code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCAmelCase : '''simple docstring''' @staticmethod def UpperCamelCase_ ( *A : int ,**A : Optional[int] ): pass @is_pipeline_test @require_vision @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' snake_case_ = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def UpperCamelCase_ ( self : List[str] ,A : Union[str, Any] ,A : Union[str, Any] ,A : Any ): __A = pipeline( "zero-shot-object-detection" ,model="hf-internal-testing/tiny-random-owlvit-object-detection" ) __A = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def UpperCamelCase_ ( self : Optional[Any] ,A : List[Any] ,A : Tuple ): __A = object_detector(examples[0] ,threshold=0.0 ) __A = len(snake_case__ ) self.assertGreater(snake_case__ ,0 ) self.assertEqual( snake_case__ ,[ { "score": ANY(snake_case__ ), "label": ANY(snake_case__ ), "box": {"xmin": ANY(snake_case__ ), "ymin": ANY(snake_case__ ), "xmax": ANY(snake_case__ ), "ymax": ANY(snake_case__ )}, } for i in range(snake_case__ ) ] ,) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def UpperCamelCase_ ( self : List[str] ): pass @require_torch def UpperCamelCase_ ( self : int ): __A = pipeline( "zero-shot-object-detection" ,model="hf-internal-testing/tiny-random-owlvit-object-detection" ) __A = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" ,candidate_labels=["cat", "remote", "couch"] ,threshold=0.64 ,) self.assertEqual( nested_simplify(snake_case__ ,decimals=4 ) ,[ {"score": 0.72_35, "label": "cat", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.72_18, "label": "remote", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.71_84, "label": "couch", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.67_48, "label": "remote", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.66_56, "label": "cat", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.66_14, "label": "couch", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.64_56, "label": "remote", "box": {"xmin": 4_94, "ymin": 1_05, "xmax": 5_21, "ymax": 1_27}}, {"score": 0.6_42, "label": "remote", "box": {"xmin": 67, "ymin": 2_74, "xmax": 93, "ymax": 2_97}}, {"score": 0.64_19, "label": "cat", "box": {"xmin": 4_94, "ymin": 1_05, "xmax": 5_21, "ymax": 1_27}}, ] ,) __A = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] ,threshold=0.64 ,) self.assertEqual( nested_simplify(snake_case__ ,decimals=4 ) ,[ [ {"score": 0.72_35, "label": "cat", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.72_18, "label": "remote", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.71_84, "label": "couch", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.67_48, "label": "remote", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.66_56, "label": "cat", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.66_14, "label": "couch", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.64_56, "label": "remote", "box": {"xmin": 4_94, "ymin": 1_05, "xmax": 5_21, "ymax": 1_27}}, {"score": 0.6_42, "label": "remote", "box": {"xmin": 67, "ymin": 2_74, "xmax": 93, "ymax": 2_97}}, {"score": 0.64_19, "label": "cat", "box": {"xmin": 4_94, "ymin": 1_05, "xmax": 5_21, "ymax": 1_27}}, ] ] ,) @require_torch @slow def UpperCamelCase_ ( self : List[Any] ): __A = pipeline("zero-shot-object-detection" ) __A = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" ,candidate_labels=["cat", "remote", "couch"] ,) self.assertEqual( nested_simplify(snake_case__ ,decimals=4 ) ,[ {"score": 0.28_68, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}}, {"score": 0.2_77, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}}, {"score": 0.25_37, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 3_15, "ymax": 4_72}}, {"score": 0.14_74, "label": "remote", "box": {"xmin": 3_35, "ymin": 74, "xmax": 3_71, "ymax": 1_87}}, {"score": 0.12_08, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_42, "ymax": 4_76}}, ] ,) __A = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] ,) self.assertEqual( nested_simplify(snake_case__ ,decimals=4 ) ,[ [ {"score": 0.28_68, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}}, {"score": 0.2_77, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}}, {"score": 0.25_37, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 3_15, "ymax": 4_72}}, {"score": 0.14_74, "label": "remote", "box": {"xmin": 3_35, "ymin": 74, "xmax": 3_71, "ymax": 1_87}}, {"score": 0.12_08, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_42, "ymax": 4_76}}, ], [ {"score": 0.28_68, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}}, {"score": 0.2_77, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}}, {"score": 0.25_37, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 3_15, "ymax": 4_72}}, {"score": 0.14_74, "label": "remote", "box": {"xmin": 3_35, "ymin": 74, "xmax": 3_71, "ymax": 1_87}}, {"score": 0.12_08, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_42, "ymax": 4_76}}, ], ] ,) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def UpperCamelCase_ ( self : Dict ): pass @require_torch @slow def UpperCamelCase_ ( self : Tuple ): __A = 0.2 __A = pipeline("zero-shot-object-detection" ) __A = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" ,candidate_labels=["cat", "remote", "couch"] ,threshold=snake_case__ ,) self.assertEqual( nested_simplify(snake_case__ ,decimals=4 ) ,[ {"score": 0.28_68, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}}, {"score": 0.2_77, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}}, {"score": 0.25_37, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 3_15, "ymax": 4_72}}, ] ,) @require_torch @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = 2 __A = pipeline("zero-shot-object-detection" ) __A = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" ,candidate_labels=["cat", "remote", "couch"] ,top_k=snake_case__ ,) self.assertEqual( nested_simplify(snake_case__ ,decimals=4 ) ,[ {"score": 0.28_68, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}}, {"score": 0.2_77, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}}, ] ,)
15
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def __init__( self , snake_case__=None , snake_case__=None , *snake_case__ , **snake_case__ ): """simple docstring""" super().__init__(*snake_case__ , **snake_case__ ) if config is None: assert isinstance(self.model , snake_case__ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f""" {self.model.__class__}""" ) lowerCAmelCase : Optional[int] = self.model.config else: lowerCAmelCase : List[str] = config lowerCAmelCase : Any = data_args lowerCAmelCase : Tuple = self.config.tgt_vocab_size if isinstance(self.config , snake_case__ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" " padding.." ) if self.args.label_smoothing == 0: lowerCAmelCase : int = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowerCAmelCase : Tuple = label_smoothed_nll_loss def lowercase__ ( self , snake_case__ ): """simple docstring""" if self.optimizer is None: lowerCAmelCase : Optional[int] = ["bias", "LayerNorm.weight"] lowerCAmelCase : str = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] lowerCAmelCase : Union[str, Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowerCAmelCase : Dict = Adafactor lowerCAmelCase : Optional[int] = {"scale_parameter": False, "relative_step": False} else: lowerCAmelCase : int = AdamW lowerCAmelCase : int = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } lowerCAmelCase : Any = self.args.learning_rate if self.sharded_ddp: lowerCAmelCase : int = OSS( params=snake_case__ , optim=snake_case__ , **snake_case__ , ) else: lowerCAmelCase : Any = optimizer_cls(snake_case__ , **snake_case__ ) if self.lr_scheduler is None: lowerCAmelCase : Tuple = self._get_lr_scheduler(snake_case__ ) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[int] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowerCAmelCase : Tuple = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": lowerCAmelCase : Any = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: lowerCAmelCase : str = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=snake_case__ ) return scheduler def lowercase__ ( self ): """simple docstring""" if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowerCAmelCase : Dict = model(**snake_case__ , use_cache=snake_case__ )[0] lowerCAmelCase : List[Any] = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models lowerCAmelCase , lowerCAmelCase : str = model(**snake_case__ , labels=snake_case__ , use_cache=snake_case__ )[:2] else: # compute label smoothed loss lowerCAmelCase : int = model(**snake_case__ , use_cache=snake_case__ )[0] lowerCAmelCase : List[Any] = torch.nn.functional.log_softmax(snake_case__ , dim=-1 ) lowerCAmelCase , lowerCAmelCase : str = self.loss_fn(snake_case__ , snake_case__ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = inputs.pop("labels" ) lowerCAmelCase , lowerCAmelCase : str = self._compute_loss(snake_case__ , snake_case__ , snake_case__ ) return loss def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , ): """simple docstring""" lowerCAmelCase : List[str] = self._prepare_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowerCAmelCase : Dict = self.model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **snake_case__ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowerCAmelCase : Dict = self._pad_tensors_to_max_len(snake_case__ , gen_kwargs["max_length"] ) lowerCAmelCase : Optional[Any] = inputs.pop("labels" ) with torch.no_grad(): # compute loss on predict data lowerCAmelCase , lowerCAmelCase : Dict = self._compute_loss(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[str] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowerCAmelCase : int = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowerCAmelCase : Optional[int] = self._pad_tensors_to_max_len(snake_case__ , gen_kwargs["max_length"] ) return (loss, logits, labels) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" f""" padded to `max_length`={max_length}""" ) lowerCAmelCase : Optional[Any] = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) lowerCAmelCase : int = tensor return padded_tensor
108
0
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase : Dict = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase__ ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = XLMProphetNetTokenizer lowerCAmelCase_ = False lowerCAmelCase_ = True def _snake_case ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase_ : Optional[int] = XLMProphetNetTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self ): """simple docstring""" lowercase_ : str = '''[PAD]''' lowercase_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 10_12 ) def _snake_case ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_12 ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[Any] = XLMProphetNetTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowercase_ : str = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase_ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) lowercase_ : int = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def _snake_case ( self ): """simple docstring""" return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = '''Hello World!''' lowercase_ : str = [3_53_89, 66_72, 49, 2] self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def _snake_case ( self ): """simple docstring""" lowercase_ : Union[str, Any] = {'''input_ids''': [[1_10_73, 8_27_83, 18, 26, 8_27_83, 5_49, 5_15_40, 2_48, 1_72_09, 13_01, 2_17, 20, 21_51_86, 13_25, 1_47, 1_72_09, 13_01, 2_17, 20, 5_63_70, 53, 12_20_20, 20, 1_64_77, 27, 8_73_55, 45_48, 20, 47_28, 7_83_92, 17, 15_99_69, 18, 26, 2_44_91, 6_29, 15, 5_38, 2_27_04, 54_39, 15, 27_88, 2_44_91, 98_85, 15, 4_35_34, 6_05, 15, 8_14, 1_84_03, 3_32_00, 29, 15, 4_35_34, 2_44_58, 1_24_10, 1_11, 2_49_66, 8_36_69, 96_37, 14_40_68, 26, 8_50, 2_23_46, 27, 1_47, 2_49_66, 8_36_69, 8_34_90, 26, 3_91_13, 7_35, 27, 6_89, 6_56, 28_00, 13_39, 46_00, 53, 12_20_20, 11_57_85, 34, 8_16, 13_39, 4_68_87, 18, 1_47, 5_39_05, 19_51, 4_22_38, 4_11_70, 1_77_32, 8_34, 4_36, 15, 2_75_23, 9_87_33, 2_17, 1_47, 55_42, 49_81, 9_30, 1_73_47, 16, 2], [2_00_91, 6_29, 94, 8_27_86, 58, 4_90, 20, 15_28, 84, 5_39_05, 3_44, 8_05_92, 11_01_28, 1_88_22, 52_67, 13_06, 62, 15_25_37, 3_08, 79_97, 4_01, 12_44_27, 5_49, 3_54_42, 2_25, 1_09, 1_50_55, 2_57_48, 1_47, 71_19, 4_37_12, 34, 7_67, 13_53_66, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_92, 6_37_84, 11_94_66, 17, 14_78_08, 8_82_14, 18, 6_56, 81, 32, 32_96, 1_02_80, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
264
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = '''vit''' def __init__( self , __SCREAMING_SNAKE_CASE=7_68 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=30_72 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1E-1_2 , __SCREAMING_SNAKE_CASE=2_24 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=16 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = hidden_size lowercase_ : Dict = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Any = intermediate_size lowercase_ : Union[str, Any] = hidden_act lowercase_ : Dict = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : Any = initializer_range lowercase_ : Tuple = layer_norm_eps lowercase_ : Union[str, Any] = image_size lowercase_ : Tuple = patch_size lowercase_ : Tuple = num_channels lowercase_ : Union[str, Any] = qkv_bias lowercase_ : List[Any] = encoder_stride class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = version.parse('''1.11''' ) @property def _snake_case ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self ): """simple docstring""" return 1E-4
264
1
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html snake_case__ : List[Any] = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class snake_case_: __UpperCamelCase = PegasusConfig __UpperCamelCase = {} __UpperCamelCase = '''gelu''' def __init__( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any=1_3 , UpperCamelCase_ : List[Any]=7 , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : List[Any]=False , UpperCamelCase_ : Optional[Any]=9_9 , UpperCamelCase_ : Any=3_2 , UpperCamelCase_ : List[Any]=5 , UpperCamelCase_ : str=4 , UpperCamelCase_ : str=3_7 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Any=2_0 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : List[str]=1 , UpperCamelCase_ : Any=0 , ): lowerCAmelCase : List[Any] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Any = seq_length lowerCAmelCase : Dict = is_training lowerCAmelCase : Optional[int] = use_labels lowerCAmelCase : Union[str, Any] = vocab_size lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : List[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : str = eos_token_id lowerCAmelCase : List[Any] = pad_token_id lowerCAmelCase : List[str] = bos_token_id def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) lowerCAmelCase : Union[str, Any] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase : List[str] = np.concatenate([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCAmelCase : Dict = prepare_pegasus_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict ): lowerCAmelCase : Any = 2_0 lowerCAmelCase : Any = model_class_name(UpperCamelCase_ ) lowerCAmelCase : List[str] = model.encode(inputs_dict['''input_ids'''] ) lowerCAmelCase, lowerCAmelCase : Optional[Any] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCAmelCase : Any = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) lowerCAmelCase : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : Optional[int] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCAmelCase : int = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : List[Any] = model.decode(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : Dict ): lowerCAmelCase : Dict = 2_0 lowerCAmelCase : Union[str, Any] = model_class_name(UpperCamelCase_ ) lowerCAmelCase : Any = model.encode(inputs_dict['''input_ids'''] ) lowerCAmelCase, lowerCAmelCase : str = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCAmelCase : Any = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : List[str] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCAmelCase : Optional[int] = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : List[Any] = model.decode(UpperCamelCase_ , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ ) lowerCAmelCase : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def _snake_case ( _snake_case : Tuple , _snake_case : Dict , _snake_case : Dict , _snake_case : Optional[Any]=None , _snake_case : Dict=None , ): if attention_mask is None: lowerCAmelCase : Tuple = np.not_equal(_snake_case , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowerCAmelCase : Dict = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __UpperCamelCase = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = FlaxPegasusModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Dict ): lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase, lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : str = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Tuple = model_class(UpperCamelCase_ ) @jax.jit def encode_jitted(UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Tuple ): return model.encode(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase : Tuple = encode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase : Dict = encode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase, lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : Optional[int] = model_class(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) lowerCAmelCase : Any = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] ): return model.decode( decoder_input_ids=UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , encoder_outputs=UpperCamelCase_ , ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase : Optional[Any] = decode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase : Any = decode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase__ ( self : str ): for model_class_name in self.all_model_classes: lowerCAmelCase : int = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=UpperCamelCase_ ) lowerCAmelCase : List[Any] = np.ones((1, 1) ) lowerCAmelCase : str = model(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : int ): lowerCAmelCase : Any = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' ) lowerCAmelCase : List[Any] = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' ) lowerCAmelCase : int = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] lowerCAmelCase : str = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] lowerCAmelCase : Optional[Any] = tokenizer(UpperCamelCase_ , return_tensors='''np''' , truncation=UpperCamelCase_ , max_length=5_1_2 , padding=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = model.generate(**UpperCamelCase_ , num_beams=2 ).sequences lowerCAmelCase : Tuple = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) assert tgt_text == decoded
60
"""simple docstring""" def __lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" snake_case : Dict = [] snake_case : List[Any] = 1 while len(lowercase ) < 1e6: constant.append(str(lowercase ) ) i += 1 snake_case : Tuple = "".join(lowercase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
203
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : Dict = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
120
def SCREAMING_SNAKE_CASE_ ( __A : int ) -> int: """simple docstring""" if not isinstance(__A , __A ): raise ValueError('Input must be an integer' ) if input_num <= 0: raise ValueError('Input must be positive' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
120
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json""", } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'gpt_neox_japanese' def __init__( self , lowercase=32000 , lowercase=2560 , lowercase=32 , lowercase=32 , lowercase=4 , lowercase="gelu" , lowercase=1.00 , lowercase=10000 , lowercase=2048 , lowercase=0.02 , lowercase=1e-5 , lowercase=True , lowercase=31996 , lowercase=31999 , lowercase=0.1 , lowercase=0.0 , **lowercase , ) -> Dict: '''simple docstring''' super().__init__(bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_multiple_size A__ = hidden_act A__ = rotary_pct A__ = rotary_emb_base A__ = initializer_range A__ = layer_norm_eps A__ = use_cache A__ = attention_dropout A__ = hidden_dropout
68
import warnings from functools import wraps from typing import Callable def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Callable ) -> Callable: '''simple docstring''' @wraps(SCREAMING_SNAKE_CASE_ ) def _inner_fn(*SCREAMING_SNAKE_CASE_: int , **SCREAMING_SNAKE_CASE_: Union[str, Any] ): warnings.warn( (F'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , SCREAMING_SNAKE_CASE_ , ) return fn(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return _inner_fn
68
1
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def UpperCamelCase ( a = 200_0000 ) -> int: '''simple docstring''' __magic_name__ = [0] __magic_name__ = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __magic_name__ = 0 # the area corresponding to the grid that gives the product closest to target __magic_name__ = 0 # an estimate of b, using the quadratic formula __magic_name__ = 42 # the largest integer less than b_estimate __magic_name__ = 42 # the largest integer less than b_estimate __magic_name__ = 42 # the triangle number corresponding to b_floor __magic_name__ = 42 # the triangle number corresponding to b_ceil __magic_name__ = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __magic_name__ = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __magic_name__ = floor(a ) __magic_name__ = ceil(a ) __magic_name__ = triangle_numbers[b_floor] __magic_name__ = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __magic_name__ = triangle_b_first_guess * triangle_a __magic_name__ = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __magic_name__ = triangle_b_second_guess * triangle_a __magic_name__ = idx_a * b_ceil return area if __name__ == "__main__": print(F'''{solution() = }''')
98
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def UpperCamelCase ( a ) -> str: '''simple docstring''' __magic_name__ = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) __magic_name__ = MaskFormerConfig(backbone_config=a ) __magic_name__ = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok __magic_name__ = 847 __magic_name__ = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok __magic_name__ = 150 __magic_name__ = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok __magic_name__ = 171 __magic_name__ = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO __magic_name__ = 133 __magic_name__ = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok __magic_name__ = 19 __magic_name__ = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok __magic_name__ = 65 __magic_name__ = '''mapillary-vistas-id2label.json''' __magic_name__ = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) __magic_name__ = {int(a ): v for k, v in idalabel.items()} return config def UpperCamelCase ( a ) -> Tuple: '''simple docstring''' __magic_name__ = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def UpperCamelCase ( a , a , a ) -> str: '''simple docstring''' __magic_name__ = dct.pop(a ) __magic_name__ = val def UpperCamelCase ( a , a ) -> List[str]: '''simple docstring''' __magic_name__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __magic_name__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __magic_name__ = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) __magic_name__ = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ = in_proj_weight[:dim, :] __magic_name__ = in_proj_bias[: dim] __magic_name__ = in_proj_weight[ dim : dim * 2, : ] __magic_name__ = in_proj_bias[ dim : dim * 2 ] __magic_name__ = in_proj_weight[ -dim :, : ] __magic_name__ = in_proj_bias[-dim :] # fmt: on def UpperCamelCase ( a , a ) -> int: '''simple docstring''' # fmt: off __magic_name__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __magic_name__ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) __magic_name__ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ = in_proj_weight[: hidden_size, :] __magic_name__ = in_proj_bias[:config.hidden_size] __magic_name__ = in_proj_weight[hidden_size : hidden_size * 2, :] __magic_name__ = in_proj_bias[hidden_size : hidden_size * 2] __magic_name__ = in_proj_weight[-hidden_size :, :] __magic_name__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __magic_name__ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) __magic_name__ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ = in_proj_weight[: hidden_size, :] __magic_name__ = in_proj_bias[:config.hidden_size] __magic_name__ = in_proj_weight[hidden_size : hidden_size * 2, :] __magic_name__ = in_proj_bias[hidden_size : hidden_size * 2] __magic_name__ = in_proj_weight[-hidden_size :, :] __magic_name__ = in_proj_bias[-hidden_size :] # fmt: on def UpperCamelCase ( ) -> torch.Tensor: '''simple docstring''' __magic_name__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __magic_name__ = Image.open(requests.get(a , stream=a ).raw ) return im @torch.no_grad() def UpperCamelCase ( a , a , a , a = False ) -> Dict: '''simple docstring''' __magic_name__ = get_maskformer_config(a ) # load original state_dict with open(a , '''rb''' ) as f: __magic_name__ = pickle.load(a ) __magic_name__ = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __magic_name__ = create_rename_keys(a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_swin_q_k_v(a , config.backbone_config ) read_in_decoder_q_k_v(a , a ) # update to torch tensors for key, value in state_dict.items(): __magic_name__ = torch.from_numpy(a ) # load 🤗 model __magic_name__ = MaskFormerForInstanceSegmentation(a ) model.eval() for name, param in model.named_parameters(): print(a , param.shape ) __magic_name__ , __magic_name__ = model.load_state_dict(a , strict=a ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(a ) == 0, F'''Unexpected keys: {unexpected_keys}''' # verify results __magic_name__ = prepare_img() if "vistas" in model_name: __magic_name__ = 65 elif "cityscapes" in model_name: __magic_name__ = 6_5535 else: __magic_name__ = 255 __magic_name__ = True if '''ade''' in model_name else False __magic_name__ = MaskFormerImageProcessor(ignore_index=a , reduce_labels=a ) __magic_name__ = image_processor(a , return_tensors='''pt''' ) __magic_name__ = model(**a ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __magic_name__ = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , a , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(a ).mkdir(exist_ok=a ) model.save_pretrained(a ) image_processor.save_pretrained(a ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F'''nielsr/{model_name}''' ) image_processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowerCAmelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
98
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = original_name.split('.' )[0] lowercase = key.split('.' ) lowercase = int(key_list[key_list.index(__SCREAMING_SNAKE_CASE ) - 2] ) lowercase = int(key_list[key_list.index(__SCREAMING_SNAKE_CASE ) - 1] ) lowercase = orig_block_num - offset lowercase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''' , F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = OrderedDict() lowercase , lowercase = 0, 0 for key, value in state_dict.items(): if key.startswith('network' ): lowercase = key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 lowercase = key[: key.find('proj' )] lowercase = key.replace(__SCREAMING_SNAKE_CASE , F'''patch_embeddings.{total_embed_found}.''' ) lowercase = key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: lowercase = 'poolformer.encoder.' + key if "mlp.fc1" in key: lowercase = replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: lowercase = replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: lowercase = replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 'norm1' , 'before_norm' ) if "norm2" in key: lowercase = replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: lowercase = replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: lowercase = replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: lowercase = key.replace('head' , 'classifier' ) lowercase = value return new_state_dict def UpperCAmelCase_ ( ): lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = PoolFormerConfig() # set attributes based on model_name lowercase = 'huggingface/label-files' lowercase = model_name[-3:] lowercase = 1000 lowercase = 'imagenet-1k-id2label.json' lowercase = (1, 1000) # set config attributes lowercase = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} if size == "s12": lowercase = [2, 2, 6, 2] lowercase = [64, 128, 320, 512] lowercase = 4.0 lowercase = 0.9 elif size == "s24": lowercase = [4, 4, 12, 4] lowercase = [64, 128, 320, 512] lowercase = 4.0 lowercase = 0.9 elif size == "s36": lowercase = [6, 6, 18, 6] lowercase = [64, 128, 320, 512] lowercase = 4.0 lowercase = 1e-6 lowercase = 0.9 elif size == "m36": lowercase = [6, 6, 18, 6] lowercase = [96, 192, 384, 768] lowercase = 4.0 lowercase = 1e-6 lowercase = 0.95 elif size == "m48": lowercase = [8, 8, 24, 8] lowercase = [96, 192, 384, 768] lowercase = 4.0 lowercase = 1e-6 lowercase = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor lowercase = PoolFormerImageProcessor(crop_pct=__SCREAMING_SNAKE_CASE ) # Prepare image lowercase = prepare_img() lowercase = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict lowercase = torch.load(__SCREAMING_SNAKE_CASE , map_location=torch.device('cpu' ) ) # rename keys lowercase = rename_keys(__SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict lowercase = PoolFormerForImageClassification(__SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) model.eval() # Define image processor lowercase = PoolFormerImageProcessor(crop_pct=__SCREAMING_SNAKE_CASE ) lowercase = image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass lowercase = model(__SCREAMING_SNAKE_CASE ) lowercase = outputs.logits # define expected logit slices for different models if size == "s12": lowercase = torch.tensor([-0.30_45, -0.67_58, -0.48_69] ) elif size == "s24": lowercase = torch.tensor([0.44_02, -0.13_74, -0.80_45] ) elif size == "s36": lowercase = torch.tensor([-0.60_80, -0.51_33, -0.58_98] ) elif size == "m36": lowercase = torch.tensor([0.39_52, 0.22_63, -1.26_68] ) elif size == "m48": lowercase = torch.tensor([0.11_67, -0.06_56, -0.34_23] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) UpperCAmelCase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
195
from manim import * class A_ ( __lowerCamelCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = Rectangle(height=0.5 , width=0.5 ) lowercase = Rectangle(height=0.25 , width=0.25 ) lowercase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowercase = [mem.copy() for i in range(6 )] lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = VGroup(snake_case , snake_case ).arrange(snake_case , buff=0 ) lowercase = Text('CPU' , font_size=24 ) lowercase = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case ) lowercase = [mem.copy() for i in range(4 )] lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = Text('GPU' , font_size=24 ) lowercase = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) gpu.move_to([-1, -1, 0] ) self.add(snake_case ) lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = Text('Model' , font_size=24 ) lowercase = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) model.move_to([3, -1.0, 0] ) self.add(snake_case ) lowercase = [] lowercase = [] lowercase = [] for i, rect in enumerate(snake_case ): rect.set_stroke(snake_case ) lowercase = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=snake_case , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=snake_case , buff=0.0 ) self.add(snake_case ) model_cpu_arr.append(snake_case ) self.add(*snake_case , *snake_case , *snake_case ) lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = Text('Loaded Checkpoint' , font_size=24 ) lowercase = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) checkpoint.move_to([3, 0.5, 0] ) self.add(snake_case ) lowercase = [] lowercase = [] for i, rect in enumerate(snake_case ): lowercase = fill.copy().set_fill(snake_case , opacity=0.7 ) target.move_to(snake_case ) ckpt_arr.append(snake_case ) lowercase = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(snake_case ) self.add(*snake_case , *snake_case ) lowercase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(snake_case , snake_case ) lowercase = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(snake_case ) lowercase = MarkupText( F'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) lowercase = [meta_mem.copy() for i in range(6 )] lowercase = [meta_mem.copy() for i in range(6 )] lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = VGroup(snake_case , snake_case ).arrange(snake_case , buff=0 ) lowercase = Text('Disk' , font_size=24 ) lowercase = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(snake_case , run_time=3 ) , Write(snake_case , run_time=1 ) , Create(snake_case , run_time=1 ) ) lowercase = [] for i, rect in enumerate(snake_case ): lowercase = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(snake_case , run_time=1.5 ) ) self.play(*snake_case ) self.play(FadeOut(snake_case ) ) lowercase = MarkupText(F'''Then, the checkpoint is removed from memory\nthrough garbage collection.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case , run_time=3 ) ) self.play( FadeOut(snake_case , snake_case , *snake_case , *snake_case ) , ) self.wait()
195
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = None _a = None _a = None _a = None class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : str, lowerCamelCase : str=1, lowerCamelCase : Any=0, lowerCamelCase : Optional[int]=2, lowerCamelCase : Tuple=512, lowerCamelCase : List[str]="cls", lowerCamelCase : List[Any]=False, lowerCamelCase : Dict=True, **lowerCamelCase : Union[str, Any], )-> Tuple: super().__init__(pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, **lowerCamelCase ) lowerCamelCase__ : List[Any] =project_dim lowerCamelCase__ : Union[str, Any] =pooler_fn lowerCamelCase__ : Optional[int] =learn_encoder lowerCamelCase__ : Union[str, Any] =use_attention_mask class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = [r'pooler', r'logit_scale'] _a = [r'position_ids', r'predictions.decoder.bias'] _a = 'roberta' _a = RobertaSeriesConfig def __init__( self : int, lowerCamelCase : Tuple )-> Dict: super().__init__(lowerCamelCase ) lowerCamelCase__ : Any =XLMRobertaModel(lowerCamelCase ) lowerCamelCase__ : Dict =nn.Linear(config.hidden_size, config.project_dim ) lowerCamelCase__ : List[Any] =getattr(lowerCamelCase, '''has_pre_transformation''', lowerCamelCase ) if self.has_pre_transformation: lowerCamelCase__ : int =nn.Linear(config.hidden_size, config.project_dim ) lowerCamelCase__ : List[Any] =nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps ) self.post_init() def snake_case ( self : Any, lowerCamelCase : Optional[torch.Tensor] = None, lowerCamelCase : Optional[torch.Tensor] = None, lowerCamelCase : Optional[torch.Tensor] = None, lowerCamelCase : Optional[torch.Tensor] = None, lowerCamelCase : Optional[torch.Tensor] = None, lowerCamelCase : Optional[torch.Tensor] = None, lowerCamelCase : Optional[torch.Tensor] = None, lowerCamelCase : Optional[torch.Tensor] = None, lowerCamelCase : Optional[bool] = None, lowerCamelCase : Optional[bool] = None, lowerCamelCase : Optional[bool] = None, )-> List[Any]: lowerCamelCase__ : List[Any] =return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__ : Tuple =self.base_model( input_ids=lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, position_ids=lowerCamelCase, head_mask=lowerCamelCase, inputs_embeds=lowerCamelCase, encoder_hidden_states=lowerCamelCase, encoder_attention_mask=lowerCamelCase, output_attentions=lowerCamelCase, output_hidden_states=True if self.has_pre_transformation else output_hidden_states, return_dict=lowerCamelCase, ) if self.has_pre_transformation: lowerCamelCase__ : Optional[Any] =outputs['''hidden_states'''][-2] lowerCamelCase__ : Optional[Any] =self.pre_LN(lowerCamelCase ) lowerCamelCase__ : List[str] =self.transformation_pre(lowerCamelCase ) return TransformationModelOutput( projection_state=lowerCamelCase, last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) else: lowerCamelCase__ : Union[str, Any] =self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=lowerCamelCase, last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
365
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase : Tuple = logging.getLogger(__name__) def snake_case__ ( __lowerCamelCase : torch.nn.Module , __lowerCamelCase : BnbQuantizationConfig , __lowerCamelCase : Union[str, os.PathLike] = None , __lowerCamelCase : Optional[Dict[str, Union[int, str, torch.device]]] = None , __lowerCamelCase : Optional[List[str]] = None , __lowerCamelCase : Optional[Dict[Union[int, str], Union[int, str]]] = None , __lowerCamelCase : Optional[Union[str, os.PathLike]] = None , __lowerCamelCase : bool = False , ): """simple docstring""" lowerCamelCase__ : str =bnb_quantization_config.load_in_abit lowerCamelCase__ : str =bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) lowerCamelCase__ : str =[] # custom device map if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(device_map.keys() ) > 1: lowerCamelCase__ : Union[str, Any] =[key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCamelCase__ : Any =get_keys_to_not_convert(__lowerCamelCase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__lowerCamelCase ) lowerCamelCase__ : Tuple =bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCamelCase__ : Optional[Any] =[] lowerCamelCase__ : List[Any] =bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__lowerCamelCase ) # compatibility with peft lowerCamelCase__ : List[str] =load_in_abit lowerCamelCase__ : List[str] =load_in_abit lowerCamelCase__ : Union[str, Any] =get_parameter_device(__lowerCamelCase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) lowerCamelCase__ : str =replace_with_bnb_layers(__lowerCamelCase , __lowerCamelCase , modules_to_not_convert=__lowerCamelCase ) # convert param to the right dtype lowerCamelCase__ : Union[str, Any] =bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: lowerCamelCase__ : Optional[int] =name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) lowerCamelCase__ : Dict =getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__lowerCamelCase ): param.to(__lowerCamelCase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( f'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( f'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): lowerCamelCase__ : Dict =replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , modules_to_not_convert=__lowerCamelCase ) lowerCamelCase__ : Optional[int] =get_quantized_model_device_map( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , max_memory=__lowerCamelCase , no_split_module_classes=__lowerCamelCase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCamelCase__ : List[str] =True lowerCamelCase__ : Dict =any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__lowerCamelCase , offload_state_dict=__lowerCamelCase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__lowerCamelCase , device_map=__lowerCamelCase , offload_dir=__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : Optional[int]=None ): """simple docstring""" if device_map is None: if torch.cuda.is_available(): lowerCamelCase__ : List[Any] ={'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(__lowerCamelCase , __lowerCamelCase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) lowerCamelCase__ : List[Any] ={} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) lowerCamelCase__ : int ={} lowerCamelCase__ : Optional[int] =special_dtypes lowerCamelCase__ : List[str] =no_split_module_classes lowerCamelCase__ : Tuple =bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCamelCase__ : List[str] =get_balanced_memory( __lowerCamelCase , low_zero=(device_map == '''balanced_low_0''') , max_memory=__lowerCamelCase , **__lowerCamelCase , ) lowerCamelCase__ : str =max_memory lowerCamelCase__ : Any =infer_auto_device_map(__lowerCamelCase , **__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): # check if don't have any quantized module on the cpu lowerCamelCase__ : List[str] =bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCamelCase__ : List[str] ={ key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def snake_case__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : str=None ): """simple docstring""" if modules_to_not_convert is None: lowerCamelCase__ : Dict =[] lowerCamelCase__ , lowerCamelCase__ : List[Any] =_replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def snake_case__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int=None , __lowerCamelCase : Optional[Any]=None , ): """simple docstring""" lowerCamelCase__ : Tuple =False for name, module in model.named_children(): if current_key_name is None: lowerCamelCase__ : Optional[Any] =[] current_key_name.append(__lowerCamelCase ) if isinstance(__lowerCamelCase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCamelCase__ : Optional[Any] ='''.'''.join(__lowerCamelCase ) lowerCamelCase__ : Tuple =True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCamelCase__ : Any =False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCamelCase__ : List[str] =bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__lowerCamelCase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCamelCase__ : str =bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) lowerCamelCase__ : Any =module.weight.data if module.bias is not None: lowerCamelCase__ : Any =module.bias.data bnb_module.requires_grad_(__lowerCamelCase ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : str =True if len(list(module.children() ) ) > 0: lowerCamelCase__ , lowerCamelCase__ : Optional[int] =_replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Any =has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def snake_case__ ( __lowerCamelCase : Union[str, Any] ): """simple docstring""" # Create a copy of the model with init_empty_weights(): lowerCamelCase__ : Optional[Any] =deepcopy(__lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCamelCase__ : Union[str, Any] =find_tied_parameters(__lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : List[str] =sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowerCamelCase__ : Any =sum(__lowerCamelCase , [] ) lowerCamelCase__ : Any =len(__lowerCamelCase ) > 0 # Check if it is a base model lowerCamelCase__ : Optional[Any] =False if hasattr(__lowerCamelCase , '''base_model_prefix''' ): lowerCamelCase__ : Dict =not hasattr(__lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCamelCase__ : List[str] =list(model.named_children() ) lowerCamelCase__ : Any =[list_modules[-1][0]] # add last module together with tied weights lowerCamelCase__ : Optional[Any] =set(__lowerCamelCase ) - set(__lowerCamelCase ) lowerCamelCase__ : List[str] =list(set(__lowerCamelCase ) ) + list(__lowerCamelCase ) # remove ".weight" from the keys lowerCamelCase__ : Optional[Any] =['''.weight''', '''.bias'''] lowerCamelCase__ : List[Any] =[] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCamelCase__ : Union[str, Any] =name.replace(__lowerCamelCase , '''''' ) filtered_module_names.append(__lowerCamelCase ) return filtered_module_names def snake_case__ ( __lowerCamelCase : Tuple ): """simple docstring""" for m in model.modules(): if isinstance(__lowerCamelCase , bnb.nn.Linearabit ): return True return False def snake_case__ ( __lowerCamelCase : nn.Module ): """simple docstring""" return next(parameter.parameters() ).device def snake_case__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Optional[int] ): """simple docstring""" # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(__lowerCamelCase , __lowerCamelCase , 0 , dtype=__lowerCamelCase , value=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =param_name lowerCamelCase__ : Dict =model if "." in tensor_name: lowerCamelCase__ : Optional[int] =tensor_name.split('''.''' ) for split in splits[:-1]: lowerCamelCase__ : Union[str, Any] =getattr(__lowerCamelCase , __lowerCamelCase ) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''' ) lowerCamelCase__ : Union[str, Any] =new_module lowerCamelCase__ : List[Any] =splits[-1] # offload weights lowerCamelCase__ : Optional[Any] =False offload_weight(module._parameters[tensor_name] , __lowerCamelCase , __lowerCamelCase , index=__lowerCamelCase ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , __lowerCamelCase , index=__lowerCamelCase , ) else: offload_weight(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , index=__lowerCamelCase ) offload_weight(__lowerCamelCase , param_name.replace('''weight''' , '''SCB''' ) , __lowerCamelCase , index=__lowerCamelCase ) set_module_tensor_to_device(__lowerCamelCase , __lowerCamelCase , '''meta''' , dtype=__lowerCamelCase , value=torch.empty(*param.size() ) )
