as f: A = json.dumps(UpperCAmelCase , indent=2 , sort_keys=UpperCAmelCase ) + """\n""" f.write(UpperCAmelCase ) return metadata, index if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) _lowerCamelCase : Union[str, Any] = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def __a ( ) ->Any: """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer A = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) A = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) A = TaTokenizer.from_pretrained("""t5-small""" ) A = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" A = tokenizer(UpperCAmelCase , return_tensors="""pt""" ).input_ids A = model.generate(UpperCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
337
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Optional[Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowerCAmelCase ) try: pickle.loads(pickle.dumps(_lowerCAmelCase ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
337
1
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : '''simple docstring''' def __init__(self : Optional[int] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple=12 , UpperCamelCase : Tuple=7 , UpperCamelCase : List[str]=True , UpperCamelCase : Dict=True , UpperCamelCase : int=True , UpperCamelCase : str=99 , UpperCamelCase : Tuple=32 , UpperCamelCase : Dict=32 , UpperCamelCase : List[str]=2 , UpperCamelCase : int=4 , UpperCamelCase : Optional[int]=37 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : str=0.1 , UpperCamelCase : List[str]=512 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : List[Any]=0 , UpperCamelCase : Union[str, Any]=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = projection_dim lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = max_position_embeddings lowercase__ = initializer_range lowercase__ = scope lowercase__ = bos_token_id def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowercase__ = input_mask.numpy() lowercase__ ,lowercase__ = input_mask.shape lowercase__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCamelCase ): lowercase__ = 1 lowercase__ = 0 lowercase__ = self.get_config() return config, input_ids, tf.convert_to_tensor(UpperCamelCase ) def UpperCamelCase__ (self : Any ): '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase__ (self : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ): '''simple docstring''' lowercase__ = TFBlipTextModel(config=UpperCamelCase ) lowercase__ = model(UpperCamelCase , attention_mask=UpperCamelCase , training=UpperCamelCase ) lowercase__ = model(UpperCamelCase , training=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ ,lowercase__ ,lowercase__ = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : str = (TFBlipTextModel,) if is_tf_available() else () lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : int = False lowerCAmelCase__ : Tuple = False def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = BlipTextModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def UpperCamelCase__ (self : int ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' pass @slow def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = TFBlipTextModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : Any=True ): '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=UpperCamelCase )
2
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_ (__a : Optional[Any] , __a : str , __a : Optional[Any]=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" _a : str = nn.Parameter(__a ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" _a : Any = nn.Parameter(__a ) def UpperCAmelCase_ (__a : int , __a : Optional[Any] , __a : int ): """simple docstring""" _a : Tuple = np.asarray(weights[0] ) _a : Union[str, Any] = np.asarray(weights[1] ) _a : Dict = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.output.dense , torch.tensor(__a ).view(-1 , __a ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase_ (__a : Optional[Any] , __a : Optional[int] , __a : List[str] ): """simple docstring""" _a : Dict = np.asarray(weights[0] ) _a : Union[str, Any] = np.asarray(weights[1] ) _a : str = np.asarray(weights[2] ) _a : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.output.dense , torch.tensor(__a ).view(-1 , __a ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase_ (__a : Any , __a : Any , __a : Optional[Any] ): """simple docstring""" _a : List[str] = weights[0][0][0] _a : List[Any] = np.asarray(layer_norm_a[0] ) _a : List[str] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__a ) , torch.tensor(__a ) , ) # lsh weights + output _a : List[str] = weights[0][1] if len(__a ) < 4: set_layer_weights_in_torch_lsh(__a , torch_block.attention , __a ) else: set_layer_weights_in_torch_local(__a , torch_block.attention , __a ) # intermediate weighs _a : Optional[Any] = weights[2][0][1][2] # Chunked Feed Forward if len(__a ) == 4: _a : Union[str, Any] = intermediate_weights[2] # layernorm 2 _a : Any = np.asarray(intermediate_weights[0][0] ) _a : List[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__a ) , torch.tensor(__a ) , ) # intermediate dense _a : Any = np.asarray(intermediate_weights[1][0] ) _a : Any = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__a ).transpose(0 , 1 ).contiguous() , torch.tensor(__a ) , ) # intermediate out _a : Optional[int] = np.asarray(intermediate_weights[4][0] ) _a : int = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__a ).transpose(0 , 1 ).contiguous() , torch.tensor(__a ) , ) def UpperCAmelCase_ (__a : Dict , __a : Dict , __a : List[Any] ): """simple docstring""" _a : Optional[int] = torch_model.reformer # word embeds _a : Tuple = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__a ) , ) if isinstance(weights[3] , __a ): _a : Any = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _a : List[Any] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" _a : Any = nn.Parameter(torch.tensor(__a ) ) _a : List[str] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __a ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _a : Tuple = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__a , __a , __a ) # output layer norm _a : Optional[Any] = np.asarray(weights[7][0] ) _a : int = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__a ) , torch.tensor(__a ) , ) # output embeddings _a : List[str] = np.asarray(weights[9][0] ) _a : int = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__a ).transpose(0 , 1 ).contiguous() , torch.tensor(__a ) , ) def UpperCAmelCase_ (__a : Tuple , __a : Optional[Any] , __a : Dict ): """simple docstring""" _a : List[Any] = ReformerConfig.from_json_file(__a ) print(f"""Building PyTorch model from configuration: {config}""" ) _a : int = ReformerModelWithLMHead(__a ) with open(__a , 'rb' ) as f: _a : Optional[Any] = pickle.load(__a )['weights'] set_model_weights_in_torch(__a , __a , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCAmelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
271
0
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase ) -> list: """simple docstring""" if len(_lowerCamelCase ) == 0: return [] __snake_case , __snake_case : Tuple = min(_lowerCamelCase ), max(_lowerCamelCase ) __snake_case : List[Any] = int(max_value - min_value ) + 1 __snake_case : list[list] = [[] for _ in range(_lowerCamelCase )] for i in my_list: buckets[int(i - min_value )].append(_lowerCamelCase ) return [v for bucket in buckets for v in sorted(_lowerCamelCase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
13
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _A : def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int: """simple docstring""" __snake_case : Optional[Any] = parent __snake_case : Tuple = batch_size __snake_case : List[Any] = num_channels __snake_case : Dict = image_size __snake_case : Tuple = patch_size __snake_case : str = is_training __snake_case : Optional[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : str = use_labels __snake_case : Dict = vocab_size __snake_case : List[Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : str = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : Optional[int] = type_vocab_size __snake_case : Tuple = type_sequence_label_size __snake_case : int = initializer_range __snake_case : Optional[int] = coordinate_size __snake_case : List[Any] = shape_size __snake_case : Tuple = num_labels __snake_case : List[Any] = num_choices __snake_case : Optional[Any] = scope __snake_case : List[str] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __snake_case : List[str] = text_seq_length __snake_case : str = (image_size // patch_size) ** 2 + 1 __snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __snake_case : Optional[int] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : Union[str, Any] = bbox[i, j, 3] __snake_case : Union[str, Any] = bbox[i, j, 1] __snake_case : Any = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : Optional[Any] = bbox[i, j, 2] __snake_case : Tuple = bbox[i, j, 0] __snake_case : Optional[Any] = tmp_coordinate __snake_case : Dict = tf.constant(__magic_name__ ) __snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = None if self.use_input_mask: __snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] ) __snake_case : List[Any] = None if self.use_token_type_ids: __snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __snake_case : str = None __snake_case : List[Any] = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __snake_case : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ ) # text + image __snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) __snake_case : List[str] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , ) __snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any: """simple docstring""" __snake_case : Any = self.num_labels __snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" __snake_case : str = self.num_labels __snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ ) __snake_case : Tuple = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = 2 __snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs __snake_case : List[Any] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[int] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowercase__: Union[str, Any] = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) lowercase__: Dict = False lowercase__: int = False lowercase__: Dict = False def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" return True def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict: """simple docstring""" __snake_case : Any = copy.deepcopy(__magic_name__ ) if model_class in get_values(__magic_name__ ): __snake_case : Union[str, Any] = { k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : int = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : str = TFLayoutLMvaModelTester(self ) __snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ): # The number of elements in the loss should be the same as the number of elements in the label __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Any = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0] ] __snake_case : List[str] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = prepared_for_class.pop("""input_ids""" ) __snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : str = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: __snake_case : str = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __snake_case : Dict = -1_00 __snake_case : str = tf.convert_to_tensor(__magic_name__ ) __snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = model(__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) # Get keys that were added with the _prepare_for_class function __snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys() __snake_case : Optional[Any] = inspect.signature(model.call ).parameters __snake_case : int = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __snake_case : Union[str, Any] = {0: """input_ids"""} for label_key in label_keys: __snake_case : int = signature_names.index(__magic_name__ ) __snake_case : Optional[int] = label_key __snake_case : Optional[int] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __snake_case : Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __snake_case : List[str] = prepared_for_class[value] __snake_case : str = tuple(__magic_name__ ) # Send to model __snake_case : List[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Tuple = type self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None @slow def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) __snake_case : str = self.default_image_processor __snake_case : Union[str, Any] = prepare_img() __snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values __snake_case : Tuple = tf.constant([[1, 2]] ) __snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) # verify the logits __snake_case : List[str] = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ ) __snake_case : Tuple = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
13
1
"""simple docstring""" lowerCamelCase_ : int = range(2, 2_0 + 1) lowerCamelCase_ : Tuple = [1_0**k for k in range(ks[-1] + 1)] lowerCamelCase_ : dict[int, dict[int, list[list[int]]]] = {} def _A ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" a =sum(a_i[j] for j in range(lowercase , len(lowercase ) ) ) a =sum(a_i[j] * base[j] for j in range(min(len(lowercase ) , lowercase ) ) ) a , a =0, 0 a =n - i a =memo.get(lowercase ) if sub_memo is not None: a =sub_memo.get(lowercase ) if jumps is not None and len(lowercase ) > 0: # find and make the largest jump without going over a =-1 for _k in range(len(lowercase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: a =_k break if max_jump >= 0: a , a , a =jumps[max_jump] # since the difference between jumps is cached, add c a =diff + c for j in range(min(lowercase , len(lowercase ) ) ): a , a =divmod(lowercase , 10 ) if new_c > 0: add(lowercase , lowercase , lowercase ) else: a =[] else: a ={c: []} a =sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps a , a =next_term(lowercase , k - 1 , i + dn , lowercase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead a , a =compute(lowercase , lowercase , i + dn , lowercase ) diff += _diff dn += terms_jumped a =sub_memo[c] # keep jumps sorted by # of terms skipped a =0 while j < len(lowercase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowercase , (diff, dn, k) ) return (diff, dn) def _A ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" if i >= n: return 0, i if k > len(lowercase ): a_i.extend([0 for _ in range(k - len(lowercase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) a =i a , a , a =0, 0, 0 for j in range(len(lowercase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 a =ds_c + ds_b diff += addend a =0 for j in range(lowercase ): a =a_i[j] + addend a , a =divmod(lowercase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowercase , lowercase , lowercase ) return diff, i - start_i def _A ( lowercase , lowercase , lowercase ): """simple docstring""" for j in range(lowercase , len(lowercase ) ): a =digits[j] + addend if s >= 10: a , a =divmod(lowercase , 10 ) a =addend // 10 + quotient else: a =s a =addend // 10 if addend == 0: break while addend > 0: a , a =divmod(lowercase , 10 ) digits.append(lowercase ) def _A ( lowercase = 10**15 ): """simple docstring""" a =[1] a =1 a =0 while True: a , a =next_term(lowercase , 20 , i + dn , lowercase ) dn += terms_jumped if dn == n - i: break a =0 for j in range(len(lowercase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'{solution() = }')
81
"""simple docstring""" def _A ( lowercase , lowercase ): """simple docstring""" return number | (1 << position) def _A ( lowercase , lowercase ): """simple docstring""" return number & ~(1 << position) def _A ( lowercase , lowercase ): """simple docstring""" return number ^ (1 << position) def _A ( lowercase , lowercase ): """simple docstring""" return ((number >> position) & 1) == 1 def _A ( lowercase , lowercase ): """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
81
1
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __a = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __a = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = SavedModel() UpperCAmelCase_ : str = [] with open(os.path.join(_lowercase , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: UpperCAmelCase_ : Union[str, Any] = json.load(_lowercase )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(_lowercase )] ) with open(_lowercase , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) UpperCAmelCase_ : Any = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCAmelCase_ : List[str] = sorted(_lowercase ) UpperCAmelCase_ : int = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_lowercase ) if strict and len(_lowercase ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(_lowercase ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*_lowercase , sep='''\n''' ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) __a = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
235
from collections import defaultdict def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = first_str.lower().strip() UpperCAmelCase_ : Any = second_str.lower().strip() # Remove whitespace UpperCAmelCase_ : Any = first_str.replace(''' ''' , '''''' ) UpperCAmelCase_ : int = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(_lowercase ) != len(_lowercase ): return False # Default values for count should be 0 UpperCAmelCase_ : defaultdict[str, int] = defaultdict(_lowercase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_lowercase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __a = input('Enter the first string ').strip() __a = input('Enter the second string ').strip() __a = check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
235
1
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowercase : Union[str, Any] = "pt" elif is_tf_available(): _lowercase : str = "tf" else: _lowercase : Any = "jax" class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ByTaTokenizer UpperCamelCase__ = False def SCREAMING_SNAKE_CASE_ ( self : Tuple ): super().setUp() lowercase_ : Tuple = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def SCREAMING_SNAKE_CASE_ ( self : Dict , **lowercase_ : Dict ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : Optional[int] , lowercase_ : List[str]=False , lowercase_ : Optional[int]=20 , lowercase_ : List[str]=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. lowercase_ : Optional[int] = [] for i in range(len(lowercase_ ) ): try: lowercase_ : Tuple = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase_ : Tuple = list(filter(lambda lowercase_ : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , lowercase_ ) ) lowercase_ : Dict = list(filter(lambda lowercase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase_ ) , lowercase_ ) ) if max_length is not None and len(lowercase_ ) > max_length: lowercase_ : str = toks[:max_length] if min_length is not None and len(lowercase_ ) < min_length and len(lowercase_ ) > 0: while len(lowercase_ ) < min_length: lowercase_ : Optional[Any] = toks + toks # toks_str = [t[1] for t in toks] lowercase_ : Union[str, Any] = [t[0] for t in toks] # Ensure consistency lowercase_ : Dict = tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_ ) if " " not in output_txt and len(lowercase_ ) > 1: lowercase_ : Dict = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase_ ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase_ ) ) if with_prefix_space: lowercase_ : int = """ """ + output_txt lowercase_ : List[str] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) return output_txt, output_ids def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Dict = self.ta_base_tokenizer lowercase_ : Any = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) lowercase_ : Dict = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""] , batch_without_eos_added["""input_ids"""] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[Any] = self.ta_base_tokenizer lowercase_ : int = """Unicode €.""" lowercase_ : Any = tokenizer(lowercase_ ) lowercase_ : int = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""] , lowercase_ ) # decoding lowercase_ : Dict = tokenizer.decode(lowercase_ ) self.assertEqual(lowercase_ , """Unicode €.</s>""" ) lowercase_ : Any = tokenizer("""e è é ê ë""" ) lowercase_ : List[str] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""] , lowercase_ ) # decoding lowercase_ : List[str] = tokenizer.decode(lowercase_ ) self.assertEqual(lowercase_ , """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """e è é ê ë</s>""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = self.ta_base_tokenizer lowercase_ : Any = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off lowercase_ : List[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowercase_ : Dict = tokenizer(lowercase_ , padding=lowercase_ , return_tensors=lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) if FRAMEWORK != "jax": lowercase_ : Optional[Any] = list(batch.input_ids.numpy()[0] ) else: lowercase_ : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase_ , lowercase_ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Dict = self.ta_base_tokenizer lowercase_ : Optional[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowercase_ : Optional[int] = tokenizer(lowercase_ , padding=lowercase_ , return_tensors=lowercase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , lowercase_ ) self.assertIn("""attention_mask""" , lowercase_ ) self.assertNotIn("""decoder_input_ids""" , lowercase_ ) self.assertNotIn("""decoder_attention_mask""" , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[str] = self.ta_base_tokenizer lowercase_ : Dict = [ """Summary of the text.""", """Another summary.""", ] lowercase_ : int = tokenizer( text_target=lowercase_ , max_length=32 , padding="""max_length""" , truncation=lowercase_ , return_tensors=lowercase_ ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : str = self.ta_base_tokenizer lowercase_ : Dict = ["""A long paragraph for summarization. </s>"""] lowercase_ : int = ["""Summary of the text. </s>"""] # fmt: off lowercase_ : Any = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowercase_ : List[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowercase_ : Optional[int] = tokenizer(lowercase_ , text_target=lowercase_ ) self.assertEqual(lowercase_ , batch["""input_ids"""][0] ) self.assertEqual(lowercase_ , batch["""labels"""][0] ) def SCREAMING_SNAKE_CASE_ ( self : int ): # safety check on max_len default value so we are sure the test works lowercase_ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowercase_ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase_ : str = tempfile.mkdtemp() lowercase_ : str = """ He is very happy, UNwant\u00E9d,running""" lowercase_ : Union[str, Any] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) tokenizer.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = tokenizer.__class__.from_pretrained(lowercase_ ) lowercase_ : Any = after_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) shutil.rmtree(lowercase_ ) lowercase_ : List[str] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase_ : str = tempfile.mkdtemp() lowercase_ : Dict = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) lowercase_ : Optional[Any] = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) lowercase_ : Optional[Any] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) tokenizer.save_pretrained(lowercase_ ) lowercase_ : List[Any] = tokenizer.__class__.from_pretrained(lowercase_ ) lowercase_ : Any = after_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowercase_ : Optional[Any] = tokenizer.__class__.from_pretrained(lowercase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase_ ) with open(os.path.join(lowercase_ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: lowercase_ : List[str] = json.load(lowercase_ ) with open(os.path.join(lowercase_ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: lowercase_ : List[Any] = json.load(lowercase_ ) lowercase_ : Optional[Any] = [f'''<extra_id_{i}>''' for i in range(125 )] lowercase_ : Union[str, Any] = added_tokens_extra_ids + [ """an_additional_special_token""" ] lowercase_ : List[Any] = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(lowercase_ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(lowercase_ , lowercase_ ) with open(os.path.join(lowercase_ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(lowercase_ , lowercase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase_ : Optional[Any] = tokenizer_class.from_pretrained( lowercase_ , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase_ : Optional[int] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=lowercase_ )] lowercase_ : Optional[int] = tokenizer_class.from_pretrained( lowercase_ , additional_special_tokens=lowercase_ , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase_ ) lowercase_ : int = tokenizer_class.from_pretrained(lowercase_ ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): pass def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): pass def SCREAMING_SNAKE_CASE_ ( self : List[str] ): pass def SCREAMING_SNAKE_CASE_ ( self : Dict ): pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens lowercase_ : List[Any] = self.get_tokenizers(fast=lowercase_ , do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowercase_ : str = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] lowercase_ : str = tokenizer.convert_tokens_to_string(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowercase_ : Any = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] lowercase_ : Union[str, Any] = 0 lowercase_ : Any = tokenizer.convert_ids_to_tokens( lowercase_ , skip_special_tokens=lowercase_ ) for attr in attributes_list: setattr(lowercase_ , attr + """_id""" , lowercase_ ) self.assertEqual(getattr(lowercase_ , lowercase_ ) , lowercase_ ) self.assertEqual(getattr(lowercase_ , attr + """_id""" ) , lowercase_ ) setattr(lowercase_ , attr + """_id""" , lowercase_ ) self.assertEqual(getattr(lowercase_ , lowercase_ ) , lowercase_ ) self.assertEqual(getattr(lowercase_ , attr + """_id""" ) , lowercase_ ) setattr(lowercase_ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(lowercase_ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(lowercase_ , """additional_special_tokens_ids""" ) , [] ) setattr(lowercase_ , """additional_special_tokens_ids""" , [token_id_to_test_setters] ) self.assertListEqual(getattr(lowercase_ , """additional_special_tokens""" ) , [token_to_test_setters] ) self.assertListEqual(getattr(lowercase_ , """additional_special_tokens_ids""" ) , [token_id_to_test_setters] )