272
0
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
72
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase__ = logging.get_logger(__name__) # TODO: upload to AWS lowerCAmelCase__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __snake_case ( _lowercase): snake_case__ : int = "retribert" def __init__( self : Optional[int] , __lowerCAmelCase : str=3_0_5_2_2 , __lowerCAmelCase : Tuple=7_6_8 , __lowerCAmelCase : Union[str, Any]=8 , __lowerCAmelCase : Any=1_2 , __lowerCAmelCase : Optional[int]=3_0_7_2 , __lowerCAmelCase : List[str]="gelu" , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Tuple=5_1_2 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Tuple=0.02 , __lowerCAmelCase : Optional[Any]=1E-12 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Any=1_2_8 , __lowerCAmelCase : Optional[int]=0 , **__lowerCAmelCase : str , ): """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase ) _lowerCamelCase : Dict = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : int = num_attention_heads _lowerCamelCase : int = hidden_act _lowerCamelCase : str = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = max_position_embeddings _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : Any = initializer_range _lowerCamelCase : Optional[int] = layer_norm_eps _lowerCamelCase : int = share_encoders _lowerCamelCase : Optional[Any] = projection_dim
72
1
import qiskit def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: int ) -> qiskit.result.counts.Counts: _UpperCAmelCase : Optional[Any] = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase : Optional[Any] = qiskit.QuantumCircuit(lowerCAmelCase , lowerCAmelCase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _UpperCAmelCase : Any = qiskit.execute(lowerCAmelCase , lowerCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCAmelCase ) if __name__ == "__main__": print(F'''Total count for various states are: {single_qubit_measure(1, 1)}''')
364
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> Tuple: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _UpperCAmelCase : Union[str, Any] = model_type_to_module_name(lowerCAmelCase ) _UpperCAmelCase : Optional[int] = importlib.import_module(F'.{module_name}' , "transformers.models" ) try: return getattr(lowerCAmelCase , lowerCAmelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowerCAmelCase , "__name__" , lowerCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _UpperCAmelCase : Any = importlib.import_module("transformers" ) if hasattr(lowerCAmelCase , lowerCAmelCase ): return getattr(lowerCAmelCase , lowerCAmelCase ) return None def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, os.PathLike] , lowerCAmelCase: Optional[Union[str, os.PathLike]] = None , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: Optional[Dict[str, str]] = None , lowerCAmelCase: Optional[Union[bool, str]] = None , lowerCAmelCase: Optional[str] = None , lowerCAmelCase: bool = False , **lowerCAmelCase: List[Any] , ) -> Any: _UpperCAmelCase : List[Any] = get_file_from_repo( lowerCAmelCase , lowerCAmelCase , cache_dir=lowerCAmelCase , force_download=lowerCAmelCase , resume_download=lowerCAmelCase , proxies=lowerCAmelCase , use_auth_token=lowerCAmelCase , revision=lowerCAmelCase , local_files_only=lowerCAmelCase , ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(lowerCAmelCase , encoding="utf-8" ) as reader: return json.load(lowerCAmelCase ) class a : def __init__( self ): '''simple docstring''' raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(A_ ) def _UpperCAmelCase ( cls , A_ , **A_ ): '''simple docstring''' _UpperCAmelCase : str = kwargs.pop("config" , A_ ) _UpperCAmelCase : Dict = kwargs.pop("trust_remote_code" , A_ ) _UpperCAmelCase : str = True _UpperCAmelCase , _UpperCAmelCase : Tuple = ImageProcessingMixin.get_image_processor_dict(A_ , **A_ ) _UpperCAmelCase : Any = config_dict.get("image_processor_type" , A_ ) _UpperCAmelCase : str = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): _UpperCAmelCase : int = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _UpperCAmelCase : Any = config_dict.pop("feature_extractor_type" , A_ ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) _UpperCAmelCase : Optional[Any] = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): _UpperCAmelCase : Optional[Any] = config_dict["auto_map"]["AutoFeatureExtractor"] _UpperCAmelCase : List[Any] = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(A_ , A_ ): _UpperCAmelCase : Any = AutoConfig.from_pretrained(A_ , **A_ ) # It could be in `config.image_processor_type`` _UpperCAmelCase : Optional[Any] = getattr(A_ , "image_processor_type" , A_ ) if hasattr(A_ , "auto_map" ) and "AutoImageProcessor" in config.auto_map: _UpperCAmelCase : Any = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: _UpperCAmelCase : List[str] = image_processor_class_from_name(A_ ) _UpperCAmelCase : Optional[Any] = image_processor_auto_map is not None _UpperCAmelCase : Any = image_processor_class is not None or type(A_ ) in IMAGE_PROCESSOR_MAPPING _UpperCAmelCase : List[Any] = resolve_trust_remote_code( A_ , A_ , A_ , A_ ) if has_remote_code and trust_remote_code: _UpperCAmelCase : Optional[int] = get_class_from_dynamic_module( A_ , A_ , **A_ ) _UpperCAmelCase : Optional[int] = kwargs.pop("code_revision" , A_ ) if os.path.isdir(A_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(A_ , **A_ ) elif image_processor_class is not None: return image_processor_class.from_dict(A_ , **A_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(A_ ) in IMAGE_PROCESSOR_MAPPING: _UpperCAmelCase : Optional[int] = IMAGE_PROCESSOR_MAPPING[type(A_ )] return image_processor_class.from_dict(A_ , **A_ ) raise ValueError( f'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ' f'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ' f'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' ) @staticmethod def _UpperCAmelCase ( A_ , A_ ): '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(A_ , A_ )
189
0
from __future__ import annotations from collections import deque class _UpperCamelCase : """simple docstring""" def __init__( self , lowerCAmelCase__ ) -> Dict: '''simple docstring''' __lowercase = [] self.adlist.append( {'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} ) for keyword in keywords: self.add_keyword(__UpperCamelCase ) self.set_fail_transitions() def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int | None: '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> None: '''simple docstring''' __lowercase = 0 for character in keyword: __lowercase = self.find_next_state(__UpperCamelCase , __UpperCamelCase ) if next_state is None: self.adlist.append( { '''value''': character, '''next_states''': [], '''fail_state''': 0, '''output''': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) __lowercase = len(self.adlist ) - 1 else: __lowercase = next_state self.adlist[current_state]["output"].append(__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self ) -> None: '''simple docstring''' __lowercase = deque() for node in self.adlist[0]["next_states"]: q.append(__UpperCamelCase ) __lowercase = 0 while q: __lowercase = q.popleft() for child in self.adlist[r]["next_states"]: q.append(__UpperCamelCase ) __lowercase = self.adlist[r]['fail_state'] while ( self.find_next_state(__UpperCamelCase , self.adlist[child]['''value'''] ) is None and state != 0 ): __lowercase = self.adlist[state]['fail_state'] __lowercase = self.find_next_state( __UpperCamelCase , self.adlist[child]['''value'''] ) if self.adlist[child]["fail_state"] is None: __lowercase = 0 __lowercase = ( self.adlist[child]['output'] + self.adlist[self.adlist[child]['fail_state']]['output'] ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> dict[str, list[int]]: '''simple docstring''' __lowercase = {} # returns a dict with keywords and list of its occurrences __lowercase = 0 for i in range(len(__UpperCamelCase ) ): while ( self.find_next_state(__UpperCamelCase , string[i] ) is None and current_state != 0 ): __lowercase = self.adlist[current_state]['fail_state'] __lowercase = self.find_next_state(__UpperCamelCase , string[i] ) if next_state is None: __lowercase = 0 else: __lowercase = next_state for key in self.adlist[current_state]["output"]: if key not in result: __lowercase = [] result[key].append(i - len(__UpperCamelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
210
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : int = logging.get_logger(__name__) def UpperCamelCase__ ( A__ , A__=False ) -> List[Any]: snake_case__ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case__ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def UpperCamelCase__ ( A__ , A__ , A__=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: snake_case__ : Tuple = '' else: snake_case__ : List[Any] = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ : List[Any] = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : int = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[Any] = in_proj_bias[: config.hidden_size] snake_case__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : Tuple = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : int = in_proj_bias[-config.hidden_size :] def UpperCamelCase__ ( A__ , A__ , A__ ) -> str: snake_case__ : Optional[int] = dct.pop(A__ ) snake_case__ : int = val def UpperCamelCase__ ( ) -> Dict: snake_case__ : str = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : Dict = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( A__ , A__ ) -> List[str]: snake_case__ : List[Any] = DeiTConfig() # all deit models have fine-tuned heads snake_case__ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ : Any = 1000 snake_case__ : Union[str, Any] = 'huggingface/label-files' snake_case__ : int = 'imagenet-1k-id2label.json' snake_case__ : str = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) snake_case__ : int = {int(A__ ): v for k, v in idalabel.items()} snake_case__ : List[Any] = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} snake_case__ : Tuple = int(deit_name[-6:-4] ) snake_case__ : str = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): snake_case__ : Optional[int] = 192 snake_case__ : str = 768 snake_case__ : Optional[Any] = 12 snake_case__ : Tuple = 3 elif deit_name[9:].startswith('small' ): snake_case__ : str = 384 snake_case__ : str = 1536 snake_case__ : Dict = 12 snake_case__ : str = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): snake_case__ : List[Any] = 1024 snake_case__ : str = 4096 snake_case__ : Tuple = 24 snake_case__ : Tuple = 16 # load original model from timm snake_case__ : Optional[int] = timm.create_model(A__ , pretrained=A__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Optional[Any] = timm_model.state_dict() snake_case__ : Tuple = create_rename_keys(A__ , A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) read_in_q_k_v(A__ , A__ , A__ ) # load HuggingFace model snake_case__ : int = DeiTForImageClassificationWithTeacher(A__ ).eval() model.load_state_dict(A__ ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case__ : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case__ : List[Any] = DeiTImageProcessor(size=A__ , crop_size=config.image_size ) snake_case__ : Tuple = image_processor(images=prepare_img() , return_tensors='pt' ) snake_case__ : Tuple = encoding['pixel_values'] snake_case__ : Dict = model(A__ ) snake_case__ : Union[str, Any] = timm_model(A__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A__ , outputs.logits , atol=1e-3 ) Path(A__ ).mkdir(exist_ok=A__ ) print(F"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase__ : int = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
143
0
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowercase__ = {"UserAgent": UserAgent().random} def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : str = script.contents[0] UpperCAmelCase : str = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A_ : '''simple docstring''' def __init__( self : Tuple , lowercase_ : Union[str, Any] ) -> Dict: UpperCAmelCase : int = f"""https://www.instagram.com/{username}/""" UpperCAmelCase : int = self.get_json() def UpperCAmelCase_ ( self : Optional[Any] ) -> dict: UpperCAmelCase : List[Any] = requests.get(self.url , headers=snake_case__ ).text UpperCAmelCase : Optional[Any] = BeautifulSoup(snake_case__ , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : str ) -> str: return f"""{self.__class__.__name__}(\'{self.username}\')""" def __str__( self : List[Any] ) -> str: return f"""{self.fullname} ({self.username}) is {self.biography}""" @property def UpperCAmelCase_ ( self : List[str] ) -> str: return self.user_data["username"] @property def UpperCAmelCase_ ( self : str ) -> str: return self.user_data["full_name"] @property def UpperCAmelCase_ ( self : Tuple ) -> str: return self.user_data["biography"] @property def UpperCAmelCase_ ( self : List[str] ) -> str: return self.user_data["business_email"] @property def UpperCAmelCase_ ( self : str ) -> str: return self.user_data["external_url"] @property def UpperCAmelCase_ ( self : List[str] ) -> int: return self.user_data["edge_followed_by"]["count"] @property def UpperCAmelCase_ ( self : int ) -> int: return self.user_data["edge_follow"]["count"] @property def UpperCAmelCase_ ( self : Tuple ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def UpperCAmelCase_ ( self : str ) -> str: return self.user_data["profile_pic_url_hd"] @property def UpperCAmelCase_ ( self : List[Any] ) -> bool: return self.user_data["is_verified"] @property def UpperCAmelCase_ ( self : Tuple ) -> bool: return self.user_data["is_private"] def UpperCamelCase( UpperCAmelCase_ = "github" ): import os if os.environ.get('CI' ): return # test failing on GitHub Actions UpperCAmelCase : Tuple = InstagramUser(__lowerCAmelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __lowerCAmelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = InstagramUser("github") print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
362
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowercase__ = logging.get_logger("transformers.models.speecht5") def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): hf_model.apply_weight_norm() UpperCAmelCase : Dict = checkpoint['input_conv.weight_g'] UpperCAmelCase : Any = checkpoint['input_conv.weight_v'] UpperCAmelCase : Any = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): UpperCAmelCase : Any = checkpoint[F"""upsamples.{i}.1.weight_g"""] UpperCAmelCase : Union[str, Any] = checkpoint[F"""upsamples.{i}.1.weight_v"""] UpperCAmelCase : str = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCAmelCase : Any = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] UpperCAmelCase : Optional[int] = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] UpperCAmelCase : Dict = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] UpperCAmelCase : Union[str, Any] = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] UpperCAmelCase : int = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] UpperCAmelCase : Optional[int] = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] UpperCAmelCase : Dict = checkpoint['output_conv.1.weight_g'] UpperCAmelCase : str = checkpoint['output_conv.1.weight_v'] UpperCAmelCase : Union[str, Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None , ): if config_path is not None: UpperCAmelCase : Any = SpeechTaHifiGanConfig.from_pretrained(UpperCAmelCase_ ) else: UpperCAmelCase : Optional[Any] = SpeechTaHifiGanConfig() UpperCAmelCase : List[Any] = SpeechTaHifiGan(UpperCAmelCase_ ) UpperCAmelCase : int = torch.load(UpperCAmelCase_ ) load_weights(orig_checkpoint['model']['generator'] , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : int = np.load(UpperCAmelCase_ ) UpperCAmelCase : str = stats[0].reshape(-1 ) UpperCAmelCase : List[str] = stats[1].reshape(-1 ) UpperCAmelCase : Union[str, Any] = torch.from_numpy(UpperCAmelCase_ ).float() UpperCAmelCase : List[str] = torch.from_numpy(UpperCAmelCase_ ).float() model.save_pretrained(UpperCAmelCase_ ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) lowercase__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
280
0
"""simple docstring""" import math def lowercase__ ( _UpperCAmelCase ) -> bool: '''simple docstring''' lowercase : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(lowerCAmelCase_ ) def lowercase__ ( _UpperCAmelCase = 1 / 1_23_45 ) -> int: '''simple docstring''' lowercase : int = 0 lowercase : Optional[Any] = 0 lowercase : int = 3 while True: lowercase : Tuple = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(lowerCAmelCase_ ): lowercase : Union[str, Any] = int(lowerCAmelCase_ ) total_partitions += 1 if check_partition_perfect(lowerCAmelCase_ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(lowerCAmelCase_ ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
255
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class __magic_name__ ( _UpperCamelCase ): def __init__( self : Optional[int] ,_UpperCAmelCase : Union[str, "sqlalchemy.sql.Selectable"] ,_UpperCAmelCase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] ,_UpperCAmelCase : Optional[Features] = None ,_UpperCAmelCase : str = None ,_UpperCAmelCase : bool = False ,**_UpperCAmelCase : Dict ,): super().__init__(features=_UpperCAmelCase ,cache_dir=_UpperCAmelCase ,keep_in_memory=_UpperCAmelCase ,**_UpperCAmelCase ) _a : Tuple = Sql( cache_dir=_UpperCAmelCase ,features=_UpperCAmelCase ,sql=_UpperCAmelCase ,con=_UpperCAmelCase ,**_UpperCAmelCase ,) def __lowercase ( self : Dict ): _a : Optional[Any] = None _a : Dict = None _a : Dict = None _a : Optional[int] = None self.builder.download_and_prepare( download_config=_UpperCAmelCase ,download_mode=_UpperCAmelCase ,verification_mode=_UpperCAmelCase ,base_path=_UpperCAmelCase ,) # Build dataset for splits _a : List[str] = self.builder.as_dataset( split='train' ,verification_mode=_UpperCAmelCase ,in_memory=self.keep_in_memory ) return dataset class __magic_name__ : def __init__( self : Optional[int] ,_UpperCAmelCase : Dataset ,_UpperCAmelCase : str ,_UpperCAmelCase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] ,_UpperCAmelCase : Optional[int] = None ,_UpperCAmelCase : Optional[int] = None ,**_UpperCAmelCase : Dict ,): if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) _a : Dict = dataset _a : List[Any] = name _a : Tuple = con _a : Union[str, Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _a : List[Any] = num_proc _a : Tuple = to_sql_kwargs def __lowercase ( self : List[Any] ): _a : Tuple = self.to_sql_kwargs.pop('sql' ,_UpperCAmelCase ) _a : str = self.to_sql_kwargs.pop('con' ,_UpperCAmelCase ) _a : Optional[Any] = self.to_sql_kwargs.pop('index' ,_UpperCAmelCase ) _a : Any = self._write(index=_UpperCAmelCase ,**self.to_sql_kwargs ) return written def __lowercase ( self : Optional[int] ,_UpperCAmelCase : Dict ): _a , _a , _a : Any = args _a : Tuple = {**to_sql_kwargs, 'if_exists': 'append'} if offset > 0 else to_sql_kwargs _a : Dict = query_table( table=self.dataset.data ,key=slice(_UpperCAmelCase ,offset + self.batch_size ) ,indices=self.dataset._indices ,) _a : Tuple = batch.to_pandas() _a : Dict = df.to_sql(self.name ,self.con ,index=_UpperCAmelCase ,**_UpperCAmelCase ) return num_rows or len(_UpperCAmelCase ) def __lowercase ( self : int ,_UpperCAmelCase : Optional[int] ,**_UpperCAmelCase : List[Any] ): _a : Union[str, Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 ,len(self.dataset ) ,self.batch_size ) ,unit='ba' ,disable=not logging.is_progress_bar_enabled() ,desc='Creating SQL from Arrow format' ,): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _a , _a : List[Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql ,[(offset, index, to_sql_kwargs) for offset in range(0 ,_UpperCAmelCase ,_UpperCAmelCase )] ,) ,total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size ,unit='ba' ,disable=not logging.is_progress_bar_enabled() ,desc='Creating SQL from Arrow format' ,): written += num_rows return written
89
0
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class lowercase_ : def __init__( self , __UpperCamelCase , __UpperCamelCase=1_3 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=9_9 , __UpperCamelCase=6_4 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=3_7 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_1_2 , __UpperCamelCase=1_6 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=None , ): """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_labels UpperCamelCase_ = num_choices UpperCamelCase_ = scope UpperCamelCase_ = vocab_size - 1 def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_input_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ = self.get_config() return config, input_ids, input_mask, token_labels def lowerCamelCase_ ( self ): """simple docstring""" return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = True return config, input_ids, input_mask, token_labels def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = GPTNeoXModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) UpperCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = True UpperCamelCase_ = GPTNeoXModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = GPTNeoXForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.num_labels UpperCamelCase_ = GPTNeoXForQuestionAnswering(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.num_labels UpperCamelCase_ = GPTNeoXForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.num_labels UpperCamelCase_ = GPTNeoXForTokenClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = True UpperCamelCase_ = GPTNeoXForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # first forward pass UpperCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase ) UpperCamelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , output_hidden_states=__UpperCamelCase ) UpperCamelCase_ = output_from_no_past["""hidden_states"""][0] UpperCamelCase_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )["""hidden_states"""][0] # select random slice UpperCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : Tuple = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) A__ : str = (GPTNeoXForCausalLM,) if is_torch_available() else () A__ : Tuple = ( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) A__ : int = False A__ : List[str] = False A__ : List[Any] = False A__ : Any = False def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = GPTNeoXModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=6_4 , num_attention_heads=8 ) def lowerCamelCase_ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase_ = None self.model_tester.create_and_check_model_as_decoder(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def lowerCamelCase_ ( self ): """simple docstring""" pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = ids_tensor([1, 1_0] , config.vocab_size ) UpperCamelCase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase_ = GPTNeoXModel(__UpperCamelCase ) original_model.to(__UpperCamelCase ) original_model.eval() UpperCamelCase_ = original_model(__UpperCamelCase ).last_hidden_state UpperCamelCase_ = original_model(__UpperCamelCase ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase_ = {"""type""": scaling_type, """factor""": 10.0} UpperCamelCase_ = GPTNeoXModel(__UpperCamelCase ) scaled_model.to(__UpperCamelCase ) scaled_model.eval() UpperCamelCase_ = scaled_model(__UpperCamelCase ).last_hidden_state UpperCamelCase_ = scaled_model(__UpperCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-5 ) ) @require_torch class lowercase_ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: UpperCamelCase_ = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(__UpperCamelCase ) UpperCamelCase_ = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__UpperCamelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 UpperCamelCase_ = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" UpperCamelCase_ = model.generate(**__UpperCamelCase , do_sample=__UpperCamelCase , max_new_tokens=2_0 ) UpperCamelCase_ = tokenizer.batch_decode(__UpperCamelCase )[0] self.assertEqual(__UpperCamelCase , __UpperCamelCase )
261
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : List[Any] = """EncodecFeatureExtractor""" A__ : Tuple = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" super().__init__(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = self.feature_extractor UpperCamelCase_ = False def lowerCamelCase_ ( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=True ): """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=__UpperCamelCase , language=__UpperCamelCase , no_timestamps=__UpperCamelCase ) def __call__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__UpperCamelCase , **__UpperCamelCase ) UpperCamelCase_ = kwargs.pop("""audio""" , __UpperCamelCase ) UpperCamelCase_ = kwargs.pop("""sampling_rate""" , __UpperCamelCase ) UpperCamelCase_ = kwargs.pop("""text""" , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: UpperCamelCase_ = args[0] UpperCamelCase_ = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: UpperCamelCase_ = self.tokenizer(__UpperCamelCase , **__UpperCamelCase ) if audio is not None: UpperCamelCase_ = self.feature_extractor(__UpperCamelCase , *__UpperCamelCase , sampling_rate=__UpperCamelCase , **__UpperCamelCase ) if audio is None: return inputs elif text is None: return audio_inputs else: UpperCamelCase_ = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: UpperCamelCase_ = audio_inputs["""padding_mask"""] return inputs def lowerCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" UpperCamelCase_ = kwargs.pop("""audio""" , __UpperCamelCase ) UpperCamelCase_ = kwargs.pop("""padding_mask""" , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: UpperCamelCase_ = args[0] UpperCamelCase_ = args[1:] if audio_values is not None: return self._decode_audio(__UpperCamelCase , padding_mask=__UpperCamelCase ) else: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): """simple docstring""" UpperCamelCase_ = to_numpy(__UpperCamelCase ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = audio_values.shape if padding_mask is None: return list(__UpperCamelCase ) UpperCamelCase_ = to_numpy(__UpperCamelCase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) UpperCamelCase_ = seq_len - padding_mask.shape[-1] UpperCamelCase_ = 1 - self.feature_extractor.padding_value UpperCamelCase_ = np.pad(__UpperCamelCase , ((0, 0), (0, difference)) , """constant""" , constant_values=__UpperCamelCase ) UpperCamelCase_ = audio_values.tolist() for i in range(__UpperCamelCase ): UpperCamelCase_ = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] UpperCamelCase_ = sliced_audio.reshape(__UpperCamelCase , -1 ) return audio_values
261
1
from math import pi, sqrt, tan def __UpperCamelCase ( _A ): if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def __UpperCamelCase ( _A , _A , _A ): if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __UpperCamelCase ( _A ): if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def __UpperCamelCase ( _A ): if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def __UpperCamelCase ( _A , _A ): if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __UpperCamelCase ( _A , _A , _A ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) lowerCAmelCase_ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __UpperCamelCase ( _A , _A ): if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def __UpperCamelCase ( _A , _A ): if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(lowerCamelCase_ , 2 ) * torus_radius * tube_radius def __UpperCamelCase ( _A , _A ): if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def __UpperCamelCase ( _A ): if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def __UpperCamelCase ( _A , _A ): if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def __UpperCamelCase ( _A , _A , _A ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) lowerCAmelCase_ = (sidea + sidea + sidea) / 2 lowerCAmelCase_ = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __UpperCamelCase ( _A , _A ): if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def __UpperCamelCase ( _A , _A , _A ): if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def __UpperCamelCase ( _A ): if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def __UpperCamelCase ( _A , _A ): if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def __UpperCamelCase ( _A , _A ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def __UpperCamelCase ( _A , _A ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print('''\nSurface Areas of various geometric shapes: \n''') print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
278
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __snake_case : int =logging.get_logger(__name__) enable_full_determinism() class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : List[str] = 4 lowerCAmelCase__ : List[str] = 3 lowerCAmelCase__ : Any = (32, 32) lowerCAmelCase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([10] ).to(__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return (3, 32, 32) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } lowerCAmelCase__ : List[str] = self.dummy_input return init_dict, inputs_dict class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = 4 lowerCAmelCase__ : Optional[int] = 4 lowerCAmelCase__ : Optional[Any] = (32, 32) lowerCAmelCase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor([10] ).to(__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" return (4, 32, 32) @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" return (4, 32, 32) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : Tuple = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } lowerCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' ,'''This test is supposed to run on GPU''' ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Dict = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' ,'''This test is supposed to run on GPU''' ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) model_accelerate.to(__lowerCamelCase ) model_accelerate.eval() lowerCAmelCase__ : Union[str, Any] = torch.randn( 1 ,model_accelerate.config.in_channels ,model_accelerate.config.sample_size ,model_accelerate.config.sample_size ,generator=torch.manual_seed(0 ) ,) lowerCAmelCase__ : Dict = noise.to(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = torch.tensor([10] * noise.shape[0] ).to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = model_accelerate(__lowerCamelCase ,__lowerCamelCase )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowerCAmelCase__ , lowerCAmelCase__ : Tuple = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ,low_cpu_mem_usage=__lowerCamelCase ) model_normal_load.to(__lowerCamelCase ) model_normal_load.eval() lowerCAmelCase__ : List[Any] = model_normal_load(__lowerCamelCase ,__lowerCamelCase )['''sample'''] assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-3 ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : List[str] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) lowerCAmelCase__ : str = noise.to(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = torch.tensor([10] * noise.shape[0] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : str = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : List[str] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase__ : str = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-3 ) ) class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ,__lowerCamelCase=(32, 32) ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = 4 lowerCAmelCase__ : Optional[int] = 3 lowerCAmelCase__ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa ,device=__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> str: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return (3, 32, 32) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : Tuple = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } lowerCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict @slow def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Dict = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ,output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = self.dummy_input lowerCAmelCase__ : Tuple = floats_tensor((4, 3) + (2_56, 2_56) ).to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = noise lowerCAmelCase__ : Union[str, Any] = model(**__lowerCamelCase ) assert image is not None, "Make sure output is not None" @slow def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Dict = 4 lowerCAmelCase__ : Optional[Any] = 3 lowerCAmelCase__ : List[Any] = (2_56, 2_56) lowerCAmelCase__ : str = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor(batch_size * [1e-4] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : Any = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase__ : Optional[Any] = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-2 ) ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : int = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = 4 lowerCAmelCase__ : Dict = 3 lowerCAmelCase__ : str = (32, 32) lowerCAmelCase__ : Tuple = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = torch.tensor(batch_size * [1e-4] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : List[Any] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase__ : Union[str, Any] = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-2 ) ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" pass
129
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = 42 class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): @register_to_config def __init__( self , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = ("DownEncoderBlock2D",) , lowerCAmelCase_ = ("UpDecoderBlock2D",) , lowerCAmelCase_ = (64,) , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "silu" , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 32 , lowerCAmelCase_ = 256 , lowerCAmelCase_ = 32 , lowerCAmelCase_ = None , lowerCAmelCase_ = 0.1_82_15 , lowerCAmelCase_ = "group" , ) -> Tuple: super().__init__() # pass init params to Encoder _snake_case = Encoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , ) _snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels _snake_case = nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) _snake_case = VectorQuantizer(lowerCAmelCase_ , lowerCAmelCase_ , beta=0.25 , remap=lowerCAmelCase_ , sane_index_shape=lowerCAmelCase_ ) _snake_case = nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) # pass init params to Decoder _snake_case = Decoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , norm_type=lowerCAmelCase_ , ) @apply_forward_hook def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = True ) -> VQEncoderOutput: _snake_case = self.encoder(lowerCAmelCase_ ) _snake_case = self.quant_conv(lowerCAmelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowerCAmelCase_ ) @apply_forward_hook def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False , lowerCAmelCase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: _snake_case , _snake_case , _snake_case = self.quantize(lowerCAmelCase_ ) else: _snake_case = h _snake_case = self.post_quant_conv(lowerCAmelCase_ ) _snake_case = self.decoder(lowerCAmelCase_ , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: _snake_case = sample _snake_case = self.encode(lowerCAmelCase_ ).latents _snake_case = self.decode(lowerCAmelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ )
295
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = LEDTokenizerFast lowerCAmelCase_ = True def lowerCAmelCase ( self ) -> List[str]: super().setUp() _snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase_ ) ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> str: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: return "lower newer", "lower newer" @cached_property def lowerCAmelCase ( self ) -> Optional[Any]: return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def lowerCAmelCase ( self ) -> Union[str, Any]: return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _snake_case = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_torch def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIn('input_ids' , lowerCAmelCase_ ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertNotIn('labels' , lowerCAmelCase_ ) self.assertNotIn('decoder_attention_mask' , lowerCAmelCase_ ) @require_torch def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def lowerCAmelCase ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['A long paragraph for summarization.'] _snake_case = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , return_tensors='pt' ) _snake_case = tokenizer(text_target=lowerCAmelCase_ , return_tensors='pt' ) _snake_case = inputs['input_ids'] _snake_case = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCAmelCase ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = ['Summary of the text.', 'Another summary.'] _snake_case = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _snake_case = [[0] * len(lowerCAmelCase_ ) for x in encoded_output['input_ids']] _snake_case = tokenizer.pad(lowerCAmelCase_ ) self.assertSequenceEqual(outputs['global_attention_mask'] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Tuple: pass def lowerCAmelCase ( self ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = 'A, <mask> AllenNLP sentence.' _snake_case = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) _snake_case = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
295
1
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _lowerCAmelCase ( ) -> int: """simple docstring""" snake_case__ : List[str] = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=__lowerCAmelCase , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=__lowerCAmelCase , default=5 ) parser.add_argument('''--batch_size''' , type=__lowerCAmelCase , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=__lowerCAmelCase , default=1 ) parser.add_argument('''--freeze''' , type=__lowerCAmelCase , default=__lowerCAmelCase ) parser.add_argument('''--learning_rate''' , type=__lowerCAmelCase , default=5E-4 ) parser.add_argument('''--seed''' , type=__lowerCAmelCase , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=__lowerCAmelCase , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=__lowerCAmelCase , default=10 ) parser.add_argument('''--weight_decay''' , type=__lowerCAmelCase , default=0.01 ) parser.add_argument('''--output_dir''' , type=__lowerCAmelCase , default='''./results''' ) return parser.parse_args() A__ = load('''accuracy''') def _lowerCAmelCase ( __lowerCAmelCase ) -> Dict: """simple docstring""" snake_case__ , snake_case__ : Optional[int] = eval_pred snake_case__ : Union[str, Any] = np.argmax(__lowerCAmelCase , axis=1 ) return metric.compute(predictions=__lowerCAmelCase , references=__lowerCAmelCase ) class a ( __lowerCamelCase ): def __init__( self :Optional[Any] ,__lowercase :Optional[int] ): super().__init__() snake_case__ : List[str] = trainer def __lowerCamelCase ( self :Optional[int] ,__lowercase :Dict ,__lowercase :List[Any] ,__lowercase :Any ,**__lowercase :Optional[Any] ): if control.should_evaluate: snake_case__ : Any = deepcopy(__lowercase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset ,metric_key_prefix='''train''' ) return control_copy def _lowerCAmelCase ( ) -> List[Any]: """simple docstring""" snake_case__ : Union[str, Any] = get_args() set_seed(args.seed ) snake_case__ : List[str] = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) snake_case__ : Tuple = dataset.train_test_split(test_size=0.2 ) snake_case__ : Optional[Any] = train_test['''test'''].train_test_split(test_size=0.5 ) snake_case__ : Tuple = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) snake_case__ : Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) snake_case__ : Optional[Any] = tokenizer.eos_token snake_case__ : Any = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) snake_case__ : Optional[int] = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): snake_case__ : str = False snake_case__ : List[str] = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(__lowerCAmelCase ): snake_case__ : Optional[int] = tokenizer(example['''src'''] , truncation=__lowerCAmelCase , max_length=1024 ) snake_case__ : Dict = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } snake_case__ : str = train_test_validation.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=train_test_validation['''train'''].column_names , ) snake_case__ : List[Any] = DataCollatorWithPadding(tokenizer=__lowerCAmelCase ) snake_case__ : int = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) snake_case__ : List[Any] = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , compute_metrics=__lowerCAmelCase , ) print('''Training...''' ) trainer.add_callback(CustomCallback(__lowerCAmelCase ) ) trainer.train() if __name__ == "__main__": main()
230
import math import sys def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : Optional[Any] = '''''' try: with open(__lowerCAmelCase , '''rb''' ) as binary_file: snake_case__ : int = binary_file.read() for dat in data: snake_case__ : Any = f"""{dat:08b}""" result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : List[str] = {'''0''': '''0''', '''1''': '''1'''} snake_case__ , snake_case__ : List[Any] = '''''', '''''' snake_case__ : Tuple = len(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue snake_case__ : Tuple = lexicon[curr_string] result += last_match_id snake_case__ : Any = last_match_id + '''0''' if math.loga(__lowerCAmelCase ).is_integer(): snake_case__ : Tuple = {} for curr_key in list(__lowerCAmelCase ): snake_case__ : Union[str, Any] = lexicon.pop(__lowerCAmelCase ) snake_case__ : Optional[Any] = new_lex snake_case__ : Tuple = last_match_id + '''1''' index += 1 snake_case__ : Dict = '''''' return result def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> None: """simple docstring""" snake_case__ : Dict = 8 try: with open(__lowerCAmelCase , '''wb''' ) as opened_file: snake_case__ : Union[str, Any] = [ to_write[i : i + byte_length] for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__lowerCAmelCase , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : Any = 0 for letter in data_bits: if letter == "1": break counter += 1 snake_case__ : Optional[int] = data_bits[counter:] snake_case__ : int = data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> None: """simple docstring""" snake_case__ : Union[str, Any] = read_file_binary(__lowerCAmelCase ) snake_case__ : List[str] = remove_prefix(__lowerCAmelCase ) snake_case__ : Any = decompress_data(__lowerCAmelCase ) write_file_binary(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
230
1
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : int , _lowerCamelCase : Dict , _lowerCamelCase : Any=13 , _lowerCamelCase : Optional[int]=7 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Any=True , _lowerCamelCase : Tuple=True , _lowerCamelCase : Tuple=99 , _lowerCamelCase : Tuple=32 , _lowerCamelCase : Tuple=5 , _lowerCamelCase : List[str]=4 , _lowerCamelCase : Tuple=37 , _lowerCamelCase : Union[str, Any]="gelu" , _lowerCamelCase : Optional[Any]=0.1 , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Tuple=512 , _lowerCamelCase : str=16 , _lowerCamelCase : int=2 , _lowerCamelCase : str=0.0_2 , _lowerCamelCase : int=4 , ): _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_attention_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_choices def lowercase ( self : Union[str, Any] ): _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_attention_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase ( self : Tuple ): _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( A_ , unittest.TestCase ): __a = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowercase ( self : Dict ): _snake_case = FlaxAlbertModelTester(self ) @slow def lowercase ( self : List[Any] ): for model_class_name in self.all_model_classes: _snake_case = model_class_name.from_pretrained('''albert-base-v2''' ) _snake_case = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCamelCase ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowercase ( self : Optional[int] ): _snake_case = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _snake_case = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _snake_case = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _snake_case = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] _snake_case = (1, 11, 768) self.assertEqual(output.shape , _lowerCamelCase ) _snake_case = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1e-4 ) )
40
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowerCAmelCase__ ( A_ ): __a = 42 __a = jnp.floataa __a = True def lowercase ( self : Tuple ): super().setup() _snake_case = nn.Dense(5 , dtype=self.dtype ) def __call__( self : str , *_lowerCamelCase : int , **_lowerCamelCase : Any ): _snake_case = super().__call__(*_lowerCamelCase , **_lowerCamelCase ) _snake_case = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowerCAmelCase__ ( A_ ): __a = FlaxBigBirdForNaturalQuestionsModule def _UpperCAmelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ) -> Any: def cross_entropy(__lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any]=None ): _snake_case = logits.shape[-1] _snake_case = (labels[..., None] == jnp.arange(__lowerCamelCase )[None]).astype('''f4''' ) _snake_case = jax.nn.log_softmax(__lowerCamelCase , axis=-1 ) _snake_case = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: _snake_case = reduction(__lowerCamelCase ) return loss _snake_case = partial(__lowerCamelCase , reduction=jnp.mean ) _snake_case = cross_entropy(__lowerCamelCase , __lowerCamelCase ) _snake_case = cross_entropy(__lowerCamelCase , __lowerCamelCase ) _snake_case = cross_entropy(__lowerCamelCase , __lowerCamelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowerCAmelCase__ : __a = "google/bigbird-roberta-base" __a = 3000 __a = 10500 __a = 128 __a = 3 __a = 1 __a = 5 # tx_args __a = 3e-5 __a = 0.0 __a = 20000 __a = 0.0095 __a = "bigbird-roberta-natural-questions" __a = "training-expt" __a = "data/nq-training.jsonl" __a = "data/nq-validation.jsonl" def lowercase ( self : Optional[Any] ): os.makedirs(self.base_dir , exist_ok=_lowerCamelCase ) _snake_case = os.path.join(self.base_dir , self.save_dir ) _snake_case = self.batch_size_per_device * jax.device_count() @dataclass class lowerCAmelCase__ : __a = 42 __a = 4096 # no dynamic padding on TPUs def __call__( self : Dict , _lowerCamelCase : Any ): _snake_case = self.collate_fn(_lowerCamelCase ) _snake_case = jax.tree_util.tree_map(_lowerCamelCase , _lowerCamelCase ) return batch def lowercase ( self : Dict , _lowerCamelCase : str ): _snake_case , _snake_case = self.fetch_inputs(features['''input_ids'''] ) _snake_case = { '''input_ids''': jnp.array(_lowerCamelCase , dtype=jnp.intaa ), '''attention_mask''': jnp.array(_lowerCamelCase , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def lowercase ( self : List[Any] , _lowerCamelCase : list ): _snake_case = [self._fetch_inputs(_lowerCamelCase ) for ids in input_ids] return zip(*_lowerCamelCase ) def lowercase ( self : Optional[Any] , _lowerCamelCase : list ): _snake_case = [1 for _ in range(len(_lowerCamelCase ) )] while len(_lowerCamelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _UpperCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str]=None ) -> str: if seed is not None: _snake_case = dataset.shuffle(seed=__lowerCamelCase ) for i in range(len(__lowerCamelCase ) // batch_size ): _snake_case = dataset[i * batch_size : (i + 1) * batch_size] yield dict(__lowerCamelCase ) @partial(jax.pmap , axis_name='''batch''' ) def _UpperCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , **__lowerCamelCase : Optional[Any] ) -> Union[str, Any]: def loss_fn(__lowerCamelCase : Union[str, Any] ): _snake_case = model_inputs.pop('''start_labels''' ) _snake_case = model_inputs.pop('''end_labels''' ) _snake_case = model_inputs.pop('''pooled_labels''' ) _snake_case = state.apply_fn(**__lowerCamelCase , params=__lowerCamelCase , dropout_rng=__lowerCamelCase , train=__lowerCamelCase ) _snake_case , _snake_case , _snake_case = outputs return state.loss_fn( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _snake_case , _snake_case = jax.random.split(__lowerCamelCase ) _snake_case = jax.value_and_grad(__lowerCamelCase ) _snake_case , _snake_case = grad_fn(state.params ) _snake_case = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) _snake_case = jax.lax.pmean(__lowerCamelCase , '''batch''' ) _snake_case = state.apply_gradients(grads=__lowerCamelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def _UpperCAmelCase ( __lowerCamelCase : str , **__lowerCamelCase : List[str] ) -> Any: _snake_case = model_inputs.pop('''start_labels''' ) _snake_case = model_inputs.pop('''end_labels''' ) _snake_case = model_inputs.pop('''pooled_labels''' ) _snake_case = state.apply_fn(**__lowerCamelCase , params=state.params , train=__lowerCamelCase ) _snake_case , _snake_case , _snake_case = outputs _snake_case = state.loss_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _snake_case = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class lowerCAmelCase__ ( train_state.TrainState ): __a = struct.field(pytree_node=A_ ) @dataclass class lowerCAmelCase__ : __a = 42 __a = 42 __a = 42 __a = 42 __a = 42 __a = 42 __a = None def lowercase ( self : List[Any] , _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Dict=None ): _snake_case = model.params _snake_case = TrainState.create( apply_fn=model.__call__ , params=_lowerCamelCase , tx=_lowerCamelCase , loss_fn=_lowerCamelCase , ) if ckpt_dir is not None: _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = restore_checkpoint(_lowerCamelCase , _lowerCamelCase ) _snake_case = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } _snake_case , _snake_case = build_tx(**_lowerCamelCase ) _snake_case = train_state.TrainState( step=_lowerCamelCase , apply_fn=model.__call__ , params=_lowerCamelCase , tx=_lowerCamelCase , opt_state=_lowerCamelCase , ) _snake_case = args _snake_case = data_collator _snake_case = lr _snake_case = params _snake_case = jax_utils.replicate(_lowerCamelCase ) return state def lowercase ( self : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : str ): _snake_case = self.args _snake_case = len(_lowerCamelCase ) // args.batch_size _snake_case = jax.random.PRNGKey(0 ) _snake_case = jax.random.split(_lowerCamelCase , jax.device_count() ) for epoch in range(args.max_epochs ): _snake_case = jnp.array(0 , dtype=jnp.floataa ) _snake_case = get_batched_dataset(_lowerCamelCase , args.batch_size , seed=_lowerCamelCase ) _snake_case = 0 for batch in tqdm(_lowerCamelCase , total=_lowerCamelCase , desc=f'''Running EPOCH-{epoch}''' ): _snake_case = self.data_collator(_lowerCamelCase ) _snake_case , _snake_case , _snake_case = self.train_step_fn(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: _snake_case = jax_utils.unreplicate(state.step ) _snake_case = running_loss.item() / i _snake_case = self.scheduler_fn(state_step - 1 ) _snake_case = self.evaluate(_lowerCamelCase , _lowerCamelCase ) _snake_case = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(_lowerCamelCase ) ) self.logger.log(_lowerCamelCase , commit=_lowerCamelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=_lowerCamelCase ) def lowercase ( self : Optional[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Union[str, Any] ): _snake_case = get_batched_dataset(_lowerCamelCase , self.args.batch_size ) _snake_case = len(_lowerCamelCase ) // self.args.batch_size _snake_case = jnp.array(0 , dtype=jnp.floataa ) _snake_case = 0 for batch in tqdm(_lowerCamelCase , total=_lowerCamelCase , desc='''Evaluating ... ''' ): _snake_case = self.data_collator(_lowerCamelCase ) _snake_case = self.val_step_fn(_lowerCamelCase , **_lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def lowercase ( self : List[str] , _lowerCamelCase : int , _lowerCamelCase : Dict ): _snake_case = jax_utils.unreplicate(_lowerCamelCase ) print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=''' ... ''' ) self.model_save_fn(_lowerCamelCase , params=state.params ) with open(os.path.join(_lowerCamelCase , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(_lowerCamelCase , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(_lowerCamelCase , '''data_collator.joblib''' ) ) with open(os.path.join(_lowerCamelCase , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , _lowerCamelCase ) print('''DONE''' ) def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ) -> Tuple: print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=''' ... ''' ) with open(os.path.join(__lowerCamelCase , '''flax_model.msgpack''' ) , '''rb''' ) as f: _snake_case = from_bytes(state.params , f.read() ) with open(os.path.join(__lowerCamelCase , '''opt_state.msgpack''' ) , '''rb''' ) as f: _snake_case = from_bytes(state.opt_state , f.read() ) _snake_case = joblib.load(os.path.join(__lowerCamelCase , '''args.joblib''' ) ) _snake_case = joblib.load(os.path.join(__lowerCamelCase , '''data_collator.joblib''' ) ) with open(os.path.join(__lowerCamelCase , '''training_state.json''' ) , '''r''' ) as f: _snake_case = json.load(__lowerCamelCase ) _snake_case = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] ) -> List[Any]: _snake_case = num_train_steps - warmup_steps _snake_case = optax.linear_schedule(init_value=__lowerCamelCase , end_value=__lowerCamelCase , transition_steps=__lowerCamelCase ) _snake_case = optax.linear_schedule(init_value=__lowerCamelCase , end_value=1E-7 , transition_steps=__lowerCamelCase ) _snake_case = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] ) -> List[str]: def weight_decay_mask(__lowerCamelCase : List[Any] ): _snake_case = traverse_util.flatten_dict(__lowerCamelCase ) _snake_case = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(__lowerCamelCase ) _snake_case = scheduler_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _snake_case = optax.adamw(learning_rate=__lowerCamelCase , weight_decay=__lowerCamelCase , mask=__lowerCamelCase ) return tx, lr
40
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class a__ ( unittest.TestCase ): lowerCamelCase : List[Any] =MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : int =TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def SCREAMING_SNAKE_CASE__ ( self : Dict , a : Union[str, Any] , a : Any , a : Any ): """simple docstring""" __lowerCamelCase = TextaTextGenerationPipeline(model=a , tokenizer=a ) return generator, ["Something to write", "Something else"] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : Any , a : Optional[int] ): """simple docstring""" __lowerCamelCase = generator('''Something there''' ) self.assertEqual(a , [{'''generated_text''': ANY(a )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) __lowerCamelCase = generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=a ) self.assertEqual( a , [ [{'''generated_text''': ANY(a )}, {'''generated_text''': ANY(a )}], [{'''generated_text''': ANY(a )}, {'''generated_text''': ANY(a )}], ] , ) __lowerCamelCase = generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=a ) self.assertEqual( a , [ [{'''generated_text''': ANY(a )}, {'''generated_text''': ANY(a )}], [{'''generated_text''': ANY(a )}, {'''generated_text''': ANY(a )}], ] , ) with self.assertRaises(a ): generator(4 ) @require_torch def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''' ) # do_sample=False necessary for reproducibility __lowerCamelCase = generator('''Something there''' , do_sample=a ) self.assertEqual(a , [{'''generated_text''': ''''''}] ) __lowerCamelCase = 3 __lowerCamelCase = generator( '''Something there''' , num_return_sequences=a , num_beams=a , ) __lowerCamelCase = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(a , a ) __lowerCamelCase = generator('''This is a test''' , do_sample=a , num_return_sequences=2 , return_tensors=a ) self.assertEqual( a , [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ] , ) __lowerCamelCase = generator.model.config.eos_token_id __lowerCamelCase = '''<pad>''' __lowerCamelCase = generator( ['''This is a test''', '''This is a second test'''] , do_sample=a , num_return_sequences=2 , batch_size=2 , return_tensors=a , ) self.assertEqual( a , [ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ] , ) @require_tf def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''' ) # do_sample=False necessary for reproducibility __lowerCamelCase = generator('''Something there''' , do_sample=a ) self.assertEqual(a , [{'''generated_text''': ''''''}] )
67
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = '''ylacombe/bark-small''' __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = '''en_speaker_1''' __lowerCamelCase = '''This is a test string''' __lowerCamelCase = '''speaker_embeddings_path.json''' __lowerCamelCase = '''speaker_embeddings''' def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , **a : Dict ): """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **a ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = BarkProcessor(tokenizer=a ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCamelCase = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __lowerCamelCase = 35 __lowerCamelCase = 2 __lowerCamelCase = 8 __lowerCamelCase = { '''semantic_prompt''': np.ones(a ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __lowerCamelCase = processor(text=self.input_string , voice_preset=a ) __lowerCamelCase = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(a , np.array([] ) ).tolist() ) # test loading voice preset from npz file __lowerCamelCase = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(a , **a ) __lowerCamelCase = processor(text=self.input_string , voice_preset=a ) __lowerCamelCase = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(a , np.array([] ) ).tolist() ) # test loading voice preset from the hub __lowerCamelCase = processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = BarkProcessor(tokenizer=a ) __lowerCamelCase = processor(text=self.input_string ) __lowerCamelCase = tokenizer( self.input_string , padding='''max_length''' , max_length=2_56 , add_special_tokens=a , return_attention_mask=a , return_token_type_ids=a , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
67
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __SCREAMING_SNAKE_CASE : List[Any] = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = ['LayoutLMv3FeatureExtractor'] __SCREAMING_SNAKE_CASE : List[Any] = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys __SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
284
import logging from transformers import PretrainedConfig __SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) __SCREAMING_SNAKE_CASE : int = { 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class lowercase_ ( __snake_case ): _lowerCamelCase = 'bertabs' def __init__( self , lowercase_=30_522 , lowercase_=512 , lowercase_=6 , lowercase_=512 , lowercase_=8 , lowercase_=512 , lowercase_=0.2 , lowercase_=6 , lowercase_=768 , lowercase_=8 , lowercase_=2_048 , lowercase_=0.2 , **lowercase_ , ): super().__init__(**lowercase_ ) _snake_case : List[Any] = vocab_size _snake_case : int = max_pos _snake_case : Tuple = enc_layers _snake_case : Optional[Any] = enc_hidden_size _snake_case : Union[str, Any] = enc_heads _snake_case : str = enc_ff_size _snake_case : Any = enc_dropout _snake_case : Tuple = dec_layers _snake_case : Optional[Any] = dec_hidden_size _snake_case : Dict = dec_heads _snake_case : str = dec_ff_size _snake_case : List[str] = dec_dropout
284
1
from __future__ import annotations import math def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True snake_case : List[str] = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) a :List[Any] = [] for num in range(len(UpperCamelCase_ ) ): a :List[str] = 0 while 2 * i * i <= odd_composites[num]: a :int = odd_composites[num] - 2 * i * i if is_prime(UpperCamelCase_ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCamelCase_ ) == n: return list_nums return [] def __lowerCamelCase ( ): """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
94
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
0
import operator as op snake_case = "scaler.pt" snake_case = "pytorch_model" snake_case = "random_states" snake_case = "optimizer" snake_case = "scheduler" snake_case = "pytorch_model.bin" snake_case = "pytorch_model.bin.index.json" snake_case = "model.safetensors" snake_case = "model.safetensors.index.json" snake_case = "1.10.2" snake_case = "py38" snake_case = "4.17.0" snake_case = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] snake_case = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] snake_case = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] snake_case = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] snake_case = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] snake_case = "2.0.1" snake_case = ["pdsh", "standard", "openmpi", "mvapich"] snake_case = ["default", "reduce-overhead", "max-autotune"] snake_case = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 snake_case = [ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] snake_case = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] snake_case = ["DEEPSPEED", "MULTI_XPU", "FSDP"]
368
from math import sqrt def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 0 for i in range(1 , int(sqrt(lowercase ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase ): total += i + n // i elif i == sqrt(lowercase ): total += i return total - n def lowerCamelCase__ ( lowercase = 10000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = sum( i for i in range(1 , lowercase ) if sum_of_divisors(sum_of_divisors(lowercase ) ) == i and sum_of_divisors(lowercase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
319
0
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __UpperCAmelCase : def __init__( self : Union[str, Any], __A : int, __A : Optional[Any]=1_3, __A : Optional[int]=7, __A : int=True, __A : Dict=True, __A : str=True, __A : Dict=True, __A : Optional[Any]=9_9, __A : Tuple=3_2, __A : Optional[int]=2, __A : Any=4, __A : Dict=3_7, __A : Optional[int]="gelu", __A : Any=0.1, __A : List[str]=0.1, __A : Tuple=5_1_2, __A : Dict=1_6, __A : List[Any]=2, __A : int=0.0_2, __A : Dict=False, __A : Optional[Any]=True, __A : Tuple="None", __A : Tuple=3, __A : Dict=4, __A : Optional[Any]=None, ): UpperCAmelCase : List[str] = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : Dict = seq_length UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : Optional[Any] = use_input_mask UpperCAmelCase : Dict = use_token_type_ids UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : List[str] = vocab_size UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : Optional[int] = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : List[str] = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : Any = max_position_embeddings UpperCAmelCase : Tuple = type_vocab_size UpperCAmelCase : Tuple = type_sequence_label_size UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Union[str, Any] = num_labels UpperCAmelCase : str = num_choices UpperCAmelCase : Optional[Any] = relative_attention UpperCAmelCase : List[Any] = position_biased_input UpperCAmelCase : int = pos_att_type UpperCAmelCase : Union[str, Any] = scope def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase : Any = None if self.use_input_mask: UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : List[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCAmelCase : List[Any] = None UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : List[str] = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCAmelCase : str = DebertaVaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, initializer_range=self.initializer_range, return_dict=__A, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : Any, __A : List[Any], __A : int, __A : List[str], __A : Dict, __A : Optional[int], __A : Dict, __A : Tuple ): UpperCAmelCase : int = TFDebertaVaModel(config=__A ) UpperCAmelCase : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase : Optional[Any] = [input_ids, input_mask] UpperCAmelCase : Optional[Any] = model(__A ) UpperCAmelCase : Union[str, Any] = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : str, __A : List[str], __A : List[str], __A : Optional[Any], __A : Tuple, __A : Optional[Any], __A : List[Any], __A : Dict ): UpperCAmelCase : List[Any] = TFDebertaVaForMaskedLM(config=__A ) UpperCAmelCase : Optional[int] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase : Tuple = model(__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : Tuple, __A : Optional[int], __A : str, __A : str, __A : List[Any], __A : Optional[int], __A : Tuple, __A : Any ): UpperCAmelCase : str = self.num_labels UpperCAmelCase : List[Any] = TFDebertaVaForSequenceClassification(config=__A ) UpperCAmelCase : Union[str, Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase : Tuple = model(__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def __magic_name__ ( self : int, __A : Optional[Any], __A : Optional[Any], __A : Any, __A : Any, __A : Tuple, __A : Union[str, Any], __A : int ): UpperCAmelCase : Dict = self.num_labels UpperCAmelCase : Any = TFDebertaVaForTokenClassification(config=__A ) UpperCAmelCase : str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : Optional[int], __A : int, __A : Tuple, __A : int, __A : Any, __A : Dict, __A : List[Any], __A : Optional[Any] ): UpperCAmelCase : Tuple = TFDebertaVaForQuestionAnswering(config=__A ) UpperCAmelCase : List[Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase : Union[str, Any] = model(__A ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def __magic_name__ ( self : str ): UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : str = config_and_inputs UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase = ( { """feature-extraction""": TFDebertaVaModel, """fill-mask""": TFDebertaVaForMaskedLM, """question-answering""": TFDebertaVaForQuestionAnswering, """text-classification""": TFDebertaVaForSequenceClassification, """token-classification""": TFDebertaVaForTokenClassification, """zero-shot""": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Tuple ): UpperCAmelCase : int = TFDebertaVaModelTester(self ) UpperCAmelCase : Tuple = ConfigTester(self, config_class=__A, hidden_size=3_7 ) def __magic_name__ ( self : Any ): self.config_tester.run_common_tests() def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) def __magic_name__ ( self : int ): UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) @slow def __magic_name__ ( self : List[Any] ): UpperCAmelCase : Optional[int] = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) self.assertIsNotNone(__A ) @require_tf class __UpperCAmelCase ( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''' ) def __magic_name__ ( self : Any ): pass @slow def __magic_name__ ( self : Tuple ): UpperCAmelCase : int = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) UpperCAmelCase : str = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) UpperCAmelCase : int = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCAmelCase : Optional[int] = model(__A, attention_mask=__A )[0] UpperCAmelCase : int = tf.constant( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4], __A, atol=1E-4 )
336
def a__ ( UpperCAmelCase : int ) -> int: UpperCAmelCase : list[list[int]] = [[0 for _ in range(UpperCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): UpperCAmelCase : Optional[Any] = 1 for n in range(m + 1 ): for k in range(1 , UpperCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _lowerCamelCase : List[Any] = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: _lowerCamelCase : str = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
336
1
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> List[str]: '''simple docstring''' super().__init__() self.register_modules( vae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,unet=_lowerCamelCase ,scheduler=_lowerCamelCase ,safety_checker=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,) def _UpperCAmelCase (self ,_lowerCamelCase = "auto" ) -> Optional[Any]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCamelCase ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' self.enable_attention_slicing(_lowerCamelCase ) @torch.no_grad() def __call__(self ,_lowerCamelCase ,_lowerCamelCase = 512 ,_lowerCamelCase = 512 ,_lowerCamelCase = 50 ,_lowerCamelCase = 7.5 ,_lowerCamelCase = None ,_lowerCamelCase = 1 ,_lowerCamelCase = 0.0 ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = "pil" ,_lowerCamelCase = True ,_lowerCamelCase = None ,_lowerCamelCase = 1 ,_lowerCamelCase = None ,**_lowerCamelCase ,) -> Union[str, Any]: '''simple docstring''' if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = 1 elif isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = len(_lowerCamelCase ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(_lowerCamelCase )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowerCamelCase ,_lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(_lowerCamelCase )}." ) # get prompt text embeddings __lowercase = self.tokenizer( _lowerCamelCase ,padding='''max_length''' ,max_length=self.tokenizer.model_max_length ,return_tensors='''pt''' ,) __lowercase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowercase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) __lowercase = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __lowercase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __lowercase , __lowercase , __lowercase = text_embeddings.shape __lowercase = text_embeddings.repeat(1 ,_lowerCamelCase ,1 ) __lowercase = text_embeddings.view(bs_embed * num_images_per_prompt ,_lowerCamelCase ,-1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = 42 if negative_prompt is None: __lowercase = [''''''] elif type(_lowerCamelCase ) is not type(_lowerCamelCase ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(_lowerCamelCase )} !=" f" {type(_lowerCamelCase )}." ) elif isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [negative_prompt] elif batch_size != len(_lowerCamelCase ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(_lowerCamelCase )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ''' the batch size of `prompt`.''' ) else: __lowercase = negative_prompt __lowercase = text_input_ids.shape[-1] __lowercase = self.tokenizer( _lowerCamelCase ,padding='''max_length''' ,max_length=_lowerCamelCase ,truncation=_lowerCamelCase ,return_tensors='''pt''' ,) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowercase = uncond_embeddings.shape[1] __lowercase = uncond_embeddings.repeat(_lowerCamelCase ,_lowerCamelCase ,1 ) __lowercase = uncond_embeddings.view(batch_size * num_images_per_prompt ,_lowerCamelCase ,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __lowercase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __lowercase = torch.randn( _lowerCamelCase ,generator=_lowerCamelCase ,device='''cpu''' ,dtype=_lowerCamelCase ).to(self.device ) __lowercase = torch.randn(_lowerCamelCase ,generator=_lowerCamelCase ,device='''cpu''' ,dtype=_lowerCamelCase ).to( self.device ) else: __lowercase = torch.randn( _lowerCamelCase ,generator=_lowerCamelCase ,device=self.device ,dtype=_lowerCamelCase ) __lowercase = torch.randn(_lowerCamelCase ,generator=_lowerCamelCase ,device=self.device ,dtype=_lowerCamelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) __lowercase = latents_reference.to(self.device ) __lowercase = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __lowercase = (latents_shape[3] - latents_shape_reference[3]) // 2 __lowercase = (latents_shape[2] - latents_shape_reference[2]) // 2 __lowercase = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __lowercase = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __lowercase = 0 if dx < 0 else dx __lowercase = 0 if dy < 0 else dy __lowercase = max(-dx ,0 ) __lowercase = max(-dy ,0 ) # import pdb # pdb.set_trace() __lowercase = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(_lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __lowercase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta for i, t in enumerate(self.progress_bar(_lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(_lowerCamelCase ,_lowerCamelCase ) # predict the noise residual __lowercase = self.unet(_lowerCamelCase ,_lowerCamelCase ,encoder_hidden_states=_lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: __lowercase , __lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,**_lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) __lowercase = 1 / 0.1_8_2_1_5 * latents __lowercase = self.vae.decode(_lowerCamelCase ).sample __lowercase = (image / 2 + 0.5).clamp(0 ,1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowercase = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if self.safety_checker is not None: __lowercase = self.feature_extractor(self.numpy_to_pil(_lowerCamelCase ) ,return_tensors='''pt''' ).to( self.device ) __lowercase , __lowercase = self.safety_checker( images=_lowerCamelCase ,clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __lowercase = None if output_type == "pil": __lowercase = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=_lowerCamelCase ,nsfw_content_detected=_lowerCamelCase )
217
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint _SCREAMING_SNAKE_CASE = { '''169M''': 1_2, '''430M''': 2_4, '''1B5''': 2_4, '''3B''': 3_2, '''7B''': 3_2, '''14B''': 4_0, } _SCREAMING_SNAKE_CASE = { '''169M''': 7_6_8, '''430M''': 1_0_2_4, '''1B5''': 2_0_4_8, '''3B''': 2_5_6_0, '''7B''': 4_0_9_6, '''14B''': 5_1_2_0, } def _lowerCAmelCase ( lowerCamelCase_ : Dict ): __lowercase = list(state_dict.keys() ) for name in state_dict_keys: __lowercase = state_dict.pop(lowerCamelCase_ ) # emb -> embedding if name.startswith('''emb.''' ): __lowercase = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): __lowercase = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention __lowercase = re.sub(r'''blocks\.(\d+)\.att''' , r'''blocks.\1.attention''' , lowerCamelCase_ ) # ffn -> feed_forward __lowercase = re.sub(r'''blocks\.(\d+)\.ffn''' , r'''blocks.\1.feed_forward''' , lowerCamelCase_ ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): __lowercase = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): __lowercase = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): __lowercase = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": __lowercase = '''rwkv.''' + name __lowercase = weight return state_dict def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Any=False , lowerCamelCase_ : int=None ): # 1. If possible, build the tokenizer. if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) __lowercase = 5_0_2_7_7 __lowercase = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: __lowercase = PreTrainedTokenizerFast(tokenizer_file=lowerCamelCase_ ) __lowercase = len(lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) # 2. Build the config __lowercase = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: __lowercase = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(f"`size` should be one of {possible_sizes}, got {size}." ) __lowercase = RwkvConfig( vocab_size=lowerCamelCase_ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(lowerCamelCase_ ) # 3. Download model file then convert state_dict __lowercase = hf_hub_download(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = convert_state_dict(lowerCamelCase_ ) # 4. Split in shards and save __lowercase , __lowercase = shard_checkpoint(lowerCamelCase_ ) for shard_file, shard in shards.items(): torch.save(lowerCamelCase_ , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) if index is not None: __lowercase = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) # Save the index as well with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: __lowercase = json.dumps(lowerCamelCase_ , indent=2 , sort_keys=lowerCamelCase_ ) + '''\n''' f.write(lowerCamelCase_ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) __lowercase = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: __lowercase = torch.load(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) __lowercase = AutoModelForCausalLM.from_pretrained(lowerCamelCase_ ) model.push_to_hub(lowerCamelCase_ , max_shard_size='''2GB''' ) tokenizer.push_to_hub(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
217
1
from __future__ import annotations def _lowerCamelCase( lowercase__ , lowercase__ ) -> bool: '''simple docstring''' if len(lowercase__ ) == 0: return False __lowercase= len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": lowerCAmelCase = input('''Enter numbers separated by comma:\n''').strip() lowerCAmelCase = [int(item.strip()) for item in user_input.split(''',''')] lowerCAmelCase = int(input('''Enter the number to be found in the list:\n''').strip()) lowerCAmelCase = '''''' if binary_search(sequence, target) else '''not ''' print(F'{target} was {not_str}found in {sequence}')
295
def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' if collection == []: return [] # get some information about the collection __lowercase= len(lowercase__ ) __lowercase= max(lowercase__ ) __lowercase= min(lowercase__ ) # create the counting array __lowercase= coll_max + 1 - coll_min __lowercase= [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): __lowercase= counting_arr[i] + counting_arr[i - 1] # create the output collection __lowercase= [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): __lowercase= collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('''thisisthestring''') == "eghhiiinrsssttt" lowerCAmelCase = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase = [int(item) for item in user_input.split(''',''')] print(counting_sort(unsorted))