239
'''simple docstring''' import os def lowerCamelCase ( UpperCAmelCase__ : str = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(UpperCAmelCase__ ) , UpperCAmelCase__ ) ) as input_file: lowercase_ : str = [ [int(UpperCAmelCase__ ) for element in line.split(""",""" )] for line in input_file.readlines() ] lowercase_ : Optional[Any] = len(UpperCAmelCase__ ) lowercase_ : Any = len(matrix[0] ) lowercase_ : Union[str, Any] = [[-1 for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )] for i in range(UpperCAmelCase__ ): lowercase_ : int = matrix[i][0] for j in range(1 , UpperCAmelCase__ ): for i in range(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , UpperCAmelCase__ ): lowercase_ : Tuple = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase_ : Dict = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
239
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ : str = logging.get_logger(__name__) a_ : Tuple = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class _snake_case ( A__ ): _lowercase : Optional[int] = '''levit''' def __init__( self , a=224 , a=3 , a=3 , a=2 , a=1 , a=16 , a=[128, 256, 384] , a=[4, 8, 12] , a=[4, 4, 4] , a=[16, 16, 16] , a=0 , a=[2, 2, 2] , a=[2, 2, 2] , a=0.02 , **a , ) -> List[str]: super().__init__(**a) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = kernel_size SCREAMING_SNAKE_CASE = stride SCREAMING_SNAKE_CASE = padding SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = key_dim SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = attention_ratio SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class _snake_case ( A__ ): _lowercase : Optional[int] = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE__ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def SCREAMING_SNAKE_CASE__ ( self) -> float: return 1E-4
327
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _snake_case ( unittest.TestCase ): _lowercase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowercase : int = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Any: SCREAMING_SNAKE_CASE = TextaTextGenerationPipeline(model=a , tokenizer=a) return generator, ["Something to write", "Something else"] def SCREAMING_SNAKE_CASE__ ( self , a , a) -> Any: SCREAMING_SNAKE_CASE = generator('Something there') self.assertEqual(a , [{'generated_text': ANY(a)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there')) SCREAMING_SNAKE_CASE = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=a) self.assertEqual( a , [ [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], ] , ) SCREAMING_SNAKE_CASE = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=a) self.assertEqual( a , [ [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], ] , ) with self.assertRaises(a): generator(4) @require_torch def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt') # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=a) self.assertEqual(a , [{'generated_text': ''}]) SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = generator( 'Something there' , num_return_sequences=a , num_beams=a , ) SCREAMING_SNAKE_CASE = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(a , a) SCREAMING_SNAKE_CASE = generator('This is a test' , do_sample=a , num_return_sequences=2 , return_tensors=a) self.assertEqual( a , [ {'generated_token_ids': ANY(torch.Tensor)}, {'generated_token_ids': ANY(torch.Tensor)}, ] , ) SCREAMING_SNAKE_CASE = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE = '<pad>' SCREAMING_SNAKE_CASE = generator( ['This is a test', 'This is a second test'] , do_sample=a , num_return_sequences=2 , batch_size=2 , return_tensors=a , ) self.assertEqual( a , [ [ {'generated_token_ids': ANY(torch.Tensor)}, {'generated_token_ids': ANY(torch.Tensor)}, ], [ {'generated_token_ids': ANY(torch.Tensor)}, {'generated_token_ids': ANY(torch.Tensor)}, ], ] , ) @require_tf def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf') # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=a) self.assertEqual(a , [{'generated_text': ''}])
327
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ : List[Any] = logging.get_logger(__name__) lowerCAmelCase__ : List[str] = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class __snake_case ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = """levit""" def __init__( self , __UpperCamelCase=224 , __UpperCamelCase=3 , __UpperCamelCase=3 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=16 , __UpperCamelCase=[128, 256, 384] , __UpperCamelCase=[4, 8, 12] , __UpperCamelCase=[4, 4, 4] , __UpperCamelCase=[16, 16, 16] , __UpperCamelCase=0 , __UpperCamelCase=[2, 2, 2] , __UpperCamelCase=[2, 2, 2] , __UpperCamelCase=0.0_2 , **__UpperCamelCase , ) -> int: '''simple docstring''' super().__init__(**__UpperCamelCase ) snake_case__ : str = image_size snake_case__ : Tuple = num_channels snake_case__ : Optional[Any] = kernel_size snake_case__ : Union[str, Any] = stride snake_case__ : List[Any] = padding snake_case__ : str = hidden_sizes snake_case__ : List[Any] = num_attention_heads snake_case__ : Any = depths snake_case__ : Dict = key_dim snake_case__ : Tuple = drop_path_rate snake_case__ : List[Any] = patch_size snake_case__ : Any = attention_ratio snake_case__ : int = mlp_ratio snake_case__ : int = initializer_range snake_case__ : Tuple = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __snake_case ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = version.parse("""1.11""" ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __a ( self ) -> float: '''simple docstring''' return 1E-4
143
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = DebertaTokenizer lowerCamelCase__ = True lowerCamelCase__ = DebertaTokenizerFast def __A ( self : List[Any] ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] SCREAMING_SNAKE_CASE_ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) SCREAMING_SNAKE_CASE_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] SCREAMING_SNAKE_CASE_ = {"unk_token": "[UNK]"} SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__magic_name__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__magic_name__ ) ) def __A ( self : str , **__magic_name__ : int ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) def __A ( self : str , __magic_name__ : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = "lower newer" return input_text, output_text def __A ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def __A ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = tokenizer("Hello" , "World" ) SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , __magic_name__ ) @slow def __A ( self : Any ) -> Any: SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) SCREAMING_SNAKE_CASE_ = tokenizer.encode("sequence builders" , add_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.encode( "sequence builders" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __A ( self : Tuple ) -> str: SCREAMING_SNAKE_CASE_ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained("microsoft/deberta-base" ) SCREAMING_SNAKE_CASE_ = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , padding=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) for seq in encoding["input_ids"]] # fmt: off SCREAMING_SNAKE_CASE_ = { "input_ids": [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on SCREAMING_SNAKE_CASE_ = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , __magic_name__ ) for expected, decoded in zip(__magic_name__ , __magic_name__ ): self.assertEqual(__magic_name__ , __magic_name__ )
118
0
'''simple docstring''' import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' with open(lowercase__ ) as metadata_file: A : Tuple = json.load(lowercase__ ) A : Tuple = LukeConfig(use_entity_aware_attention=lowercase__ , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path A : Union[str, Any] = torch.load(lowercase__ , map_location='''cpu''' ) # Load the entity vocab file A : Optional[int] = load_entity_vocab(lowercase__ ) A : int = RobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks A : List[Any] = AddedToken('''<ent>''' , lstrip=lowercase__ , rstrip=lowercase__ ) A : str = AddedToken('''<ent2>''' , lstrip=lowercase__ , rstrip=lowercase__ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(lowercase__ ) with open(os.path.join(lowercase__ , LukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(lowercase__ , lowercase__ ) A : Optional[int] = LukeTokenizer.from_pretrained(lowercase__ ) # Initialize the embeddings of the special tokens A : str = state_dict['''embeddings.word_embeddings.weight'''] A : Tuple = word_emb[tokenizer.convert_tokens_to_ids(['''@'''] )[0]].unsqueeze(0 ) A : str = word_emb[tokenizer.convert_tokens_to_ids(['''#'''] )[0]].unsqueeze(0 ) A : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A : Optional[Any] = F'encoder.layer.{layer_index}.attention.self.' A : str = state_dict[prefix + matrix_name] A : Optional[int] = state_dict[prefix + matrix_name] A : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A : Union[str, Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] A : List[str] = entity_emb[entity_vocab['''[MASK]''']] A : List[Any] = LukeModel(config=lowercase__ ).eval() A, A : Optional[int] = model.load_state_dict(lowercase__ , strict=lowercase__ ) if not (len(lowercase__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'Missing keys {", ".join(lowercase__ )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith('''entity_predictions''' ) or key.startswith('''lm_head''' ) for key in unexpected_keys )): raise ValueError( '''Unexpected keys''' F' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs A : Union[str, Any] = LukeTokenizer.from_pretrained(lowercase__ , task='''entity_classification''' ) A : Tuple = ( '''Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the''' ''' new world number one avoid a humiliating second- round exit at Wimbledon .''' ) A : Any = (39, 42) A : Dict = tokenizer(lowercase__ , entity_spans=[span] , add_prefix_space=lowercase__ , return_tensors='''pt''' ) A : Dict = model(**lowercase__ ) # Verify word hidden states if model_size == "large": A : Optional[int] = torch.Size((1, 42, 1024) ) A : Union[str, Any] = torch.tensor( [[0.01_33, 0.08_65, 0.00_95], [0.30_93, -0.25_76, -0.74_18], [-0.17_20, -0.21_17, -0.28_69]] ) else: # base A : Tuple = torch.Size((1, 42, 768) ) A : List[Any] = torch.tensor([[0.00_37, 0.13_68, -0.00_91], [0.10_99, 0.33_29, -0.10_95], [0.07_65, 0.53_35, 0.11_79]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": A : Any = torch.Size((1, 1, 1024) ) A : Optional[int] = torch.tensor([[0.04_66, -0.01_06, -0.01_79]] ) else: # base A : Union[str, Any] = torch.Size((1, 1, 768) ) A : Optional[Any] = torch.tensor([[0.14_57, 0.10_44, 0.01_74]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase__ , atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(lowercase__ ) ) model.save_pretrained(lowercase__ ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Tuple = {} with open(lowercase__ , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(lowercase__ ): A, A : Tuple = line.rstrip().split('''\t''' ) A : int = index return entity_vocab if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) lowercase : int = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
363
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase : List[str] = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
311
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "camembert-base": 512, } UpperCAmelCase__ = "▁" class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = ['''input_ids''', '''attention_mask'''] __snake_case = CamembertTokenizer def __init__( self : Dict , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : str="<s>" , __UpperCAmelCase : int="</s>" , __UpperCAmelCase : List[Any]="</s>" , __UpperCAmelCase : List[Any]="<s>" , __UpperCAmelCase : str="<unk>" , __UpperCAmelCase : Optional[int]="<pad>" , __UpperCAmelCase : Optional[Any]="<mask>" , __UpperCAmelCase : Optional[Any]=["<s>NOTUSED", "</s>NOTUSED"] , **__UpperCAmelCase : int , ) ->List[Any]: """simple docstring""" a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) a = vocab_file a = False if not self.vocab_file else True def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a = [self.cls_token_id] a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self : int , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase__ : int = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = { "configuration_xmod": [ "XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP", "XmodConfig", "XmodOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "XMOD_PRETRAINED_MODEL_ARCHIVE_LIST", "XmodForCausalLM", "XmodForMaskedLM", "XmodForMultipleChoice", "XmodForQuestionAnswering", "XmodForSequenceClassification", "XmodForTokenClassification", "XmodModel", "XmodPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
352
"""simple docstring""" import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class _SCREAMING_SNAKE_CASE( unittest.TestCase ): @require_torch def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = pipeline( task='''zero-shot-audio-classification''' ,model='''hf-internal-testing/tiny-clap-htsat-unfused''' ) __SCREAMING_SNAKE_CASE :Any = load_dataset('''ashraq/esc50''' ) __SCREAMING_SNAKE_CASE :int = dataset['''train''']['''audio'''][-1]['''array'''] __SCREAMING_SNAKE_CASE :Dict = audio_classifier(SCREAMING_SNAKE_CASE__ ,candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) ,[{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] ,) @unittest.skip('''No models are available in TF''' ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" pass @slow @require_torch def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = pipeline( task='''zero-shot-audio-classification''' ,model='''laion/clap-htsat-unfused''' ,) # This is an audio of a dog __SCREAMING_SNAKE_CASE :List[Any] = load_dataset('''ashraq/esc50''' ) __SCREAMING_SNAKE_CASE :Tuple = dataset['''train''']['''audio'''][-1]['''array'''] __SCREAMING_SNAKE_CASE :str = audio_classifier(SCREAMING_SNAKE_CASE__ ,candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) ,[ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] ,) __SCREAMING_SNAKE_CASE :Dict = audio_classifier([audio] * 5 ,candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) ,[ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 ,) __SCREAMING_SNAKE_CASE :Union[str, Any] = audio_classifier( [audio] * 5 ,candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ,batch_size=5 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) ,[ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 ,) @unittest.skip('''No models are available in TF''' ) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" pass
239
0
from __future__ import annotations def A_ ( _UpperCAmelCase ): if len(_UpperCAmelCase ) == 0: return [] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = min(_UpperCAmelCase ), max(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = int(max_value - min_value ) + 1 SCREAMING_SNAKE_CASE_: list[list] = [[] for _ in range(_UpperCAmelCase )] for i in my_list: buckets[int(i - min_value )].append(_UpperCAmelCase ) return [v for bucket in buckets for v in sorted(_UpperCAmelCase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
13
class __lowercase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = name SCREAMING_SNAKE_CASE_: Union[str, Any] = val def __str__( self : Dict): return F"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : List[str] , lowerCAmelCase__ : Any): return self.val < other.val class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: int = {} SCREAMING_SNAKE_CASE_: Any = self.build_heap(lowerCAmelCase__) def __getitem__( self : List[Any] , lowerCAmelCase__ : Dict): return self.get_value(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Dict): return (idx - 1) // 2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]): return idx * 2 + 1 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return idx * 2 + 2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): return self.heap_dict[key] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = len(lowerCAmelCase__) - 1 SCREAMING_SNAKE_CASE_: List[str] = self.get_parent_idx(lowerCAmelCase__) for idx, i in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Union[str, Any] = idx SCREAMING_SNAKE_CASE_: str = i.val for i in range(lowerCAmelCase__ , -1 , -1): self.sift_down(lowerCAmelCase__ , lowerCAmelCase__) return array def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]): while True: SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_left_child_idx(lowerCAmelCase__) # noqa: E741 SCREAMING_SNAKE_CASE_: Dict = self.get_right_child_idx(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = idx if l < len(lowerCAmelCase__) and array[l] < array[idx]: SCREAMING_SNAKE_CASE_: List[str] = l if r < len(lowerCAmelCase__) and array[r] < array[smallest]: SCREAMING_SNAKE_CASE_: str = r if smallest != idx: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = array[smallest], array[idx] ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): Optional[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) SCREAMING_SNAKE_CASE_: Optional[int] = smallest else: break def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Any = self.get_parent_idx(lowerCAmelCase__) while p >= 0 and self.heap[p] > self.heap[idx]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.heap[idx], self.heap[p] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) SCREAMING_SNAKE_CASE_: Union[str, Any] = p SCREAMING_SNAKE_CASE_: Optional[int] = self.get_parent_idx(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.heap[0] def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.heap[-1], self.heap[0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) SCREAMING_SNAKE_CASE_: int = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): self.heap.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = len(self.heap) - 1 SCREAMING_SNAKE_CASE_: List[str] = node.val self.sift_up(len(self.heap) - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return len(self.heap) == 0 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" SCREAMING_SNAKE_CASE_: Any = new_value SCREAMING_SNAKE_CASE_: Tuple = new_value self.sift_up(self.idx_of_element[node]) lowerCAmelCase : int = Node("""R""", -1) lowerCAmelCase : str = Node("""B""", 6) lowerCAmelCase : str = Node("""A""", 3) lowerCAmelCase : List[str] = Node("""X""", 1) lowerCAmelCase : Union[str, Any] = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array lowerCAmelCase : Optional[Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
13
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: int = StableDiffusionInpaintPipeline __a: int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __a: Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __a: int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __a: List[str] = frozenset([] ) def _lowercase ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , ) lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=lowercase_ ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) lowerCAmelCase_ = CLIPTextModel(lowercase_ ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowercase ( self , lowercase_ , lowercase_=0 ) -> int: '''simple docstring''' lowerCAmelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((6_4, 6_4) ) lowerCAmelCase_ = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((6_4, 6_4) ) if str(lowercase_ ).startswith('mps' ): lowerCAmelCase_ = torch.manual_seed(lowercase_ ) else: lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionInpaintPipeline(**lowercase_ ) lowerCAmelCase_ = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase_ = sd_pipe(**lowercase_ ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCAmelCase_ = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ) -> Any: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ , safety_checker=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9e-3 def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , torch_dtype=torch.floataa , safety_checker=lowercase_ , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowercase ( self ) -> List[str]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = PNDMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' ) lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , safety_checker=lowercase_ , scheduler=lowercase_ , torch_dtype=torch.floataa , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
14
1
import requests def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = {"""Content-Type""": """application/json"""} _A : str = requests.post(snake_case_,json={"""text""": message_body},headers=snake_case_ ) if response.status_code != 200: _A : Union[str, Any] = ( """Request to slack returned an error """ f'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(snake_case_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
26
def lowerCAmelCase_ ( snake_case_ ): if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
26