295
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCamelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCamelCase = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCamelCase = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = LxmertTokenizer def __init__( self : Dict , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Dict="[UNK]" , _lowerCAmelCase : List[Any]="[SEP]" , _lowerCAmelCase : Union[str, Any]="[PAD]" , _lowerCAmelCase : int="[CLS]" , _lowerCAmelCase : Tuple="[MASK]" , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : List[Any] , ): '''simple docstring''' super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) __lowercase =json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase' , _lowerCAmelCase) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCAmelCase) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase) != tokenize_chinese_chars ): __lowercase =getattr(_lowerCAmelCase , normalizer_state.pop('type')) __lowercase =do_lower_case __lowercase =strip_accents __lowercase =tokenize_chinese_chars __lowercase =normalizer_class(**_lowerCAmelCase) __lowercase =do_lower_case def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : Dict=None): '''simple docstring''' __lowercase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None): '''simple docstring''' __lowercase =[self.sep_token_id] __lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None): '''simple docstring''' __lowercase =self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase) return tuple(_lowerCAmelCase)
48
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = ["""image_processor""", """tokenizer"""] lowerCAmelCase__ = """BridgeTowerImageProcessor""" lowerCAmelCase__ = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any]): '''simple docstring''' super().__init__(_lowerCAmelCase , _lowerCAmelCase) def __call__( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , _lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : int = 0 , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , **_lowerCAmelCase : Optional[Any] , ): '''simple docstring''' __lowercase =self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) # add pixel_values + pixel_mask __lowercase =self.image_processor( _lowerCAmelCase , return_tensors=_lowerCAmelCase , do_normalize=_lowerCAmelCase , do_center_crop=_lowerCAmelCase , **_lowerCAmelCase) encoding.update(_lowerCAmelCase) return encoding def __lowerCamelCase ( self : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : str): '''simple docstring''' return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase) def __lowerCamelCase ( self : Optional[Any] , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : Union[str, Any]): '''simple docstring''' return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase) @property def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =self.tokenizer.model_input_names __lowercase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
48
1
"""simple docstring""" class UpperCamelCase : def __init__( self, lowerCAmelCase__) -> Union[str, Any]: # we need a list not a string, so do something to change the type snake_case_ = arr.split(',') def a_ ( self) -> Tuple: snake_case_ = [int(self.array[0])] * len(self.array) snake_case_ = [int(self.array[0])] * len(self.array) for i in range(1, len(self.array)): snake_case_ = max( int(self.array[i]) + sum_value[i - 1], int(self.array[i])) snake_case_ = max(sum_value[i], rear[i - 1]) return rear[len(self.array) - 1] if __name__ == "__main__": __UpperCamelCase = input('''please input some numbers:''') __UpperCamelCase = SubArray(whole_array) __UpperCamelCase = array.solve_sub_array() print(('''the results is:''', re))
69
'''simple docstring''' from __future__ import annotations from typing import Generic, TypeVar a_ : List[str] = TypeVar("""T""") class snake_case ( Generic[T] ): """simple docstring""" def __init__( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = data lowerCamelCase_ = self lowerCamelCase_ = 0 class snake_case ( Generic[T] ): """simple docstring""" def __init__( self ): """simple docstring""" # map from node name to the node object lowerCamelCase_ = {} def snake_case ( self , UpperCamelCase ): """simple docstring""" # create a new set with x as its member lowerCamelCase_ = DisjointSetTreeNode(UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" # find the set x belongs to (with path-compression) lowerCamelCase_ = self.map[data] if elem_ref != elem_ref.parent: lowerCamelCase_ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" # helper function for union operation if nodea.rank > nodea.rank: lowerCamelCase_ = nodea else: lowerCamelCase_ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" # merge 2 disjoint sets self.link(self.find_set(UpperCamelCase ) , self.find_set(UpperCamelCase ) ) class snake_case ( Generic[T] ): """simple docstring""" def __init__( self ): """simple docstring""" # connections: map from the node to the neighbouring nodes (with weights) lowerCamelCase_ = {} def snake_case ( self , UpperCamelCase ): """simple docstring""" # add a node ONLY if its not present in the graph if node not in self.connections: lowerCamelCase_ = {} def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" # add an edge with the given weight self.add_node(UpperCamelCase ) self.add_node(UpperCamelCase ) lowerCamelCase_ = weight lowerCamelCase_ = weight def snake_case ( self ): """simple docstring""" lowerCamelCase_ = [] lowerCamelCase_ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda UpperCamelCase : x[2] ) # creating the disjoint set lowerCamelCase_ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(UpperCamelCase ) # MST generation lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = edges[index] index += 1 lowerCamelCase_ = disjoint_set.find_set(UpperCamelCase ) lowerCamelCase_ = disjoint_set.find_set(UpperCamelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(UpperCamelCase , UpperCamelCase , UpperCamelCase ) disjoint_set.union(UpperCamelCase , UpperCamelCase ) return graph
55
0
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __UpperCamelCase ( ): lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '''-m''' , '''--pretrained_model_name_or_path''' , type=_A , default=_A , required=_A , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , ) parser.add_argument( '''-c''' , '''--caption''' , type=_A , default='''robotic cat with wings''' , help='''Text used to generate images.''' , ) parser.add_argument( '''-n''' , '''--images_num''' , type=_A , default=4 , help='''How much images to generate.''' , ) parser.add_argument( '''-s''' , '''--seed''' , type=_A , default=42 , help='''Seed for random process.''' , ) parser.add_argument( '''-ci''' , '''--cuda_id''' , type=_A , default=0 , help='''cuda_id.''' , ) lowerCAmelCase_ = parser.parse_args() return args def __UpperCamelCase ( _A , _A , _A ): if not len(_A ) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''' ) lowerCAmelCase_ , lowerCAmelCase_ = imgs[0].size lowerCAmelCase_ = Image.new('''RGB''' , size=(cols * w, rows * h) ) lowerCAmelCase_ , lowerCAmelCase_ = grid.size for i, img in enumerate(_A ): grid.paste(_A , box=(i % cols * w, i // cols * h) ) return grid def __UpperCamelCase ( _A , _A="robotic cat with wings" , _A=7.5 , _A=50 , _A=1 , _A=42 , ): lowerCAmelCase_ = torch.Generator(pipeline.device ).manual_seed(_A ) lowerCAmelCase_ = pipeline( _A , guidance_scale=_A , num_inference_steps=_A , generator=_A , num_images_per_prompt=_A , ).images lowerCAmelCase_ = int(math.sqrt(_A ) ) lowerCAmelCase_ = image_grid(_A , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images _A = parse_args() # Load models and create wrapper for stable diffusion _A = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') _A = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') _A = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') _A = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') _A = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) _A = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): _A = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: _A = unet.to(torch.device('''cuda''', args.cuda_id)) _A = pipeline.to(unet.device) _A , _A = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) _A = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
167
def __UpperCamelCase ( _A ): if length <= 0 or not isinstance(_A , _A ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(_A )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
167
1
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. UpperCamelCase_ = 10 def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" for i in range(UpperCAmelCase , UpperCAmelCase ): if array[i] == target: return i return -1 def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = 0 a_ = len(UpperCAmelCase ) while left <= right: if right - left < precision: return lin_search(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) a_ = (left + right) // 3 + 1 a_ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: a_ = one_third - 1 elif array[two_third] < target: a_ = two_third + 1 else: a_ = one_third + 1 a_ = two_third - 1 else: return -1 def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if left < right: if right - left < precision: return lin_search(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) a_ = (left + right) // 3 + 1 a_ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(UpperCAmelCase , one_third - 1 , UpperCAmelCase , UpperCAmelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , UpperCAmelCase , UpperCAmelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase_ = input('Enter numbers separated by comma:\n').strip() UpperCamelCase_ = [int(item.strip()) for item in user_input.split(',')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." UpperCamelCase_ = int(input('Enter the number to be found in the list:\n').strip()) UpperCamelCase_ = ite_ternary_search(collection, target) UpperCamelCase_ = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"""Iterative search: {target} found at positions: {resulta}""") print(F"""Recursive search: {target} found at positions: {resulta}""") else: print('Not found')
243
"""simple docstring""" import math import os import sys def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" a_ = "" try: with open(UpperCAmelCase , "rb" ) as binary_file: a_ = binary_file.read() for dat in data: a_ = F'''{dat:08b}''' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->None: """simple docstring""" lexicon.pop(UpperCAmelCase ) a_ = last_match_id if math.loga(UpperCAmelCase ).is_integer(): for curr_key in lexicon: a_ = "0" + lexicon[curr_key] a_ = bin(UpperCAmelCase )[2:] def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" a_ = {"0": "0", "1": "1"} a_ , a_ = "", "" a_ = len(UpperCAmelCase ) for i in range(len(UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue a_ = lexicon[curr_string] result += last_match_id add_key_to_lexicon(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) index += 1 a_ = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": a_ = lexicon[curr_string] result += last_match_id return result def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" a_ = os.path.getsize(UpperCAmelCase ) a_ = bin(UpperCAmelCase )[2:] a_ = len(UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->None: """simple docstring""" a_ = 8 try: with open(UpperCAmelCase , "wb" ) as opened_file: a_ = [ to_write[i : i + byte_length] for i in range(0 , len(UpperCAmelCase ) , UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(UpperCAmelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->None: """simple docstring""" a_ = read_file_binary(UpperCAmelCase ) a_ = compress_data(UpperCAmelCase ) a_ = add_file_length(UpperCAmelCase , UpperCAmelCase ) write_file_binary(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
243
1
from __future__ import annotations def _lowerCAmelCase ( UpperCAmelCase__ : int | str ) ->bool: A__ : int = str(_UpperCamelCase ) return n == n[::-1] def _lowerCAmelCase ( UpperCAmelCase__ : int = 1_0_0_0_0_0_0 ) ->Any: A__ : int = 0 for i in range(1, _UpperCamelCase ): if is_palindrome(_UpperCamelCase ) and is_palindrome(bin(_UpperCamelCase ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
368
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch A_ = random.Random() def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Tuple=1.0, UpperCAmelCase__ : Optional[int]=None, UpperCAmelCase__ : str=None ) ->Union[str, Any]: if rng is None: A__ : Optional[int] = global_rng A__ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[str]=7 , snake_case : str=400 , snake_case : Optional[Any]=2000 , snake_case : Union[str, Any]=10 , snake_case : str=160 , snake_case : List[str]=8 , snake_case : List[Any]=0.0 , snake_case : Optional[Any]=4000 , snake_case : Any=False , snake_case : int=True , ): '''simple docstring''' A__ : Any = parent A__ : str = batch_size A__ : List[str] = min_seq_length A__ : Dict = max_seq_length A__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A__ : Dict = padding_value A__ : Optional[Any] = sampling_rate A__ : Any = return_attention_mask A__ : Optional[int] = do_normalize A__ : Tuple = feature_size A__ : Optional[Any] = chunk_length A__ : Union[str, Any] = hop_length def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict=False , snake_case : Optional[Any]=False ): '''simple docstring''' def _flatten(snake_case : Dict ): return list(itertools.chain(*snake_case ) ) if equal_length: A__ : Dict = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A__ : Optional[int] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A__ : List[str] = [np.asarray(snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): snake_case_ = WhisperFeatureExtractor if is_speech_available() else None def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : str = WhisperFeatureExtractionTester(self ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : List[Any] = feat_extract_first.save_pretrained(snake_case )[0] check_json_file_has_correct_format(snake_case ) A__ : Union[str, Any] = self.feature_extraction_class.from_pretrained(snake_case ) A__ : str = feat_extract_first.to_dict() A__ : Union[str, Any] = feat_extract_second.to_dict() A__ : List[Any] = feat_extract_first.mel_filters A__ : Optional[Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(snake_case , """feat_extract.json""" ) feat_extract_first.to_json_file(snake_case ) A__ : int = self.feature_extraction_class.from_json_file(snake_case ) A__ : Dict = feat_extract_first.to_dict() A__ : str = feat_extract_second.to_dict() A__ : str = feat_extract_first.mel_filters A__ : Dict = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs] # Test feature size A__ : Dict = feature_extractor(snake_case , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input A__ : str = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features A__ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test batched A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. A__ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] A__ : str = np.asarray(snake_case ) A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test truncation required A__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs] A__ : Union[str, Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] A__ : str = [np.asarray(snake_case ) for speech_input in speech_inputs_truncated] A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : str = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : str ): '''simple docstring''' import torch A__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ : List[str] = np.random.rand(100 , 32 ).astype(np.floataa ) A__ : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A__ : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) A__ : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[int] ): '''simple docstring''' A__ : int = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech A__ : Union[str, Any] = ds.sort("""id""" ).select(range(snake_case ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : str = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on A__ : Optional[Any] = self._load_datasamples(1 ) A__ : Union[str, Any] = WhisperFeatureExtractor() A__ : List[str] = feature_extractor(snake_case , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , snake_case , atol=1e-4 ) ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ : Union[str, Any] = self._load_datasamples(1 )[0] A__ : Any = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue A__ : str = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=snake_case )[0] self.assertTrue(np.all(np.mean(snake_case ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case ) - 1 ) < 1e-3 ) )
296
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging A__ = logging.get_logger(__name__) A__ = {"""vocab_file""": """spiece.model"""} A__ = { """vocab_file""": { """TsinghuaAI/CPM-Generate""": """https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model""", } } class __lowerCAmelCase ( lowerCamelCase__ ): def __init__( self , _snake_case , _snake_case=False , _snake_case=True , _snake_case=False , _snake_case="<s>" , _snake_case="</s>" , _snake_case="<unk>" , _snake_case="<sep>" , _snake_case="<pad>" , _snake_case="<cls>" , _snake_case="<mask>" , _snake_case=["<eop>", "<eod>"] , _snake_case = None , **_snake_case , ): """simple docstring""" _lowerCAmelCase = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_snake_case , remove_space=_snake_case , keep_accents=_snake_case , bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) _lowerCAmelCase = 3 _lowerCAmelCase = do_lower_case _lowerCAmelCase = remove_space _lowerCAmelCase = keep_accents _lowerCAmelCase = vocab_file _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) _lowerCAmelCase = jieba _lowerCAmelCase = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def snake_case ( self ): """simple docstring""" return len(self.sp_model ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__( self , _snake_case ): """simple docstring""" _lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case ( self , _snake_case ): """simple docstring""" if self.remove_space: _lowerCAmelCase = """ """.join(inputs.strip().split() ) else: _lowerCAmelCase = inputs _lowerCAmelCase = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: _lowerCAmelCase = unicodedata.normalize("""NFKD""" , _snake_case ) _lowerCAmelCase = """""".join([c for c in outputs if not unicodedata.combining(_snake_case )] ) if self.do_lower_case: _lowerCAmelCase = outputs.lower() return outputs def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = self.preprocess_text(_snake_case ) _lowerCAmelCase = self.sp_model.encode(_snake_case , out_type=_snake_case ) _lowerCAmelCase = [] for piece in pieces: if len(_snake_case ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_snake_case , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase = cur_pieces[1:] else: _lowerCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_snake_case ) else: new_pieces.append(_snake_case ) return new_pieces def snake_case ( self , _snake_case ): """simple docstring""" return self.sp_model.PieceToId(_snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" return self.sp_model.IdToPiece(_snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = """""".join(_snake_case ).replace(_snake_case , """ """ ).strip() return out_string def snake_case ( self , _snake_case , _snake_case = None ): """simple docstring""" _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def snake_case ( self , _snake_case , _snake_case = None , _snake_case = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is not None: return ([0] * len(_snake_case )) + [1] + ([0] * len(_snake_case )) + [1, 1] return ([0] * len(_snake_case )) + [1, 1] def snake_case ( self , _snake_case , _snake_case = None ): """simple docstring""" _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def snake_case ( self , _snake_case , _snake_case = None ): """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCAmelCase = os.path.join( _snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , """wb""" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,) def snake_case ( self , *_snake_case , **_snake_case ): """simple docstring""" _lowerCAmelCase = super()._decode(*_snake_case , **_snake_case ) _lowerCAmelCase = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
82
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class __lowerCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self , _snake_case = 768 , ): """simple docstring""" super().__init__() _lowerCAmelCase = nn.Parameter(torch.zeros(1 , _snake_case ) ) _lowerCAmelCase = nn.Parameter(torch.ones(1 , _snake_case ) ) def snake_case ( self , _snake_case = None , _snake_case = None , ): """simple docstring""" _lowerCAmelCase = nn.Parameter(self.mean.to(_snake_case ).to(_snake_case ) ) _lowerCAmelCase = nn.Parameter(self.std.to(_snake_case ).to(_snake_case ) ) return self def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = (embeds - self.mean) * 1.0 / self.std return embeds def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = (embeds * self.std) + self.mean return embeds
82
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Any = logging.get_logger(__name__) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Dict ='encoder-decoder' lowercase : int =True def __init__( self, **lowerCAmelCase ): """simple docstring""" super().__init__(**lowerCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowerCamelCase_ =kwargs.pop('''encoder''' ) lowerCamelCase_ =encoder_config.pop('''model_type''' ) lowerCamelCase_ =kwargs.pop('''decoder''' ) lowerCamelCase_ =decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowerCamelCase_ =AutoConfig.for_model(lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =AutoConfig.for_model(lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =True @classmethod def lowercase__ ( cls, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) lowerCamelCase_ =True lowerCamelCase_ =True return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =copy.deepcopy(self.__dict__ ) lowerCamelCase_ =self.encoder.to_dict() lowerCamelCase_ =self.decoder.to_dict() lowerCamelCase_ =self.__class__.model_type return output
6
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __snake_case : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ =[ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def a_ ( __snake_case : List[Any] ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =emb.weight.shape lowerCamelCase_ =nn.Linear(__snake_case , __snake_case , bias=__snake_case ) lowerCamelCase_ =emb.weight.data return lin_layer def a_ ( __snake_case : Union[str, Any] , __snake_case : Tuple=None ) -> Dict: """simple docstring""" lowerCamelCase_ ={} for old_key in state_dict.keys(): lowerCamelCase_ =old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCamelCase_ =key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' ) else: lowerCamelCase_ =key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCamelCase_ =key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCamelCase_ =key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCamelCase_ =key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCamelCase_ =key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCamelCase_ =state_dict[old_key] return new_dict def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : str = WEIGHTS_NAME ) -> Dict: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =0 os.makedirs(__snake_case , exist_ok=__snake_case ) for expert in range(__snake_case ): lowerCamelCase_ =switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(__snake_case ): lowerCamelCase_ =torch.load(__snake_case )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =os.path.join( __snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) torch.save(__snake_case , __snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__snake_case )[0]].dtype ) # Add the last block lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) lowerCamelCase_ =torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__snake_case ) == 1: lowerCamelCase_ =os.path.join(__snake_case , __snake_case ) torch.save(__snake_case , __snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__snake_case , __snake_case ) # Otherwise, let's build the index lowerCamelCase_ ={} for idx, shard in enumerate(__snake_case ): lowerCamelCase_ =weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__snake_case ):05d}.bin''' ) lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) ) for key in shard: lowerCamelCase_ =shard_file # Add the metadata lowerCamelCase_ ={'''total_size''': total_size} lowerCamelCase_ ={'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__snake_case , __snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCamelCase_ =json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + '''\n''' f.write(__snake_case ) return metadata, index if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) a_ : Tuple = parser.parse_args() a_ , a_ : int = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) a_ : Tuple = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) a_ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
6
1
'''simple docstring''' import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCamelCase_ = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase_ = importlib.util.spec_from_file_location( """transformers""", os.path.join(PATH_TO_TRANSFORMERS, """__init__.py"""), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) UpperCamelCase_ = spec.loader.load_module() UpperCamelCase_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` UpperCamelCase_ = re.compile("""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") UpperCamelCase_ = { """CLIPConfigMixin""", """DecisionTransformerConfigMixin""", """EncoderDecoderConfigMixin""", """RagConfigMixin""", """SpeechEncoderDecoderConfigMixin""", """VisionEncoderDecoderConfigMixin""", """VisionTextDualEncoderConfigMixin""", } def _UpperCAmelCase ( ) -> Any: _lowerCAmelCase : Any = [] for config_class in list(CONFIG_MAPPING.values() ): _lowerCAmelCase : List[Any] = False # source code of `config_class` _lowerCAmelCase : Tuple = inspect.getsource(a_ ) _lowerCAmelCase : Dict = _re_checkpoint.findall(a_ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _lowerCAmelCase : List[Any] = checkpoint # verify the checkpoint name corresponds to the checkpoint link _lowerCAmelCase : Tuple = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _lowerCAmelCase : List[str] = True break _lowerCAmelCase : Optional[int] = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(a_ ) if len(a_ ) > 0: _lowerCAmelCase : int = '''\n'''.join(sorted(a_ ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
309
"""simple docstring""" def __lowerCamelCase ( a_ : int , a_ : str ) -> Optional[int]: __SCREAMING_SNAKE_CASE :Optional[int] = [1] for i in range(2 , a_ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __SCREAMING_SNAKE_CASE :List[str] = [] __SCREAMING_SNAKE_CASE :Optional[Any] = list(range(a_ ) ) # Find permutation while factorials: __SCREAMING_SNAKE_CASE :Optional[int] = factorials.pop() __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Dict = divmod(a_ , a_ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
191
0
import argparse from collections import defaultdict import yaml __A = '''docs/source/en/_toctree.yml''' def snake_case_(_UpperCamelCase ) -> Dict: """simple docstring""" _snake_case = defaultdict(_UpperCamelCase ) for doc in model_doc: counts[doc["local"]] += 1 _snake_case = [key for key, value in counts.items() if value > 1] _snake_case = [] for duplicate_key in duplicates: _snake_case = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(_UpperCamelCase ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(_UpperCamelCase , key=lambda _UpperCamelCase : s["title"].lower() ) def snake_case_(_UpperCamelCase=False ) -> List[str]: """simple docstring""" with open(_UpperCamelCase , encoding='''utf-8''' ) as f: _snake_case = yaml.safe_load(f.read() ) # Get to the API doc _snake_case = 0 while content[api_idx]["title"] != "API": api_idx += 1 _snake_case = content[api_idx]['''sections'''] # Then to the model doc _snake_case = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _snake_case = api_doc[model_idx]['''sections'''] _snake_case = [(idx, section) for idx, section in enumerate(_UpperCamelCase ) if '''sections''' in section] _snake_case = False for idx, modality_doc in modalities_docs: _snake_case = modality_doc['''sections'''] _snake_case = clean_model_doc_toc(_UpperCamelCase ) if old_modality_doc != new_modality_doc: _snake_case = True if overwrite: _snake_case = new_modality_doc if diff: if overwrite: _snake_case = model_doc _snake_case = api_doc with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(_UpperCamelCase , allow_unicode=_UpperCamelCase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __A = parser.parse_args() check_model_doc(args.fix_and_overwrite)
278
from math import factorial def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(_UpperCamelCase ) // (factorial(_UpperCamelCase ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( '''If a class of 40 students must be arranged into groups of''', f'''4 for group projects, there are {combinations(40, 4)} ways''', '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f'''are {combinations(10, 3)} ways that first, second and''', '''third place can be awarded.''', )
278
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer lowercase : int = logging.get_logger(__name__) lowercase : Optional[int] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase : List[Any] = { "vocab_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt" ), "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt" ), "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt", "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json" ), "bert-base-multilingual-cased": ( "https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json" ), "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-cased": ( "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json" ), }, } lowercase : Tuple = { "bert-base-uncased": 512, "bert-large-uncased": 512, "bert-base-cased": 512, "bert-large-cased": 512, "bert-base-multilingual-uncased": 512, "bert-base-multilingual-cased": 512, "bert-base-chinese": 512, "bert-base-german-cased": 512, "bert-large-uncased-whole-word-masking": 512, "bert-large-cased-whole-word-masking": 512, "bert-large-uncased-whole-word-masking-finetuned-squad": 512, "bert-large-cased-whole-word-masking-finetuned-squad": 512, "bert-base-cased-finetuned-mrpc": 512, "bert-base-german-dbmdz-cased": 512, "bert-base-german-dbmdz-uncased": 512, "TurkuNLP/bert-base-finnish-cased-v1": 512, "TurkuNLP/bert-base-finnish-uncased-v1": 512, "wietsedv/bert-base-dutch-cased": 512, } lowercase : Optional[int] = { "bert-base-uncased": {"do_lower_case": True}, "bert-large-uncased": {"do_lower_case": True}, "bert-base-cased": {"do_lower_case": False}, "bert-large-cased": {"do_lower_case": False}, "bert-base-multilingual-uncased": {"do_lower_case": True}, "bert-base-multilingual-cased": {"do_lower_case": False}, "bert-base-chinese": {"do_lower_case": False}, "bert-base-german-cased": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking": {"do_lower_case": True}, "bert-large-cased-whole-word-masking": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, "bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, "bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, "bert-base-german-dbmdz-cased": {"do_lower_case": False}, "bert-base-german-dbmdz-uncased": {"do_lower_case": True}, "TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False}, "TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True}, "wietsedv/bert-base-dutch-cased": {"do_lower_case": False}, } class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = VOCAB_FILES_NAMES __lowercase = PRETRAINED_VOCAB_FILES_MAP __lowercase = PRETRAINED_INIT_CONFIGURATION __lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase = BertTokenizer def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_="[UNK]" , lowerCAmelCase_="[SEP]" , lowerCAmelCase_="[PAD]" , lowerCAmelCase_="[CLS]" , lowerCAmelCase_="[MASK]" , lowerCAmelCase_=True , lowerCAmelCase_=None , **lowerCAmelCase_ , ): """simple docstring""" super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) _snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): _snake_case = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) _snake_case = do_lower_case _snake_case = strip_accents _snake_case = tokenize_chinese_chars _snake_case = normalizer_class(**lowerCAmelCase_ ) _snake_case = do_lower_case def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ): """simple docstring""" _snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): """simple docstring""" _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): """simple docstring""" _snake_case = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
42
"""simple docstring""" import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class _A ( lowerCAmelCase , lowerCAmelCase ): snake_case__ : Tuple = 1 @register_to_config def __init__( self , __lowerCAmelCase = 1000 , __lowerCAmelCase = None ): """simple docstring""" self.set_timesteps(__lowerCAmelCase ) # standard deviation of the initial noise distribution lowercase = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowercase = 4 # running values lowercase = [] def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = num_inference_steps lowercase = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowercase = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowercase = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowercase = torch.sin(steps * math.pi / 2 ) ** 2 lowercase = (1.0 - self.betas**2) ** 0.5 lowercase = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowercase = timesteps.to(__lowerCAmelCase ) lowercase = [] def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True , ): """simple docstring""" if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) lowercase = (self.timesteps == timestep).nonzero().item() lowercase = timestep_index + 1 lowercase = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__lowerCAmelCase ) if len(self.ets ) == 1: lowercase = self.ets[-1] elif len(self.ets ) == 2: lowercase = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowercase = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowercase = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowercase = self._get_prev_sample(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return sample def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = self.alphas[timestep_index] lowercase = self.betas[timestep_index] lowercase = self.alphas[prev_timestep_index] lowercase = self.betas[prev_timestep_index] lowercase = (sample - sigma * ets) / max(__lowerCAmelCase , 1E-8 ) lowercase = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
197
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: A_ :Optional[int] = None A_ :str = logging.get_logger(__name__) A_ :Optional[Any] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} A_ :Optional[Any] = { """vocab_file""": { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/spiece.model""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/spiece.model""", }, """tokenizer_file""": { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json""", }, } A_ :int = { """google/fnet-base""": 512, """google/fnet-large""": 512, } A_ :List[Any] = """▁""" class __A ( a ): """simple docstring""" UpperCamelCase__ : List[str] =VOCAB_FILES_NAMES UpperCamelCase__ : str =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Any =["""input_ids""", """token_type_ids"""] UpperCamelCase__ : int =FNetTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="<unk>" , lowerCamelCase__="[SEP]" , lowerCamelCase__="<pad>" , lowerCamelCase__="[CLS]" , lowerCamelCase__="[MASK]" , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : str =( AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase , normalized=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token ) super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) __UpperCamelCase : List[str] =do_lower_case __UpperCamelCase : Optional[Any] =remove_space __UpperCamelCase : str =keep_accents __UpperCamelCase : Any =vocab_file __UpperCamelCase : List[str] =False if not self.vocab_file else True def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : Union[str, Any] =[self.sep_token_id] __UpperCamelCase : Any =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : str =[self.sep_token_id] __UpperCamelCase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase : str =os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
366
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[Any] =[ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any =[ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =[ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =[ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any =[ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =[ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __UpperCamelCase : List[Any] ='fp16' self.assertTrue(is_safetensors_compatible(lowerCamelCase__ , variant=lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =[ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __UpperCamelCase : str ='fp16' self.assertTrue(is_safetensors_compatible(lowerCamelCase__ , variant=lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =[ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __UpperCamelCase : int ='fp16' self.assertTrue(is_safetensors_compatible(lowerCamelCase__ , variant=lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any =[ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __UpperCamelCase : str ='fp16' self.assertFalse(is_safetensors_compatible(lowerCamelCase__ , variant=lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =[ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __UpperCamelCase : Any ='fp16' self.assertTrue(is_safetensors_compatible(lowerCamelCase__ , variant=lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =[ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __UpperCamelCase : Tuple ='fp16' self.assertTrue(is_safetensors_compatible(lowerCamelCase__ , variant=lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any =[ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __UpperCamelCase : Any ='fp16' self.assertFalse(is_safetensors_compatible(lowerCamelCase__ , variant=lowerCamelCase__ ) )
245
0
'''simple docstring''' import math def lowerCamelCase ( __lowerCamelCase : int ) ->bool: _SCREAMING_SNAKE_CASE = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__lowerCamelCase ) def lowerCamelCase ( __lowerCamelCase : float = 1 / 1_2345 ) ->int: _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 3 while True: _SCREAMING_SNAKE_CASE = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__lowerCamelCase ): _SCREAMING_SNAKE_CASE = int(__lowerCamelCase ) total_partitions += 1 if check_partition_perfect(__lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__lowerCamelCase ) integer += 1 if __name__ == "__main__": print(f"""{solution() = }""")
58