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process a : Optional[Any] = logging.getLogger(__name__) def lowerCAmelCase_ (lowerCAmelCase__: Tuple , lowerCAmelCase__: str ): """simple docstring""" return (preds == labels).mean() @dataclass class _a : A = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class _a : A = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) A = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) A = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: str = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCAmelCase__ ) # Set seed set_seed(training_args.seed ) try: UpperCAmelCase_: int = processors[data_args.task_name]() UpperCAmelCase_: int = processor.get_labels() UpperCAmelCase_: List[Any] = len(lowerCAmelCase__ ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_: List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) UpperCAmelCase_: Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase_: Optional[int] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , ) # Get datasets UpperCAmelCase_: Optional[Any] = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCAmelCase__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCAmelCase_: Dict = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCAmelCase__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(lowerCAmelCase__: EvalPrediction ) -> Dict: UpperCAmelCase_: Optional[int] = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowerCAmelCase__ , p.label_ids )} # Data collator UpperCAmelCase_: Optional[int] = DataCollatorWithPadding(lowerCAmelCase__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCAmelCase_: Optional[Any] = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=lowerCAmelCase__ , eval_dataset=lowerCAmelCase__ , compute_metrics=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_: int = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCAmelCase_: Optional[Any] = trainer.evaluate() UpperCAmelCase_: str = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(lowerCAmelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , lowerCAmelCase__ , lowerCAmelCase__ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(lowerCAmelCase__ ) return results def lowerCAmelCase_ (lowerCAmelCase__: Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
82
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer a : List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a : str = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } a : Dict = { 'google/electra-small-generator': 512, 'google/electra-base-generator': 512, 'google/electra-large-generator': 512, 'google/electra-small-discriminator': 512, 'google/electra-base-discriminator': 512, 'google/electra-large-discriminator': 512, } a : Optional[Any] = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class _a ( _lowerCAmelCase ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_INIT_CONFIGURATION A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ElectraTokenizer def __init__(self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="[UNK]", SCREAMING_SNAKE_CASE_="[SEP]", SCREAMING_SNAKE_CASE_="[PAD]", SCREAMING_SNAKE_CASE_="[CLS]", SCREAMING_SNAKE_CASE_="[MASK]", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: super().__init__( SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, do_lower_case=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, tokenize_chinese_chars=SCREAMING_SNAKE_CASE_, strip_accents=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""", SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get("""strip_accents""", SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""", SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): UpperCAmelCase_: Optional[int] = getattr(SCREAMING_SNAKE_CASE_, normalizer_state.pop("""type""" ) ) UpperCAmelCase_: Union[str, Any] = do_lower_case UpperCAmelCase_: Dict = strip_accents UpperCAmelCase_: List[Any] = tokenize_chinese_chars UpperCAmelCase_: int = normalizer_class(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = do_lower_case def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Optional[Any]: UpperCAmelCase_: Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCAmelCase_: Optional[int] = [self.sep_token_id] UpperCAmelCase_: Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: UpperCAmelCase_: Tuple = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
82
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _snake_case ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) __magic_name__ : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model @property def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) __magic_name__ : Optional[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , ) return model @property def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) __magic_name__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = self.dummy_uncond_unet __magic_name__ : Tuple = DDIMScheduler() __magic_name__ : List[Any] = self.dummy_vq_model __magic_name__ : Union[str, Any] = LDMPipeline(unet=_a , vqvae=_a , scheduler=_a ) ldm.to(_a ) ldm.set_progress_bar_config(disable=_a ) __magic_name__ : str = torch.manual_seed(0 ) __magic_name__ : str = ldm(generator=_a , num_inference_steps=2 , output_type="numpy" ).images __magic_name__ : int = torch.manual_seed(0 ) __magic_name__ : List[Any] = ldm(generator=_a , num_inference_steps=2 , output_type="numpy" , return_dict=_a )[0] __magic_name__ : List[str] = image[0, -3:, -3:, -1] __magic_name__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __magic_name__ : Any = np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72] ) __magic_name__ : Tuple = 1e-2 if torch_device != "mps" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256" ) ldm.to(_a ) ldm.set_progress_bar_config(disable=_a ) __magic_name__ : Optional[int] = torch.manual_seed(0 ) __magic_name__ : Union[str, Any] = ldm(generator=_a , num_inference_steps=5 , output_type="numpy" ).images __magic_name__ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __magic_name__ : List[Any] = np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47] ) __magic_name__ : int = 1e-2 if torch_device != "mps" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
281
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets snake_case : List[Any] = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" snake_case : Any = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" snake_case : str = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ] , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a=None , _a=True , _a=False ): if rouge_types is None: __magic_name__ : str = ["rouge1", "rouge2", "rougeL", "rougeLsum"] __magic_name__ : List[str] = rouge_scorer.RougeScorer(rouge_types=_a , use_stemmer=_a ) if use_aggregator: __magic_name__ : Dict = scoring.BootstrapAggregator() else: __magic_name__ : str = [] for ref, pred in zip(_a , _a ): __magic_name__ : Union[str, Any] = scorer.score(_a , _a ) if use_aggregator: aggregator.add_scores(_a ) else: scores.append(_a ) if use_aggregator: __magic_name__ : Any = aggregator.aggregate() else: __magic_name__ : List[Any] = {} for key in scores[0]: __magic_name__ : str = [score[key] for score in scores] return result
281
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def __magic_name__ ( A ) -> int: snake_case = botoa.client('iam' ) snake_case = { 'Version': '2012-10-17', 'Statement': [ {'Effect': 'Allow', 'Principal': {'Service': 'sagemaker.amazonaws.com'}, 'Action': 'sts:AssumeRole'} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=A , AssumeRolePolicyDocument=json.dumps(A , indent=2 ) ) snake_case = { 'Version': '2012-10-17', 'Statement': [ { 'Effect': 'Allow', 'Action': [ 'sagemaker:*', 'ecr:GetDownloadUrlForLayer', 'ecr:BatchGetImage', 'ecr:BatchCheckLayerAvailability', 'ecr:GetAuthorizationToken', 'cloudwatch:PutMetricData', 'cloudwatch:GetMetricData', 'cloudwatch:GetMetricStatistics', 'cloudwatch:ListMetrics', 'logs:CreateLogGroup', 'logs:CreateLogStream', 'logs:DescribeLogStreams', 'logs:PutLogEvents', 'logs:GetLogEvents', 's3:CreateBucket', 's3:ListBucket', 's3:GetBucketLocation', 's3:GetObject', 's3:PutObject', ], 'Resource': '*', } ], } # attach policy to role iam_client.put_role_policy( RoleName=A , PolicyName=F'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(A , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F'''role {role_name} already exists. Using existing one''' ) def __magic_name__ ( A ) -> Any: snake_case = botoa.client('iam' ) return iam_client.get_role(RoleName=A )["Role"]["Arn"] def __magic_name__ ( ) -> List[str]: snake_case = _ask_options( 'How do you want to authorize?' , ['AWS Profile', 'Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '] , A , ) snake_case = None if credentials_configuration == 0: snake_case = _ask_field('Enter your AWS Profile name: [default] ' , default='default' ) snake_case = aws_profile else: print( 'Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,' '`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`' ) snake_case = _ask_field('AWS Access Key ID: ' ) snake_case = aws_access_key_id snake_case = _ask_field('AWS Secret Access Key: ' ) snake_case = aws_secret_access_key snake_case = _ask_field('Enter your AWS Region: [us-east-1]' , default='us-east-1' ) snake_case = aws_region snake_case = _ask_options( 'Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?' , ['Provide IAM Role name', 'Create new IAM role using credentials'] , A , ) if role_management == 0: snake_case = _ask_field('Enter your IAM role name: ' ) else: snake_case = 'accelerate_sagemaker_execution_role' print(F'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(A ) snake_case = _ask_field( 'Do you want to use custom Docker image? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) snake_case = None if is_custom_docker_image: snake_case = _ask_field('Enter your Docker image: ' , lambda A : str(A ).lower() ) snake_case = _ask_field( 'Do you want to provide SageMaker input channels with data locations? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) snake_case = None if is_sagemaker_inputs_enabled: snake_case = _ask_field( 'Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ' , lambda A : str(A ).lower() , ) snake_case = _ask_field( 'Do you want to enable SageMaker metrics? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) snake_case = None if is_sagemaker_metrics_enabled: snake_case = _ask_field( 'Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ' , lambda A : str(A ).lower() , ) snake_case = _ask_options( 'What is the distributed mode?' , ['No distributed training', 'Data parallelism'] , _convert_sagemaker_distributed_mode , ) snake_case = {} snake_case = _ask_field( 'Do you wish to optimize your script with torch dynamo?[yes/NO]:' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) if use_dynamo: snake_case = 'dynamo_' snake_case = _ask_options( 'Which dynamo backend would you like to use?' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) snake_case = _ask_field( 'Do you want to customize the defaults sent to torch.compile? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) if use_custom_options: snake_case = _ask_options( 'Which mode do you want to use?' , A , lambda A : TORCH_DYNAMO_MODES[int(A )] , default='default' , ) snake_case = _ask_field( 'Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) snake_case = _ask_field( 'Do you want to enable dynamic shape tracing? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) snake_case = 'Which EC2 instance type you want to use for your training?' if distributed_type != SageMakerDistributedType.NO: snake_case = _ask_options( A , A , lambda A : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(A )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" snake_case = _ask_field(A , lambda A : str(A ).lower() , default='ml.p3.2xlarge' ) snake_case = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): snake_case = _ask_field( 'How many machines do you want use? [1]: ' , A , default=1 , ) snake_case = _ask_options( 'Do you wish to use FP16 or BF16 (mixed precision)?' , ['no', 'fp16', 'bf16', 'fp8'] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( 'Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.' ) return SageMakerConfig( image_uri=A , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=A , use_cpu=A , dynamo_config=A , eca_instance_type=A , profile=A , region=A , iam_role_name=A , mixed_precision=A , num_machines=A , sagemaker_inputs_file=A , sagemaker_metrics_file=A , )
332
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase_ = Lock() def __magic_name__ ( A , A , A , A , A , A , A ) -> Any: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(A ) process_lock.release() # receive your right neighbor's value process_lock.acquire() snake_case = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left snake_case = min(A , A ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(A ) process_lock.release() # receive your left neighbor's value process_lock.acquire() snake_case = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right snake_case = max(A , A ) # after all swaps are performed, send the values back to main result_pipe[1].send(A ) def __magic_name__ ( A ) -> str: snake_case = [] snake_case = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) snake_case = temp_rs snake_case = temp_rr for i in range(1 , len(A ) - 1 ): snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) snake_case = temp_rs snake_case = temp_rr process_array_.append( Process( target=A , args=( len(A ) - 1, arr[len(A ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(A ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(A ) ): snake_case = result_pipe[p][0].recv() process_array_[p].join() return arr def __magic_name__ ( ) -> Tuple: snake_case = list(range(1_0 , 0 , -1 ) ) print('Initial List' ) print(*A ) snake_case = odd_even_transposition(A ) print('Sorted List\n' ) print(*A ) if __name__ == "__main__": main()
332
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor A_ = logging.get_logger(__name__) class lowercase( UpperCAmelCase__ ): '''simple docstring''' def __init__( self: Optional[int], *a_: int, **a_: str ): '''simple docstring''' warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""", a_, ) super().__init__(*a_, **a_ )
64
'''simple docstring''' from __future__ import annotations class A__ : def __init__( self :Union[str, Any] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :str ) -> Optional[int]: '''simple docstring''' _a , _a : List[str] =text, pattern _a , _a : Union[str, Any] =len(SCREAMING_SNAKE_CASE ), len(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :str ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :int ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __UpperCAmelCase ( self :Union[str, Any] ) -> list[int]: '''simple docstring''' # searches pattern in text and returns index positions _a : Union[str, Any] =[] for i in range(self.textLen - self.patLen + 1 ): _a : Any =self.mismatch_in_text(SCREAMING_SNAKE_CASE ) if mismatch_index == -1: positions.append(SCREAMING_SNAKE_CASE ) else: _a : int =self.match_in_pattern(self.text[mismatch_index] ) _a : List[str] =( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A__: Any = '''ABAABA''' A__: int = '''AB''' A__: Optional[int] = BoyerMooreSearch(text, pattern) A__: Optional[Any] = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
276
0
"""simple docstring""" __UpperCamelCase : Optional[int] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' __UpperCamelCase : Union[str, Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __UpperCamelCase : List[str] = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
350
"""simple docstring""" from __future__ import annotations __UpperCamelCase : Any = 1.6021e-19 # units = C def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
74
0
'''simple docstring''' def _lowerCamelCase ( lowercase : int = 50 ) -> int: _a = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
63
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=0.9 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _UpperCAmelCase = size if size is not None else {'shortest_edge': 30} _UpperCAmelCase = crop_size if crop_size is not None else {'height': 30, 'width': 30} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize_and_center_crop _UpperCAmelCase = size _UpperCAmelCase = crop_pct _UpperCAmelCase = crop_size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def UpperCAmelCase__ ( self ) -> int: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : Optional[Any] = PoolFormerImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = PoolFormerImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'crop_pct' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
329
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=7 , __lowerCAmelCase=3 , __lowerCAmelCase=30 , __lowerCAmelCase=400 , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=[0.5, 0.5, 0.5] , __lowerCAmelCase=[0.5, 0.5, 0.5] , __lowerCAmelCase=True , __lowerCAmelCase=1 / 255 , __lowerCAmelCase=True , ) -> Optional[int]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowercase__ : Tuple = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} lowercase__ : Any = parent lowercase__ : Tuple = batch_size lowercase__ : List[str] = num_channels lowercase__ : int = min_resolution lowercase__ : Optional[Any] = max_resolution lowercase__ : Any = do_resize lowercase__ : Dict = size lowercase__ : List[Any] = do_normalize lowercase__ : List[str] = image_mean lowercase__ : Tuple = image_std lowercase__ : Union[str, Any] = do_rescale lowercase__ : str = rescale_factor lowercase__ : List[str] = do_pad def _lowerCAmelCase( self ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=False ) -> List[str]: if not batched: lowercase__ : Dict = image_inputs[0] if isinstance(_a , Image.Image ): lowercase__ : Optional[int] = image.size else: lowercase__ : str = image.shape[1], image.shape[2] if w < h: lowercase__ : List[Any] = int(self.size['''shortest_edge'''] * h / w ) lowercase__ : Dict = self.size["shortest_edge"] elif w > h: lowercase__ : List[Any] = self.size["shortest_edge"] lowercase__ : List[str] = int(self.size['''shortest_edge'''] * w / h ) else: lowercase__ : Any = self.size["shortest_edge"] lowercase__ : int = self.size["shortest_edge"] else: lowercase__ : Optional[Any] = [] for image in image_inputs: lowercase__ : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__ : List[Any] = max(_a , key=lambda __lowerCAmelCase : item[0] )[0] lowercase__ : Optional[int] = max(_a , key=lambda __lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = DetaImageProcessor if is_vision_available() else None def _lowerCAmelCase( self ) -> Any: lowercase__ : List[Any] = DetaImageProcessingTester(self ) @property def _lowerCAmelCase( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase( self ) -> Tuple: lowercase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , '''image_mean''' ) ) self.assertTrue(hasattr(_a , '''image_std''' ) ) self.assertTrue(hasattr(_a , '''do_normalize''' ) ) self.assertTrue(hasattr(_a , '''do_resize''' ) ) self.assertTrue(hasattr(_a , '''do_rescale''' ) ) self.assertTrue(hasattr(_a , '''do_pad''' ) ) self.assertTrue(hasattr(_a , '''size''' ) ) def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , _a ) def _lowerCAmelCase( self ) -> List[str]: pass def _lowerCAmelCase( self ) -> Optional[Any]: # Initialize image_processing lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__ : Any = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ : Any = self.image_processor_tester.get_expected_values(_a , batched=_a ) lowercase__ : int = image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCAmelCase( self ) -> Union[str, Any]: # Initialize image_processing lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input lowercase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__ : str = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ : Any = image_processing(_a , return_tensors='''pt''' ).pixel_values lowercase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(_a , batched=_a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCAmelCase( self ) -> Union[str, Any]: # Initialize image_processing lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input lowercase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__ : List[Any] = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ : List[str] = image_processing(_a , return_tensors='''pt''' ).pixel_values lowercase__ : int = self.image_processor_tester.get_expected_values(_a , batched=_a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowerCAmelCase( self ) -> Union[str, Any]: # prepare image and target lowercase__ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowercase__ : Tuple = json.loads(f.read() ) lowercase__ : Any = {"image_id": 39769, "annotations": target} # encode them lowercase__ : Union[str, Any] = DetaImageProcessor() lowercase__ : str = image_processing(images=_a , annotations=_a , return_tensors='''pt''' ) # verify pixel values lowercase__ : List[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _a ) lowercase__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _a , atol=1E-4 ) ) # verify area lowercase__ : int = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _a ) ) # verify boxes lowercase__ : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _a ) lowercase__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _a , atol=1E-3 ) ) # verify image_id lowercase__ : Any = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _a ) ) # verify is_crowd lowercase__ : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _a ) ) # verify class_labels lowercase__ : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _a ) ) # verify orig_size lowercase__ : List[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _a ) ) # verify size lowercase__ : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _a ) ) @slow def _lowerCAmelCase( self ) -> str: # prepare image, target and masks_path lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowercase__ : List[Any] = json.loads(f.read() ) lowercase__ : Any = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} lowercase__ : Dict = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowercase__ : List[Any] = DetaImageProcessor(format='''coco_panoptic''' ) lowercase__ : Optional[int] = image_processing(images=_a , annotations=_a , masks_path=_a , return_tensors='''pt''' ) # verify pixel values lowercase__ : Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _a ) lowercase__ : List[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _a , atol=1E-4 ) ) # verify area lowercase__ : Union[str, Any] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _a ) ) # verify boxes lowercase__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _a ) lowercase__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _a , atol=1E-3 ) ) # verify image_id lowercase__ : Optional[int] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _a ) ) # verify is_crowd lowercase__ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _a ) ) # verify class_labels lowercase__ : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _a ) ) # verify masks lowercase__ : List[Any] = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _a ) # verify orig_size lowercase__ : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _a ) ) # verify size lowercase__ : Optional[int] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _a ) )
369
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase ): if not all(x.isalpha() for x in string ): raise ValueError('''String must only contain alphabetic characters.''' ) lowercase__ : Tuple = sorted(string.lower() ) return len(UpperCAmelCase ) == len(set(UpperCAmelCase ) ) if __name__ == "__main__": __a: Union[str, Any] = input("""Enter a string """).strip() __a: Tuple = is_isogram(input_str) print(F'{input_str} is {"an" if isogram else "not an"} isogram.')