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger() @dataclass class a_ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = field(default_factory=snake_case_ ) UpperCamelCase = field(default_factory=snake_case_ ) def snake_case_( self , A , A , A ) -> Optional[int]: _SCREAMING_SNAKE_CASE = len(list(m.modules() ) ) == 1 or isinstance(A , nn.Convad ) or isinstance(A , nn.BatchNormad ) if has_not_submodules: self.traced.append(A ) def __call__( self , A ) -> str: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A ) [x.remove() for x in self.handles] return self @property def snake_case_( self ) -> str: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class a_ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 0 UpperCamelCase = field(default_factory=snake_case_ ) UpperCamelCase = field(default_factory=snake_case_ ) def __call__( self , A ) -> List[str]: _SCREAMING_SNAKE_CASE = Tracker(self.dest )(A ).parametrized _SCREAMING_SNAKE_CASE = Tracker(self.src )(A ).parametrized _SCREAMING_SNAKE_CASE = list(filter(lambda A : type(A ) not in self.src_skip , A ) ) _SCREAMING_SNAKE_CASE = list(filter(lambda A : type(A ) not in self.dest_skip , A ) ) if len(A ) != len(A ): raise Exception( f'Numbers of operations are different. Source module has {len(A )} operations while' f' destination module has {len(A )}.' ) for dest_m, src_m in zip(A , A ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : ResNetConfig , __lowerCamelCase : Path , __lowerCamelCase : bool = True ) ->int: print(F'Converting {name}...' ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = timm.create_model(__lowerCamelCase , pretrained=__lowerCamelCase ).eval() _SCREAMING_SNAKE_CASE = ResNetForImageClassification(__lowerCamelCase ).eval() _SCREAMING_SNAKE_CASE = ModuleTransfer(src=__lowerCamelCase , dest=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = torch.randn((1, 3, 224, 224) ) module_transfer(__lowerCamelCase ) assert torch.allclose(from_model(__lowerCamelCase ) , our_model(__lowerCamelCase ).logits ), "The model logits don't match the original one." _SCREAMING_SNAKE_CASE = F'resnet{"-".join(name.split("resnet" ) )}' print(__lowerCamelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=__lowerCamelCase , ) # we can use the convnext one _SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=__lowerCamelCase , ) print(F'Pushed {checkpoint_name}' ) def lowerCamelCase ( __lowerCamelCase : Path , __lowerCamelCase : str = None , __lowerCamelCase : bool = True ) ->Any: _SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" _SCREAMING_SNAKE_CASE = 1000 _SCREAMING_SNAKE_CASE = (1, num_labels) _SCREAMING_SNAKE_CASE = """huggingface/label-files""" _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _SCREAMING_SNAKE_CASE = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = idalabel _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(__lowerCamelCase , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, expected_shape if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) lowercase_ = parser.parse_args() lowercase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
58
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : Tuple = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCamelCase_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
350
def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # Return True if there is node that has not iterated. __a = [False] * len(__lowerCamelCase ) __a = [] queue.append(__lowerCamelCase ) __a = True while queue: __a = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCamelCase ) __a = True __a = u return visited[t] def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # This array is filled by BFS and to store path __a = [-1] * (len(__lowerCamelCase )) __a = 0 while bfs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = float('Inf' ) __a = sink while s != source: # Find the minimum value in select path __a = min(__lowerCamelCase , graph[parent[s]][s] ) __a = parent[s] max_flow += path_flow __a = sink while v != source: __a = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __a = parent[v] return max_flow lowerCamelCase_ : str = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] = 0, 5 print(ford_fulkerson(graph, source, sink))
197
0
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(DDPMScheduler,) def UpperCamelCase__ ( self : List[str] , **__a : List[str] ): _a = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**__a ) return config def UpperCamelCase__ ( self : Optional[Any] ): for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def UpperCamelCase__ ( self : int ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a ) def UpperCamelCase__ ( self : List[Any] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__a ) def UpperCamelCase__ ( self : Any ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a ) def UpperCamelCase__ ( self : List[Any] ): self.check_over_configs(thresholding=__a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def UpperCamelCase__ ( self : str ): for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=__a ) def UpperCamelCase__ ( self : Any ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1e-5 def UpperCamelCase__ ( self : Tuple ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = len(__a ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = torch.manual_seed(0 ) for t in reversed(range(__a ) ): # 1. predict noise residual _a = model(__a , __a ) # 2. predict previous mean of sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def UpperCamelCase__ ( self : List[str] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config(prediction_type="v_prediction" ) _a = scheduler_class(**__a ) _a = len(__a ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = torch.manual_seed(0 ) for t in reversed(range(__a ) ): # 1. predict noise residual _a = model(__a , __a ) # 2. predict previous mean of sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def UpperCamelCase__ ( self : Dict ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__a ) _a = scheduler.timesteps for i, timestep in enumerate(__a ): if i == len(__a ) - 1: _a = -1 else: _a = timesteps[i + 1] _a = scheduler.previous_timestep(__a ) _a = prev_t.item() self.assertEqual(__a , __a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [1_00, 87, 50, 51, 0] with self.assertRaises(__a , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [1_00, 87, 50, 1, 0] _a = len(__a ) with self.assertRaises(__a , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a ) def UpperCamelCase__ ( self : Dict ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__a )
63
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCAmelCase_ : Any = get_tests_dir('fixtures') lowerCAmelCase_ : Union[str, Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') lowerCAmelCase_ : Dict = get_tests_dir('fixtures/dummy-config.json') class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): _a = 0 def UpperCamelCase__ ( self : str ): _a = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : Tuple ): _a = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: _a = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally _a = AutoFeatureExtractor.from_pretrained(__a ).to_dict() config_dict.pop("feature_extractor_type" ) _a = WavaVecaFeatureExtractor(**__a ) # save in new folder model_config.save_pretrained(__a ) config.save_pretrained(__a ) _a = AutoFeatureExtractor.from_pretrained(__a ) # make sure private variable is not incorrectly saved _a = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : Tuple ): _a = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : Union[str, Any] ): with self.assertRaisesRegex( __a , "bert-base is not a local folder and is not a valid model identifier" ): _a = AutoFeatureExtractor.from_pretrained("bert-base" ) def UpperCamelCase__ ( self : Optional[Any] ): with self.assertRaisesRegex( __a , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _a = AutoFeatureExtractor.from_pretrained(__a , revision="aaaaaa" ) def UpperCamelCase__ ( self : List[Any] ): with self.assertRaisesRegex( __a , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): _a = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model" ) def UpperCamelCase__ ( self : List[Any] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__a ): _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__a ): _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a ) _a = AutoFeatureExtractor.from_pretrained(__a , trust_remote_code=__a ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) def UpperCamelCase__ ( self : Any ): try: AutoConfig.register("custom" , __a ) AutoFeatureExtractor.register(__a , __a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a ): AutoFeatureExtractor.register(__a , __a ) # Now that the config is registered, it can be used as any other config with the auto-API _a = CustomFeatureExtractor.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a ) _a = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self : Tuple ): class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =True try: AutoConfig.register("custom" , __a ) AutoFeatureExtractor.register(__a , __a ) # If remote code is not set, the default is to use local _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(not hasattr(__a , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
63
1
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 3 , snake_case_ : int = 7 , snake_case_ : int = 1000000 ) -> int: """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = 1 for current_denominator in range(1 , limit + 1 ): _lowerCAmelCase = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: _lowerCAmelCase = current_numerator _lowerCAmelCase = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_0_0_0_0_0_0))
350
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations(snake_case_ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( snake_case_ : int , snake_case_ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case_ ) for item in array ) _lowerCAmelCase = answer return answer _lowerCAmelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case_ , snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" _lowerCAmelCase = [0] * (target + 1) _lowerCAmelCase = 1 for i in range(1 , target + 1 ): for j in range(snake_case_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : Any = 5 SCREAMING_SNAKE_CASE : Optional[int] = [1, 2, 5] print(combination_sum_iv(n, array, target))
317
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging A : Dict = logging.get_logger(__name__) class __A( a ): snake_case_ = '''encoder-decoder''' snake_case_ = True def __init__( self , **_snake_case ) -> str: '''simple docstring''' super().__init__(**_snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" __a = kwargs.pop('''encoder''' ) __a = encoder_config.pop('''model_type''' ) __a = kwargs.pop('''decoder''' ) __a = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig __a = AutoConfig.for_model(_snake_case , **_snake_case ) __a = AutoConfig.for_model(_snake_case , **_snake_case ) __a = True @classmethod def SCREAMING_SNAKE_CASE_ ( cls , _snake_case , _snake_case , **_snake_case ) -> PretrainedConfig: '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) __a = True __a = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = copy.deepcopy(self.__dict__ ) __a = self.encoder.to_dict() __a = self.decoder.to_dict() __a = self.__class__.model_type return output
6
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A( a , a , unittest.TestCase ): snake_case_ = AutoencoderKL snake_case_ = '''sample''' snake_case_ = 1E-2 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = 4 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes ).to(_snake_case ) return {"sample": image} @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' return (3, 32, 32) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' return (3, 32, 32) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } __a = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a , __a = self.prepare_init_args_and_inputs_for_common() __a = self.model_class(**_snake_case ) model.to(_snake_case ) assert not model.is_gradient_checkpointing and model.training __a = model(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __a = torch.randn_like(_snake_case ) __a = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __a = self.model_class(**_snake_case ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_snake_case ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __a = model_a(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __a = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __a = dict(model.named_parameters() ) __a = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a , __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_snake_case ) __a = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) __a = model.to(_snake_case ) model.eval() if torch_device == "mps": __a = torch.manual_seed(0 ) else: __a = torch.Generator(device=_snake_case ).manual_seed(0 ) __a = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __a = image.to(_snake_case ) with torch.no_grad(): __a = model(_snake_case , sample_posterior=_snake_case , generator=_snake_case ).sample __a = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __a = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": __a = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: __a = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_snake_case , _snake_case , rtol=1E-2 ) ) @slow class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={'_'.join([str(_snake_case ) for s in shape] )}.npy""" def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 , _snake_case=(4, 3, 512, 512) , _snake_case=False ) -> Any: '''simple docstring''' __a = torch.floataa if fpaa else torch.floataa __a = torch.from_numpy(load_hf_numpy(self.get_file_format(_snake_case , _snake_case ) ) ).to(_snake_case ).to(_snake_case ) return image def SCREAMING_SNAKE_CASE_ ( self , _snake_case="CompVis/stable-diffusion-v1-4" , _snake_case=False ) -> Optional[Any]: '''simple docstring''' __a = '''fp16''' if fpaa else None __a = torch.floataa if fpaa else torch.floataa __a = AutoencoderKL.from_pretrained( _snake_case , subfolder='''vae''' , torch_dtype=_snake_case , revision=_snake_case , ) model.to(_snake_case ).eval() return model def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 ) -> Tuple: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(_snake_case ) return torch.Generator(device=_snake_case ).manual_seed(_snake_case ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> List[Any]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Tuple: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , fpaa=_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) with torch.no_grad(): __a = model(_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model.encode(_snake_case ).latent_dist __a = dist.sample(generator=_snake_case ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __a = sample[0, -1, -3:, -3:].flatten().cpu() __a = torch.tensor(_snake_case ) __a = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(_snake_case , _snake_case , atol=_snake_case )
6
1
import numpy as np def snake_case__ ( SCREAMING_SNAKE_CASE_ : np.array ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
357
from __future__ import annotations from collections.abc import Callable def snake_case__ ( SCREAMING_SNAKE_CASE_ : Callable[[int | float], int | float] , SCREAMING_SNAKE_CASE_ : int | float , SCREAMING_SNAKE_CASE_ : int | float , SCREAMING_SNAKE_CASE_ : int = 100 , ): '''simple docstring''' lowercase__ : Tuple = x_start lowercase__ : Tuple = fnc(SCREAMING_SNAKE_CASE_ ) lowercase__ : List[Any] = 0.0 for _ in range(SCREAMING_SNAKE_CASE_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area lowercase__ : Any = (x_end - x_start) / steps + xa lowercase__ : Optional[Any] = fnc(SCREAMING_SNAKE_CASE_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step lowercase__ : Any = xa lowercase__ : str = fxa return area if __name__ == "__main__": def snake_case__ ( SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') snake_case_ = 10 while i <= 100_000: print(F'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 10
216
0
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _a ( lowerCamelCase ): return EnvironmentCommand() class A__ ( __SCREAMING_SNAKE_CASE): @staticmethod def UpperCamelCase__ ( __magic_name__ ): lowerCamelCase : Optional[int] = parser.add_parser("""env""" ) download_parser.set_defaults(func=__magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : Union[str, Any] = huggingface_hub.__version__ lowerCamelCase : int = """not installed""" lowerCamelCase : Dict = """NA""" if is_torch_available(): import torch lowerCamelCase : int = torch.__version__ lowerCamelCase : List[str] = torch.cuda.is_available() lowerCamelCase : List[str] = """not installed""" if is_transformers_available(): import transformers lowerCamelCase : Any = transformers.__version__ lowerCamelCase : int = """not installed""" if is_accelerate_available(): import accelerate lowerCamelCase : List[str] = accelerate.__version__ lowerCamelCase : Any = """not installed""" if is_xformers_available(): import xformers lowerCamelCase : Optional[int] = xformers.__version__ lowerCamelCase : List[Any] = { """`diffusers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """Huggingface_hub version""": hub_version, """Transformers version""": transformers_version, """Accelerate version""": accelerate_version, """xFormers version""": xformers_version, """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(__magic_name__ ) ) return info @staticmethod def UpperCamelCase__ ( __magic_name__ ): return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
287
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 _lowerCamelCase ={ """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_2_8, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 5_0, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 1_0, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 1_0, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class A__ ( unittest.TestCase): @classmethod def UpperCamelCase__ ( cls ): lowerCamelCase : int = TOKEN HfFolder.save_token(__magic_name__ ) @classmethod def UpperCamelCase__ ( cls ): try: delete_repo(token=cls._token , repo_id="""test-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-config-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-config""" ) except HTTPError: pass def UpperCamelCase__ ( self ): lowerCamelCase : List[Any] = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub("""test-config""" , use_auth_token=self._token ) lowerCamelCase : Any = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__magic_name__ , repo_id="""test-config""" , push_to_hub=__magic_name__ , use_auth_token=self._token ) lowerCamelCase : Optional[Any] = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) def UpperCamelCase__ ( self ): lowerCamelCase : Dict = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub("""valid_org/test-config-org""" , use_auth_token=self._token ) lowerCamelCase : Optional[int] = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __magic_name__ , repo_id="""valid_org/test-config-org""" , push_to_hub=__magic_name__ , use_auth_token=self._token ) lowerCamelCase : List[str] = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) def UpperCamelCase__ ( self ): CustomConfig.register_for_auto_class() lowerCamelCase : Optional[Any] = CustomConfig(attribute=4_2 ) config.push_to_hub("""test-dynamic-config""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"""AutoConfig""": """custom_configuration.CustomConfig"""} ) lowerCamelCase : List[str] = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=__magic_name__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , """CustomConfig""" ) self.assertEqual(new_config.attribute , 4_2 ) class A__ ( unittest.TestCase): def UpperCamelCase__ ( self ): lowerCamelCase : str = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase : Optional[int] = c.n_embd + 1 # int lowerCamelCase : Optional[int] = c.resid_pdrop + 1.0 # float lowerCamelCase : Tuple = not c.scale_attn_weights # bool lowerCamelCase : Any = c.summary_type + """foo""" # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__magic_name__ , c.n_embd , """mismatch for key: n_embd""" ) self.assertEqual(__magic_name__ , c.resid_pdrop , """mismatch for key: resid_pdrop""" ) self.assertEqual(__magic_name__ , c.scale_attn_weights , """mismatch for key: scale_attn_weights""" ) self.assertEqual(__magic_name__ , c.summary_type , """mismatch for key: summary_type""" ) def UpperCamelCase__ ( self ): lowerCamelCase : str = PretrainedConfig() lowerCamelCase : int = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __magic_name__ , ["""is_encoder_decoder""", """_name_or_path""", """_commit_hash""", """transformers_version"""] ) lowerCamelCase : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(__magic_name__ , __magic_name__ )] if len(__magic_name__ ) > 0: raise ValueError( """The following keys are set with the default values in""" """ `test_configuration_common.config_common_kwargs` pick another value for them:""" F''' {", ".join(__magic_name__ )}.''' ) def UpperCamelCase__ ( self ): with self.assertRaises(__magic_name__ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase : Dict = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" ) lowerCamelCase : str = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" , subfolder="""bert""" ) self.assertIsNotNone(__magic_name__ ) def UpperCamelCase__ ( self ): # A mock response for an HTTP head request to emulate server down lowerCamelCase : Dict = mock.Mock() lowerCamelCase : Optional[int] = 5_0_0 lowerCamelCase : List[Any] = {} lowerCamelCase : Tuple = HTTPError lowerCamelCase : Union[str, Any] = {} # Download this model to make sure it's in the cache. lowerCamelCase : List[str] = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=__magic_name__ ) as mock_head: lowerCamelCase : Any = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ): # This test is for deprecated behavior and can be removed in v5 lowerCamelCase : List[str] = BertConfig.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json""" ) def UpperCamelCase__ ( self ): lowerCamelCase : Optional[int] = AutoConfig.from_pretrained("""bert-base-cased""" ) lowerCamelCase : Optional[Any] = ["""config.4.0.0.json"""] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__magic_name__ ) lowerCamelCase : str = 2 json.dump(configuration.to_dict() , open(os.path.join(__magic_name__ , """config.4.0.0.json""" ) , """w""" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(__magic_name__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase : Any = ["""config.42.0.0.json"""] lowerCamelCase : Optional[Any] = 7_6_8 configuration.save_pretrained(__magic_name__ ) shutil.move(os.path.join(__magic_name__ , """config.4.0.0.json""" ) , os.path.join(__magic_name__ , """config.42.0.0.json""" ) ) lowerCamelCase : int = AutoConfig.from_pretrained(__magic_name__ ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def UpperCamelCase__ ( self ): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. lowerCamelCase : str = """hf-internal-testing/test-two-configs""" import transformers as new_transformers lowerCamelCase : Tuple = """v4.0.0""" lowerCamelCase , lowerCamelCase : Optional[int] = new_transformers.models.auto.AutoConfig.from_pretrained( __magic_name__ , return_unused_kwargs=__magic_name__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__magic_name__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase : Tuple = """v3.0.0""" lowerCamelCase : Any = old_transformers.models.auto.AutoConfig.from_pretrained(__magic_name__ ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
287
1
"""simple docstring""" import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( A__ , unittest.TestCase ): '''simple docstring''' a_ : str = CanineTokenizer a_ : Union[str, Any] = False def lowerCamelCase ( self : int ): super().setUp() lowerCAmelCase_ : List[Any] = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase ( self : Dict ): return CanineTokenizer.from_pretrained("google/canine-s" ) def lowerCamelCase ( self : int , **a_ : Union[str, Any] ): lowerCAmelCase_ : int = self.tokenizer_class.from_pretrained(self.tmpdirname , **a_ ) lowerCAmelCase_ : List[str] = 10_24 return tokenizer @require_torch def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : Dict = self.canine_tokenizer lowerCAmelCase_ : Optional[int] = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off lowerCAmelCase_ : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on lowerCAmelCase_ : Optional[int] = tokenizer(a_ , padding=a_ , return_tensors="pt" ) self.assertIsInstance(a_ , a_ ) lowerCAmelCase_ : List[Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(a_ , a_ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Tuple = self.canine_tokenizer lowerCAmelCase_ : str = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] lowerCAmelCase_ : Optional[int] = tokenizer(a_ , padding=a_ , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , a_ ) self.assertIn("attention_mask" , a_ ) self.assertIn("token_type_ids" , a_ ) @require_torch def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ : Dict = self.canine_tokenizer lowerCAmelCase_ : Any = [ "What's the weater?", "It's about 25 degrees.", ] lowerCAmelCase_ : Any = tokenizer( text_target=a_ , max_length=32 , padding="max_length" , truncation=a_ , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCamelCase ( self : Tuple ): # safety check on max_len default value so we are sure the test works lowerCAmelCase_ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCAmelCase_ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase_ : Dict = tempfile.mkdtemp() lowerCAmelCase_ : Optional[int] = " He is very happy, UNwant\u00E9d,running" lowerCAmelCase_ : int = tokenizer.encode(a_ , add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) lowerCAmelCase_ : Union[str, Any] = tokenizer.__class__.from_pretrained(a_ ) lowerCAmelCase_ : List[Any] = after_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) shutil.rmtree(a_ ) lowerCAmelCase_ : Optional[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase_ : Dict = tempfile.mkdtemp() lowerCAmelCase_ : List[Any] = " He is very happy, UNwant\u00E9d,running" lowerCAmelCase_ : Optional[Any] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: lowerCAmelCase_ : int = chr(0xE0_07 ) additional_special_tokens.append(a_ ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowerCAmelCase_ : List[Any] = tokenizer.encode(a_ , add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) lowerCAmelCase_ : Optional[int] = tokenizer.__class__.from_pretrained(a_ ) lowerCAmelCase_ : Optional[int] = after_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) self.assertIn(a_ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCAmelCase_ : str = tokenizer.__class__.from_pretrained(a_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(a_ ) def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : str = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCAmelCase_ , lowerCAmelCase_ : Tuple = self.get_clean_sequence(a_ ) # a special token for Canine can be defined as follows: lowerCAmelCase_ : str = 0xE0_05 lowerCAmelCase_ : Optional[Any] = chr(a_ ) tokenizer.add_special_tokens({"cls_token": special_token} ) lowerCAmelCase_ : Tuple = tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertEqual(len(a_ ) , 1 ) lowerCAmelCase_ : Optional[Any] = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=a_ ) lowerCAmelCase_ : Dict = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCAmelCase_ : Dict = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCAmelCase_ : Tuple = tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertEqual(a_ , input_encoded + special_token_id ) lowerCAmelCase_ : List[Any] = tokenizer.decode(a_ , skip_special_tokens=a_ ) self.assertTrue(special_token not in decoded ) def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Any = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCAmelCase_ : Tuple = chr(0xE0_05 ) lowerCAmelCase_ : List[Any] = chr(0xE0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=a_ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(a_ ) lowerCAmelCase_ : Optional[Any] = tokenizer.tokenize(a_ ) self.assertEqual(len(a_ ) , 1 ) self.assertEqual(len(a_ ) , 1 ) self.assertEqual(token_a[0] , a_ ) self.assertEqual(token_a[0] , a_ ) @require_tokenizers def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : Tuple = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: lowerCAmelCase_ : str = 0xE0_06 lowerCAmelCase_ : Optional[int] = chr(a_ ) lowerCAmelCase_ : Optional[Any] = AddedToken(a_ , lstrip=a_ ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(a_ ) tokenizer.from_pretrained(a_ ) def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) with open(os.path.join(a_ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: lowerCAmelCase_ : Optional[Any] = json.load(a_ ) with open(os.path.join(a_ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: lowerCAmelCase_ : Any = json.load(a_ ) # a special token for Canine can be defined as follows: lowerCAmelCase_ : List[Any] = 0xE0_06 lowerCAmelCase_ : int = chr(a_ ) lowerCAmelCase_ : List[Any] = [new_token_a] lowerCAmelCase_ : Tuple = [new_token_a] with open(os.path.join(a_ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(a_ , a_ ) with open(os.path.join(a_ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(a_ , a_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCAmelCase_ : Any = tokenizer_class.from_pretrained(a_ , extra_ids=0 ) self.assertIn(a_ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) lowerCAmelCase_ : List[Any] = 0xE0_07 lowerCAmelCase_ : Optional[Any] = chr(a_ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCAmelCase_ : Optional[Any] = [AddedToken(a_ , lstrip=a_ )] lowerCAmelCase_ : Optional[int] = tokenizer_class.from_pretrained( a_ , additional_special_tokens=a_ , extra_ids=0 ) self.assertIn(a_ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : List[Any] = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCAmelCase_ : Any = "hello world" if self.space_between_special_tokens: lowerCAmelCase_ : Union[str, Any] = "[CLS] hello world [SEP]" else: lowerCAmelCase_ : Optional[Any] = input lowerCAmelCase_ : Union[str, Any] = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCAmelCase_ : int = tokenizer.decode(a_ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(a_ , [output, output.lower()] ) def lowerCamelCase ( self : str ): lowerCAmelCase_ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCAmelCase_ : List[Any] = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowerCAmelCase_ : Any = "a" lowerCAmelCase_ : Union[str, Any] = ord(a_ ) for attr in attributes_list: setattr(a_ , attr + "_id" , a_ ) self.assertEqual(getattr(a_ , a_ ) , a_ ) self.assertEqual(getattr(a_ , attr + "_id" ) , a_ ) setattr(a_ , attr + "_id" , a_ ) self.assertEqual(getattr(a_ , a_ ) , a_ ) self.assertEqual(getattr(a_ , attr + "_id" ) , a_ ) setattr(a_ , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(a_ , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(a_ , "additional_special_tokens_ids" ) , [] ) lowerCAmelCase_ : Any = 0xE0_06 lowerCAmelCase_ : Tuple = chr(a_ ) setattr(a_ , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(a_ , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(a_ , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowerCamelCase ( self : str ): pass def lowerCamelCase ( self : List[str] ): pass def lowerCamelCase ( self : Union[str, Any] ): pass def lowerCamelCase ( self : Optional[Any] ): pass def lowerCamelCase ( self : Union[str, Any] ): pass def lowerCamelCase ( self : Tuple ): pass def lowerCamelCase ( self : Union[str, Any] ): pass def lowerCamelCase ( self : Tuple ): pass
161
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """SCUT-DLVCLab/lilt-roberta-en-base""": ( """https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json""" ), } class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : List[Any] = """lilt""" def __init__( self : Any , a_ : List[str]=3_05_22 , a_ : List[Any]=7_68 , a_ : Tuple=12 , a_ : Tuple=12 , a_ : str=30_72 , a_ : Union[str, Any]="gelu" , a_ : Union[str, Any]=0.1 , a_ : List[Any]=0.1 , a_ : List[Any]=5_12 , a_ : List[str]=2 , a_ : int=0.02 , a_ : Optional[int]=1e-1_2 , a_ : Any=0 , a_ : str="absolute" , a_ : List[Any]=None , a_ : Optional[int]=4 , a_ : str=10_24 , **a_ : Union[str, Any] , ): super().__init__(pad_token_id=a_ , **a_ ) lowerCAmelCase_ : List[str] = vocab_size lowerCAmelCase_ : List[str] = hidden_size lowerCAmelCase_ : int = num_hidden_layers lowerCAmelCase_ : Any = num_attention_heads lowerCAmelCase_ : str = hidden_act lowerCAmelCase_ : str = intermediate_size lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : int = max_position_embeddings lowerCAmelCase_ : Any = type_vocab_size lowerCAmelCase_ : List[Any] = initializer_range lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Tuple = position_embedding_type lowerCAmelCase_ : Union[str, Any] = classifier_dropout lowerCAmelCase_ : Optional[Any] = channel_shrink_ratio lowerCAmelCase_ : Dict = max_ad_position_embeddings
161
1
from __future__ import annotations import numpy as np def lowercase( UpperCamelCase_ ) -> tuple[np.ndarray, np.ndarray]: '''simple docstring''' UpperCamelCase , UpperCamelCase = np.shape(UpperCamelCase_ ) if rows != columns: UpperCamelCase = ( """'table' has to be of square shaped array but got a """ f"""{rows}x{columns} array:\n{table}""" ) raise ValueError(UpperCamelCase_ ) UpperCamelCase = np.zeros((rows, columns) ) UpperCamelCase = np.zeros((rows, columns) ) for i in range(UpperCamelCase_ ): for j in range(UpperCamelCase_ ): UpperCamelCase = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase_ ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) UpperCamelCase = (table[i][j] - total) / upper[j][j] UpperCamelCase = 1 for j in range(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase_ ) ) UpperCamelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
343
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """trocr""" __lowerCAmelCase = ["""past_key_values"""] __lowerCAmelCase = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self : Optional[Any] , lowerCamelCase_ : Optional[int]=5_0265 , lowerCamelCase_ : Optional[int]=1024 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Any=16 , lowerCamelCase_ : Tuple=4096 , lowerCamelCase_ : Tuple="gelu" , lowerCamelCase_ : List[str]=512 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : List[str]=0.0 , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : Union[str, Any]=2 , lowerCamelCase_ : Tuple=0.0_2 , lowerCamelCase_ : Union[str, Any]=0.0 , lowerCamelCase_ : str=True , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : List[str]=1 , lowerCamelCase_ : Optional[Any]=0 , lowerCamelCase_ : List[Any]=2 , **lowerCamelCase_ : Union[str, Any] , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = d_model UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = activation_function UpperCamelCase = max_position_embeddings UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = init_std UpperCamelCase = decoder_layerdrop UpperCamelCase = use_cache UpperCamelCase = scale_embedding UpperCamelCase = use_learned_position_embeddings UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
343
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class __a ( __UpperCamelCase ): def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : str ): super().__init__(*UpperCAmelCase , **UpperCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A ( self : Tuple , UpperCAmelCase : int=None ): lowerCAmelCase_ : Union[str, Any] = {} if top_k is not None: lowerCAmelCase_ : Union[str, Any] = top_k return {}, {}, postprocess_params def __call__( self : Union[str, Any] , UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCAmelCase : Any ): return super().__call__(UpperCAmelCase , **UpperCAmelCase ) def A ( self : Dict , UpperCAmelCase : Optional[int] ): lowerCAmelCase_ : List[str] = load_image(UpperCAmelCase ) lowerCAmelCase_ : List[str] = self.image_processor(images=UpperCAmelCase , return_tensors=self.framework ) return model_inputs def A ( self : Dict , UpperCAmelCase : Tuple ): lowerCAmelCase_ : Dict = self.model(**UpperCAmelCase ) return model_outputs def A ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : List[Any]=5 ): if top_k > self.model.config.num_labels: lowerCAmelCase_ : List[str] = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase_ : Union[str, Any] = model_outputs.logits.softmax(-1 )[0] lowerCAmelCase_ : Optional[int] = probs.topk(UpperCAmelCase ) elif self.framework == "tf": lowerCAmelCase_ : List[Any] = stable_softmax(model_outputs.logits , axis=-1 )[0] lowerCAmelCase_ : Tuple = tf.math.top_k(UpperCAmelCase , k=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'Unsupported framework: {self.framework}' ) lowerCAmelCase_ : str = scores.tolist() lowerCAmelCase_ : List[Any] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCAmelCase , UpperCAmelCase )]
353
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __a ( __UpperCamelCase ): __snake_case : torch.FloatTensor __snake_case : torch.FloatTensor __snake_case : Optional[torch.FloatTensor] = None class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Optional[Any] = 2 @register_to_config def __init__( self : str , UpperCAmelCase : float = 0.02 , UpperCAmelCase : float = 1_00 , UpperCAmelCase : float = 1.007 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 0.05 , UpperCAmelCase : float = 50 , ): # standard deviation of the initial noise distribution lowerCAmelCase_ : List[Any] = sigma_max # setable values lowerCAmelCase_ : int = None lowerCAmelCase_ : np.IntTensor = None lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i) def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): lowerCAmelCase_ : Dict = num_inference_steps lowerCAmelCase_ : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy() lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) lowerCAmelCase_ : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowerCAmelCase_ : Dict = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase ) def A ( self : str , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: lowerCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: lowerCAmelCase_ : List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCAmelCase_ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device ) lowerCAmelCase_ : int = sigma + gamma * sigma lowerCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def A ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : List[str] = sample_hat + sigma_hat * model_output lowerCAmelCase_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : Any = sample_prev + sigma_prev * model_output lowerCAmelCase_ : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev lowerCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ): raise NotImplementedError()
28
0
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class _A ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any]=13 , __UpperCAmelCase : List[str]=7 , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Optional[Any]=99 , __UpperCAmelCase : List[str]=32 , __UpperCAmelCase : List[Any]=5 , __UpperCAmelCase : Optional[int]=4 , __UpperCAmelCase : List[str]=37 , __UpperCAmelCase : List[Any]="gelu" , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : List[str]=512 , __UpperCAmelCase : List[str]=16 , __UpperCAmelCase : List[str]=2 , __UpperCAmelCase : int=0.02 , __UpperCAmelCase : Dict=4 , ): a : Any = parent a : Any = batch_size a : List[str] = seq_length a : Optional[Any] = is_training a : int = use_attention_mask a : Optional[Any] = use_token_type_ids a : Any = use_labels a : Any = vocab_size a : Any = hidden_size a : Any = num_hidden_layers a : Dict = num_attention_heads a : str = intermediate_size a : Any = hidden_act a : str = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : Tuple = max_position_embeddings a : Dict = type_vocab_size a : Dict = type_sequence_label_size a : List[str] = initializer_range a : List[Any] = num_choices def __snake_case ( self : str): a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a : Any = None if self.use_attention_mask: a : Any = random_attention_mask([self.batch_size, self.seq_length]) a : Union[str, Any] = None if self.use_token_type_ids: a : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a : Union[str, Any] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __snake_case ( self : Optional[int]): a : Any = self.prepare_config_and_inputs() a , a , a , a : str = config_and_inputs a : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _A ( _a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : Union[str, Any] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def __snake_case ( self : str): a : List[Any] = FlaxAlbertModelTester(self) @slow def __snake_case ( self : Any): for model_class_name in self.all_model_classes: a : Dict = model_class_name.from_pretrained("albert-base-v2") a : List[str] = model(np.ones((1, 1))) self.assertIsNotNone(__UpperCAmelCase) @require_flax class _A ( unittest.TestCase ): """simple docstring""" @slow def __snake_case ( self : int): a : Optional[Any] = FlaxAlbertModel.from_pretrained("albert-base-v2") a : Tuple = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) a : Any = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) a : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase)[0] a : Optional[Any] = (1, 11, 768) self.assertEqual(output.shape , __UpperCAmelCase) a : Optional[Any] = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1e-4))
40
"""simple docstring""" def lowercase ( A_ )-> bool: '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) a : Tuple = sorted(string.lower() ) return len(A_ ) == len(set(A_ ) ) if __name__ == "__main__": __lowercase = input("""Enter a string """).strip() __lowercase = is_isogram(input_str) print(f'''{input_str} is {'an' if isogram else 'not an'} isogram.''')
40
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ = { "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], "tokenization_electra": ["ElectraTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ["ElectraTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
353
UpperCamelCase__ = { "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) UpperCamelCase__ = { "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def _UpperCamelCase (a__ :float , a__ :str , a__ :str ): """simple docstring""" UpperCamelCase__ = from_type.lower().strip("""s""" ) UpperCamelCase__ = to_type.lower().strip("""s""" ) UpperCamelCase__ = UNIT_SYMBOL.get(a__ , a__ ) UpperCamelCase__ = UNIT_SYMBOL.get(a__ , a__ ) if from_sanitized not in METRIC_CONVERSION: UpperCamelCase__ = ( f"""Invalid 'from_type' value: {from_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(a__ )}""" ) raise ValueError(a__ ) if to_sanitized not in METRIC_CONVERSION: UpperCamelCase__ = ( f"""Invalid 'to_type' value: {to_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(a__ )}""" ) raise ValueError(a__ ) UpperCamelCase__ = METRIC_CONVERSION[from_sanitized] UpperCamelCase__ = METRIC_CONVERSION[to_sanitized] UpperCamelCase__ = 1 if from_exponent > to_exponent: UpperCamelCase__ = from_exponent - to_exponent else: UpperCamelCase__ = -(to_exponent - from_exponent) return value * pow(10 , a__ ) if __name__ == "__main__": from doctest import testmod testmod()
87
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: if any(not isinstance(lowercase_ , lowercase_ ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(lowercase_ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(lowercase_ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
247
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) SCREAMING_SNAKE_CASE = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class UpperCAmelCase_ ( unittest.TestCase ): def __magic_name__ ( self : List[Any] , snake_case_ : str , snake_case_ : bool , snake_case_ : str = None , snake_case_ : list = None ) -> Tuple: '''simple docstring''' A__ = None A__ = os.path.abspath(os.path.join("examples" , "by_feature" ) ) A__ = os.path.abspath("examples" ) for item in os.listdir(snake_case_ ): if item not in EXCLUDE_EXAMPLES: A__ = os.path.join(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ) and ".py" in item_path: with self.subTest( tested_script=snake_case_ , feature_script=snake_case_ , tested_section="main()" if parser_only else "training_function()" , ): A__ = compare_against_test( os.path.join(snake_case_ , snake_case_ ) , snake_case_ , snake_case_ , snake_case_ ) A__ = "\n".join(snake_case_ ) if special_strings is not None: for string in special_strings: A__ = diff.replace(snake_case_ , "" ) self.assertEqual(snake_case_ , "" ) def __magic_name__ ( self : List[str] ) -> str: '''simple docstring''' self.one_complete_example("complete_nlp_example.py" , snake_case_ ) self.one_complete_example("complete_nlp_example.py" , snake_case_ ) def __magic_name__ ( self : str ) -> Union[str, Any]: '''simple docstring''' A__ = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) A__ = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , snake_case_ , snake_case_ , snake_case_ ) self.one_complete_example("complete_cv_example.py" , snake_case_ , snake_case_ , snake_case_ ) @mock.patch.dict(os.environ, {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class UpperCAmelCase_ ( A_ ): lowercase__ = False @classmethod def __magic_name__ ( cls : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' super().setUpClass() A__ = tempfile.mkdtemp() A__ = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) A__ = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def __magic_name__ ( cls : Dict ) -> str: '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir ) def __magic_name__ ( self : Dict ) -> List[Any]: '''simple docstring''' A__ = F""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def __magic_name__ ( self : Any ) -> Any: '''simple docstring''' A__ = F""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() A__ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def __magic_name__ ( self : int ) -> Union[str, Any]: '''simple docstring''' A__ = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )} """.split() A__ = run_command(self._launch_args + testargs , return_stdout=snake_case_ ) self.assertNotIn("epoch 0:" , snake_case_ ) self.assertIn("epoch 1:" , snake_case_ ) def __magic_name__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' A__ = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )} """.split() A__ = run_command(self._launch_args + testargs , return_stdout=snake_case_ ) if torch.cuda.is_available(): A__ = torch.cuda.device_count() else: A__ = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , snake_case_ ) self.assertIn("epoch 1:" , snake_case_ ) else: self.assertIn("epoch 0:" , snake_case_ ) self.assertIn("epoch 1:" , snake_case_ ) @slow def __magic_name__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' A__ = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): A__ = run_command(self._launch_args + testargs , return_stdout=snake_case_ ) A__ = re.findall("({.+})" , snake_case_ ) A__ = [r for r in results if "accuracy" in r][-1] A__ = ast.literal_eval(snake_case_ ) self.assertGreaterEqual(results["accuracy"] , 0.75 ) def __magic_name__ ( self : List[Any] ) -> Tuple: '''simple docstring''' A__ = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def __magic_name__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: A__ = F""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , "tracking" ) ) ) def __magic_name__ ( self : List[Any] ) -> int: '''simple docstring''' A__ = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def __magic_name__ ( self : List[str] ) -> List[Any]: '''simple docstring''' A__ = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
247
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __SCREAMING_SNAKE_CASE ={"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =["""GLPNFeatureExtractor"""] __SCREAMING_SNAKE_CASE =["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
352
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( lowercase_ ): lowercase = ['input_values', 'padding_mask'] def __init__( self ,__UpperCamelCase = 1 ,__UpperCamelCase = 2_4000 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Any: '''simple docstring''' super().__init__(feature_size=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,padding_value=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : List[str] = chunk_length_s lowercase_ : Tuple = overlap @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.' ) elif padding is None: # by default let's pad the inputs lowercase_ : Optional[int] = True lowercase_ : Optional[int] = bool( isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowercase_ : int = [np.asarray(__UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__UpperCamelCase ,np.ndarray ): lowercase_ : Any = np.asarray(__UpperCamelCase ,dtype=np.floataa ) elif isinstance(__UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): lowercase_ : List[str] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: lowercase_ : Dict = [np.asarray(__UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(__UpperCamelCase ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) lowercase_ : Optional[int] = None lowercase_ : List[Any] = BatchFeature({'input_values': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: lowercase_ : List[Any] = min(array.shape[0] for array in raw_audio ) lowercase_ : int = int(np.floor(max_length / self.chunk_stride ) ) lowercase_ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: lowercase_ : List[Any] = max(array.shape[0] for array in raw_audio ) lowercase_ : Tuple = int(np.ceil(max_length / self.chunk_stride ) ) lowercase_ : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length lowercase_ : Union[str, Any] = 'max_length' else: lowercase_ : int = input_values # normal padding on batch if padded_inputs is None: lowercase_ : int = self.pad( __UpperCamelCase ,max_length=__UpperCamelCase ,truncation=__UpperCamelCase ,padding=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,) if padding: lowercase_ : Optional[int] = padded_inputs.pop('attention_mask' ) lowercase_ : Dict = [] for example in padded_inputs.pop('input_values' ): if self.feature_size == 1: lowercase_ : Optional[int] = example[..., None] input_values.append(example.T ) lowercase_ : str = input_values if return_tensors is not None: lowercase_ : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs
321
0
'''simple docstring''' # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) _A : str ='''pytorch_model.bin''' _A : Dict ='''pytorch_model.bin.index.json''' _A : Optional[int] ='''adapter_config.json''' _A : List[Any] ='''adapter_model.bin''' _A : Tuple ='''adapter_model.safetensors''' _A : Dict ='''tf_model.h5''' _A : Optional[int] ='''tf_model.h5.index.json''' _A : Optional[int] ='''model.ckpt''' _A : int ='''flax_model.msgpack''' _A : Tuple ='''flax_model.msgpack.index.json''' _A : Any ='''model.safetensors''' _A : Any ='''model.safetensors.index.json''' _A : Any ='''config.json''' _A : Any ='''preprocessor_config.json''' _A : Tuple =FEATURE_EXTRACTOR_NAME _A : Dict ='''generation_config.json''' _A : str ='''modelcard.json''' _A : Dict ='''▁''' _A : Dict =SENTENCEPIECE_UNDERLINE # Kept for backward compatibility _A : Tuple =[ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. _A : Optional[Any] =[[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] _A : Optional[Any] =[[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Dict: if version.parse(UpperCamelCase ) < version.parse(UpperCamelCase ): if "dev" in min_version: lowerCamelCase__ : Dict = ( """This example requires a source install from HuggingFace Transformers (see """ """`https://huggingface.co/docs/transformers/installation#install-from-source`),""" ) else: lowerCamelCase__ : int = f'''This example requires a minimum version of {min_version},''' error_message += f''' but the version found is {__version__}.\n''' raise ImportError( error_message + """Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other """ """versions of HuggingFace Transformers.""" )
41
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _lowercase ( _lowercase ): def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase__ , """tf_padding""" ) ) self.parent.assertTrue(hasattr(UpperCamelCase__ , """depth_multiplier""" ) ) class _lowercase : def __init__( self: str , UpperCamelCase__: Dict , UpperCamelCase__: Tuple=13 , UpperCamelCase__: Optional[int]=3 , UpperCamelCase__: List[Any]=32 , UpperCamelCase__: Optional[Any]=0.25 , UpperCamelCase__: int=8 , UpperCamelCase__: Any=True , UpperCamelCase__: Dict=1_024 , UpperCamelCase__: Optional[int]=32 , UpperCamelCase__: Tuple="relu6" , UpperCamelCase__: int=0.1 , UpperCamelCase__: List[Any]=0.02 , UpperCamelCase__: Optional[Any]=True , UpperCamelCase__: Union[str, Any]=True , UpperCamelCase__: Union[str, Any]=10 , UpperCamelCase__: str=None , ): lowerCamelCase__ : Optional[Any] = parent lowerCamelCase__ : List[str] = batch_size lowerCamelCase__ : Optional[int] = num_channels lowerCamelCase__ : Optional[int] = image_size lowerCamelCase__ : Optional[Any] = depth_multiplier lowerCamelCase__ : Union[str, Any] = min_depth lowerCamelCase__ : Optional[Any] = tf_padding lowerCamelCase__ : str = int(last_hidden_size * depth_multiplier ) lowerCamelCase__ : Any = output_stride lowerCamelCase__ : int = hidden_act lowerCamelCase__ : Tuple = classifier_dropout_prob lowerCamelCase__ : Dict = use_labels lowerCamelCase__ : Tuple = is_training lowerCamelCase__ : Optional[Any] = num_labels lowerCamelCase__ : Union[str, Any] = initializer_range lowerCamelCase__ : Optional[Any] = scope def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : Dict = None if self.use_labels: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase__ : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase_ ( self: str ): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: int , UpperCamelCase__: str , UpperCamelCase__: Any , UpperCamelCase__: Optional[int] ): lowerCamelCase__ : List[str] = MobileNetVaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : List[str] = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase_ ( self: str , UpperCamelCase__: Tuple , UpperCamelCase__: Optional[int] , UpperCamelCase__: List[Any] , UpperCamelCase__: Union[str, Any] ): lowerCamelCase__ : List[str] = self.num_labels lowerCamelCase__ : Optional[Any] = MobileNetVaForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : List[Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : str = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = config_and_inputs lowerCamelCase__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowercase ( _lowercase , _lowercase , unittest.TestCase ): a = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () a = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) a = False a = False a = False a = False def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Optional[int] = MobileNetVaModelTester(self ) lowerCamelCase__ : List[str] = MobileNetVaConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""" ) def lowerCamelCase_ ( self: Optional[int] ): pass @unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""" ) def lowerCamelCase_ ( self: Optional[Any] ): pass @unittest.skip(reason="""MobileNetV1 does not output attentions""" ) def lowerCamelCase_ ( self: Any ): pass def lowerCamelCase_ ( self: Any ): lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(UpperCamelCase__ ) lowerCamelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : List[Any] = [*signature.parameters.keys()] lowerCamelCase__ : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase_ ( self: str ): def check_hidden_states_output(UpperCamelCase__: List[Any] , UpperCamelCase__: Dict , UpperCamelCase__: List[Any] ): lowerCamelCase__ : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Union[str, Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowerCamelCase__ : List[Any] = outputs.hidden_states lowerCamelCase__ : Tuple = 26 self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) lowerCamelCase__ , lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[Any] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : Optional[Any] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def lowerCamelCase_ ( self: List[str] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Dict = MobileNetVaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ () -> Union[str, Any]: lowerCamelCase__ : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Optional[int] ): return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : List[Any] = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""" ).to(UpperCamelCase__ ) lowerCamelCase__ : Dict = self.default_image_processor lowerCamelCase__ : int = prepare_img() lowerCamelCase__ : List[Any] = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase__ : str = model(**UpperCamelCase__ ) # verify the logits lowerCamelCase__ : List[str] = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowerCamelCase__ : List[str] = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
41
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :List[Any] = ["sentencepiece"] def __init__( self , *__A , **__A ) -> List[str]: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :Any = ["sentencepiece"] def __init__( self , *__A , **__A ) -> int: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :str = ["sentencepiece"] def __init__( self , *__A , **__A ) -> Optional[int]: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :int = ["sentencepiece"] def __init__( self , *__A , **__A ) -> Tuple: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :Tuple = ["sentencepiece"] def __init__( self , *__A , **__A ) -> List[str]: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :List[Any] = ["sentencepiece"] def __init__( self , *__A , **__A ) -> List[Any]: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :Any = ["sentencepiece"] def __init__( self , *__A , **__A ) -> List[str]: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :Optional[int] = ["sentencepiece"] def __init__( self , *__A , **__A ) -> List[Any]: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :List[Any] = ["sentencepiece"] def __init__( self , *__A , **__A ) -> Dict: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :Tuple = ["sentencepiece"] def __init__( self , *__A , **__A ) -> int: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :Union[str, Any] = ["sentencepiece"] def __init__( self , *__A , **__A ) -> Dict: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :str = ["sentencepiece"] def __init__( self , *__A , **__A ) -> Any: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :Optional[int] = ["sentencepiece"] def __init__( self , *__A , **__A ) -> Tuple: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :Dict = ["sentencepiece"] def __init__( self , *__A , **__A ) -> Optional[int]: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :Tuple = ["sentencepiece"] def __init__( self , *__A , **__A ) -> Union[str, Any]: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :Optional[Any] = ["sentencepiece"] def __init__( self , *__A , **__A ) -> Dict: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :Union[str, Any] = ["sentencepiece"] def __init__( self , *__A , **__A ) -> int: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :Any = ["sentencepiece"] def __init__( self , *__A , **__A ) -> str: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :Any = ["sentencepiece"] def __init__( self , *__A , **__A ) -> Any: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :Tuple = ["sentencepiece"] def __init__( self , *__A , **__A ) -> Any: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :int = ["sentencepiece"] def __init__( self , *__A , **__A ) -> List[str]: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :str = ["sentencepiece"] def __init__( self , *__A , **__A ) -> Tuple: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :str = ["sentencepiece"] def __init__( self , *__A , **__A ) -> List[str]: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :Dict = ["sentencepiece"] def __init__( self , *__A , **__A ) -> Optional[Any]: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :Union[str, Any] = ["sentencepiece"] def __init__( self , *__A , **__A ) -> List[Any]: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :Any = ["sentencepiece"] def __init__( self , *__A , **__A ) -> Optional[int]: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :int = ["sentencepiece"] def __init__( self , *__A , **__A ) -> int: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :int = ["sentencepiece"] def __init__( self , *__A , **__A ) -> List[Any]: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :Any = ["sentencepiece"] def __init__( self , *__A , **__A ) -> Any: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :Tuple = ["sentencepiece"] def __init__( self , *__A , **__A ) -> Optional[int]: requires_backends(self , ["""sentencepiece"""] ) class _SCREAMING_SNAKE_CASE ( metaclass=a_ ): UpperCAmelCase_ :str = ["sentencepiece"] def __init__( self , *__A , **__A ) -> Any: requires_backends(self , ["""sentencepiece"""] )
357
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset __UpperCAmelCase = pd.read_csv( 'https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/' 'position_salaries.csv' ) __UpperCAmelCase = dataset.iloc[:, 1:2].values __UpperCAmelCase = dataset.iloc[:, 2].values __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = train_test_split(X, y, test_size=0.2, random_state=0) __UpperCAmelCase = PolynomialFeatures(degree=4) __UpperCAmelCase = poly_reg.fit_transform(X) __UpperCAmelCase = LinearRegression() pol_reg.fit(X_poly, y) def _snake_case ( ) -> str: '''simple docstring''' plt.scatter(lowercase__ , lowercase__ , color="""red""" ) plt.plot(lowercase__ , pol_reg.predict(poly_reg.fit_transform(lowercase__ ) ) , color="""blue""" ) plt.title("""Truth or Bluff (Linear Regression)""" ) plt.xlabel("""Position level""" ) plt.ylabel("""Salary""" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
1
0
"""simple docstring""" import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCamelCase : Optional[int] = logging.get_logger(__name__) class __lowerCAmelCase ( enum.Enum ): lowercase = 0 lowercase = 1 @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "generated" def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = {} if truncation is not None: __UpperCamelCase = truncation __UpperCamelCase = generate_kwargs __UpperCamelCase = {} if return_tensors is not None and return_type is None: __UpperCamelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: __UpperCamelCase = return_type if clean_up_tokenization_spaces is not None: __UpperCamelCase = clean_up_tokenization_spaces if stop_sequence is not None: __UpperCamelCase = self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) if len(__UpperCAmelCase ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) __UpperCamelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return True def UpperCAmelCase ( self , *__UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.model.config.prefix if self.model.config.prefix is not None else '' if isinstance(args[0] , __UpperCAmelCase ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) __UpperCamelCase = ([prefix + arg for arg in args[0]],) __UpperCamelCase = True elif isinstance(args[0] , __UpperCAmelCase ): __UpperCamelCase = (prefix + args[0],) __UpperCamelCase = False else: raise ValueError( F' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`' ) __UpperCamelCase = self.tokenizer(*__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = super().__call__(*__UpperCAmelCase , **__UpperCAmelCase ) if ( isinstance(args[0] , __UpperCAmelCase ) and all(isinstance(__UpperCAmelCase , __UpperCAmelCase ) for el in args[0] ) and all(len(__UpperCAmelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=TruncationStrategy.DO_NOT_TRUNCATE , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._parse_and_tokenize(__UpperCAmelCase , truncation=__UpperCAmelCase , **__UpperCAmelCase ) return inputs def UpperCAmelCase ( self , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' if self.framework == "pt": __UpperCamelCase , __UpperCamelCase = model_inputs['input_ids'].shape elif self.framework == "tf": __UpperCamelCase , __UpperCamelCase = tf.shape(model_inputs['input_ids'] ).numpy() __UpperCamelCase = generate_kwargs.get('min_length' , self.model.config.min_length ) __UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) self.check_inputs(__UpperCAmelCase , generate_kwargs['min_length'] , generate_kwargs['max_length'] ) __UpperCamelCase = self.model.generate(**__UpperCAmelCase , **__UpperCAmelCase ) __UpperCamelCase = output_ids.shape[0] if self.framework == "pt": __UpperCamelCase = output_ids.reshape(__UpperCAmelCase , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": __UpperCamelCase = tf.reshape(__UpperCAmelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=ReturnType.TEXT , __UpperCAmelCase=False ): '''simple docstring''' __UpperCamelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: __UpperCamelCase = {F'{self.return_name}_token_ids': output_ids} elif return_type == ReturnType.TEXT: __UpperCamelCase = { F'{self.return_name}_text': self.tokenizer.decode( __UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase , ) } records.append(__UpperCAmelCase ) return records @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "summary" def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return super().__call__(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if max_length < min_length: logger.warning(F'Your min_length={min_length} must be inferior than your max_length={max_length}.' ) if input_length < max_length: logger.warning( F'Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ' 'a summarization task, where outputs shorter than the input are typically wanted, you might ' F'consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})' ) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "translation" def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( F'Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ' 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def UpperCAmelCase ( self , *__UpperCAmelCase , __UpperCAmelCase=TruncationStrategy.DO_NOT_TRUNCATE , __UpperCAmelCase=None , __UpperCAmelCase=None ): '''simple docstring''' if getattr(self.tokenizer , '_build_translation_inputs' , __UpperCAmelCase ): return self.tokenizer._build_translation_inputs( *__UpperCAmelCase , return_tensors=self.framework , truncation=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase ) else: return super()._parse_and_tokenize(*__UpperCAmelCase , truncation=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = super()._sanitize_parameters(**__UpperCAmelCase ) if src_lang is not None: __UpperCamelCase = src_lang if tgt_lang is not None: __UpperCamelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. __UpperCamelCase = kwargs.get('task' , self.task ) __UpperCamelCase = task.split('_' ) if task and len(__UpperCAmelCase ) == 4: # translation, XX, to YY __UpperCamelCase = items[1] __UpperCamelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return super().__call__(*__UpperCAmelCase , **__UpperCAmelCase )
316
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 13 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 2 __UpperCamelCase = 99 __UpperCamelCase = 0 __UpperCamelCase = 32 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 512 __UpperCamelCase = 16 __UpperCamelCase = 2 __UpperCamelCase = 0.0_2 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = 'last' __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = 0 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase = None if self.use_input_lengths: __UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertWithLMHeadModel(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForQuestionAnsweringSimple(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForSequenceClassification(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = TFFlaubertForTokenClassification(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = TFFlaubertForMultipleChoice(config=__UpperCAmelCase ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFFlaubertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase = model(__UpperCAmelCase )[0] __UpperCamelCase = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __UpperCAmelCase ) # compare the actual values for a slice. __UpperCamelCase = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
316
1
from math import sqrt def lowerCamelCase_ ( UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = 0 for i in range(1, int(sqrt(UpperCamelCase__ ) + 1 ) ): if n % i == 0 and i != sqrt(UpperCamelCase__ ): total += i + n // i elif i == sqrt(UpperCamelCase__ ): total += i return total - n def lowerCamelCase_ ( UpperCamelCase__ : int = 1_0000 ): '''simple docstring''' UpperCamelCase__ = sum( i for i in range(1, UpperCamelCase__ ) if sum_of_divisors(sum_of_divisors(UpperCamelCase__ ) ) == i and sum_of_divisors(UpperCamelCase__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
369
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowercase = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Dict=None ): '''simple docstring''' require_version(deps[pkg], UpperCamelCase__ )
35
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A__ : Optional[Any] = logging.get_logger(__name__) A__ : Union[str, Any] = torch.device('cpu') def a ( ): '''simple docstring''' lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im def a ( lowerCamelCase_ ): '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = dct.pop(lowerCamelCase_ ) lowercase__ = val def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] for k in state_dict.keys(): lowercase__ = k if ".pwconv" in k: lowercase__ = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: lowercase__ = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: lowercase__ = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: lowercase__ = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: lowercase__ = k_new.split('''.''' ) if ls[2].isdigit(): lowercase__ = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: lowercase__ = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size lowercase__ = 1000 lowercase__ = '''huggingface/label-files''' lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": lowercase__ = [3, 3, 6, 4] lowercase__ = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": lowercase__ = [3, 3, 9, 6] lowercase__ = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": lowercase__ = [4, 3, 10, 5] lowercase__ = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": lowercase__ = [4, 4, 12, 6] lowercase__ = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): lowercase__ = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='''cpu''' , check_hash=lowerCamelCase_ ) else: lowercase__ = torch.load(lowerCamelCase_ , map_location='''cpu''' ) lowercase__ = checkpoint lowercase__ = create_rename_keys(lowerCamelCase_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # load HuggingFace model lowercase__ = SwiftFormerForImageClassification(lowerCamelCase_ ).eval() hf_model.load_state_dict(lowerCamelCase_ ) # prepare test inputs lowercase__ = prepare_img() lowercase__ = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) lowercase__ = processor(images=lowerCamelCase_ , return_tensors='''pt''' ) # compare outputs from both models lowercase__ = get_expected_output(lowerCamelCase_ ) lowercase__ = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , lowerCamelCase_ , atol=1e-3 ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": A__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') A__ : Dict = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
207
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = """pixel_values""" lowercase__ = False lowercase__ = TimmBackboneConfig def __init__( self : Tuple, lowerCamelCase : List[str], **lowerCamelCase : List[str] ): '''simple docstring''' requires_backends(self, '''timm''' ) super().__init__(lowerCamelCase ) lowercase__ = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(F"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCamelCase, '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) lowercase__ = getattr(lowerCamelCase, '''use_pretrained_backbone''', lowerCamelCase ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. lowercase__ = config.out_indices if getattr(lowerCamelCase, '''out_indices''', lowerCamelCase ) is not None else (-1,) lowercase__ = timm.create_model( config.backbone, pretrained=lowerCamelCase, features_only=config.features_only, in_chans=config.num_channels, out_indices=lowerCamelCase, **lowerCamelCase, ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowercase__ = self._backbone.return_layers lowercase__ = {layer['''module''']: str(lowerCamelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCamelCase ) @classmethod def lowercase__ ( cls : List[str], lowerCamelCase : List[str], *lowerCamelCase : Optional[int], **lowerCamelCase : List[Any] ): '''simple docstring''' requires_backends(cls, ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig lowercase__ = kwargs.pop('''config''', TimmBackboneConfig() ) lowercase__ = kwargs.pop('''use_timm_backbone''', lowerCamelCase ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) lowercase__ = kwargs.pop('''num_channels''', config.num_channels ) lowercase__ = kwargs.pop('''features_only''', config.features_only ) lowercase__ = kwargs.pop('''use_pretrained_backbone''', config.use_pretrained_backbone ) lowercase__ = kwargs.pop('''out_indices''', config.out_indices ) lowercase__ = TimmBackboneConfig( backbone=lowerCamelCase, num_channels=lowerCamelCase, features_only=lowerCamelCase, use_pretrained_backbone=lowerCamelCase, out_indices=lowerCamelCase, ) return super()._from_config(lowerCamelCase, **lowerCamelCase ) def lowercase__ ( self : List[Any], lowerCamelCase : Optional[Any] ): '''simple docstring''' pass def lowercase__ ( self : int, lowerCamelCase : int, lowerCamelCase : Optional[int]=None, lowerCamelCase : List[Any]=None, lowerCamelCase : int=None, **lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowercase__ = self._all_layers lowercase__ = self._backbone(lowerCamelCase, **lowerCamelCase ) lowercase__ = self._return_layers lowercase__ = tuple(hidden_states[i] for i in self.out_indices ) else: lowercase__ = self._backbone(lowerCamelCase, **lowerCamelCase ) lowercase__ = None lowercase__ = tuple(lowerCamelCase ) lowercase__ = tuple(lowerCamelCase ) if hidden_states is not None else None if not return_dict: lowercase__ = (feature_maps,) if output_hidden_states: lowercase__ = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCamelCase, hidden_states=lowerCamelCase, attentions=lowerCamelCase )
207
1
"""simple docstring""" import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging A__ : Union[str, Any] = '\\n\n' A__ : Dict = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' A__ : Optional[int] = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCAmelCase__ ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "input_texts": datasets.Value("string" ), } ) , reference_urls=["https://huggingface.co/docs/transformers/perplexity"] , ) def UpperCAmelCase__ ( self : List[Any] , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : int = 16 , snake_case__ : bool = True , snake_case__ : Dict=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": lowerCamelCase_ : List[str] ="cuda" else: lowerCamelCase_ : Union[str, Any] ="cuda" if torch.cuda.is_available() else "cpu" lowerCamelCase_ : List[str] =AutoModelForCausalLM.from_pretrained(snake_case__ ) lowerCamelCase_ : Optional[int] =model.to(snake_case__ ) lowerCamelCase_ : int =AutoTokenizer.from_pretrained(snake_case__ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: lowerCamelCase_ : Optional[int] =list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(snake_case__ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" lowerCamelCase_ : int =model.config.max_length - 1 else: lowerCamelCase_ : List[str] =model.config.max_length lowerCamelCase_ : Dict =tokenizer( snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , return_tensors="pt" , return_attention_mask=snake_case__ , ).to(snake_case__ ) lowerCamelCase_ : List[str] =encodings["input_ids"] lowerCamelCase_ : Union[str, Any] =encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." lowerCamelCase_ : int =[] lowerCamelCase_ : Optional[int] =CrossEntropyLoss(reduction="none" ) for start_index in logging.tqdm(range(0 , len(snake_case__ ) , snake_case__ ) ): lowerCamelCase_ : int =min(start_index + batch_size , len(snake_case__ ) ) lowerCamelCase_ : Any =encoded_texts[start_index:end_index] lowerCamelCase_ : Tuple =attn_masks[start_index:end_index] if add_start_token: lowerCamelCase_ : List[Any] =torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(snake_case__ ) lowerCamelCase_ : Any =torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) lowerCamelCase_ : Optional[int] =torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(snake_case__ ), attn_mask] , dim=1 ) lowerCamelCase_ : Tuple =encoded_batch with torch.no_grad(): lowerCamelCase_ : Any =model(snake_case__ , attention_mask=snake_case__ ).logits lowerCamelCase_ : List[Any] =out_logits[..., :-1, :].contiguous() lowerCamelCase_ : List[str] =labels[..., 1:].contiguous() lowerCamelCase_ : Optional[Any] =attn_mask[..., 1:].contiguous() lowerCamelCase_ : int =torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , snake_case__ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(snake_case__ )}
209
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast A__ : List[str] = datasets.utils.logging.get_logger(__name__) @dataclass class lowercase__ ( datasets.BuilderConfig ): _UpperCAmelCase :int = 10000 _UpperCAmelCase :Optional[List[str]] = None _UpperCAmelCase :Optional[datasets.Features] = None class lowercase__ ( datasets.ArrowBasedBuilder ): _UpperCAmelCase :Optional[int] = ParquetConfig def UpperCAmelCase__ ( self : Optional[int] ): return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase__ ( self : List[Any] , snake_case__ : List[Any] ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) lowerCamelCase_ : str =dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case__ , (str, list, tuple) ): lowerCamelCase_ : Dict =data_files if isinstance(snake_case__ , snake_case__ ): lowerCamelCase_ : List[Any] =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCamelCase_ : Any =[dl_manager.iter_files(snake_case__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] lowerCamelCase_ : Optional[int] =[] for split_name, files in data_files.items(): if isinstance(snake_case__ , snake_case__ ): lowerCamelCase_ : Optional[int] =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCamelCase_ : int =[dl_manager.iter_files(snake_case__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(snake_case__ ): with open(snake_case__ , "rb" ) as f: lowerCamelCase_ : List[Any] =datasets.Features.from_arrow_schema(pq.read_schema(snake_case__ ) ) break splits.append(datasets.SplitGenerator(name=snake_case__ , gen_kwargs={"files": files} ) ) return splits def UpperCAmelCase__ ( self : int , snake_case__ : pa.Table ): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCamelCase_ : List[str] =table_cast(snake_case__ , self.info.features.arrow_schema ) return pa_table def UpperCAmelCase__ ( self : int , snake_case__ : Optional[Any] ): lowerCamelCase_ : Tuple =self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case__ ) ): with open(snake_case__ , "rb" ) as f: lowerCamelCase_ : List[str] =pq.ParquetFile(snake_case__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): lowerCamelCase_ : Union[str, Any] =pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"""{file_idx}_{batch_idx}""", self._cast_table(snake_case__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(snake_case__ )}: {e}""" ) raise
209
1