214
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : Optional[int] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _lowerCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCamelCase : Any = """ import os """ _lowerCamelCase : Optional[int] = """ def foo(): import os return False """ _lowerCamelCase : List[Any] = """ def foo(): def bar(): if True: import os return False return bar() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : Union[str, Any] = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError as e: raise ValueError() """ _lowerCamelCase : str = """ import os try: import bar except: raise ValueError() """ _lowerCamelCase : Optional[Any] = """ import os try: import bar import baz except ImportError: raise ValueError() """ _lowerCamelCase : Any = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ _lowerCamelCase : Dict = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = os.path.join(lowercase_ , '''test_file.py''' ) with open(lowercase_ , '''w''' ) as _tmp_file: _tmp_file.write(lowercase_ ) A__ = get_imports(lowercase_ ) assert parsed_imports == ["os"]
14
1
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( _A , _A , _A ): # Initialise PyTorch model a : str = RemBertConfig.from_json_file(_A ) print('Building PyTorch model from configuration: {}'.format(str(_A ) ) ) a : Dict = RemBertModel(_A ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_A , _A , _A ) # Save pytorch-model print('Save PyTorch model to {}'.format(_A ) ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": lowerCAmelCase: Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase: Union[str, Any] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
366
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase: Optional[int] = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: int = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys lowerCAmelCase: str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
96
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = {'''configuration_timm_backbone''': ['''TimmBackboneConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''TimmBackbone'''] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
87
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: list[int] , _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : str = int(_lowerCamelCase ) # Initialize Result __SCREAMING_SNAKE_CASE : Tuple = [] # Traverse through all denomination for denomination in reversed(_lowerCamelCase ): # Find denominations while int(_lowerCamelCase ) >= int(_lowerCamelCase ): total_value -= int(_lowerCamelCase ) answer.append(_lowerCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCamelCase__ : int = [] UpperCamelCase__ : List[Any] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): UpperCamelCase__ : Tuple = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(f"Denomination {i}: ").strip())) UpperCamelCase__ : str = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter UpperCamelCase__ : List[Any] = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] UpperCamelCase__ : str = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(f"Following is minimal change for {value}: ") UpperCamelCase__ : int = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
112
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE ( metaclass=__a ): __SCREAMING_SNAKE_CASE :Any = ["""note_seq"""] def __init__( self : Dict , *a__ : List[Any] , **a__ : Tuple ): requires_backends(self , ['''note_seq'''] ) @classmethod def snake_case__ ( cls : Any , *a__ : Union[str, Any] , **a__ : Optional[Any] ): requires_backends(cls , ['''note_seq'''] ) @classmethod def snake_case__ ( cls : int , *a__ : Any , **a__ : Tuple ): requires_backends(cls , ['''note_seq'''] )
98
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off _lowerCAmelCase = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] _lowerCAmelCase = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :str = """whisper""" __SCREAMING_SNAKE_CASE :str = ["""past_key_values"""] __SCREAMING_SNAKE_CASE :Tuple = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Dict , a__ : Optional[int]=5_1865 , a__ : str=80 , a__ : List[str]=6 , a__ : List[str]=4 , a__ : List[Any]=6 , a__ : Union[str, Any]=4 , a__ : Tuple=1536 , a__ : Optional[int]=1536 , a__ : List[str]=0.0 , a__ : Union[str, Any]=0.0 , a__ : Union[str, Any]=5_0257 , a__ : Dict=True , a__ : Optional[Any]=True , a__ : Union[str, Any]="gelu" , a__ : Tuple=256 , a__ : Dict=0.0 , a__ : str=0.0 , a__ : Optional[Any]=0.0 , a__ : int=0.02 , a__ : Any=False , a__ : List[Any]=1500 , a__ : Optional[int]=448 , a__ : Dict=5_0256 , a__ : str=5_0256 , a__ : Tuple=5_0256 , a__ : List[str]=None , a__ : List[Any]=[220, 5_0256] , a__ : Any=False , a__ : Dict=256 , a__ : Optional[Any]=False , a__ : str=0.05 , a__ : List[Any]=10 , a__ : List[Any]=2 , a__ : Optional[int]=0.0 , a__ : List[Any]=10 , a__ : Union[str, Any]=0 , a__ : int=7 , **a__ : Any , ): __magic_name__ = vocab_size __magic_name__ = num_mel_bins __magic_name__ = d_model __magic_name__ = encoder_layers __magic_name__ = encoder_attention_heads __magic_name__ = decoder_layers __magic_name__ = decoder_attention_heads __magic_name__ = decoder_ffn_dim __magic_name__ = encoder_ffn_dim __magic_name__ = dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = activation_function __magic_name__ = init_std __magic_name__ = encoder_layerdrop __magic_name__ = decoder_layerdrop __magic_name__ = use_cache __magic_name__ = encoder_layers __magic_name__ = scale_embedding # scale factor will be sqrt(d_model) if True __magic_name__ = max_source_positions __magic_name__ = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __magic_name__ = classifier_proj_size __magic_name__ = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __magic_name__ = apply_spec_augment __magic_name__ = mask_time_prob __magic_name__ = mask_time_length __magic_name__ = mask_time_min_masks __magic_name__ = mask_feature_prob __magic_name__ = mask_feature_length __magic_name__ = mask_feature_min_masks __magic_name__ = median_filter_width super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , suppress_tokens=a__ , begin_suppress_tokens=a__ , **a__ , ) class _SCREAMING_SNAKE_CASE ( __a ): @property def snake_case__ ( self : List[str] ): __magic_name__ = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: __magic_name__ = {0: '''batch'''} else: __magic_name__ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(a__ , direction='''inputs''' ) return common_inputs def snake_case__ ( self : Optional[int] , a__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional["TensorType"] = None , a__ : int = 2_2050 , a__ : float = 5.0 , a__ : int = 220 , ): __magic_name__ = OrderedDict() __magic_name__ = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=a__ , framework=a__ , sampling_rate=a__ , time_duration=a__ , frequency=a__ , ) __magic_name__ = encoder_inputs['''input_features'''].shape[2] __magic_name__ = encoder_sequence_length // 2 if self.use_past else seq_length __magic_name__ = super().generate_dummy_inputs( preprocessor.tokenizer , a__ , a__ , a__ , a__ ) __magic_name__ = encoder_inputs.pop('''input_features''' ) __magic_name__ = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: __magic_name__ = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def snake_case__ ( self : Dict ): return 1E-3
98
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class a__ ( a_ , a_ ): _a : int = "resnet" _a : Dict = ["basic", "bottleneck"] def __init__( self , _A=3 , _A=6_4 , _A=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , _A=[3, 4, 6, 3] , _A="bottleneck" , _A="relu" , _A=False , _A=None , _A=None , **_A , ): """simple docstring""" super().__init__(**_A ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) __lowerCAmelCase = num_channels __lowerCAmelCase = embedding_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = layer_type __lowerCAmelCase = hidden_act __lowerCAmelCase = downsample_in_first_stage __lowerCAmelCase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(_A ) + 1 )] __lowerCAmelCase , __lowerCAmelCase = get_aligned_output_features_output_indices( out_features=_A , out_indices=_A , stage_names=self.stage_names ) class a__ ( a_ ): _a : Union[str, Any] = version.parse("""1.11""" ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return 1E-3
92
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Any = ["image_processor", "tokenizer"] UpperCamelCase : Dict = "BridgeTowerImageProcessor" UpperCamelCase : List[Any] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , A , A ) -> Optional[int]: '''simple docstring''' super().__init__(A , A ) def __call__( self , A , A = None , A = True , A = False , A = None , A = None , A = 0 , A = None , A = None , A = None , A = False , A = False , A = False , A = False , A = True , A = None , **A , ) -> BatchEncoding: '''simple docstring''' lowerCamelCase = self.tokenizer( text=A , add_special_tokens=A , padding=A , truncation=A , max_length=A , stride=A , pad_to_multiple_of=A , return_token_type_ids=A , return_attention_mask=A , return_overflowing_tokens=A , return_special_tokens_mask=A , return_offsets_mapping=A , return_length=A , verbose=A , return_tensors=A , **A , ) # add pixel_values + pixel_mask lowerCamelCase = self.image_processor( A , return_tensors=A , do_normalize=A , do_center_crop=A , **A ) encoding.update(A ) return encoding def __A ( self , *A , **A ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*A , **A ) def __A ( self , *A , **A ) -> Optional[int]: '''simple docstring''' return self.tokenizer.decode(*A , **A ) @property def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = self.tokenizer.model_input_names lowerCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
252
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,) lowerCAmelCase : int = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) lowercase__ : str = import_module('''tasks''' ) try: lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels ) lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) ) lowercase__ : Optional[int] = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , ) lowercase__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ : str = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]: lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 ) lowercase__ , lowercase__ : Tuple = preds.shape lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )] lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__lowerCamelCase ) -> Dict: lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ), "precision": precision_score(__lowerCamelCase , __lowerCamelCase ), "recall": recall_score(__lowerCamelCase , __lowerCamelCase ), "f1": fa_score(__lowerCamelCase , __lowerCamelCase ), } # Data collator lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ : str = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ : Optional[int] = trainer.evaluate() lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__lowerCamelCase ) # Predict if training_args.do_predict: lowercase__ : Optional[int] = TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase ) lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return results def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
302
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
1
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants A__ : List[Any] =Mapping[str, np.ndarray] A__ : Dict =Mapping[str, Any] # Is a nested dict. A__ : Optional[Any] =0.01 @dataclasses.dataclass(frozen=snake_case_ ) class UpperCAmelCase : _lowercase: np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. _lowercase: np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. _lowercase: np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. _lowercase: np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. _lowercase: np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions _lowercase: Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files _lowercase: Optional[str] = None # Templates used to generate this protein (prediction-only) _lowercase: Optional[Sequence[str]] = None # Chain corresponding to each parent _lowercase: Optional[Sequence[int]] = None def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = r"""(\[[A-Z]+\]\n)""" _lowerCAmelCase = [tag.strip() for tag in re.split(lowerCAmelCase , lowerCAmelCase ) if len(lowerCAmelCase ) > 0] _lowerCAmelCase = zip(tags[0::2] , [l.split("""\n""" ) for l in tags[1::2]] ) _lowerCAmelCase = ["N", "CA", "C"] _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None for g in groups: if "[PRIMARY]" == g[0]: _lowerCAmelCase = g[1][0].strip() for i in range(len(lowerCAmelCase ) ): if seq[i] not in residue_constants.restypes: _lowerCAmelCase = """X""" # FIXME: strings are immutable _lowerCAmelCase = np.array( [residue_constants.restype_order.get(lowerCAmelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: _lowerCAmelCase = [] for axis in range(3 ): tertiary.append(list(map(lowerCAmelCase , g[1][axis].split() ) ) ) _lowerCAmelCase = np.array(lowerCAmelCase ) _lowerCAmelCase = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(lowerCAmelCase ): _lowerCAmelCase = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: _lowerCAmelCase = np.array(list(map({"""-""": 0, """+""": 1}.get , g[1][0].strip() ) ) ) _lowerCAmelCase = np.zeros( ( len(lowerCAmelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(lowerCAmelCase ): _lowerCAmelCase = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=lowerCAmelCase , atom_mask=lowerCAmelCase , aatype=lowerCAmelCase , residue_index=np.arange(len(lowerCAmelCase ) ) , b_factors=lowerCAmelCase , ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase = 0 ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) _lowerCAmelCase = prot.parents _lowerCAmelCase = prot.parents_chain_index if parents is not None and parents_chain_index is not None: _lowerCAmelCase = [p for i, p in zip(lowerCAmelCase , lowerCAmelCase ) if i == chain_id] if parents is None or len(lowerCAmelCase ) == 0: _lowerCAmelCase = ["""N/A"""] pdb_headers.append(f"PARENT {' '.join(lowerCAmelCase )}" ) return pdb_headers def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = pdb_str.split("""\n""" ) _lowerCAmelCase = prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) _lowerCAmelCase = 42 if prot.parents is not None and len(prot.parents ) > 0: _lowerCAmelCase = [] if prot.parents_chain_index is not None: _lowerCAmelCase = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(lowerCAmelCase ) , [] ) parent_dict[str(lowerCAmelCase )].append(lowerCAmelCase ) _lowerCAmelCase = max([int(lowerCAmelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): _lowerCAmelCase = parent_dict.get(str(lowerCAmelCase ) , ["""N/A"""] ) parents_per_chain.append(lowerCAmelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: _lowerCAmelCase = [["""N/A"""]] def make_parent_line(lowerCAmelCase ) -> str: return f"PARENT {' '.join(lowerCAmelCase )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) _lowerCAmelCase = 0 for i, l in enumerate(lowerCAmelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(lowerCAmelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(lowerCAmelCase ): _lowerCAmelCase = parents_per_chain[chain_counter] else: _lowerCAmelCase = ["""N/A"""] out_pdb_lines.append(make_parent_line(lowerCAmelCase ) ) return "\n".join(lowerCAmelCase ) def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = residue_constants.restypes + ["""X"""] def res_atoa(lowerCAmelCase ) -> str: return residue_constants.restype_atoa.get(restypes[r] , """UNK""" ) _lowerCAmelCase = residue_constants.atom_types _lowerCAmelCase = [] _lowerCAmelCase = prot.atom_mask _lowerCAmelCase = prot.aatype _lowerCAmelCase = prot.atom_positions _lowerCAmelCase = prot.residue_index.astype(np.intaa ) _lowerCAmelCase = prot.b_factors _lowerCAmelCase = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("""Invalid aatypes.""" ) _lowerCAmelCase = get_pdb_headers(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: pdb_lines.extend(lowerCAmelCase ) _lowerCAmelCase = aatype.shape[0] _lowerCAmelCase = 1 _lowerCAmelCase = 0 _lowerCAmelCase = string.ascii_uppercase _lowerCAmelCase = None # Add all atom sites. for i in range(lowerCAmelCase ): _lowerCAmelCase = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(lowerCAmelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue _lowerCAmelCase = """ATOM""" _lowerCAmelCase = atom_name if len(lowerCAmelCase ) == 4 else f" {atom_name}" _lowerCAmelCase = """""" _lowerCAmelCase = """""" _lowerCAmelCase = 1.00 _lowerCAmelCase = atom_name[0] # Protein supports only C, N, O, S, this works. _lowerCAmelCase = """""" _lowerCAmelCase = """A""" if chain_index is not None: _lowerCAmelCase = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! _lowerCAmelCase = ( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(lowerCAmelCase ) atom_index += 1 _lowerCAmelCase = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: _lowerCAmelCase = True _lowerCAmelCase = chain_index[i + 1] if should_terminate: # Close the chain. _lowerCAmelCase = """TER""" _lowerCAmelCase = ( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(lowerCAmelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(lowerCAmelCase , lowerCAmelCase ) ) pdb_lines.append("""END""" ) pdb_lines.append("""""" ) return "\n".join(lowerCAmelCase ) def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ): """simple docstring""" return Protein( aatype=features["""aatype"""] , atom_positions=result["""final_atom_positions"""] , atom_mask=result["""final_atom_mask"""] , residue_index=features["""residue_index"""] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["""final_atom_mask"""] ) , chain_index=lowerCAmelCase , remark=lowerCAmelCase , parents=lowerCAmelCase , parents_chain_index=lowerCAmelCase , )
70
'''simple docstring''' import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class UpperCAmelCase ( snake_case_ ): def lowercase__ ( self : List[Any] ) -> Union[str, Any]: _lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__snake_case , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__snake_case , """num_attention_heads""" ) ) self.parent.assertTrue(hasattr(__snake_case , """num_encoder_blocks""" ) ) class UpperCAmelCase : def __init__( self : Optional[int] , __snake_case : str , __snake_case : Dict=13 , __snake_case : str=64 , __snake_case : Dict=3 , __snake_case : Dict=4 , __snake_case : Tuple=[2, 2, 2, 2] , __snake_case : int=[8, 4, 2, 1] , __snake_case : List[str]=[16, 32, 64, 1_28] , __snake_case : Optional[Any]=[1, 4, 8, 16] , __snake_case : Dict=[1, 2, 4, 8] , __snake_case : Optional[Any]=True , __snake_case : List[str]=True , __snake_case : int="gelu" , __snake_case : Optional[Any]=0.1 , __snake_case : Any=0.1 , __snake_case : Tuple=0.02 , __snake_case : Union[str, Any]=3 , __snake_case : Tuple=None , ) -> List[str]: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_encoder_blocks _lowerCAmelCase = sr_ratios _lowerCAmelCase = depths _lowerCAmelCase = hidden_sizes _lowerCAmelCase = downsampling_rates _lowerCAmelCase = num_attention_heads _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = scope def lowercase__ ( self : int ) -> Union[str, Any]: _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[Any] ) -> List[str]: return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowercase__ ( self : Tuple , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[int] ) -> Tuple: _lowerCAmelCase = SegformerModel(config=__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = _lowerCAmelCase = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def lowercase__ ( self : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> List[str]: _lowerCAmelCase = self.num_labels _lowerCAmelCase = SegformerForSemanticSegmentation(__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model(__snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) _lowerCAmelCase = model(__snake_case , labels=__snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def lowercase__ ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Dict ) -> List[str]: _lowerCAmelCase = 1 _lowerCAmelCase = SegformerForSemanticSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(__snake_case ) _lowerCAmelCase = model(__snake_case , labels=__snake_case ) self.parent.assertGreater(result.loss , 0.0 ) def lowercase__ ( self : Optional[int] ) -> int: _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): _lowercase: Any = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) _lowercase: Tuple = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) _lowercase: Tuple = True _lowercase: Union[str, Any] = False _lowercase: Dict = False _lowercase: Optional[Any] = False def lowercase__ ( self : Tuple ) -> Any: _lowerCAmelCase = SegformerModelTester(self ) _lowerCAmelCase = SegformerConfigTester(self , config_class=__snake_case ) def lowercase__ ( self : Optional[Any] ) -> Dict: self.config_tester.run_common_tests() def lowercase__ ( self : int ) -> Union[str, Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowercase__ ( self : Dict ) -> int: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*__snake_case ) def lowercase__ ( self : Dict ) -> Dict: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*__snake_case ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def lowercase__ ( self : int ) -> Union[str, Any]: pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def lowercase__ ( self : Optional[int] ) -> int: pass def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__snake_case ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) def lowercase__ ( self : Tuple ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True for model_class in self.all_model_classes: _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) _lowerCAmelCase = outputs.attentions _lowerCAmelCase = sum(self.model_tester.depths ) self.assertEqual(len(__snake_case ) , __snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCAmelCase = True _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__snake_case ) , __snake_case ) # verify the first attentions (first block, first layer) _lowerCAmelCase = (self.model_tester.image_size // 4) ** 2 _lowerCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) _lowerCAmelCase = (self.model_tester.image_size // 32) ** 2 _lowerCAmelCase = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) _lowerCAmelCase = len(__snake_case ) # Check attention is always last and order is fine _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) self.assertEqual(out_len + 1 , len(__snake_case ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__snake_case ) , __snake_case ) # verify the first attentions (first block, first layer) _lowerCAmelCase = (self.model_tester.image_size // 4) ** 2 _lowerCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def lowercase__ ( self : int ) -> List[str]: def check_hidden_states_output(__snake_case : str , __snake_case : Tuple , __snake_case : Optional[int] ): _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) _lowerCAmelCase = outputs.hidden_states _lowerCAmelCase = self.model_tester.num_encoder_blocks self.assertEqual(len(__snake_case ) , __snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def lowercase__ ( self : Optional[Any] ) -> Any: if not self.model_tester.is_training: return _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(__snake_case ): continue _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.train() _lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) _lowerCAmelCase = model(**__snake_case ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : Tuple ) -> Dict: pass @slow def lowercase__ ( self : str ) -> Optional[int]: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = SegformerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def lowercase__ ( self : Union[str, Any] ) -> Any: # only resize + normalize _lowerCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case ) _lowerCAmelCase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( __snake_case ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=__snake_case , return_tensors="""pt""" ) _lowerCAmelCase = encoded_inputs.pixel_values.to(__snake_case ) with torch.no_grad(): _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , __snake_case ) _lowerCAmelCase = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def lowercase__ ( self : Optional[Any] ) -> Any: # only resize + normalize _lowerCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case ) _lowerCAmelCase = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(__snake_case ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=__snake_case , return_tensors="""pt""" ) _lowerCAmelCase = encoded_inputs.pixel_values.to(__snake_case ) with torch.no_grad(): _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , __snake_case ) _lowerCAmelCase = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __snake_case , atol=1E-1 ) ) @slow def lowercase__ ( self : Any ) -> str: # only resize + normalize _lowerCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case ) _lowerCAmelCase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( __snake_case ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=__snake_case , return_tensors="""pt""" ) _lowerCAmelCase = encoded_inputs.pixel_values.to(__snake_case ) with torch.no_grad(): _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = outputs.logits.detach().cpu() _lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=__snake_case , target_sizes=[(5_00, 3_00)] ) _lowerCAmelCase = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , __snake_case ) _lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=__snake_case ) _lowerCAmelCase = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , __snake_case )
70
1
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCamelCase : List[str] = random.Random() def _lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str]=1.0 , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Dict=None ) -> Any: """simple docstring""" if rng is None: _SCREAMING_SNAKE_CASE =global_rng _SCREAMING_SNAKE_CASE =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class A__ ( unittest.TestCase ): def __init__( self : List[Any] , _a : Tuple , _a : Dict=7 , _a : List[Any]=400 , _a : List[str]=2000 , _a : Optional[Any]=10 , _a : Dict=160 , _a : Tuple=8 , _a : Any=0.0 , _a : Optional[Any]=4000 , _a : List[Any]=False , _a : Dict=True , ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =min_seq_length _SCREAMING_SNAKE_CASE =max_seq_length _SCREAMING_SNAKE_CASE =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _SCREAMING_SNAKE_CASE =padding_value _SCREAMING_SNAKE_CASE =sampling_rate _SCREAMING_SNAKE_CASE =return_attention_mask _SCREAMING_SNAKE_CASE =do_normalize _SCREAMING_SNAKE_CASE =feature_size _SCREAMING_SNAKE_CASE =chunk_length _SCREAMING_SNAKE_CASE =hop_length def A ( self : Any ) -> Optional[Any]: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def A ( self : Optional[Any] , _a : Any=False , _a : Union[str, Any]=False ) -> Optional[Any]: '''simple docstring''' def _flatten(_a : Union[str, Any] ): return list(itertools.chain(*_a ) ) if equal_length: _SCREAMING_SNAKE_CASE =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _SCREAMING_SNAKE_CASE =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _SCREAMING_SNAKE_CASE =[np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A__ ( A__ , unittest.TestCase ): A__ = WhisperFeatureExtractor if is_speech_available() else None def A ( self : Union[str, Any] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =WhisperFeatureExtractionTester(self ) def A ( self : str ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE =feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _SCREAMING_SNAKE_CASE =self.feature_extraction_class.from_pretrained(_a ) _SCREAMING_SNAKE_CASE =feat_extract_first.to_dict() _SCREAMING_SNAKE_CASE =feat_extract_second.to_dict() _SCREAMING_SNAKE_CASE =feat_extract_first.mel_filters _SCREAMING_SNAKE_CASE =feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def A ( self : Tuple ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE =os.path.join(_a , 'feat_extract.json' ) feat_extract_first.to_json_file(_a ) _SCREAMING_SNAKE_CASE =self.feature_extraction_class.from_json_file(_a ) _SCREAMING_SNAKE_CASE =feat_extract_first.to_dict() _SCREAMING_SNAKE_CASE =feat_extract_second.to_dict() _SCREAMING_SNAKE_CASE =feat_extract_first.mel_filters _SCREAMING_SNAKE_CASE =feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def A ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _SCREAMING_SNAKE_CASE =[np.asarray(_a ) for speech_input in speech_inputs] # Test feature size _SCREAMING_SNAKE_CASE =feature_extractor(_a , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _SCREAMING_SNAKE_CASE =feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features _SCREAMING_SNAKE_CASE =feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in (800, 800, 800)] _SCREAMING_SNAKE_CASE =np.asarray(_a ) _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test truncation required _SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _SCREAMING_SNAKE_CASE =[np.asarray(_a ) for speech_input in speech_inputs] _SCREAMING_SNAKE_CASE =[x[: feature_extractor.n_samples] for x in speech_inputs] _SCREAMING_SNAKE_CASE =[np.asarray(_a ) for speech_input in speech_inputs_truncated] _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def A ( self : Any ) -> List[Any]: '''simple docstring''' import torch _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _SCREAMING_SNAKE_CASE =np.random.rand(100 , 32 ).astype(np.floataa ) _SCREAMING_SNAKE_CASE =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _SCREAMING_SNAKE_CASE =feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _SCREAMING_SNAKE_CASE =feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def A ( self : Tuple , _a : str ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _SCREAMING_SNAKE_CASE =ds.sort('id' ).select(range(_a ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def A ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on _SCREAMING_SNAKE_CASE =self._load_datasamples(1 ) _SCREAMING_SNAKE_CASE =WhisperFeatureExtractor() _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _a , atol=1e-4 ) ) def A ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _SCREAMING_SNAKE_CASE =self._load_datasamples(1 )[0] _SCREAMING_SNAKE_CASE =((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _SCREAMING_SNAKE_CASE =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1e-3 ) )
355
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCamelCase : List[str] = {"UserAgent": UserAgent().random} def _lowerCAmelCase ( _UpperCamelCase : str ) -> dict: """simple docstring""" _SCREAMING_SNAKE_CASE =script.contents[0] _SCREAMING_SNAKE_CASE =json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A__ : def __init__( self : int , _a : List[Any] ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =f"https://www.instagram.com/{username}/" _SCREAMING_SNAKE_CASE =self.get_json() def A ( self : Optional[int] ) -> dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =requests.get(self.url , headers=_a ).text _SCREAMING_SNAKE_CASE =BeautifulSoup(_a , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : str ) -> str: '''simple docstring''' return f"{self.__class__.__name__}('{self.username}')" def __str__( self : Optional[int] ) -> str: '''simple docstring''' return f"{self.fullname} ({self.username}) is {self.biography}" @property def A ( self : List[Any] ) -> str: '''simple docstring''' return self.user_data["username"] @property def A ( self : str ) -> str: '''simple docstring''' return self.user_data["full_name"] @property def A ( self : Any ) -> str: '''simple docstring''' return self.user_data["biography"] @property def A ( self : Optional[Any] ) -> str: '''simple docstring''' return self.user_data["business_email"] @property def A ( self : Tuple ) -> str: '''simple docstring''' return self.user_data["external_url"] @property def A ( self : Optional[int] ) -> int: '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def A ( self : Union[str, Any] ) -> int: '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def A ( self : List[str] ) -> int: '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def A ( self : Union[str, Any] ) -> str: '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def A ( self : Dict ) -> bool: '''simple docstring''' return self.user_data["is_verified"] @property def A ( self : Tuple ) -> bool: '''simple docstring''' return self.user_data["is_private"] def _lowerCAmelCase ( _UpperCamelCase : str = "github" ) -> None: """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions _SCREAMING_SNAKE_CASE =InstagramUser(_UpperCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _UpperCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Optional[int] = InstagramUser("github") print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
114
0
def lowerCAmelCase_ ( _snake_case : Dict = 10**12 ) -> int: '''simple docstring''' __magic_name__ : List[str] = 1 __magic_name__ : Optional[Any] = 0 __magic_name__ : Any = 1 __magic_name__ : Optional[int] = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F"{solution() = }")
281
"""simple docstring""" import os import sys import unittest __lowercase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __lowercase = os.path.join(git_repo_path, """src""", """diffusers""") class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : Any): a : List[Any] = find_backend(" if not is_torch_available():") self.assertEqual(__UpperCAmelCase , "torch") # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") a : Dict = find_backend(" if not (is_torch_available() and is_transformers_available()):") self.assertEqual(__UpperCAmelCase , "torch_and_transformers") # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") a : int = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):") self.assertEqual(__UpperCAmelCase , "torch_and_transformers_and_onnx") def __snake_case ( self : Union[str, Any]): a : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , __UpperCAmelCase) self.assertIn("torch_and_transformers" , __UpperCAmelCase) self.assertIn("flax_and_transformers" , __UpperCAmelCase) self.assertIn("torch_and_transformers_and_onnx" , __UpperCAmelCase) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"]) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"]) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"]) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"]) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"]) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"]) def __snake_case ( self : Tuple): a : Optional[int] = create_dummy_object("CONSTANT" , "'torch'") self.assertEqual(__UpperCAmelCase , "\nCONSTANT = None\n") a : Dict = create_dummy_object("function" , "'torch'") self.assertEqual( __UpperCAmelCase , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n") a : Optional[Any] = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" a : int = create_dummy_object("FakeClass" , "'torch'") self.assertEqual(__UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : List[str]): a : List[str] = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" a : Tuple = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]}) self.assertEqual(dummy_files["torch"] , __UpperCAmelCase)
40
0
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _lowerCamelCase : '''simple docstring''' def __init__( self : Optional[int] , _A : int , _A : Optional[Any]=None , _A : Union[str, Any]=None , _A : List[str]=None , _A : Optional[Any]="resnet50" , _A : Optional[int]=3 , _A : List[str]=32 , _A : Tuple=3 , _A : int=True , _A : Optional[Any]=True , ) -> Tuple: __magic_name__ : Dict = parent __magic_name__ : Dict = out_indices if out_indices is not None else [4] __magic_name__ : Any = stage_names __magic_name__ : Optional[int] = out_features __magic_name__ : int = backbone __magic_name__ : Union[str, Any] = batch_size __magic_name__ : Any = image_size __magic_name__ : List[str] = num_channels __magic_name__ : Optional[Any] = use_pretrained_backbone __magic_name__ : List[Any] = is_training def __lowerCAmelCase ( self : Tuple ) -> List[str]: __magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Dict = self.get_config() return config, pixel_values def __lowerCAmelCase ( self : int ) -> Optional[int]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[Any] , _A : List[str] ) -> Any: __magic_name__ : List[Any] = TimmBackbone(config=_A ) model.to(_A ) model.eval() with torch.no_grad(): __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __lowerCAmelCase ( self : Dict ) -> List[str]: __magic_name__ : Dict = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ : Optional[int] = config_and_inputs __magic_name__ : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _lowerCamelCase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = (TimmBackbone,) if is_torch_available() else () A_ : Optional[Any] = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} A_ : Dict = False A_ : Union[str, Any] = False A_ : List[Any] = False A_ : Tuple = False def __lowerCAmelCase ( self : Optional[int] ) -> Dict: __magic_name__ : Optional[Any] = TimmBackboneModelTester(self ) __magic_name__ : str = ConfigTester(self , config_class=_A , has_text_modality=_A ) def __lowerCAmelCase ( self : str ) -> Tuple: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self : int ) -> List[Any]: __magic_name__ : Optional[Any] = 'resnet18' __magic_name__ : Optional[Any] = 'microsoft/resnet-18' __magic_name__ : Optional[int] = AutoBackbone.from_pretrained(_A , use_timm_backbone=_A ) __magic_name__ : Optional[Any] = AutoBackbone.from_pretrained(_A ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __magic_name__ : Optional[Any] = AutoBackbone.from_pretrained(_A , use_timm_backbone=_A , out_indices=[1, 2, 3] ) __magic_name__ : List[str] = AutoBackbone.from_pretrained(_A , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def __lowerCAmelCase ( self : int ) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def __lowerCAmelCase ( self : int ) -> int: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __lowerCAmelCase ( self : Optional[int] ) -> Tuple: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def __lowerCAmelCase ( self : int ) -> Dict: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __lowerCAmelCase ( self : Dict ) -> Any: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __lowerCAmelCase ( self : int ) -> Optional[Any]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __lowerCAmelCase ( self : int ) -> List[str]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def __lowerCAmelCase ( self : Dict ) -> str: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def __lowerCAmelCase ( self : Optional[Any] ) -> int: pass @unittest.skip('Safetensors is not supported by timm.' ) def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: pass def __lowerCAmelCase ( self : Optional[int] ) -> Tuple: __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple = model_class(_A ) __magic_name__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : int = [*signature.parameters.keys()] __magic_name__ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def __lowerCAmelCase ( self : List[str] ) -> Tuple: __magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : List[str] = True __magic_name__ : List[str] = self.has_attentions # no need to test all models as different heads yield the same functionality __magic_name__ : Optional[Any] = self.all_model_classes[0] __magic_name__ : str = model_class(_A ) model.to(_A ) __magic_name__ : Dict = self._prepare_for_class(_A , _A ) __magic_name__ : List[Any] = model(**_A ) __magic_name__ : str = outputs[0][-1] # Encoder-/Decoder-only models __magic_name__ : Union[str, Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __magic_name__ : int = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=_A ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __lowerCAmelCase ( self : List[str] ) -> Tuple: __magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : str = model_class(_A ) model.to(_A ) model.eval() __magic_name__ : str = model(**_A ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __magic_name__ : Optional[Any] = copy.deepcopy(_A ) __magic_name__ : Any = None __magic_name__ : Union[str, Any] = model_class(_A ) model.to(_A ) model.eval() __magic_name__ : Optional[int] = model(**_A ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __magic_name__ : Union[str, Any] = copy.deepcopy(_A ) __magic_name__ : Optional[Any] = False __magic_name__ : List[str] = model_class(_A ) model.to(_A ) model.eval() __magic_name__ : int = model(**_A )
275
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :str = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[str] = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[str] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
275
1
"""simple docstring""" from math import pi, sqrt, tan def __magic_name__ ( __snake_case : float ) -> float: if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values" ) return 6 * side_length**2 def __magic_name__ ( __snake_case : float , __snake_case : float , __snake_case : float ) -> float: if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __magic_name__ ( __snake_case : float ) -> float: if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values" ) return 4 * pi * radius**2 def __magic_name__ ( __snake_case : float ) -> float: if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values" ) return 3 * pi * radius**2 def __magic_name__ ( __snake_case : float , __snake_case : float ) -> float: if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __magic_name__ ( __snake_case : float , __snake_case : float , __snake_case : float ) -> float: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) lowercase : List[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __magic_name__ ( __snake_case : float , __snake_case : float ) -> float: if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values" ) return 2 * pi * radius * (height + radius) def __magic_name__ ( __snake_case : float , __snake_case : float ) -> float: if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values" ) if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(__snake_case , 2 ) * torus_radius * tube_radius def __magic_name__ ( __snake_case : float , __snake_case : float ) -> float: if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values" ) return length * width def __magic_name__ ( __snake_case : float ) -> float: if side_length < 0: raise ValueError("area_square() only accepts non-negative values" ) return side_length**2 def __magic_name__ ( __snake_case : float , __snake_case : float ) -> float: if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values" ) return (base * height) / 2 def __magic_name__ ( __snake_case : float , __snake_case : float , __snake_case : float ) -> float: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle" ) lowercase : Any = (sidea + sidea + sidea) / 2 lowercase : Union[str, Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __magic_name__ ( __snake_case : float , __snake_case : float ) -> float: if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values" ) return base * height def __magic_name__ ( __snake_case : float , __snake_case : float , __snake_case : float ) -> float: if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values" ) return 1 / 2 * (basea + basea) * height def __magic_name__ ( __snake_case : float ) -> float: if radius < 0: raise ValueError("area_circle() only accepts non-negative values" ) return pi * radius**2 def __magic_name__ ( __snake_case : float , __snake_case : float ) -> float: if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values" ) return pi * radius_x * radius_y def __magic_name__ ( __snake_case : float , __snake_case : float ) -> float: if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values" ) return 1 / 2 * diagonal_a * diagonal_a def __magic_name__ ( __snake_case : int , __snake_case : float ) -> float: if not isinstance(__snake_case , __snake_case ) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides" ) elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("""[DEMO] Areas of various geometric shapes: \n""") print(F"Rectangle: {area_rectangle(10, 20) = }") print(F"Square: {area_square(10) = }") print(F"Triangle: {area_triangle(10, 10) = }") print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(F"Parallelogram: {area_parallelogram(10, 20) = }") print(F"Rhombus: {area_rhombus(10, 20) = }") print(F"Trapezium: {area_trapezium(10, 20, 30) = }") print(F"Circle: {area_circle(20) = }") print(F"Ellipse: {area_ellipse(10, 20) = }") print("""\nSurface Areas of various geometric shapes: \n""") print(F"Cube: {surface_area_cube(20) = }") print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(F"Sphere: {surface_area_sphere(20) = }") print(F"Hemisphere: {surface_area_hemisphere(20) = }") print(F"Cone: {surface_area_cone(10, 20) = }") print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(F"Cylinder: {surface_area_cylinder(10, 20) = }") print(F"Torus: {surface_area_torus(20, 10) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(F"Square: {area_reg_polygon(4, 10) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
202