def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ): """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): a :Tuple = F'''Expected string as input, found {type(UpperCAmelCase_ )}''' raise ValueError(UpperCAmelCase_ ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): a :List[Any] = F'''Expected boolean as use_pascal parameter, found {type(UpperCAmelCase_ )}''' raise ValueError(UpperCAmelCase_ ) a :int = input_str.split('''_''' ) a :Any = 0 if use_pascal else 1 a :int = words[start_index:] a :Tuple = [word[0].upper() + word[1:] for word in words_to_capitalize] a :Optional[int] = '''''' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
94
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'ClapFeatureExtractor' SCREAMING_SNAKE_CASE__ = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self , _lowerCamelCase , _lowerCamelCase ): super().__init__(_lowerCamelCase , _lowerCamelCase ) def __call__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ): a :Dict = kwargs.pop('''sampling_rate''' , _lowerCamelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: a :Optional[int] = self.tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) if audios is not None: a :Tuple = self.feature_extractor( _lowerCamelCase , sampling_rate=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) if text is not None and audios is not None: a :Union[str, Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCamelCase ) , tensor_type=_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @property def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.tokenizer.model_input_names a :str = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
94
1
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowerCAmelCase_( lowercase_ : Tuple ) -> Optional[Any]: return EnvironmentCommand() def lowerCAmelCase_( lowercase_ : str ) -> str: return EnvironmentCommand(args.accelerate_config_file ) class lowerCamelCase_( A__ ): '''simple docstring''' @staticmethod def snake_case__ ( lowerCamelCase__ ): _lowerCamelCase = parser.add_parser('''env''' ) download_parser.set_defaults(func=lowerCamelCase__ ) download_parser.add_argument( '''--accelerate-config_file''' , default=lowerCamelCase__ , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self , lowerCamelCase__ , *lowerCamelCase__ ): _lowerCamelCase = accelerate_config_file def snake_case__ ( self ): _lowerCamelCase = '''not installed''' if is_safetensors_available(): import safetensors _lowerCamelCase = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors _lowerCamelCase = F"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" _lowerCamelCase = '''not installed''' _lowerCamelCase = _lowerCamelCase = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file _lowerCamelCase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(lowerCamelCase__ ): _lowerCamelCase = load_config_from_file(self._accelerate_config_file ).to_dict() _lowerCamelCase = ( '''\n'''.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else F"""\t{accelerate_config}""" ) _lowerCamelCase = '''not installed''' _lowerCamelCase = '''NA''' if is_torch_available(): import torch _lowerCamelCase = torch.__version__ _lowerCamelCase = torch.cuda.is_available() _lowerCamelCase = '''not installed''' _lowerCamelCase = '''NA''' if is_tf_available(): import tensorflow as tf _lowerCamelCase = tf.__version__ try: # deprecated in v2.1 _lowerCamelCase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool _lowerCamelCase = bool(tf.config.list_physical_devices('''GPU''' ) ) _lowerCamelCase = '''not installed''' _lowerCamelCase = '''not installed''' _lowerCamelCase = '''not installed''' _lowerCamelCase = '''NA''' if is_flax_available(): import flax import jax import jaxlib _lowerCamelCase = flax.__version__ _lowerCamelCase = jax.__version__ _lowerCamelCase = jaxlib.__version__ _lowerCamelCase = jax.lib.xla_bridge.get_backend().platform _lowerCamelCase = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F"""{safetensors_version}""", '''Accelerate version''': F"""{accelerate_version}""", '''Accelerate config''': F"""{accelerate_config_str}""", '''PyTorch version (GPU?)''': F"""{pt_version} ({pt_cuda_available})""", '''Tensorflow version (GPU?)''': F"""{tf_version} ({tf_cuda_available})""", '''Flax version (CPU?/GPU?/TPU?)''': F"""{flax_version} ({jax_backend})""", '''Jax version''': F"""{jax_version}""", '''JaxLib version''': F"""{jaxlib_version}""", '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(lowerCamelCase__ ) ) return info @staticmethod def snake_case__ ( lowerCamelCase__ ): return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
370
"""simple docstring""" import os import sys __SCREAMING_SNAKE_CASE : Dict = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __SCREAMING_SNAKE_CASE : List[Any] = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def lowerCAmelCase_( *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> Optional[Any]: return AutoConfig.from_pretrained(*lowercase_ , **lowercase_ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def lowerCAmelCase_( *lowercase_ : List[Any] , **lowercase_ : List[Any] ) -> Tuple: return AutoTokenizer.from_pretrained(*lowercase_ , **lowercase_ ) @add_start_docstrings(AutoModel.__doc__ ) def lowerCAmelCase_( *lowercase_ : Optional[Any] , **lowercase_ : Optional[Any] ) -> int: return AutoModel.from_pretrained(*lowercase_ , **lowercase_ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def lowerCAmelCase_( *lowercase_ : Dict , **lowercase_ : List[Any] ) -> int: return AutoModelForCausalLM.from_pretrained(*lowercase_ , **lowercase_ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def lowerCAmelCase_( *lowercase_ : str , **lowercase_ : List[Any] ) -> Any: return AutoModelForMaskedLM.from_pretrained(*lowercase_ , **lowercase_ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def lowerCAmelCase_( *lowercase_ : Tuple , **lowercase_ : List[Any] ) -> Dict: return AutoModelForSequenceClassification.from_pretrained(*lowercase_ , **lowercase_ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def lowerCAmelCase_( *lowercase_ : List[str] , **lowercase_ : List[str] ) -> str: return AutoModelForQuestionAnswering.from_pretrained(*lowercase_ , **lowercase_ )
73
0
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Optional[Any] = 'char' UpperCAmelCase__ : List[str] = 'bpe' UpperCAmelCase__ : int = 'wp' UpperCAmelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : List[Any] = ['image_processor', 'char_tokenizer'] UpperCAmelCase__ : Tuple = 'ViTImageProcessor' UpperCAmelCase__ : Optional[int] = 'MgpstrTokenizer' def __init__( self: Union[str, Any] , UpperCamelCase_: str=None , UpperCamelCase_: Optional[int]=None , **UpperCamelCase_: Dict ): __lowerCamelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , UpperCamelCase_ , ) __lowerCamelCase = kwargs.pop("""feature_extractor""" ) __lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) __lowerCamelCase = tokenizer __lowerCamelCase = AutoTokenizer.from_pretrained("""gpt2""" ) __lowerCamelCase = AutoTokenizer.from_pretrained("""bert-base-uncased""" ) super().__init__(UpperCamelCase_ , UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: List[str]=None , UpperCamelCase_: Any=None , **UpperCamelCase_: Any ): if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) if text is not None: __lowerCamelCase = self.char_tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) if text is None: return inputs elif images is None: return encodings else: __lowerCamelCase = encodings["""input_ids"""] return inputs def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: int ): __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = sequences __lowerCamelCase = char_preds.size(0 ) __lowerCamelCase, __lowerCamelCase = self._decode_helper(UpperCamelCase_ , """char""" ) __lowerCamelCase, __lowerCamelCase = self._decode_helper(UpperCamelCase_ , """bpe""" ) __lowerCamelCase, __lowerCamelCase = self._decode_helper(UpperCamelCase_ , """wp""" ) __lowerCamelCase = [] __lowerCamelCase = [] for i in range(UpperCamelCase_ ): __lowerCamelCase = [char_scores[i], bpe_scores[i], wp_scores[i]] __lowerCamelCase = [char_strs[i], bpe_strs[i], wp_strs[i]] __lowerCamelCase = scores.index(max(UpperCamelCase_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) __lowerCamelCase = {} __lowerCamelCase = final_strs __lowerCamelCase = final_scores __lowerCamelCase = char_strs __lowerCamelCase = bpe_strs __lowerCamelCase = wp_strs return out def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: str , UpperCamelCase_: Optional[Any] ): if format == DecodeType.CHARACTER: __lowerCamelCase = self.char_decode __lowerCamelCase = 1 __lowerCamelCase = """[s]""" elif format == DecodeType.BPE: __lowerCamelCase = self.bpe_decode __lowerCamelCase = 2 __lowerCamelCase = """#""" elif format == DecodeType.WORDPIECE: __lowerCamelCase = self.wp_decode __lowerCamelCase = 1_02 __lowerCamelCase = """[SEP]""" else: raise ValueError(F'Format {format} is not supported.' ) __lowerCamelCase, __lowerCamelCase = [], [] __lowerCamelCase = pred_logits.size(0 ) __lowerCamelCase = pred_logits.size(1 ) __lowerCamelCase, __lowerCamelCase = pred_logits.topk(1 , dim=-1 , largest=UpperCamelCase_ , sorted=UpperCamelCase_ ) __lowerCamelCase = preds_index.view(-1 , UpperCamelCase_ )[:, 1:] __lowerCamelCase = decoder(UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase = torch.nn.functional.softmax(UpperCamelCase_ , dim=2 ).max(dim=2 ) __lowerCamelCase = preds_max_prob[:, 1:] for index in range(UpperCamelCase_ ): __lowerCamelCase = preds_str[index].find(UpperCamelCase_ ) __lowerCamelCase = preds_str[index][:pred_eos] __lowerCamelCase = preds_index[index].cpu().tolist() __lowerCamelCase = pred_index.index(UpperCamelCase_ ) if eos_token in pred_index else -1 __lowerCamelCase = preds_max_prob[index][: pred_eos_index + 1] __lowerCamelCase = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(UpperCamelCase_ ) conf_scores.append(UpperCamelCase_ ) return dec_strs, conf_scores def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = [seq.replace(""" """ , """""" ) for seq in self.char_tokenizer.batch_decode(UpperCamelCase_ )] return decode_strs def lowerCAmelCase__ ( self: int , UpperCamelCase_: Tuple ): return self.bpe_tokenizer.batch_decode(UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: Dict ): __lowerCamelCase = [seq.replace(""" """ , """""" ) for seq in self.wp_tokenizer.batch_decode(UpperCamelCase_ )] return decode_strs
12
'''simple docstring''' import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=[] ): """simple docstring""" _lowerCAmelCase = size[0] - overlap_pixels * 2 _lowerCAmelCase = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels _lowerCAmelCase = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 _lowerCAmelCase = np.pad(lowerCAmelCase , mode="""linear_ramp""" , pad_width=lowerCAmelCase , end_values=0 ) if "l" in remove_borders: _lowerCAmelCase = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: _lowerCAmelCase = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: _lowerCAmelCase = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: _lowerCAmelCase = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" return max(lowerCAmelCase , min(lowerCAmelCase , lowerCAmelCase ) ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = list(lowerCAmelCase ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap _lowerCAmelCase = clamp_rect(lowerCAmelCase , [0, 0] , [image_size[0], image_size[1]] ) return rect def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = Image.new("""RGB""" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(lowerCAmelCase , (original_slice, 0) ) return result def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) _lowerCAmelCase = tile.crop(lowerCAmelCase ) return tile def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = n % d return n - divisor class UpperCAmelCase ( snake_case_ ): def __init__( self : List[Any] , __snake_case : AutoencoderKL , __snake_case : CLIPTextModel , __snake_case : CLIPTokenizer , __snake_case : UNetaDConditionModel , __snake_case : DDPMScheduler , __snake_case : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __snake_case : int = 3_50 , ) -> int: super().__init__( vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , unet=__snake_case , low_res_scheduler=__snake_case , scheduler=__snake_case , max_noise_level=__snake_case , ) def lowercase__ ( self : List[Any] , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Any , **__snake_case : str ) -> int: torch.manual_seed(0 ) _lowerCAmelCase = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) _lowerCAmelCase = add_overlap_rect(__snake_case , __snake_case , image.size ) _lowerCAmelCase = image.crop(__snake_case ) _lowerCAmelCase = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] _lowerCAmelCase = translated_slice_x - (original_image_slice / 2) _lowerCAmelCase = max(0 , __snake_case ) _lowerCAmelCase = squeeze_tile(__snake_case , __snake_case , __snake_case , __snake_case ) _lowerCAmelCase = to_input.size _lowerCAmelCase = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) _lowerCAmelCase = super(__snake_case , self ).__call__(image=__snake_case , **__snake_case ).images[0] _lowerCAmelCase = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) _lowerCAmelCase = unsqueeze_tile(__snake_case , __snake_case ) _lowerCAmelCase = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) _lowerCAmelCase = [] if x == 0: remove_borders.append("""l""" ) elif crop_rect[2] == image.size[0]: remove_borders.append("""r""" ) if y == 0: remove_borders.append("""t""" ) elif crop_rect[3] == image.size[1]: remove_borders.append("""b""" ) _lowerCAmelCase = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__snake_case ) , mode="""L""" , ) final_image.paste( __snake_case , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __snake_case ) @torch.no_grad() def __call__( self : Union[str, Any] , __snake_case : Union[str, List[str]] , __snake_case : Union[PIL.Image.Image, List[PIL.Image.Image]] , __snake_case : int = 75 , __snake_case : float = 9.0 , __snake_case : int = 50 , __snake_case : Optional[Union[str, List[str]]] = None , __snake_case : Optional[int] = 1 , __snake_case : float = 0.0 , __snake_case : Optional[torch.Generator] = None , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __snake_case : int = 1 , __snake_case : int = 1_28 , __snake_case : int = 32 , __snake_case : int = 32 , ) -> str: _lowerCAmelCase = Image.new("""RGB""" , (image.size[0] * 4, image.size[1] * 4) ) _lowerCAmelCase = math.ceil(image.size[0] / tile_size ) _lowerCAmelCase = math.ceil(image.size[1] / tile_size ) _lowerCAmelCase = tcx * tcy _lowerCAmelCase = 0 for y in range(__snake_case ): for x in range(__snake_case ): self._process_tile( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , prompt=__snake_case , num_inference_steps=__snake_case , guidance_scale=__snake_case , noise_level=__snake_case , negative_prompt=__snake_case , num_images_per_prompt=__snake_case , eta=__snake_case , generator=__snake_case , latents=__snake_case , ) current_count += 1 if callback is not None: callback({"""progress""": current_count / total_tile_count, """image""": final_image} ) return final_image def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = """stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase = StableDiffusionTiledUpscalePipeline.from_pretrained(lowerCAmelCase , revision="""fp16""" , torch_dtype=torch.floataa ) _lowerCAmelCase = pipe.to("""cuda""" ) _lowerCAmelCase = Image.open("""../../docs/source/imgs/diffusers_library.jpg""" ) def callback(lowerCAmelCase ): print(f"progress: {obj['progress']:.4f}" ) obj["image"].save("""diffusers_library_progress.jpg""" ) _lowerCAmelCase = pipe(image=lowerCAmelCase , prompt="""Black font, white background, vector""" , noise_level=40 , callback=lowerCAmelCase ) final_image.save("""diffusers_library.jpg""" ) if __name__ == "__main__": main()
70
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('check_bouncy() accepts only integer arguments' ) lowerCAmelCase = str(_UpperCAmelCase ) lowerCAmelCase = ''.join(sorted(_UpperCAmelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : float = 99 ): if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) lowerCAmelCase = 0 lowerCAmelCase = 1 while True: if check_bouncy(_UpperCAmelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
309
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __UpperCamelCase : str = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __UpperCamelCase : Optional[Any] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __UpperCamelCase : Dict = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] ) return (item, float(_UpperCAmelCase )) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = random.randint(0 , len(_UpperCAmelCase ) - 1 ) lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] ): lowerCAmelCase = list(_UpperCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowerCAmelCase = random.choice(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : tuple[str, float] , _UpperCAmelCase : list[tuple[str, float]] , _UpperCAmelCase : list[str] , ): lowerCAmelCase = [] # Generate more children proportionally to the fitness score. lowerCAmelCase = int(parent_a[1] * 100 ) + 1 lowerCAmelCase = 10 if child_n >= 10 else child_n for _ in range(_UpperCAmelCase ): lowerCAmelCase = population_score[random.randint(0 , _UpperCAmelCase )][0] lowerCAmelCase ,lowerCAmelCase = crossover(parent_a[0] , _UpperCAmelCase ) # Append new string to the population list. pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) return pop def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] , _UpperCAmelCase : bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: lowerCAmelCase = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_UpperCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCAmelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCAmelCase = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_UpperCAmelCase ) # Generate random starting population. lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): population.append(''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCAmelCase ,lowerCAmelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCAmelCase = [evaluate(_UpperCAmelCase , _UpperCAmelCase ) for item in population] # Check if there is a matching evolution. lowerCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCAmelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCAmelCase ) # Normalize population score to be between 0 and 1. lowerCAmelCase = [ (item, score / len(_UpperCAmelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCAmelCase ): population.extend(select(population_score[int(_UpperCAmelCase )] , _UpperCAmelCase , _UpperCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCAmelCase ) > N_POPULATION: break if __name__ == "__main__": __UpperCamelCase : Tuple = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __UpperCamelCase : str = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase : Dict = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
309
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
74
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE_: Optional[int] =logging.getLogger() SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __A ( UpperCamelCase__ ): def _lowercase (self : Optional[Any] , __a : str ): os.makedirs(__a , exist_ok=__a ) UpperCAmelCase_ = {"source": "What is love ?", "target": "life"} UpperCAmelCase_ = {"train": 12, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCAmelCase_ = "\n".join([contents[field]] * n_lines[split] ) with open(os.path.join(__a , f"""{split}.{field}""" ) , "w" ) as f: f.write(__a ) def _lowercase (self : Optional[int] , __a : int , __a : str = "pytorch" ): UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = os.path.join(__a , "output" ) UpperCAmelCase_ = os.path.join(__a , "data" ) self._create_dummy_data(data_dir=__a ) UpperCAmelCase_ = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) UpperCAmelCase_ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__a , env=self.get_env() ) UpperCAmelCase_ = os.path.join(__a , "metrics.json" ) with open(__a ) as f: UpperCAmelCase_ = json.load(__a ) return result @require_torch_gpu def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def _lowercase (self : Dict ): UpperCAmelCase_ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def _lowercase (self : Any ): UpperCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
1
0
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a__ : Optional[int] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def _lowercase ( __A ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: __UpperCamelCase = k.replace(__A ,__A ) return k def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = DEFAULTS.copy() cfg_kwargs.update(__A ) __UpperCamelCase = PegasusConfig(**__A ) __UpperCamelCase = PegasusForConditionalGeneration(__A ) __UpperCamelCase = torch_model.model.state_dict() __UpperCamelCase = {} for k, v in tf_weights.items(): __UpperCamelCase = rename_state_dict_key(__A ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: __UpperCamelCase = v.T __UpperCamelCase = torch.tensor(__A ,dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected __UpperCamelCase = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) __UpperCamelCase = mapping["""shared.weight"""] __UpperCamelCase = mapping["""shared.weight"""] __UpperCamelCase = {k: torch.zeros_like(__A ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**__A ) __UpperCamelCase , __UpperCamelCase = torch_model.model.load_state_dict(__A ,strict=__A ) __UpperCamelCase = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def _lowercase ( __A="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' __UpperCamelCase = tf.train.list_variables(__A ) __UpperCamelCase = {} __UpperCamelCase = ["""Adafactor""", """global_step"""] for name, shape in tqdm(__A ,desc="""converting tf checkpoint to dict""" ): __UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __UpperCamelCase = tf.train.load_variable(__A ,__A ) __UpperCamelCase = array return tf_weights def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = Path(__A ).parent.name __UpperCamelCase = task_specific_params[f"summarization_{dataset}"]["""max_position_embeddings"""] __UpperCamelCase = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" ,model_max_length=__A ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__A ) # convert model __UpperCamelCase = get_tf_weights_as_numpy(__A ) __UpperCamelCase = task_specific_params[f"summarization_{dataset}"] if dataset == "large": __UpperCamelCase = task_specific_params __UpperCamelCase = convert_pegasus(__A ,__A ) torch_model.save_pretrained(__A ) __UpperCamelCase = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(__A ,Path(__A ) / """pytorch_model.bin""" ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') a__ : Tuple = parser.parse_args() if args.save_dir is None: a__ : Optional[int] = Path(args.tf_ckpt_path).parent.name a__ : Union[str, Any] = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
243
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = None # Automatically constructed __SCREAMING_SNAKE_CASE = "dict" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = field(default='''Translation''' , init=UpperCAmelCase_ , repr=UpperCAmelCase_) def __call__( self ) -> Optional[Any]: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __lowerCamelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None # Automatically constructed __SCREAMING_SNAKE_CASE = "dict" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = field(default='''TranslationVariableLanguages''' , init=UpperCAmelCase_ , repr=UpperCAmelCase_) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = sorted(set(self.languages ) ) if self.languages else None __UpperCamelCase = len(self.languages ) if self.languages else None def __call__( self ) -> Any: return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def __lowerCamelCase ( self , lowercase ) -> Any: __UpperCamelCase = set(self.languages ) if self.languages and set(lowercase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(lowercase ) - lang_set ) )}) are not in valid set ({', '.join(lowercase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __UpperCamelCase = [] for lang, text in translation_dict.items(): if isinstance(lowercase , lowercase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __UpperCamelCase , __UpperCamelCase = zip(*sorted(lowercase ) ) return {"language": languages, "translation": translations} def __lowerCamelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
243
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : str = logging.get_logger(__name__) __lowercase : Dict = { '''SCUT-DLVCLab/lilt-roberta-en-base''': ( '''https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json''' ), } class __lowercase ( _lowercase ): lowerCamelCase : List[Any] = "lilt" def __init__(self , A=3_0_5_2_2 , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=1E-12 , A=0 , A="absolute" , A=None , A=4 , A=1_0_2_4 , **A , ): super().__init__(pad_token_id=A , **A ) lowerCamelCase_ : Dict = vocab_size lowerCamelCase_ : List[str] = hidden_size lowerCamelCase_ : List[str] = num_hidden_layers lowerCamelCase_ : List[str] = num_attention_heads lowerCamelCase_ : Optional[Any] = hidden_act lowerCamelCase_ : List[str] = intermediate_size lowerCamelCase_ : str = hidden_dropout_prob lowerCamelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase_ : int = max_position_embeddings lowerCamelCase_ : Any = type_vocab_size lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : Any = layer_norm_eps lowerCamelCase_ : Optional[int] = position_embedding_type lowerCamelCase_ : Tuple = classifier_dropout lowerCamelCase_ : str = channel_shrink_ratio lowerCamelCase_ : str = max_ad_position_embeddings
318
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Union[str, Any] = True lowerCamelCase : Union[str, Any] = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : Optional[int] = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''</s>''' lowerCamelCase_ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(A ) , 1_1_0_3 ) def UpperCAmelCase__ (self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : str = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) lowerCamelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCamelCase_ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' lowerCamelCase_ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : List[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : int = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 lowerCamelCase_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.''' lowerCamelCase_ : Tuple = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : str = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ['''This is going to be way too long.''' * 1_5_0, '''short example'''] lowerCamelCase_ : int = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : List[Any] = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Dict = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase__ (self ): # fmt: off lowerCamelCase_ : int = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : str = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : str = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : str = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Tuple = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) lowerCamelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : int = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = ['''This is going to be way too long.''' * 1_0_0_0, '''short example'''] lowerCamelCase_ : str = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def UpperCAmelCase__ (self ): lowerCamelCase_ : int = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) lowerCamelCase_ : List[str] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
318
1
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin a__: str = logging.get_logger(__name__) enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = UNetaDModel __SCREAMING_SNAKE_CASE = '''sample''' @property def UpperCamelCase ( self ): A__ = 4 A__ = 3 A__ = (32, 32) A__ = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) A__ = torch.tensor([10] ).to(__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase ( self ): return (3, 32, 32) @property def UpperCamelCase ( self ): return (3, 32, 32) def UpperCamelCase ( self ): A__ = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } A__ = self.dummy_input return init_dict, inputs_dict class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = UNetaDModel __SCREAMING_SNAKE_CASE = '''sample''' @property def UpperCamelCase ( self ): A__ = 4 A__ = 4 A__ = (32, 32) A__ = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) A__ = torch.tensor([10] ).to(__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase ( self ): return (4, 32, 32) @property def UpperCamelCase ( self ): return (4, 32, 32) def UpperCamelCase ( self ): A__ = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } A__ = self.dummy_input return init_dict, inputs_dict def UpperCamelCase ( self ): A__ , A__ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''',output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ),0 ) model.to(__lowerCamelCase ) A__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''','''This test is supposed to run on GPU''' ) def UpperCamelCase ( self ): A__ , A__ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''',output_loading_info=__lowerCamelCase ) model.to(__lowerCamelCase ) A__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''','''This test is supposed to run on GPU''' ) def UpperCamelCase ( self ): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` A__ , A__ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''',output_loading_info=__lowerCamelCase ) model_accelerate.to(__lowerCamelCase ) model_accelerate.eval() A__ = torch.randn( 1,model_accelerate.config.in_channels,model_accelerate.config.sample_size,model_accelerate.config.sample_size,generator=torch.manual_seed(0 ),) A__ = noise.to(__lowerCamelCase ) A__ = torch.tensor([10] * noise.shape[0] ).to(__lowerCamelCase ) A__ = model_accelerate(__lowerCamelCase,__lowerCamelCase )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() A__ , A__ = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''',output_loading_info=__lowerCamelCase,low_cpu_mem_usage=__lowerCamelCase ) model_normal_load.to(__lowerCamelCase ) model_normal_load.eval() A__ = model_normal_load(__lowerCamelCase,__lowerCamelCase )['''sample'''] assert torch_all_close(__lowerCamelCase,__lowerCamelCase,rtol=1E-3 ) def UpperCamelCase ( self ): A__ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(__lowerCamelCase ) A__ = torch.randn( 1,model.config.in_channels,model.config.sample_size,model.config.sample_size,generator=torch.manual_seed(0 ),) A__ = noise.to(__lowerCamelCase ) A__ = torch.tensor([10] * noise.shape[0] ).to(__lowerCamelCase ) with torch.no_grad(): A__ = model(__lowerCamelCase,__lowerCamelCase ).sample A__ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off A__ = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase,__lowerCamelCase,rtol=1E-3 ) ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = UNetaDModel __SCREAMING_SNAKE_CASE = '''sample''' @property def UpperCamelCase ( self,__lowerCamelCase=(32, 32) ): A__ = 4 A__ = 3 A__ = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) A__ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa,device=__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase ( self ): return (3, 32, 32) @property def UpperCamelCase ( self ): return (3, 32, 32) def UpperCamelCase ( self ): A__ = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } A__ = self.dummy_input return init_dict, inputs_dict @slow def UpperCamelCase ( self ): A__ , A__ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''',output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ),0 ) model.to(__lowerCamelCase ) A__ = self.dummy_input A__ = floats_tensor((4, 3) + (256, 256) ).to(__lowerCamelCase ) A__ = noise A__ = model(**__lowerCamelCase ) assert image is not None, "Make sure output is not None" @slow def UpperCamelCase ( self ): A__ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(__lowerCamelCase ) A__ = 4 A__ = 3 A__ = (256, 256) A__ = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) A__ = torch.tensor(batch_size * [1E-4] ).to(__lowerCamelCase ) with torch.no_grad(): A__ = model(__lowerCamelCase,__lowerCamelCase ).sample A__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off A__ = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase,__lowerCamelCase,rtol=1E-2 ) ) def UpperCamelCase ( self ): A__ = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(__lowerCamelCase ) A__ = 4 A__ = 3 A__ = (32, 32) A__ = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) A__ = torch.tensor(batch_size * [1E-4] ).to(__lowerCamelCase ) with torch.no_grad(): A__ = model(__lowerCamelCase,__lowerCamelCase ).sample A__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off A__ = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase,__lowerCamelCase,rtol=1E-2 ) ) def UpperCamelCase ( self ): # not required for this model pass
355
import os import sys a__: int = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) a__: Union[str, Any] = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase__( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Union[str, Any] )->Any: return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase__( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Any )->Dict: return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase__( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Optional[Any] )->int: return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase__( *UpperCamelCase__ : int , **UpperCamelCase__ : Union[str, Any] )->Any: return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase__( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Union[str, Any] )->int: return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase__( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Any )->Optional[Any]: return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase__( *UpperCamelCase__ : Any , **UpperCamelCase__ : Union[str, Any] )->Tuple: return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
39
0
"""simple docstring""" from __future__ import annotations import queue class a : """simple docstring""" def __init__( self: Optional[Any] , UpperCamelCase: str ): """simple docstring""" A__ = data A__ = None A__ = None def _snake_case ( ): print("""\n********Press N to stop entering at any point of time********\n""" ) A__ = input("""Enter the value of the root node: """ ).strip().lower() A__ = queue.Queue() A__ = TreeNode(int(UpperCAmelCase_ ) ) q.put(UpperCAmelCase_ ) while not q.empty(): A__ = q.get() A__ = F"""Enter the left node of {node_found.data}: """ A__ = input(UpperCAmelCase_ ).strip().lower() or """n""" if check == "n": return tree_node A__ = TreeNode(int(UpperCAmelCase_ ) ) A__ = left_node q.put(UpperCAmelCase_ ) A__ = F"""Enter the right node of {node_found.data}: """ A__ = input(UpperCAmelCase_ ).strip().lower() or """n""" if check == "n": return tree_node A__ = TreeNode(int(UpperCAmelCase_ ) ) A__ = right_node q.put(UpperCAmelCase_ ) raise def _snake_case ( UpperCAmelCase_ : TreeNode ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def _snake_case ( UpperCAmelCase_ : TreeNode ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def _snake_case ( UpperCAmelCase_ : TreeNode ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def _snake_case ( UpperCAmelCase_ : TreeNode ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not node: return A__ = queue.Queue() q.put(UpperCAmelCase_ ) while not q.empty(): A__ = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def _snake_case ( UpperCAmelCase_ : TreeNode ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not node: return A__ = queue.Queue() q.put(UpperCAmelCase_ ) while not q.empty(): A__ = [] while not q.empty(): A__ = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(UpperCAmelCase_ ) def _snake_case ( UpperCAmelCase_ : TreeNode ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not node: return A__ = [] A__ = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(UpperCAmelCase_ ) A__ = n.left # end of while means current node doesn't have left child A__ = stack.pop() # start to traverse its right child A__ = n.right def _snake_case ( UpperCAmelCase_ : TreeNode ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not node: return A__ = [] A__ = node while n or stack: while n: stack.append(UpperCAmelCase_ ) A__ = n.left A__ = stack.pop() print(n.data , end=""",""" ) A__ = n.right def _snake_case ( UpperCAmelCase_ : TreeNode ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not node: return A__ , A__ = [], [] A__ = node stacka.append(UpperCAmelCase_ ) while stacka: # to find the reversed order of post order, store it in stack2 A__ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(UpperCAmelCase_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def _snake_case ( UpperCAmelCase_ : str = "" , UpperCAmelCase_ : Dict=50 , UpperCAmelCase_ : str="*" ): if not s: return "\n" + width * char A__ , A__ = divmod(width - len(UpperCAmelCase_ ) - 2 , 2 ) return F"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) SCREAMING_SNAKE_CASE_ : TreeNode = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 5_0 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
335