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class a__ : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.0_2 , _a=3 , _a=4 , _a=None , _a=1_000 , ): lowercase : Optional[Any] = parent lowercase : Dict = batch_size lowercase : str = seq_length lowercase : List[Any] = is_training lowercase : Dict = use_input_mask lowercase : str = use_token_type_ids lowercase : int = use_labels lowercase : Union[str, Any] = vocab_size lowercase : Dict = hidden_size lowercase : List[str] = num_hidden_layers lowercase : Optional[int] = num_attention_heads lowercase : Tuple = intermediate_size lowercase : List[str] = hidden_act lowercase : int = hidden_dropout_prob lowercase : Any = attention_probs_dropout_prob lowercase : Dict = max_position_embeddings lowercase : Optional[int] = type_vocab_size lowercase : Tuple = type_sequence_label_size lowercase : Optional[int] = initializer_range lowercase : Dict = num_labels lowercase : Optional[int] = num_choices lowercase : List[Any] = scope lowercase : Dict = range_bbox def __magic_name__ ( self ): lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowercase : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase : Any = bbox[i, j, 3] lowercase : Optional[Any] = bbox[i, j, 1] lowercase : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase : Dict = bbox[i, j, 2] lowercase : List[str] = bbox[i, j, 0] lowercase : List[Any] = t lowercase : Any = tf.convert_to_tensor(_a ) lowercase : Dict = None if self.use_input_mask: lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Optional[int] = None if self.use_token_type_ids: lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : Optional[int] = None lowercase : List[Any] = None lowercase : Tuple = None if self.use_labels: lowercase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase : int = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ): lowercase : str = TFLayoutLMModel(config=_a ) lowercase : Optional[Any] = model(_a , _a , attention_mask=_a , token_type_ids=_a ) lowercase : Dict = model(_a , _a , token_type_ids=_a ) lowercase : List[str] = model(_a , _a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ): lowercase : List[Any] = TFLayoutLMForMaskedLM(config=_a ) lowercase : Union[str, Any] = model(_a , _a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ): lowercase : Dict = self.num_labels lowercase : Any = TFLayoutLMForSequenceClassification(config=_a ) lowercase : List[Any] = model(_a , _a , attention_mask=_a , token_type_ids=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ): lowercase : int = self.num_labels lowercase : Dict = TFLayoutLMForTokenClassification(config=_a ) lowercase : Tuple = model(_a , _a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ): lowercase : int = TFLayoutLMForQuestionAnswering(config=_a ) lowercase : Any = model(_a , _a , attention_mask=_a , token_type_ids=_a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self ): lowercase : Optional[int] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : List[Any] = config_and_inputs lowercase : int = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class a__ ( a_, a_, unittest.TestCase ): __lowerCAmelCase = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __lowerCAmelCase = ( { """feature-extraction""": TFLayoutLMModel, """fill-mask""": TFLayoutLMForMaskedLM, """text-classification""": TFLayoutLMForSequenceClassification, """token-classification""": TFLayoutLMForTokenClassification, """zero-shot""": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = 10 def __magic_name__ ( self ): lowercase : List[Any] = TFLayoutLMModelTester(self ) lowercase : List[Any] = ConfigTester(self , config_class=_a , hidden_size=37 ) def __magic_name__ ( self ): self.config_tester.run_common_tests() def __magic_name__ ( self ): lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __magic_name__ ( self ): lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def __magic_name__ ( self ): lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_a ) def __magic_name__ ( self ): lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) def __magic_name__ ( self ): lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) @slow def __magic_name__ ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : List[str] = TFLayoutLMModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def __magic_name__ ( self ): pass def __magic_name__ ( ) -> Optional[int]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off lowercase : str = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 lowercase : Union[str, Any] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowercase : Tuple = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 lowercase : Optional[Any] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowercase : List[Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class a__ ( unittest.TestCase ): @slow def __magic_name__ ( self ): lowercase : Dict = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) lowercase , lowercase , lowercase , lowercase , lowercase : Union[str, Any] = prepare_layoutlm_batch_inputs() # forward pass lowercase : Optional[int] = model(input_ids=_a , bbox=_a , attention_mask=_a , token_type_ids=_a ) # test the sequence output on [0, :3, :3] lowercase : Any = tf.convert_to_tensor( [[0.1_7_8_5, -0.1_9_4_7, -0.0_4_2_5], [-0.3_2_5_4, -0.2_8_0_7, 0.2_5_5_3], [-0.5_3_9_1, -0.3_3_2_2, 0.3_3_6_4]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _a , atol=1E-3 ) ) # test the pooled output on [1, :3] lowercase : Optional[Any] = tf.convert_to_tensor([-0.6_5_8_0, -0.0_2_1_4, 0.8_5_5_2] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _a , atol=1E-3 ) ) @slow def __magic_name__ ( self ): # initialize model with randomly initialized sequence classification head lowercase : List[Any] = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 ) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass lowercase : Optional[Any] = model( input_ids=_a , bbox=_a , attention_mask=_a , token_type_ids=_a , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar lowercase : Union[str, Any] = outputs.loss lowercase : Union[str, Any] = (2,) self.assertEqual(loss.shape , _a ) # test the shape of the logits lowercase : List[str] = outputs.logits lowercase : Optional[Any] = (2, 2) self.assertEqual(logits.shape , _a ) @slow def __magic_name__ ( self ): # initialize model with randomly initialized token classification head lowercase : Any = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 ) lowercase , lowercase , lowercase , lowercase , lowercase : str = prepare_layoutlm_batch_inputs() # forward pass lowercase : List[Any] = model( input_ids=_a , bbox=_a , attention_mask=_a , token_type_ids=_a , labels=_a ) # test the shape of the logits lowercase : int = outputs.logits lowercase : Optional[Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _a ) @slow def __magic_name__ ( self ): # initialize model with randomly initialized token classification head lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) lowercase , lowercase , lowercase , lowercase , lowercase : Tuple = prepare_layoutlm_batch_inputs() # forward pass lowercase : Optional[int] = model(input_ids=_a , bbox=_a , attention_mask=_a , token_type_ids=_a ) # test the shape of the logits lowercase : Any = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _a ) self.assertEqual(outputs.end_logits.shape , _a )
202
1
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = '''vision-encoder-decoder''' UpperCamelCase : List[Any] = True def __init__( self : List[Any] , **UpperCAmelCase__ : Optional[int] ) -> Any: super().__init__(**UpperCAmelCase__ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) _a : List[str] = kwargs.pop("""encoder""" ) _a : Optional[int] = encoder_config.pop("""model_type""" ) _a : Optional[Any] = kwargs.pop("""decoder""" ) _a : List[Any] = decoder_config.pop("""model_type""" ) _a : int = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__ ) _a : Optional[Any] = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__ ) _a : Optional[Any] = True @classmethod def _lowercase ( cls : str , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Optional[Any] ) -> PretrainedConfig: logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) _a : Optional[int] = True _a : List[str] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ) -> str: _a : List[str] = copy.deepcopy(self.__dict__ ) _a : Any = self.encoder.to_dict() _a : Union[str, Any] = self.decoder.to_dict() _a : Tuple = self.__class__.model_type return output class UpperCamelCase ( snake_case_ ): UpperCamelCase : Optional[int] = version.parse('''1.11''' ) @property def _lowercase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase ( self : Dict ) -> float: return 1E-4 @property def _lowercase ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class UpperCamelCase ( snake_case_ ): @property def _lowercase ( self : Any ) -> Mapping[str, Mapping[int, str]]: _a : Optional[int] = OrderedDict() _a : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _a : Any = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _a : Union[str, Any] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def _lowercase ( self : Optional[int] , UpperCAmelCase__ : "PreTrainedTokenizerBase" , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional["TensorType"] = None , ) -> Mapping[str, Any]: import torch _a : int = OrderedDict() _a : Any = super().generate_dummy_inputs( UpperCAmelCase__ , batch_size=UpperCAmelCase__ , seq_length=UpperCAmelCase__ , is_pair=UpperCAmelCase__ , framework=UpperCAmelCase__ ) _a : List[Any] = dummy_input["""input_ids"""].shape _a : Tuple = (batch, encoder_sequence, self._config.encoder_hidden_size) _a : Optional[int] = dummy_input.pop("""input_ids""" ) _a : List[Any] = dummy_input.pop("""attention_mask""" ) _a : Tuple = torch.zeros(UpperCAmelCase__ ) return common_inputs class UpperCamelCase ( snake_case_ ): @property def _lowercase ( self : Optional[int] ) -> None: pass def _lowercase ( self : Any , UpperCAmelCase__ : PretrainedConfig ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(UpperCAmelCase__ ) def _lowercase ( self : int , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : str = "default" ) -> OnnxConfig: _a : str = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(UpperCAmelCase__ , UpperCAmelCase__ )
354
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): @property def _lowercase ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) _a : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _lowercase ( self : Dict ) -> Dict: _a : str = self.dummy_uncond_unet _a : Optional[int] = KarrasVeScheduler() _a : List[str] = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : int = torch.manual_seed(0 ) _a : List[Any] = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : Tuple = torch.manual_seed(0 ) _a : int = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" , return_dict=UpperCAmelCase__ )[0] _a : int = image[0, -3:, -3:, -1] _a : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Tuple ) -> List[str]: _a : Optional[Any] = """google/ncsnpp-celebahq-256""" _a : Any = UNetaDModel.from_pretrained(UpperCAmelCase__ ) _a : Dict = KarrasVeScheduler() _a : int = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Optional[int] = torch.manual_seed(0 ) _a : Tuple = pipe(num_inference_steps=20 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _a : Optional[int] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
324
0
"""simple docstring""" import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Optional[Any]=7 ,lowerCamelCase__ : Union[str, Any]=3 ,lowerCamelCase__ : int=18 ,lowerCamelCase__ : Any=30 ,lowerCamelCase__ : str=400 ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : Tuple=None ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : List[Any]=None ,lowerCamelCase__ : Dict=True ,lowerCamelCase__ : int=[0.5, 0.5, 0.5] ,lowerCamelCase__ : Tuple=[0.5, 0.5, 0.5] ,lowerCamelCase__ : Optional[Any]=False ,): UpperCAmelCase__ = size if size is not None else {'height': 20, 'width': 20} UpperCAmelCase__ = crop_size if crop_size is not None else {'height': 18, 'width': 18} UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = image_size UpperCAmelCase__ = min_resolution UpperCAmelCase__ = max_resolution UpperCAmelCase__ = do_resize UpperCAmelCase__ = size UpperCAmelCase__ = do_center_crop UpperCAmelCase__ = crop_size UpperCAmelCase__ = do_normalize UpperCAmelCase__ = image_mean UpperCAmelCase__ = image_std UpperCAmelCase__ = do_reduce_labels def __lowerCAmelCase ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def a_ ( ): UpperCAmelCase__ = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) UpperCAmelCase__ = Image.open(dataset[0]['file'] ) UpperCAmelCase__ = Image.open(dataset[1]['file'] ) return image, map def a_ ( ): UpperCAmelCase__ = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) UpperCAmelCase__ = Image.open(ds[0]['file'] ) UpperCAmelCase__ = Image.open(ds[1]['file'] ) UpperCAmelCase__ = Image.open(ds[2]['file'] ) UpperCAmelCase__ = Image.open(ds[3]['file'] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class snake_case ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" snake_case__ = BeitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self : Any ): UpperCAmelCase__ = BeitImageProcessingTester(self ) @property def __lowerCAmelCase ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : Dict ): UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'size' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'image_mean' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'image_std' ) ) def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 20, 'width': 20} ) self.assertEqual(image_processor.crop_size ,{'height': 18, 'width': 18} ) self.assertEqual(image_processor.do_reduce_labels ,lowerCamelCase__ ) UpperCAmelCase__ = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=lowerCamelCase__ ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) self.assertEqual(image_processor.crop_size ,{'height': 84, 'width': 84} ) self.assertEqual(image_processor.do_reduce_labels ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[Any] ): pass def __lowerCAmelCase ( self : str ): # Initialize image_processing UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,Image.Image ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched UpperCAmelCase__ = image_processing(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def __lowerCAmelCase ( self : Dict ): # Initialize image_processing UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ,numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,np.ndarray ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched UpperCAmelCase__ = image_processing(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def __lowerCAmelCase ( self : Any ): # Initialize image_processing UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ,torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,torch.Tensor ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched UpperCAmelCase__ = image_processing(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def __lowerCAmelCase ( self : Optional[int] ): # Initialize image_processing UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ,torchify=lowerCamelCase__ ) UpperCAmelCase__ = [] for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] ,maps[0] ,return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) self.assertEqual( encoding['labels'].shape ,( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) self.assertEqual(encoding['labels'].dtype ,torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test batched UpperCAmelCase__ = image_processing(lowerCamelCase__ ,lowerCamelCase__ ,return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) self.assertEqual( encoding['labels'].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) self.assertEqual(encoding['labels'].dtype ,torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test not batched input (PIL images) UpperCAmelCase__ , UpperCAmelCase__ = prepare_semantic_single_inputs() UpperCAmelCase__ = image_processing(lowerCamelCase__ ,lowerCamelCase__ ,return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) self.assertEqual( encoding['labels'].shape ,( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) self.assertEqual(encoding['labels'].dtype ,torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test batched input (PIL images) UpperCAmelCase__ , UpperCAmelCase__ = prepare_semantic_batch_inputs() UpperCAmelCase__ = image_processing(lowerCamelCase__ ,lowerCamelCase__ ,return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape ,( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) self.assertEqual( encoding['labels'].shape ,( 2, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) self.assertEqual(encoding['labels'].dtype ,torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) def __lowerCAmelCase ( self : Optional[int] ): # Initialize image_processing UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 UpperCAmelCase__ , UpperCAmelCase__ = prepare_semantic_single_inputs() UpperCAmelCase__ = image_processing(lowerCamelCase__ ,lowerCamelCase__ ,return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 150 ) UpperCAmelCase__ = True UpperCAmelCase__ = image_processing(lowerCamelCase__ ,lowerCamelCase__ ,return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 )
98
"""simple docstring""" import argparse lowerCAmelCase__ : List[str] = 'docs/source/_static/js/custom.js' def a_ ( lowerCamelCase ): with open(lowerCamelCase , encoding='utf-8' , newline='\n' ) as f: UpperCAmelCase__ = f.readlines() UpperCAmelCase__ = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 UpperCAmelCase__ = f'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f''' "v{version}": "v{version}",\n''' with open(lowerCamelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') lowerCAmelCase__ : Optional[int] = parser.parse_args() update_custom_js(args.version)
98
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowercase ( unittest.TestCase ): @property def __snake_case( self : Any ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model @property def __snake_case( self : Optional[int] ) -> int: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , ) return model @property def __snake_case( self : Dict ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(_UpperCamelCase ) def __snake_case( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.dummy_uncond_unet SCREAMING_SNAKE_CASE = DDIMScheduler() SCREAMING_SNAKE_CASE = self.dummy_vq_model SCREAMING_SNAKE_CASE = LDMPipeline(unet=_UpperCamelCase , vqvae=_UpperCamelCase , scheduler=_UpperCamelCase ) ldm.to(_UpperCamelCase ) ldm.set_progress_bar_config(disable=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ldm(generator=_UpperCamelCase , num_inference_steps=2 , output_type="numpy" ).images SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ldm(generator=_UpperCamelCase , num_inference_steps=2 , output_type="numpy" , return_dict=_UpperCamelCase )[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) SCREAMING_SNAKE_CASE = 1e-2 if torch_device != "mps" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class lowercase ( unittest.TestCase ): def __snake_case( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256" ) ldm.to(_UpperCamelCase ) ldm.set_progress_bar_config(disable=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ldm(generator=_UpperCamelCase , num_inference_steps=5 , output_type="numpy" ).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) SCREAMING_SNAKE_CASE = 1e-2 if torch_device != "mps" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
356
def __lowerCamelCase (UpperCAmelCase__ : str , UpperCAmelCase__ : str = " " ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 for index, char in enumerate(UpperCAmelCase__ ): if char == separator: split_words.append(string[last_index:index] ) SCREAMING_SNAKE_CASE = index + 1 elif index + 1 == len(UpperCAmelCase__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
206
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class A_ (unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) UpperCAmelCase_ : List[str] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" UpperCAmelCase_ : Dict = model(__lowerCAmelCase )["last_hidden_state"] UpperCAmelCase_ : Optional[int] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __lowerCAmelCase ) # compare the actual values for a slice. UpperCAmelCase_ : int = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
61
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class _A : def A__ ( self , __lowerCAmelCase ): """simple docstring""" raise NotImplementedError() def A__ ( self ): """simple docstring""" raise NotImplementedError() class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = False , **__lowerCAmelCase ): """simple docstring""" lowercase = tokenizer lowercase = skip_prompt lowercase = decode_kwargs # variables used in the streaming process lowercase = [] lowercase = 0 lowercase = True def A__ ( self , __lowerCAmelCase ): """simple docstring""" if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: lowercase = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowercase = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowercase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): lowercase = text[self.print_len :] lowercase = [] lowercase = 0 # If the last token is a CJK character, we print the characters. elif len(__lowerCAmelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowercase = text[self.print_len :] self.print_len += len(__lowerCAmelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowercase = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(__lowerCAmelCase ) self.on_finalized_text(__lowerCAmelCase ) def A__ ( self ): """simple docstring""" if len(self.token_cache ) > 0: lowercase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) lowercase = text[self.print_len :] lowercase = [] lowercase = 0 else: lowercase = """""" lowercase = True self.on_finalized_text(__lowerCAmelCase , stream_end=__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = False ): """simple docstring""" print(__lowerCAmelCase , flush=__lowerCAmelCase , end="""""" if not stream_end else None ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = None , **__lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) lowercase = Queue() lowercase = None lowercase = timeout def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = False ): """simple docstring""" self.text_queue.put(__lowerCAmelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ): """simple docstring""" return self def A__ ( self ): """simple docstring""" lowercase = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
197
0
"""simple docstring""" import os def a__ ( SCREAMING_SNAKE_CASE : str = "input.txt" ): '''simple docstring''' with open(os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) as input_file: lowerCAmelCase : Tuple = [ [int(SCREAMING_SNAKE_CASE ) for element in line.split("," )] for line in input_file.readlines() ] lowerCAmelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = len(matrix[0] ) lowerCAmelCase : Dict = [[-1 for _ in range(SCREAMING_SNAKE_CASE )] for _ in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): lowerCAmelCase : int = matrix[i][0] for j in range(1 , SCREAMING_SNAKE_CASE ): for i in range(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Dict = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[str] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowerCAmelCase : List[Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F"{solution() = }")
350
"""simple docstring""" import re from filelock import FileLock try: import nltk lowerCAmelCase__ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' re.sub("<n>" , "" , SCREAMING_SNAKE_CASE ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE ) )
133
0
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __lowercase ( snake_case_ : int ) ->int: '''simple docstring''' __A : Optional[Any] = prime_factors(snake_case_ ) if is_square_free(snake_case_ ): return -1 if len(snake_case_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
179
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __lowercase ( snake_case_ : int ) ->Tuple: '''simple docstring''' if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False def __lowercase ( snake_case_ : str ) ->Dict: '''simple docstring''' for char in word: __A : int = ord(snake_case_ ) if not _is_chinese_char(snake_case_ ): return 0 return 1 def __lowercase ( snake_case_ : List[str] ) ->List[Any]: '''simple docstring''' __A : str = set() for token in tokens: __A : List[Any] = len(snake_case_ ) > 1 and is_chinese(snake_case_ ) if chinese_word: word_set.add(snake_case_ ) __A : Any = list(snake_case_ ) return word_list def __lowercase ( snake_case_ : List[str] ,snake_case_ : set() ) ->Any: '''simple docstring''' if not chinese_word_set: return bert_tokens __A : List[Any] = max([len(snake_case_ ) for w in chinese_word_set] ) __A : List[str] = bert_tokens __A , __A : Any = 0, len(snake_case_ ) while start < end: __A : str = True if is_chinese(bert_word[start] ): __A : int = min(end - start ,snake_case_ ) for i in range(snake_case_ ,1 ,-1 ): __A : Any = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 ,start + i ): __A : Any = '''##''' + bert_word[j] __A : Optional[int] = start + i __A : str = False break if single_word: start += 1 return bert_word def __lowercase ( snake_case_ : List[str] ,snake_case_ : LTP ,snake_case_ : BertTokenizer ) ->Dict: '''simple docstring''' __A : Optional[Any] = [] for i in range(0 ,len(snake_case_ ) ,100 ): __A : int = ltp_tokenizer.seg(lines[i : i + 100] )[0] __A : List[Any] = [get_chinese_word(snake_case_ ) for r in res] ltp_res.extend(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) __A : Any = [] for i in range(0 ,len(snake_case_ ) ,100 ): __A : Tuple = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=snake_case_ ,truncation=snake_case_ ,max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(snake_case_ ) == len(snake_case_ ) __A : Optional[int] = [] for input_ids, chinese_word in zip(snake_case_ ,snake_case_ ): __A : List[str] = [] for id in input_ids: __A : Tuple = bert_tokenizer._convert_id_to_token(snake_case_ ) input_tokens.append(snake_case_ ) __A : Optional[int] = add_sub_symbol(snake_case_ ,snake_case_ ) __A : Optional[Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(snake_case_ ): if token[:2] == "##": __A : Optional[Any] = token[2:] # save chinese tokens' pos if len(snake_case_ ) == 1 and _is_chinese_char(ord(snake_case_ ) ): ref_id.append(snake_case_ ) ref_ids.append(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) return ref_ids def __lowercase ( snake_case_ : int ) ->List[Any]: '''simple docstring''' with open(args.file_name ,'''r''' ,encoding='''utf-8''' ) as f: __A : List[str] = f.readlines() __A : Optional[Any] = [line.strip() for line in data if len(snake_case_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __A : str = LTP(args.ltp ) # faster in GPU device __A : Optional[int] = BertTokenizer.from_pretrained(args.bert ) __A : Optional[Any] = prepare_ref(snake_case_ ,snake_case_ ,snake_case_ ) with open(args.save_path ,'''w''' ,encoding='''utf-8''' ) as f: __A : int = [json.dumps(snake_case_ ) + '''\n''' for ref in ref_ids] f.writelines(snake_case_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") a_ = parser.parse_args() main(args)
179
1
"""simple docstring""" from collections.abc import Sequence def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCamelCase ) ) def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float: '''simple docstring''' __UpperCAmelCase : Dict = 0.0 for coeff in reversed(_UpperCamelCase ): __UpperCAmelCase : Any = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase : str = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
320
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : Optional[int] ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ) __UpperCAmelCase : List[Any] = sum(_UpperCamelCase ) __UpperCAmelCase : Optional[int] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __UpperCAmelCase : Any = True for i in range(1 , s + 1 ): __UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: __UpperCAmelCase : Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __UpperCAmelCase : Optional[int] = s - 2 * j break return diff
320
1
from __future__ import annotations import math def lowerCamelCase__ ( snake_case_ : int , snake_case_ : int , snake_case_ : bool , snake_case_ : list[int] , snake_case_ : float ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , snake_case_ , snake_case_ , snake_case_ ) , minimax(depth + 1 , node_index * 2 + 1 , snake_case_ , snake_case_ , snake_case_ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , snake_case_ , snake_case_ , snake_case_ ) , minimax(depth + 1 , node_index * 2 + 1 , snake_case_ , snake_case_ , snake_case_ ) , ) ) def lowerCamelCase__ ( ) -> None: __snake_case = [90, 23, 6, 33, 21, 65, 123, 3_4423] __snake_case = math.log(len(snake_case_ ) , 2 ) print(f"""Optimal value : {minimax(0 , 0 , snake_case_ , snake_case_ , snake_case_ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
24
import os import pytest from transformers.dynamic_module_utils import get_imports snake_case_ = '\nimport os\n' snake_case_ = '\ndef foo():\n import os\n return False\n' snake_case_ = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' snake_case_ = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , snake_case_ ) def lowerCamelCase__ ( snake_case_ : str , snake_case_ : Optional[int] ) -> Dict: __snake_case = os.path.join(snake_case_ , '''test_file.py''' ) with open(snake_case_ , '''w''' ) as _tmp_file: _tmp_file.write(snake_case_ ) __snake_case = get_imports(snake_case_ ) assert parsed_imports == ["os"]
24
1
'''simple docstring''' # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class a : def __init__( self , __magic_name__ , __magic_name__ , __magic_name__ = True , __magic_name__ = False ) -> str: _a = scheduler _a = optimizers if isinstance(__magic_name__ , (list, tuple) ) else [optimizers] _a = split_batches _a = step_with_optimizer _a = GradientState() def __UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ) -> List[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*__magic_name__ , **__magic_name__ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*__magic_name__ , **__magic_name__ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step _a = AcceleratorState().num_processes for _ in range(__magic_name__ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*__magic_name__ , **__magic_name__ ) else: self.scheduler.step(*__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self ) -> Union[str, Any]: return self.scheduler.get_last_lr() def __UpperCAmelCase ( self ) -> Any: return self.scheduler.state_dict() def __UpperCAmelCase ( self , __magic_name__ ) -> Any: self.scheduler.load_state_dict(__magic_name__ ) def __UpperCAmelCase ( self ) -> Dict: return self.scheduler.get_lr() def __UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ) -> List[str]: return self.scheduler.print_lr(*__magic_name__ , **__magic_name__ )
104
'''simple docstring''' from timeit import timeit def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' if number < 0: raise ValueError('the value of input must not be negative' ) _a = 0 while number: number &= number - 1 result += 1 return result def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' if number < 0: raise ValueError('the value of input must not be negative' ) _a = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def _A () -> None: '''simple docstring''' def do_benchmark(lowerCAmelCase__ :int ) -> None: _a = 'import __main__ as z' print(f'Benchmark when {number = }:' ) print(f'{get_set_bits_count_using_modulo_operator(lowerCAmelCase__ ) = }' ) _a = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=lowerCAmelCase__ ) print(f'timeit() runs in {timing} seconds' ) print(f'{get_set_bits_count_using_brian_kernighans_algorithm(lowerCAmelCase__ ) = }' ) _a = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=lowerCAmelCase__ , ) print(f'timeit() runs in {timing} seconds' ) for number in (25, 37, 58, 0): do_benchmark(lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
104
1
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput SCREAMING_SNAKE_CASE__ = 8 def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any]=BITS ) -> Dict: """simple docstring""" snake_case = x.device snake_case = (x * 2_5_5).int().clamp(0 , 2_5_5 ) snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_UpperCamelCase ) snake_case = rearrange(_UpperCamelCase , 'd -> d 1 1' ) snake_case = rearrange(_UpperCamelCase , 'b c h w -> b c 1 h w' ) snake_case = ((x & mask) != 0).float() snake_case = rearrange(_UpperCamelCase , 'b c d h w -> b (c d) h w' ) snake_case = bits * 2 - 1 return bits def lowerCAmelCase__ ( _UpperCamelCase : List[str] , _UpperCamelCase : int=BITS ) -> Optional[Any]: """simple docstring""" snake_case = x.device snake_case = (x > 0).int() snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_UpperCamelCase , dtype=torch.intaa ) snake_case = rearrange(_UpperCamelCase , 'd -> d 1 1' ) snake_case = rearrange(_UpperCamelCase , 'b (c d) h w -> b c d h w' , d=8 ) snake_case = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 2_5_5).clamp(0.0 , 1.0 ) def lowerCAmelCase__ ( self : Union[str, Any] , _UpperCamelCase : torch.FloatTensor , _UpperCamelCase : int , _UpperCamelCase : torch.FloatTensor , _UpperCamelCase : float = 0.0 , _UpperCamelCase : bool = True , _UpperCamelCase : List[Any]=None , _UpperCamelCase : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas snake_case = self.alphas_cumprod[timestep] snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod snake_case = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" snake_case = self.bit_scale if self.config.clip_sample: snake_case = torch.clamp(_UpperCamelCase , -scale , _UpperCamelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) snake_case = self._get_variance(_UpperCamelCase , _UpperCamelCase ) snake_case = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 snake_case = model_output.device if torch.is_tensor(_UpperCamelCase ) else 'cpu' snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_UpperCamelCase ).to(_UpperCamelCase ) snake_case = self._get_variance(_UpperCamelCase , _UpperCamelCase ) ** 0.5 * eta * noise snake_case = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_UpperCamelCase , pred_original_sample=_UpperCamelCase ) def lowerCAmelCase__ ( self : Dict , _UpperCamelCase : torch.FloatTensor , _UpperCamelCase : int , _UpperCamelCase : torch.FloatTensor , _UpperCamelCase : Union[str, Any]="epsilon" , _UpperCamelCase : Dict=None , _UpperCamelCase : bool = True , ) -> Union[DDPMSchedulerOutput, Tuple]: """simple docstring""" snake_case = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: snake_case ,snake_case = torch.split(_UpperCamelCase , sample.shape[1] , dim=1 ) else: snake_case = None # 1. compute alphas, betas snake_case = self.alphas_cumprod[t] snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one snake_case = 1 - alpha_prod_t snake_case = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": snake_case = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" snake_case = self.bit_scale if self.config.clip_sample: snake_case = torch.clamp(_UpperCamelCase , -scale , _UpperCamelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise snake_case = 0 if t > 0: snake_case = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_UpperCamelCase ).to(model_output.device ) snake_case = (self._get_variance(_UpperCamelCase , predicted_variance=_UpperCamelCase ) ** 0.5) * noise snake_case = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_UpperCamelCase , pred_original_sample=_UpperCamelCase ) class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1.0 , ): """simple docstring""" super().__init__() snake_case = bit_scale snake_case = ( ddim_bit_scheduler_step if isinstance(lowerCAmelCase , lowerCAmelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) @torch.no_grad() def __call__( self , lowerCAmelCase = 2_56 , lowerCAmelCase = 2_56 , lowerCAmelCase = 50 , lowerCAmelCase = None , lowerCAmelCase = 1 , lowerCAmelCase = "pil" , lowerCAmelCase = True , **lowerCAmelCase , ): """simple docstring""" snake_case = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=lowerCAmelCase , ) snake_case = decimal_to_bits(lowerCAmelCase ) * self.bit_scale snake_case = latents.to(self.device ) self.scheduler.set_timesteps(lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual snake_case = self.unet(lowerCAmelCase , lowerCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 snake_case = self.scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample snake_case = bits_to_decimal(lowerCAmelCase ) if output_type == "pil": snake_case = self.numpy_to_pil(lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase )
150
"""simple docstring""" def lowerCAmelCase__ ( _UpperCamelCase : list[int] ) -> int: """simple docstring""" if not numbers: return 0 if not isinstance(_UpperCamelCase , (list, tuple) ) or not all( isinstance(_UpperCamelCase , _UpperCamelCase ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) snake_case = snake_case = snake_case = numbers[0] for i in range(1 , len(_UpperCamelCase ) ): # update the maximum and minimum subarray products snake_case = numbers[i] if number < 0: snake_case ,snake_case = min_till_now, max_till_now snake_case = max(_UpperCamelCase , max_till_now * number ) snake_case = min(_UpperCamelCase , min_till_now * number ) # update the maximum product found till now snake_case = max(_UpperCamelCase , _UpperCamelCase ) return max_prod
150
1
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=30 , UpperCamelCase_=2 , UpperCamelCase_=3 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=10 , UpperCamelCase_=0.02 , ): lowercase_ :List[Any] = parent lowercase_ :int = batch_size lowercase_ :List[Any] = image_size lowercase_ :Union[str, Any] = patch_size lowercase_ :Union[str, Any] = num_channels lowercase_ :Optional[Any] = is_training lowercase_ :Tuple = use_labels lowercase_ :Union[str, Any] = hidden_size lowercase_ :Union[str, Any] = num_hidden_layers lowercase_ :Optional[Any] = num_attention_heads lowercase_ :str = intermediate_size lowercase_ :Optional[int] = hidden_act lowercase_ :Tuple = hidden_dropout_prob lowercase_ :int = attention_probs_dropout_prob lowercase_ :Optional[Any] = type_sequence_label_size lowercase_ :Dict = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ :int = (image_size // patch_size) ** 2 lowercase_ :Optional[int] = num_patches + 1 def UpperCamelCase ( self ): lowercase_ :Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ :List[Any] = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, pixel_values def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Optional[int] = FlaxViTModel(config=UpperCamelCase_ ) lowercase_ :Optional[Any] = model(UpperCamelCase_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) lowercase_ :int = (self.image_size, self.image_size) lowercase_ :List[Any] = (self.patch_size, self.patch_size) lowercase_ :Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Optional[Any] = self.type_sequence_label_size lowercase_ :Dict = FlaxViTForImageClassification(config=UpperCamelCase_ ) lowercase_ :Tuple = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ :str = 1 lowercase_ :List[str] = FlaxViTForImageClassification(UpperCamelCase_ ) lowercase_ :List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ :List[str] = model(UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :List[str] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ) :Optional[Any] = config_and_inputs lowercase_ :List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' lowercase : Union[str, Any] =(FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCamelCase ( self ): lowercase_ :Optional[Any] = FlaxViTModelTester(self ) lowercase_ :int = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def UpperCamelCase ( self ): self.config_tester.run_common_tests() def UpperCamelCase ( self ): lowercase_ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ , lowercase_ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Any = model_class(UpperCamelCase_ ) lowercase_ :Dict = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ :Dict = [*signature.parameters.keys()] lowercase_ :str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ , lowercase_ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase_ :Dict = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :Dict = model_class(UpperCamelCase_ ) @jax.jit def model_jitted(UpperCamelCase_ , **UpperCamelCase_ ): return model(pixel_values=UpperCamelCase_ , **UpperCamelCase_ ) with self.subTest('''JIT Enabled''' ): lowercase_ :Dict = model_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase_ :List[str] = model_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCamelCase ( self ): for model_class_name in self.all_model_classes: lowercase_ :Tuple = model_class_name.from_pretrained('''google/vit-base-patch16-224''' ) lowercase_ :Dict = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(UpperCamelCase_ )
252
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): lowercase_ :int = logging.get_logger() # the current default level is logging.WARNING lowercase_ :List[str] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :Tuple = logging.get_verbosity() lowercase_ :str = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) lowercase_ :Tuple = '''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning(UpperCamelCase_ ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning(UpperCamelCase_ ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning(UpperCamelCase_ ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(UpperCamelCase_ ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def UpperCamelCase ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var lowercase_ :Any = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) lowercase_ :Optional[Any] = os.getenv('''TRANSFORMERS_VERBOSITY''' , UpperCamelCase_ ) lowercase_ :Any = logging.log_levels[env_level_str] lowercase_ :Optional[int] = logging.get_verbosity() self.assertEqual( UpperCamelCase_ , UpperCamelCase_ , f"TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}" , ) # restore to the original level lowercase_ :str = '''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def UpperCamelCase ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() lowercase_ :Any = logging.logging.getLogger() with CaptureLogger(UpperCamelCase_ ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def UpperCamelCase ( self ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() lowercase_ :Optional[int] = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) lowercase_ :Any = '''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning_advice(UpperCamelCase_ ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning_advice(UpperCamelCase_ ) self.assertEqual(cl.out , msg + '''\n''' ) def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
252
1
def __lowerCAmelCase ( a__ ) -> List[str]: if edge <= 0 or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __lowerCAmelCase ( a__ ) -> Optional[Any]: if edge <= 0 or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
6
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
92
0
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int ) -> int: """simple docstring""" return x if y == 0 else greatest_common_divisor(UpperCAmelCase__ , x % y ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int ) -> int: """simple docstring""" return (x * y) // greatest_common_divisor(UpperCAmelCase__ , UpperCAmelCase__ ) def __UpperCAmelCase ( snake_case_ : int = 20 ) -> int: """simple docstring""" _lowerCAmelCase = 1 for i in range(1 , n + 1 ): _lowerCAmelCase = lcm(UpperCAmelCase__ , UpperCAmelCase__ ) return g if __name__ == "__main__": print(F'{solution() = }')
371
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> Dict: """simple docstring""" return getitem, k def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : Union[str, Any] ) -> List[Any]: """simple docstring""" return setitem, k, v def __UpperCAmelCase ( snake_case_ : str ) -> Optional[int]: """simple docstring""" return delitem, k def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : Tuple , *snake_case_ : Tuple ) -> str: """simple docstring""" try: return fun(snake_case_ , *snake_case_ ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE : int = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) SCREAMING_SNAKE_CASE : List[Any] = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] SCREAMING_SNAKE_CASE : Any = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] SCREAMING_SNAKE_CASE : Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = HashMap(initial_block_size=4 ) _lowerCAmelCase = {} for _, (fun, *args) in enumerate(snake_case_ ): _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) assert my_res == py_res assert str(snake_case_ ) == str(snake_case_ ) assert set(snake_case_ ) == set(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" def is_public(snake_case_ : str ) -> bool: return not name.startswith("""_""" ) _lowerCAmelCase = {name for name in dir({} ) if is_public(snake_case_ )} _lowerCAmelCase = {name for name in dir(HashMap() ) if is_public(snake_case_ )} assert dict_public_names > hash_public_names
317
0
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image a_ = ['text', 'image', 'audio'] def _a( UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] =[] for input_type in input_types: if input_type == "text": inputs.append('''Text input''' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((5_1_2, 5_1_2) ) ) elif input_type == "audio": inputs.append(torch.ones(3_0_0_0 ) ) elif isinstance(lowerCamelCase_, lowerCamelCase_ ): inputs.append(create_inputs(lowerCamelCase_ ) ) else: raise ValueError(f"Invalid type requested: {input_type}" ) return inputs def _a( UpperCamelCase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =[] for output in outputs: if isinstance(lowerCamelCase_, (str, AgentText) ): output_types.append('''text''' ) elif isinstance(lowerCamelCase_, (Image.Image, AgentImage) ): output_types.append('''image''' ) elif isinstance(lowerCamelCase_, (torch.Tensor, AgentAudio) ): output_types.append('''audio''' ) else: raise ValueError(f"Invalid output: {output}" ) return output_types @is_tool_test class __SCREAMING_SNAKE_CASE : def __magic_name__ ( self : Tuple ) -> Optional[int]: self.assertTrue(hasattr(self.tool , '''inputs''' ) ) self.assertTrue(hasattr(self.tool , '''outputs''' ) ) SCREAMING_SNAKE_CASE__ : int =self.tool.inputs for _input in inputs: if isinstance(_input , lowerCamelCase_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) SCREAMING_SNAKE_CASE__ : List[Any] =self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def __magic_name__ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ : List[str] =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE__ : Dict =self.tool(*lowerCamelCase_ ) # There is a single output if len(self.tool.outputs ) == 1: SCREAMING_SNAKE_CASE__ : Optional[int] =[outputs] self.assertListEqual(output_types(lowerCamelCase_ ) , self.tool.outputs ) def __magic_name__ ( self : Any ) -> Tuple: self.assertTrue(hasattr(self.tool , '''description''' ) ) self.assertTrue(hasattr(self.tool , '''default_checkpoint''' ) ) self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) ) def __magic_name__ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : List[Any] =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE__ : Optional[int] =self.tool(*lowerCamelCase_ ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE__ : Any =[outputs] self.assertEqual(len(lowerCamelCase_ ) , len(self.tool.outputs ) ) for output, output_type in zip(lowerCamelCase_ , self.tool.outputs ): SCREAMING_SNAKE_CASE__ : Tuple =AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCamelCase_ , lowerCamelCase_ ) ) def __magic_name__ ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Dict =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE__ : Any =[] for _input, input_type in zip(lowerCamelCase_ , self.tool.inputs ): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error SCREAMING_SNAKE_CASE__ : List[Any] =self.tool(*lowerCamelCase_ ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE__ : Optional[Any] =[outputs] self.assertEqual(len(lowerCamelCase_ ) , len(self.tool.outputs ) )
152
'''simple docstring''' import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class UpperCamelCase__ : """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=14 , lowerCamelCase_ : Optional[Any]=7 , lowerCamelCase_ : Dict=True , lowerCamelCase_ : str=True , lowerCamelCase_ : str=False , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : int=99 , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : int=4 , lowerCamelCase_ : List[Any]=4 , lowerCamelCase_ : List[str]=4 , lowerCamelCase_ : Union[str, Any]=37 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : List[str]=5_12 , lowerCamelCase_ : Union[str, Any]=0.02 , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[int] = batch_size SCREAMING_SNAKE_CASE : Any = seq_length SCREAMING_SNAKE_CASE : List[str] = is_training SCREAMING_SNAKE_CASE : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : List[Any] = rotary_dim SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = vocab_size - 1 SCREAMING_SNAKE_CASE : str = vocab_size - 1 SCREAMING_SNAKE_CASE : List[Any] = vocab_size - 1 def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[str] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = config_and_inputs SCREAMING_SNAKE_CASE : Tuple = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = 20 SCREAMING_SNAKE_CASE : Any = model_class_name(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model.init_cache(input_ids.shape[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) SCREAMING_SNAKE_CASE : Optional[int] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE : Any = model( input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) SCREAMING_SNAKE_CASE : str = model( input_ids[:, -1:] , attention_mask=lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 20 SCREAMING_SNAKE_CASE : Dict = model_class_name(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) SCREAMING_SNAKE_CASE : str = model.init_cache(input_ids.shape[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE : Any = model( input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) SCREAMING_SNAKE_CASE : Dict = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class UpperCamelCase__ ( lowercase_ , lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () SCREAMING_SNAKE_CASE__ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxGPTJModelTester(self ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @tooslow def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=lowerCamelCase_ , truncation=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : Optional[Any] = model.config.eos_token_id SCREAMING_SNAKE_CASE : str = jax.jit(model.generate ) SCREAMING_SNAKE_CASE : str = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @is_pt_flax_cross_test def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE : int = getattr(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = pt_inputs["""input_ids"""].shape SCREAMING_SNAKE_CASE : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = 1 SCREAMING_SNAKE_CASE : Optional[int] = pt_model_class(lowerCamelCase_ ).eval() SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = fx_state with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = pt_model(**lowerCamelCase_ ).to_tuple() SCREAMING_SNAKE_CASE : Any = fx_model(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = model_class.from_pretrained(lowerCamelCase_ , from_pt=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = fx_model_loaded(**lowerCamelCase_ ).to_tuple() self.assertEqual( len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE : Dict = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE : int = getattr(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = pt_model_class(lowerCamelCase_ ).eval() SCREAMING_SNAKE_CASE : Any = model_class(lowerCamelCase_ , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : List[Any] = load_flax_weights_in_pytorch_model(lowerCamelCase_ , fx_model.params ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = pt_inputs["""input_ids"""].shape SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Tuple = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = pt_model(**lowerCamelCase_ ).to_tuple() SCREAMING_SNAKE_CASE : Optional[Any] = fx_model(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = pt_model_class.from_pretrained(lowerCamelCase_ , from_flax=lowerCamelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = pt_model_loaded(**lowerCamelCase_ ).to_tuple() self.assertEqual( len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) SCREAMING_SNAKE_CASE : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ )
323
0
"""simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def lowercase ( _snake_case : dict , _snake_case : Any , _snake_case : Union[str, Any] ) ->Tuple: """simple docstring""" __snake_case : List[str] = set() # keep track of all the paths to be checked __snake_case : Optional[int] = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __snake_case : Optional[int] = queue.pop(0 ) # get the last node from the path __snake_case : Dict = path[-1] if node not in explored: __snake_case : List[Any] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __snake_case : int = list(A__ ) new_path.append(A__ ) queue.append(A__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A__ ) # in case there's no path between the 2 nodes return [] def lowercase ( _snake_case : dict , _snake_case : Tuple , _snake_case : Any ) ->Union[str, Any]: """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __snake_case : Tuple = [start] __snake_case : str = set(A__ ) # Keep tab on distances from `start` node. __snake_case : Optional[int] = {start: 0, target: -1} while queue: __snake_case : str = queue.pop(0 ) if node == target: __snake_case : Optional[Any] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A__ ) queue.append(A__ ) __snake_case : Union[str, Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, """G""", """D""")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, """G""", """D""")) # returns 4
350
"""simple docstring""" def lowercase ( ) ->int: """simple docstring""" return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(_snake_case , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
24
0
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: """simple docstring""" if gpta_config_file == "": A : Any = GPTaConfig() else: A : Dict = GPTaConfig.from_json_file(_lowerCAmelCase ) A : Union[str, Any] = GPTaModel(_lowerCAmelCase ) # Load weights from numpy load_tf_weights_in_gpta(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model A : Optional[Any] = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME A : int = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , _lowerCAmelCase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_:List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) SCREAMING_SNAKE_CASE_:Any = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
116
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> int: """simple docstring""" while second != 0: A : int = first & second first ^= second A : Tuple = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_:int = int(input("""Enter the first number: """).strip()) SCREAMING_SNAKE_CASE_:Optional[int] = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
116
1
"""simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def lowerCAmelCase_( lowercase_ : int ) -> int: _lowerCamelCase = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_00_00] number //= 10_00_00 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution __SCREAMING_SNAKE_CASE : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 __SCREAMING_SNAKE_CASE : Optional[Any] = True __SCREAMING_SNAKE_CASE : Optional[int] = False def lowerCAmelCase_( lowercase_ : int ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _lowerCamelCase = chain(next_number(lowercase_ ) ) _lowerCamelCase = number_chain while number < 10_00_00_00: _lowerCamelCase = number_chain number *= 10 return number_chain def lowerCAmelCase_( lowercase_ : int = 10_00_00_00 ) -> int: for i in range(1 , lowercase_ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
73
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=3 , lowerCamelCase__=3_2 , lowerCamelCase__=3 , lowerCamelCase__=1_0 , lowerCamelCase__=[1_0, 2_0, 3_0, 4_0] , lowerCamelCase__=[1, 1, 2, 1] , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="relu" , lowerCamelCase__=3 , lowerCamelCase__=None , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = image_size _lowerCamelCase = num_channels _lowerCamelCase = embeddings_size _lowerCamelCase = hidden_sizes _lowerCamelCase = depths _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = hidden_act _lowerCamelCase = num_labels _lowerCamelCase = scope _lowerCamelCase = len(lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = self.get_config() return config, pixel_values def snake_case__ ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = FlaxRegNetModel(config=lowerCamelCase__ ) _lowerCamelCase = model(lowerCamelCase__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = self.num_labels _lowerCamelCase = FlaxRegNetForImageClassification(config=lowerCamelCase__ ) _lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self ): _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase = config_and_inputs _lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class lowerCamelCase_( A__, unittest.TestCase ): '''simple docstring''' lowercase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowercase__ : List[Any] = False lowercase__ : Tuple = False lowercase__ : Union[str, Any] = False def snake_case__ ( self ): _lowerCamelCase = FlaxRegNetModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def snake_case__ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self ): return def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def snake_case__ ( self ): pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def snake_case__ ( self ): pass def snake_case__ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(lowerCamelCase__ ) _lowerCamelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def snake_case__ ( self ): def check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = model_class(lowerCamelCase__ ) _lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 ) _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) _lowerCamelCase = model_class(lowerCamelCase__ ) @jax.jit def model_jitted(lowerCamelCase__ , **lowerCamelCase__ ): return model(pixel_values=lowerCamelCase__ , **lowerCamelCase__ ) with self.subTest('''JIT Enabled''' ): _lowerCamelCase = model_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _lowerCamelCase = model_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase_( ) -> Optional[Any]: _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__ ( self ): return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def snake_case__ ( self ): _lowerCamelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='''np''' ) _lowerCamelCase = model(**lowerCamelCase__ ) # verify the logits _lowerCamelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) _lowerCamelCase = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) )
73
1
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int=7 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=18 , __lowerCamelCase : Dict=30 , __lowerCamelCase : str=400 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Dict=True , __lowerCamelCase : str=False , __lowerCamelCase : Dict=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : List[str]=[0.5, 0.5, 0.5] , __lowerCamelCase : str=[0.5, 0.5, 0.5] , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size if size is not None else {'''height''': 18, '''width''': 20} SCREAMING_SNAKE_CASE__ = do_thumbnail SCREAMING_SNAKE_CASE__ = do_align_axis SCREAMING_SNAKE_CASE__ = do_pad SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean SCREAMING_SNAKE_CASE__ = image_std def lowercase_ ( self : Dict ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = DonutImageProcessor if is_vision_available() else None def lowercase_ ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ = DonutImageProcessingTester(self ) @property def lowercase_ ( self : Optional[Any] ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_pad''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_std''' ) ) def lowercase_ ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def lowercase_ ( self : int ) -> List[str]: pass @is_flaky() def lowercase_ ( self : Dict ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def lowercase_ ( self : Union[str, Any] ) -> str: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def lowercase_ ( self : Tuple ) -> List[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
314
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCAmelCase_ ( ): '''simple docstring''' raise RuntimeError('''CUDA out of memory.''' ) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any ) -> int: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE__ = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE__ = nn.Linear(4 , 5 ) def lowercase_ ( self : int , __lowerCamelCase : Optional[int] ) -> Tuple: return self.lineara(self.batchnorm(self.lineara(__lowerCamelCase ) ) ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) def lowercase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = mock_training_loop_function('''hello''' ) self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def lowercase_ ( self : str ) -> List[Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__lowerCamelCase : Optional[Any] ): pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function(128 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def lowercase_ ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE__ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = release_memory(__lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , __lowerCamelCase )
314
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
343
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = "resnet" _a = ["basic", "bottleneck"] def __init__( self , _a=3 , _a=64 , _a=[256, 512, 1024, 2048] , _a=[3, 4, 6, 3] , _a="bottleneck" , _a="relu" , _a=False , _a=None , _a=None , **_a , ) -> int: super().__init__(**_a ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) _A : Optional[Any] = num_channels _A : List[Any] = embedding_size _A : int = hidden_sizes _A : Union[str, Any] = depths _A : Optional[int] = layer_type _A : Any = hidden_act _A : List[Any] = downsample_in_first_stage _A : int = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )] _A , _A : str = get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names ) class lowercase ( UpperCamelCase__ ): _a = version.parse("1.11" ) @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def a__ ( self ) -> float: return 1e-3
343
1
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' def update_area_of_max_square(_UpperCamelCase , _UpperCamelCase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __lowerCAmelCase = update_area_of_max_square(_UpperCamelCase , col + 1 ) __lowerCAmelCase = update_area_of_max_square(row + 1 , col + 1 ) __lowerCAmelCase = update_area_of_max_square(row + 1 , _UpperCamelCase ) if mat[row][col]: __lowerCAmelCase = 1 + min([right, diagonal, down] ) __lowerCAmelCase = max(largest_square_area[0] , _UpperCamelCase ) return sub_problem_sol else: return 0 __lowerCAmelCase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' def update_area_of_max_square_using_dp_array( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __lowerCAmelCase = update_area_of_max_square_using_dp_array(_UpperCamelCase , col + 1 , _UpperCamelCase ) __lowerCAmelCase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _UpperCamelCase ) __lowerCAmelCase = update_area_of_max_square_using_dp_array(row + 1 , _UpperCamelCase , _UpperCamelCase ) if mat[row][col]: __lowerCAmelCase = 1 + min([right, diagonal, down] ) __lowerCAmelCase = max(largest_square_area[0] , _UpperCamelCase ) __lowerCAmelCase = sub_problem_sol return sub_problem_sol else: return 0 __lowerCAmelCase = [0] __lowerCAmelCase = [[-1] * cols for _ in range(_UpperCamelCase )] update_area_of_max_square_using_dp_array(0 , 0 , _UpperCamelCase ) return largest_square_area[0] def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [[0] * (cols + 1) for _ in range(rows + 1 )] __lowerCAmelCase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase = dp_array[row][col + 1] __lowerCAmelCase = dp_array[row + 1][col + 1] __lowerCAmelCase = dp_array[row + 1][col] if mat[row][col] == 1: __lowerCAmelCase = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = max(dp_array[row][col] , _UpperCamelCase ) else: __lowerCAmelCase = 0 return largest_square_area def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [0] * (cols + 1) __lowerCAmelCase = [0] * (cols + 1) __lowerCAmelCase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase = current_row[col + 1] __lowerCAmelCase = next_row[col + 1] __lowerCAmelCase = next_row[col] if mat[row][col] == 1: __lowerCAmelCase = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = max(current_row[col] , _UpperCamelCase ) else: __lowerCAmelCase = 0 __lowerCAmelCase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
57
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {'''vocab_file''': '''spiece.model'''} _lowerCAmelCase = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } _lowerCAmelCase = { '''AI-Sweden/gpt-sw3-126m''': 2048, '''AI-Sweden/gpt-sw3-350m''': 2048, '''AI-Sweden/gpt-sw3-1.6b''': 2048, '''AI-Sweden/gpt-sw3-6.7b''': 2048, '''AI-Sweden/gpt-sw3-20b''': 2048, } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Dict = VOCAB_FILES_NAMES __lowercase : str = PRETRAINED_VOCAB_FILES_MAP __lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> None: lowerCAmelCase__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase__ : Dict = kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) lowerCAmelCase__ : Tuple = """None""" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowerCAmelCase__ : Union[str, Any] = """<|endoftext|>""" if eos_token is None else eos_token lowerCAmelCase__ : Dict = """<unk>""" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowerCAmelCase__ : Any = unk_token if pad_token is None else pad_token lowerCAmelCase__ : Dict = eos_token if bos_token is None else bos_token else: lowerCAmelCase__ : List[str] = """<pad>""" if pad_token is None else pad_token lowerCAmelCase__ : Optional[int] = """<s>""" if bos_token is None else bos_token super().__init__( do_lower_case=__UpperCAmelCase ,remove_space=__UpperCAmelCase ,keep_accents=__UpperCAmelCase ,bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,unk_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__UpperCAmelCase ,) lowerCAmelCase__ : Optional[int] = do_lower_case lowerCAmelCase__ : Dict = remove_space lowerCAmelCase__ : Optional[Any] = keep_accents lowerCAmelCase__ : int = vocab_file lowerCAmelCase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) # Used for whitespace normalization in input texts # fmt : off lowerCAmelCase__ : int = {""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """„"""} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowerCAmelCase__ : List[str] = re.compile( F"""[{''.join(map(__UpperCAmelCase ,list(range(0 ,9 ) ) + list(range(11 ,32 ) ) + list(range(127 ,160 ) ) + [160, 173, 8203] ) )}]""" ) def __getstate__( self ) -> Any: lowerCAmelCase__ : int = self.__dict__.copy() lowerCAmelCase__ : Optional[int] = None return state def __setstate__( self ,__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : List[str] = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowerCAmelCase__ : Tuple = {} lowerCAmelCase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCAmelCase_ ( self ) -> int: return len(self.sp_model ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : Tuple = self.non_printing_characters_re.sub("""""" ,__UpperCAmelCase ) # Normalize whitespaces lowerCAmelCase__ : List[Any] = """""".join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization lowerCAmelCase__ : List[Any] = unicodedata.normalize("""NFC""" ,__UpperCAmelCase ) return text def UpperCAmelCase_ ( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : List[Any] = self.preprocess_text(__UpperCAmelCase ) return self.sp_model.encode(__UpperCAmelCase ,out_type=__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: return self.sp_model.PieceToId(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: return self.sp_model.IdToPiece(__UpperCAmelCase ) @staticmethod def UpperCAmelCase_ ( __UpperCAmelCase ) -> str: return out_string def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : int = [] lowerCAmelCase__ : Optional[int] = """""" lowerCAmelCase__ : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Optional[Any] = [] else: current_sub_tokens.append(__UpperCAmelCase ) lowerCAmelCase__ : Any = False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string def UpperCAmelCase_ ( self ) -> Dict[str, int]: lowerCAmelCase__ : Optional[int] = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : Optional[int] = os.path.join( __UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase ,"""wb""" ) as fi: lowerCAmelCase__ : str = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Tuple = self.preprocess_text(__UpperCAmelCase ) lowerCAmelCase__ : int = self.sp_model.encode(__UpperCAmelCase ) else: lowerCAmelCase__ : int = [self.preprocess_text(__UpperCAmelCase ) for t in text] lowerCAmelCase__ : Any = self.sp_model.encode(__UpperCAmelCase ) if return_tensors is True or return_tensors == "pt": lowerCAmelCase__ : Tuple = torch.tensor(__UpperCAmelCase ) return token_ids def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: return self.sp_model.decode(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[int]: lowerCAmelCase__ : List[Any] = [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()] lowerCAmelCase__ : Any = ( F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(__UpperCAmelCase ) + F"""{self.bos_token}Bot:""" ) return self.encode(text=__UpperCAmelCase )
37
0
def lowerCAmelCase( __lowerCamelCase ): __a = hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) __a = hex_num[0] == '-' if is_negative: __a = hex_num[1:] try: __a = int(__lowerCamelCase , 16 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) __a = '' while int_num > 0: __a = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
197
from collections import defaultdict def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): __a = first_str.lower().strip() __a = second_str.lower().strip() # Remove whitespace __a = first_str.replace(' ' , '' ) __a = second_str.replace(' ' , '' ) # Strings of different lengths are not anagrams if len(__lowerCamelCase ) != len(__lowerCamelCase ): return False # Default values for count should be 0 __a = defaultdict(__lowerCamelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(__lowerCamelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() lowerCamelCase_ : List[str] = input("""Enter the first string """).strip() lowerCamelCase_ : Optional[Any] = input("""Enter the second string """).strip() lowerCamelCase_ : str = check_anagrams(input_a, input_b) print(F'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
197
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def __magic_name__ ( __a : int=None ): '''simple docstring''' if subparsers is not None: UpperCamelCase__ = subparsers.add_parser("""env""" ) else: UpperCamelCase__ = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=__a , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=__a ) return parser def __magic_name__ ( __a : Any ): '''simple docstring''' UpperCamelCase__ = torch.__version__ UpperCamelCase__ = torch.cuda.is_available() UpperCamelCase__ = is_xpu_available() UpperCamelCase__ = is_npu_available() UpperCamelCase__ = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(__a ): UpperCamelCase__ = load_config_from_file(args.config_file ).to_dict() UpperCamelCase__ = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": f"{pt_version} ({pt_cuda_available})", """PyTorch XPU available""": str(__a ), """PyTorch NPU available""": str(__a ), """System RAM""": f"{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB", } if pt_cuda_available: UpperCamelCase__ = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([f"- {prop}: {val}" for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) UpperCamelCase__ = ( """\n""".join([f"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(__a , __a ) else f"\t{accelerate_config}" ) print(__a ) UpperCamelCase__ = accelerate_config return info def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = env_command_parser() UpperCamelCase__ = parser.parse_args() env_command(__a ) return 0 if __name__ == "__main__": raise SystemExit(main())
244
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
244
1
'''simple docstring''' import argparse from collections import defaultdict import yaml __snake_case = '''docs/source/en/_toctree.yml''' def a ( __a ) -> int: '''simple docstring''' UpperCamelCase__ :int = defaultdict(__a ) UpperCamelCase__ :int = [] UpperCamelCase__ :int = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(__a ) UpperCamelCase__ :Union[str, Any] = new_doc_list UpperCamelCase__ :Tuple = [key for key, value in counts.items() if value > 1] UpperCamelCase__ :Union[str, Any] = [] for duplicate_key in duplicates: UpperCamelCase__ :Dict = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(__a ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) UpperCamelCase__ :Union[str, Any] = sorted(__a , key=lambda __a : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__a ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(__a ) # Sort return overview_doc def a ( __a=False ) -> Any: '''simple docstring''' with open(__a , encoding='''utf-8''' ) as f: UpperCamelCase__ :Any = yaml.safe_load(f.read() ) # Get to the API doc UpperCamelCase__ :str = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase__ :str = content[api_idx]['''sections'''] # Then to the model doc UpperCamelCase__ :Optional[Any] = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 UpperCamelCase__ :List[Any] = api_doc[scheduler_idx]['''sections'''] UpperCamelCase__ :Union[str, Any] = clean_doc_toc(__a ) UpperCamelCase__ :List[Any] = False if new_scheduler_doc != scheduler_doc: UpperCamelCase__ :Optional[int] = True if overwrite: UpperCamelCase__ :Dict = new_scheduler_doc if diff: if overwrite: UpperCamelCase__ :Any = api_doc with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def a ( __a=False ) -> Optional[Any]: '''simple docstring''' with open(__a , encoding='''utf-8''' ) as f: UpperCamelCase__ :str = yaml.safe_load(f.read() ) # Get to the API doc UpperCamelCase__ :Optional[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase__ :Any = content[api_idx]['''sections'''] # Then to the model doc UpperCamelCase__ :str = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 UpperCamelCase__ :Any = False UpperCamelCase__ :Union[str, Any] = api_doc[pipeline_idx]['''sections'''] UpperCamelCase__ :Tuple = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: UpperCamelCase__ :Dict = pipeline_doc['''section'''] UpperCamelCase__ :Optional[Any] = clean_doc_toc(__a ) if overwrite: UpperCamelCase__ :Optional[int] = new_sub_pipeline_doc new_pipeline_docs.append(__a ) # sort overall pipeline doc UpperCamelCase__ :Optional[Any] = clean_doc_toc(__a ) if new_pipeline_docs != pipeline_docs: UpperCamelCase__ :int = True if overwrite: UpperCamelCase__ :Union[str, Any] = new_pipeline_docs if diff: if overwrite: UpperCamelCase__ :Dict = api_doc with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __snake_case = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
365
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule __snake_case = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
219
0