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge SCREAMING_SNAKE_CASE_ : int = [ 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the' ' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe' ' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.', 'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal' ' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s' ' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the' ' body.', 'Amnesty International releases its annual report on the death penalty. The report catalogs the use of' ' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the' ' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital' ' punishment.', ] SCREAMING_SNAKE_CASE_ : List[Any] = [ 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .' ' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz' ' had informed his Lufthansa training school of an episode of severe depression, airline says .', 'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .' ' Israel and the United States opposed the move, which could open the door to war crimes investigations against' ' Israelis .', 'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to' ' death . Organization claims that governments around the world are using the threat of terrorism to advance' ' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death' ' sentences up by 28% .', ] def _snake_case ( ): A__ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , bootstrap_aggregation=UpperCAmelCase_ , rouge_keys=["""rouge2""", """rougeL"""] ) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , bootstrap_aggregation=UpperCAmelCase_ , rouge_keys=["""rouge2"""] ) assert ( pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean() ) def _snake_case ( ): A__ = """rougeLsum""" A__ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , newline_sep=UpperCAmelCase_ , rouge_keys=[k] )[k] A__ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , newline_sep=UpperCAmelCase_ , rouge_keys=[k] )[k] assert score > score_no_sep def _snake_case ( ): A__ = ["""rouge1""", """rouge2""", """rougeL"""] A__ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , newline_sep=UpperCAmelCase_ , rouge_keys=UpperCAmelCase_ ) A__ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , newline_sep=UpperCAmelCase_ , rouge_keys=UpperCAmelCase_ ) assert score_sep == score_no_sep def _snake_case ( ): A__ = [ """Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.""", """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""", ] A__ = [ """Margot Frank, died in 1945, a month earlier than previously thought.""", """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of""" """ the final seconds on board Flight 9525.""", ] assert calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , newline_sep=UpperCAmelCase_ ) == calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , newline_sep=UpperCAmelCase_ ) def _snake_case ( ): A__ = [ """\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" """ ] A__ = [ """ Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .""" ] A__ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , rouge_keys=["""rougeLsum"""] , newline_sep=UpperCAmelCase_ )["""rougeLsum"""] A__ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , rouge_keys=["""rougeLsum"""] )["""rougeLsum"""] assert new_score > prev_score def _snake_case ( ): A__ = Path("""examples/seq2seq/test_data/wmt_en_ro""" ) A__ = calculate_rouge_path(data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) ) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = calculate_rouge_path( data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) , bootstrap_aggregation=UpperCAmelCase_ ) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
335
1
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> int: return abs(UpperCamelCase_ ) if a == 0 else greatest_common_divisor(b % a , UpperCamelCase_ ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. UpperCamelCase_ , UpperCamelCase_ = y, x % y return abs(UpperCamelCase_ ) def lowerCAmelCase_ ( ) -> Any: try: UpperCamelCase_ = input("Enter two integers separated by comma (,): " ).split("," ) UpperCamelCase_ = int(nums[0] ) UpperCamelCase_ = int(nums[1] ) print( F'''greatest_common_divisor({num_a}, {num_a}) = ''' F'''{greatest_common_divisor(UpperCamelCase_ , UpperCamelCase_ )}''' ) print(F'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(UpperCamelCase_ , UpperCamelCase_ )}''' ) except (IndexError, UnboundLocalError, ValueError): print("Wrong input" ) if __name__ == "__main__": main()
328
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _UpperCAmelCase = {'UserAgent': UserAgent().random} def lowerCAmelCase_ ( UpperCamelCase_ ) -> dict: UpperCamelCase_ = script.contents[0] UpperCamelCase_ = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _UpperCamelCase : def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = f'''https://www.instagram.com/{username}/''' UpperCamelCase_ = self.get_json() def lowercase ( self: Union[str, Any] ) -> dict: """simple docstring""" UpperCamelCase_ = requests.get(self.url , headers=_SCREAMING_SNAKE_CASE ).text UpperCamelCase_ = BeautifulSoup(_SCREAMING_SNAKE_CASE , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self: Tuple ) -> str: """simple docstring""" return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self: List[Any] ) -> str: """simple docstring""" return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["username"] @property def lowercase ( self: int ) -> str: """simple docstring""" return self.user_data["full_name"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["biography"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["business_email"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["external_url"] @property def lowercase ( self: List[Any] ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def lowercase ( self: Optional[int] ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def lowercase ( self: List[str] ) -> bool: """simple docstring""" return self.user_data["is_private"] def lowerCAmelCase_ ( UpperCamelCase_ = "github" ) -> None: import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCamelCase_ = InstagramUser(UpperCamelCase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCamelCase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = InstagramUser('github') print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
328
1
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class A : def __init__(self , lowerCAmelCase = "cpu" , lowerCAmelCase = "openai/clip-vit-large-patch14" ): __lowercase= device __lowercase= CLIPTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE_ ) __lowercase= [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] __lowercase= [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] __lowercase= torchvision.transforms.Normalize(self.image_mean , self.image_std ) __lowercase= torchvision.transforms.Resize(2_2_4 ) __lowercase= torchvision.transforms.CenterCrop(2_2_4 ) def _A (self , lowerCAmelCase ): __lowercase= self.resize(SCREAMING_SNAKE_CASE_ ) __lowercase= self.center_crop(SCREAMING_SNAKE_CASE_ ) __lowercase= self.normalize(SCREAMING_SNAKE_CASE_ ) return images def __call__(self , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase ): __lowercase= self.tokenizer(text=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowercase= self.preprocess_img(SCREAMING_SNAKE_CASE_ ) __lowercase= {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class A ( nn.Module ): def __init__(self , lowerCAmelCase=1_0 , lowerCAmelCase=0.01 , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase="image" , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=False , ): super().__init__() __lowercase= None __lowercase= device if device else get_device() if vqgan: __lowercase= vqgan else: __lowercase= load_vqgan(self.device , conf_path=SCREAMING_SNAKE_CASE_ , ckpt_path=SCREAMING_SNAKE_CASE_ ) self.vqgan.eval() if clip: __lowercase= clip else: __lowercase= CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) __lowercase= ProcessorGradientFlow(device=self.device ) __lowercase= iterations __lowercase= lr __lowercase= log __lowercase= make_grid __lowercase= return_val __lowercase= quantize __lowercase= self.vqgan.decoder.z_shape def _A (self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=5 , lowerCAmelCase=True ): __lowercase= [] if output_path is None: __lowercase= './animation.gif' if input_path is None: __lowercase= self.save_path __lowercase= sorted(glob(input_path + '/*' ) ) if not len(SCREAMING_SNAKE_CASE_ ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(SCREAMING_SNAKE_CASE_ ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) __lowercase= total_duration / len(SCREAMING_SNAKE_CASE_ ) __lowercase= [frame_duration] * len(SCREAMING_SNAKE_CASE_ ) if extend_frames: __lowercase= 1.5 __lowercase= 3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(SCREAMING_SNAKE_CASE_ ) ) imageio.mimsave(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , duration=SCREAMING_SNAKE_CASE_ ) print(f'gif saved to {output_path}' ) def _A (self , lowerCAmelCase=None , lowerCAmelCase=None ): if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError __lowercase= preprocess(Image.open(SCREAMING_SNAKE_CASE_ ) , target_image_size=2_5_6 ).to(self.device ) __lowercase= preprocess_vqgan(SCREAMING_SNAKE_CASE_ ) __lowercase, *__lowercase= self.vqgan.encode(SCREAMING_SNAKE_CASE_ ) return z def _A (self , lowerCAmelCase ): __lowercase= self.latent.detach().requires_grad_() __lowercase= base_latent + transform_vector if self.quantize: __lowercase, *__lowercase= self.vqgan.quantize(SCREAMING_SNAKE_CASE_ ) else: __lowercase= trans_latent return self.vqgan.decode(SCREAMING_SNAKE_CASE_ ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ): __lowercase= self.clip_preprocessor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ , return_tensors='pt' , padding=SCREAMING_SNAKE_CASE_ ) __lowercase= self.clip(**SCREAMING_SNAKE_CASE_ ) __lowercase= clip_outputs.logits_per_image if weights is not None: __lowercase= similarity_logits * weights return similarity_logits.sum() def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self._get_clip_similarity(pos_prompts['prompts'] , SCREAMING_SNAKE_CASE_ , weights=(1 / pos_prompts['weights']) ) if neg_prompts: __lowercase= self._get_clip_similarity(neg_prompts['prompts'] , SCREAMING_SNAKE_CASE_ , weights=neg_prompts['weights'] ) else: __lowercase= torch.tensor([1] , device=self.device ) __lowercase= -torch.log(SCREAMING_SNAKE_CASE_ ) + torch.log(SCREAMING_SNAKE_CASE_ ) return loss def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= torch.randn_like(self.latent , requires_grad=SCREAMING_SNAKE_CASE_ , device=self.device ) __lowercase= torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() __lowercase= self._add_vector(SCREAMING_SNAKE_CASE_ ) __lowercase= loop_post_process(SCREAMING_SNAKE_CASE_ ) __lowercase= self._get_CLIP_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print('CLIP loss' , SCREAMING_SNAKE_CASE_ ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=SCREAMING_SNAKE_CASE_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): wandb.init(reinit=SCREAMING_SNAKE_CASE_ , project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: __lowercase= Image.open(SCREAMING_SNAKE_CASE_ ) __lowercase= image.resize((2_5_6, 2_5_6) ) wandb.log('Original Image' , wandb.Image(SCREAMING_SNAKE_CASE_ ) ) def _A (self , lowerCAmelCase ): if not prompts: return [] __lowercase= [] __lowercase= [] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowercase= [prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(SCREAMING_SNAKE_CASE_ , (tuple, list) ): __lowercase= prompt[0] __lowercase= float(prompt[1] ) elif ":" in prompt: __lowercase, __lowercase= prompt.split(':' ) __lowercase= float(SCREAMING_SNAKE_CASE_ ) else: __lowercase= prompt __lowercase= 1.0 processed_prompts.append(SCREAMING_SNAKE_CASE_ ) weights.append(SCREAMING_SNAKE_CASE_ ) return { "prompts": processed_prompts, "weights": torch.tensor(SCREAMING_SNAKE_CASE_ , device=self.device ), } def _A (self , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=None , ): if image_path: __lowercase= self._get_latent(SCREAMING_SNAKE_CASE_ ) else: __lowercase= torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert pos_prompts, "You must provide at least one positive prompt." __lowercase= self.process_prompts(SCREAMING_SNAKE_CASE_ ) __lowercase= self.process_prompts(SCREAMING_SNAKE_CASE_ ) if save_final and save_path is None: __lowercase= os.path.join('./outputs/' , '_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) else: __lowercase= save_path + '_' + get_timestamp() os.makedirs(SCREAMING_SNAKE_CASE_ ) __lowercase= save_path __lowercase= self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(SCREAMING_SNAKE_CASE_ ) ) __lowercase= loop_post_process(SCREAMING_SNAKE_CASE_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ): if show_intermediate: show_pil(SCREAMING_SNAKE_CASE_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'Image': wandb.Image(SCREAMING_SNAKE_CASE_ )} ) if show_final: show_pil(SCREAMING_SNAKE_CASE_ ) if save_final: transformed_img.save(os.path.join(self.save_path , f'iter_{iter:03d}_final.png' ) )
295
from __future__ import annotations from typing import Generic, TypeVar lowerCamelCase_ = TypeVar('''T''') class __A( Generic[T] ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = data UpperCamelCase__ = self UpperCamelCase__ = 0 class __A( Generic[T] ): """simple docstring""" def __init__(self ): # map from node name to the node object UpperCamelCase__ = {} def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): # create a new set with x as its member UpperCamelCase__ = DisjointSetTreeNode(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): # find the set x belongs to (with path-compression) UpperCamelCase__ = self.map[data] if elem_ref != elem_ref.parent: UpperCamelCase__ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # helper function for union operation if nodea.rank > nodea.rank: UpperCamelCase__ = nodea else: UpperCamelCase__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # merge 2 disjoint sets self.link(self.find_set(SCREAMING_SNAKE_CASE_ ) , self.find_set(SCREAMING_SNAKE_CASE_ ) ) class __A( Generic[T] ): """simple docstring""" def __init__(self ): # connections: map from the node to the neighbouring nodes (with weights) UpperCamelCase__ = {} def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): # add a node ONLY if its not present in the graph if node not in self.connections: UpperCamelCase__ = {} def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # add an edge with the given weight self.add_node(SCREAMING_SNAKE_CASE_ ) self.add_node(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = weight UpperCamelCase__ = weight def UpperCAmelCase_ (self ): UpperCamelCase__ = [] UpperCamelCase__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda SCREAMING_SNAKE_CASE_ : x[2] ) # creating the disjoint set UpperCamelCase__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(SCREAMING_SNAKE_CASE_ ) # MST generation UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edges[index] index += 1 UpperCamelCase__ = disjoint_set.find_set(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = disjoint_set.find_set(SCREAMING_SNAKE_CASE_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) disjoint_set.union(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return graph
244
0
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ) ->str: SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : List[Any] = batch_size SCREAMING_SNAKE_CASE : str = seq_length SCREAMING_SNAKE_CASE : List[str] = is_training SCREAMING_SNAKE_CASE : Tuple = use_input_mask SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Dict = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = type_sequence_label_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : List[Any] = num_choices SCREAMING_SNAKE_CASE : Union[str, Any] = scope def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : List[str] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Any = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Any = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ) ->str: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = LlamaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) ->Dict: SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Optional[int] = LlamaModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : List[str] = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[Any] = LlamaForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) ->Any: SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : str = LlamaForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE : int = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , use_cache=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE : Dict = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE : str = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE : str = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE : str = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , )['''hidden_states'''][0] SCREAMING_SNAKE_CASE : Dict = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , )['''hidden_states'''][0] # select random slice SCREAMING_SNAKE_CASE : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a_ ( a__ , a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __SCREAMING_SNAKE_CASE : str = (LlamaForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Optional[Any] = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = LlamaModelTester(self ) SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE : Optional[Any] = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Optional[Any] = 3 SCREAMING_SNAKE_CASE : List[str] = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE : Tuple = input_ids.ne(1 ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[str] = LlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Optional[Any] = 3 SCREAMING_SNAKE_CASE : int = '''single_label_classification''' SCREAMING_SNAKE_CASE : Optional[int] = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids.ne(1 ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Optional[int] = LlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : int = 3 SCREAMING_SNAKE_CASE : int = '''multi_label_classification''' SCREAMING_SNAKE_CASE : Tuple = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids.ne(1 ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE : int = LlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def __lowerCAmelCase ( self ) ->Optional[Any]: pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : int = ids_tensor([1, 10] , config.vocab_size ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE : Any = LlamaModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() SCREAMING_SNAKE_CASE : Union[str, Any] = original_model(lowerCamelCase_ ).last_hidden_state SCREAMING_SNAKE_CASE : Optional[Any] = original_model(lowerCamelCase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE : Optional[int] = {'''type''': scaling_type, '''factor''': 1_0.0} SCREAMING_SNAKE_CASE : Optional[Any] = LlamaModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() SCREAMING_SNAKE_CASE : Any = scaled_model(lowerCamelCase_ ).last_hidden_state SCREAMING_SNAKE_CASE : Any = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-5 ) ) @require_torch class a_ ( unittest.TestCase ): """simple docstring""" @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE : int = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) SCREAMING_SNAKE_CASE : Optional[int] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE : Tuple = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Tuple = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE : int = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) SCREAMING_SNAKE_CASE : List[Any] = model(torch.tensor(lowerCamelCase_ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE : Dict = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE : Tuple = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE : Dict = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) SCREAMING_SNAKE_CASE : Any = model(torch.tensor(lowerCamelCase_ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE : str = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE : List[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) SCREAMING_SNAKE_CASE : int = model(torch.tensor(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 ) # fmt: off SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Model is curently gated''' ) @slow def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[int] = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi''' SCREAMING_SNAKE_CASE : Any = '''Simply put, the theory of relativity states that ''' SCREAMING_SNAKE_CASE : Optional[int] = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) SCREAMING_SNAKE_CASE : Any = tokenizer.encode(lowerCamelCase_ , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : int = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=lowerCamelCase_ ) # greedy generation outputs SCREAMING_SNAKE_CASE : Optional[int] = model.generate(lowerCamelCase_ , max_new_tokens=64 , top_p=lowerCamelCase_ , temperature=1 , do_sample=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.decode(generated_ids[0] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
354
from sklearn.metrics import matthews_corrcoef import datasets a__ : Optional[Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' a__ : str = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' a__ : Union[str, Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]: return { "matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ), }
19
0
UpperCamelCase = {} def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _SCREAMING_SNAKE_CASE = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _SCREAMING_SNAKE_CASE = _calculate(days - 1 ,lowerCAmelCase__ ,late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _SCREAMING_SNAKE_CASE = _calculate(days - 1 ,absent + 1 ,0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _SCREAMING_SNAKE_CASE = _calculate(days - 1 ,lowerCAmelCase__ ,0 ) _SCREAMING_SNAKE_CASE = state_late + state_absent + state_ontime _SCREAMING_SNAKE_CASE = prizestrings return prizestrings def __lowerCamelCase ( snake_case__ = 30 ) -> int: """simple docstring""" return _calculate(lowerCAmelCase__ ,absent=0 ,late=0 ) if __name__ == "__main__": print(solution())
306
"""simple docstring""" from ..utils import DummyObject, requires_backends class _A ( metaclass=lowerCAmelCase ): snake_case__ : List[str] = ['onnx'] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(self , ["""onnx"""] ) @classmethod def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(cls , ["""onnx"""] ) @classmethod def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(cls , ["""onnx"""] )
197
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _snake_case = logging.get_logger(__name__) @dataclass class _snake_case ( _lowercase ): lowerCamelCase__: Dict = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self: Dict , **__lowerCamelCase: Union[str, Any] ) -> int: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __UpperCAmelCase : Optional[Any] = deprecated_arg[3:] __UpperCAmelCase : Any = not kwargs.pop(__lowerCamelCase ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("tpu_name" , self.tpu_name ) __UpperCAmelCase : List[str] = kwargs.pop("device_idx" , self.device_idx ) __UpperCAmelCase : str = kwargs.pop("eager_mode" , self.eager_mode ) __UpperCAmelCase : List[Any] = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**__lowerCamelCase ) lowerCamelCase__: str = field( default=_lowercase , metadata={"help": "Name of TPU"} , ) lowerCamelCase__: int = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) lowerCamelCase__: bool = field(default=_lowercase , metadata={"help": "Benchmark models in eager model."} ) lowerCamelCase__: bool = field( default=_lowercase , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def _lowerCamelCase ( self: List[str] ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ["tf"] ) __UpperCAmelCase : List[Any] = None if self.tpu: try: if self.tpu_name: __UpperCAmelCase : Union[str, Any] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: __UpperCAmelCase : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: __UpperCAmelCase : int = None return tpu @cached_property def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) __UpperCAmelCase : Dict = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) __UpperCAmelCase : int = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU __UpperCAmelCase : str = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def _lowerCamelCase ( self: Tuple ) -> bool: requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def _lowerCamelCase ( self: Union[str, Any] ) -> "tf.distribute.Strategy": requires_backends(self , ["tf"] ) return self._setup_strategy @property def _lowerCamelCase ( self: Optional[Any] ) -> str: requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def _lowerCamelCase ( self: List[str] ) -> int: requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _lowerCamelCase ( self: Union[str, Any] ) -> bool: return self.n_gpu > 0
342
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class _snake_case ( _lowercase ): lowerCamelCase__: str = "detr" lowerCamelCase__: Dict = ["past_key_values"] lowerCamelCase__: str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[Any] = backbone_config.get("model_type" ) __UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase ) # set timm attributes to None __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = None, None, None __UpperCAmelCase : Any = use_timm_backbone __UpperCAmelCase : Optional[Any] = backbone_config __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : List[Any] = num_queries __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Optional[Any] = encoder_ffn_dim __UpperCAmelCase : Dict = encoder_layers __UpperCAmelCase : List[Any] = encoder_attention_heads __UpperCAmelCase : int = decoder_ffn_dim __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : int = decoder_attention_heads __UpperCAmelCase : List[Any] = dropout __UpperCAmelCase : Dict = attention_dropout __UpperCAmelCase : Optional[Any] = activation_dropout __UpperCAmelCase : int = activation_function __UpperCAmelCase : Any = init_std __UpperCAmelCase : str = init_xavier_std __UpperCAmelCase : int = encoder_layerdrop __UpperCAmelCase : Tuple = decoder_layerdrop __UpperCAmelCase : List[Any] = encoder_layers __UpperCAmelCase : Optional[Any] = auxiliary_loss __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = backbone __UpperCAmelCase : str = use_pretrained_backbone __UpperCAmelCase : Dict = dilation # Hungarian matcher __UpperCAmelCase : Optional[int] = class_cost __UpperCAmelCase : Optional[Any] = bbox_cost __UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients __UpperCAmelCase : Any = mask_loss_coefficient __UpperCAmelCase : Any = dice_loss_coefficient __UpperCAmelCase : Any = bbox_loss_coefficient __UpperCAmelCase : Optional[int] = giou_loss_coefficient __UpperCAmelCase : Optional[Any] = eos_coefficient super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def _lowerCamelCase ( self: Dict ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase ( self: str ) -> int: return self.d_model @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]: return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Dict[str, any]: __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCAmelCase : int = self.backbone_config.to_dict() __UpperCAmelCase : List[str] = self.__class__.model_type return output class _snake_case ( _lowercase ): lowerCamelCase__: Optional[int] = version.parse("1.11" ) @property def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCamelCase ( self: Optional[Any] ) -> float: return 1e-5 @property def _lowerCamelCase ( self: List[str] ) -> int: return 12
342
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __a = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure)
35
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
1
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __snake_case : Any = False __snake_case : str = True __snake_case : Union[str, Any] = False if __name__ == "__main__": __snake_case : Dict = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') __snake_case : int = parser.parse_args() __snake_case : Any = { '''image_size''': '''sample_size''', '''num_res_blocks''': '''layers_per_block''', '''block_channels''': '''block_out_channels''', '''down_blocks''': '''down_block_types''', '''up_blocks''': '''up_block_types''', '''downscale_freq_shift''': '''freq_shift''', '''resnet_num_groups''': '''norm_num_groups''', '''resnet_act_fn''': '''act_fn''', '''resnet_eps''': '''norm_eps''', '''num_head_channels''': '''attention_head_dim''', } __snake_case : Tuple = { '''time_steps''': '''time_proj''', '''mid''': '''mid_block''', '''downsample_blocks''': '''down_blocks''', '''upsample_blocks''': '''up_blocks''', } __snake_case : str = '''''' if has_file(args.repo_path, 'config.json') else '''unet''' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: __snake_case : Any = reader.read() __snake_case : Optional[int] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): __snake_case : str = UNetaDModel(**config) else: __snake_case : str = UNetaDConditionModel if '''ldm-text2im-large-256''' in args.repo_path else UNetaDModel __snake_case : List[Any] = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __snake_case : Union[str, Any] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __snake_case : List[str] = config[key] del config[key] __snake_case : Optional[Any] = [k.replace('UNetRes', '') for k in config['''down_block_types''']] __snake_case : Tuple = [k.replace('UNetRes', '') for k in config['''up_block_types''']] if do_only_weights: __snake_case : Optional[int] = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) __snake_case : Any = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue __snake_case : Any = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: __snake_case : Optional[int] = param_value __snake_case : Dict = True if not has_changed: __snake_case : Any = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
354
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = (CMStochasticIterativeScheduler,) __snake_case = 10 def lowercase__ ( self : List[str] , **lowerCAmelCase_ : Dict ) -> Dict: '''simple docstring''' A__ : int ={ """num_train_timesteps""": 2_01, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**lowerCAmelCase_ ) return config def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Dict =10 A__ : str =self.get_scheduler_config() A__ : Any =self.scheduler_classes[0](**lowerCAmelCase_ ) scheduler.set_timesteps(lowerCAmelCase_ ) A__ : List[Any] =scheduler.timesteps[0] A__ : Union[str, Any] =scheduler.timesteps[1] A__ : Optional[int] =self.dummy_sample A__ : Union[str, Any] =0.1 * sample A__ : Dict =scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample A__ : int =scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' A__ : Union[str, Any] =self.scheduler_classes[0] A__ : Dict =self.get_scheduler_config() A__ : Any =scheduler_class(**lowerCAmelCase_ ) A__ : int =1 scheduler.set_timesteps(lowerCAmelCase_ ) A__ : Any =scheduler.timesteps A__ : Optional[int] =torch.manual_seed(0 ) A__ : List[Any] =self.dummy_model() A__ : Optional[int] =self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(lowerCAmelCase_ ): # 1. scale model input A__ : Optional[Any] =scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict noise residual A__ : Union[str, Any] =model(lowerCAmelCase_ , lowerCAmelCase_ ) # 3. predict previous sample x_t-1 A__ : Tuple =scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample A__ : Dict =pred_prev_sample A__ : Union[str, Any] =torch.sum(torch.abs(lowerCAmelCase_ ) ) A__ : Optional[Any] =torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : Dict =self.scheduler_classes[0] A__ : Dict =self.get_scheduler_config() A__ : Tuple =scheduler_class(**lowerCAmelCase_ ) A__ : Tuple =[1_06, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) A__ : List[Any] =scheduler.timesteps A__ : Optional[Any] =torch.manual_seed(0 ) A__ : int =self.dummy_model() A__ : int =self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input A__ : Any =scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict noise residual A__ : List[str] =model(lowerCAmelCase_ , lowerCAmelCase_ ) # 3. predict previous sample x_t-1 A__ : Dict =scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample A__ : Union[str, Any] =pred_prev_sample A__ : Union[str, Any] =torch.sum(torch.abs(lowerCAmelCase_ ) ) A__ : List[Any] =torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' A__ : Optional[Any] =self.scheduler_classes[0] A__ : Union[str, Any] =self.get_scheduler_config() A__ : List[Any] =scheduler_class(**lowerCAmelCase_ ) A__ : Tuple =[39, 30, 12, 15, 0] with self.assertRaises(lowerCAmelCase_ , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] =self.scheduler_classes[0] A__ : List[str] =self.get_scheduler_config() A__ : Tuple =scheduler_class(**lowerCAmelCase_ ) A__ : Dict =[39, 30, 12, 1, 0] A__ : int =len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =self.scheduler_classes[0] A__ : Any =self.get_scheduler_config() A__ : Optional[int] =scheduler_class(**lowerCAmelCase_ ) A__ : List[str] =[scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
136
0
"""simple docstring""" def __UpperCAmelCase ( __UpperCamelCase = 4_00_00_00 ): __lowercase : int = [0, 1] __lowercase : Dict = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 __lowercase : str = 0 for j in range(len(__UpperCamelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F"{solution() = }")
249
"""simple docstring""" class UpperCAmelCase_ : def __init__( self , UpperCamelCase_ ) -> Tuple: __lowercase : Any = n __lowercase : Any = [None] * self.n __lowercase : Optional[int] = 0 # index of the first element __lowercase : Optional[int] = 0 __lowercase : Any = 0 def __len__( self ) -> int: return self.size def _lowerCamelCase ( self ) -> bool: return self.size == 0 def _lowerCamelCase ( self ) -> Optional[Any]: return False if self.is_empty() else self.array[self.front] def _lowerCamelCase ( self , UpperCamelCase_ ) -> Dict: if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) __lowercase : Any = data __lowercase : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def _lowerCamelCase ( self ) -> List[Any]: if self.size == 0: raise Exception('''UNDERFLOW''' ) __lowercase : Any = self.array[self.front] __lowercase : int = None __lowercase : Optional[int] = (self.front + 1) % self.n self.size -= 1 return temp
249
1
from math import factorial def A ( _lowercase = 20 ): SCREAMING_SNAKE_CASE : Optional[Any] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... SCREAMING_SNAKE_CASE : Optional[int] = n // 2 return int(factorial(_lowercase ) / (factorial(_lowercase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: __UpperCamelCase : int = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
367
from __future__ import annotations import numpy as np def A ( _lowercase ): return np.maximum(0 , _lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
258
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class lowercase ( unittest.TestCase ): """simple docstring""" _a = StableDiffusionLDMaDPipeline _a = TEXT_TO_IMAGE_PARAMS _a = TEXT_TO_IMAGE_BATCH_PARAMS _a = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ :int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCamelCase__ :Tuple = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) UpperCamelCase__ :Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase__ :Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCamelCase__ :Optional[int] = CLIPTextModel(UpperCamelCase_ ) UpperCamelCase__ :str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCamelCase__ :Any = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=0 ): '''simple docstring''' if str(UpperCamelCase_ ).startswith('''mps''' ): UpperCamelCase__ :Dict = torch.manual_seed(UpperCamelCase_ ) else: UpperCamelCase__ :List[str] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) UpperCamelCase__ :List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ :List[Any] = self.get_dummy_components() UpperCamelCase__ :Any = StableDiffusionLDMaDPipeline(**UpperCamelCase_ ) UpperCamelCase__ :str = ldmad_pipe.to(UpperCamelCase_ ) ldmad_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :int = self.get_dummy_inputs(UpperCamelCase_ ) UpperCamelCase__ :str = ldmad_pipe(**UpperCamelCase_ ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = output.rgb, output.depth UpperCamelCase__ :List[Any] = rgb[0, -3:, -3:, -1] UpperCamelCase__ :Optional[int] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) UpperCamelCase__ :Any = np.array( [0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262] ) UpperCamelCase__ :Optional[int] = np.array([103.46727, 85.812004, 87.849236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = self.get_dummy_components() UpperCamelCase__ :Optional[Any] = StableDiffusionLDMaDPipeline(**UpperCamelCase_ ) UpperCamelCase__ :Dict = ldmad_pipe.to(UpperCamelCase_ ) ldmad_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :str = self.get_dummy_inputs(UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = 3 * [inputs['''prompt''']] # forward UpperCamelCase__ :int = ldmad_pipe(**UpperCamelCase_ ) UpperCamelCase__ , UpperCamelCase__ :Tuple = output.rgb, output.depth UpperCamelCase__ :Union[str, Any] = rgb_slice_a[0, -3:, -3:, -1] UpperCamelCase__ :Union[str, Any] = depth_slice_a[0, -3:, -1] UpperCamelCase__ :Dict = self.get_dummy_inputs(UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = 3 * [inputs.pop('''prompt''' )] UpperCamelCase__ :str = ldmad_pipe.tokenizer( UpperCamelCase_ , padding='''max_length''' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=UpperCamelCase_ , return_tensors='''pt''' , ) UpperCamelCase__ :Optional[Any] = text_inputs['''input_ids'''].to(UpperCamelCase_ ) UpperCamelCase__ :str = ldmad_pipe.text_encoder(UpperCamelCase_ )[0] UpperCamelCase__ :Optional[int] = prompt_embeds # forward UpperCamelCase__ :Tuple = ldmad_pipe(**UpperCamelCase_ ) UpperCamelCase__ , UpperCamelCase__ :int = output.rgb, output.depth UpperCamelCase__ :List[Any] = rgb_slice_a[0, -3:, -3:, -1] UpperCamelCase__ :List[Any] = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ :List[str] = self.get_dummy_components() UpperCamelCase__ :Tuple = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) UpperCamelCase__ :List[str] = StableDiffusionLDMaDPipeline(**UpperCamelCase_ ) UpperCamelCase__ :int = ldmad_pipe.to(UpperCamelCase_ ) ldmad_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :List[Any] = self.get_dummy_inputs(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = '''french fries''' UpperCamelCase__ :List[Any] = ldmad_pipe(**UpperCamelCase_ , negative_prompt=UpperCamelCase_ ) UpperCamelCase__ , UpperCamelCase__ :List[Any] = output.rgb, output.depth UpperCamelCase__ :Tuple = rgb[0, -3:, -3:, -1] UpperCamelCase__ :Any = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) UpperCamelCase__ :Union[str, Any] = np.array( [0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217] ) UpperCamelCase__ :List[str] = np.array([107.84738, 84.62802, 89.962135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_="cpu" , UpperCamelCase_=torch.floataa , UpperCamelCase_=0 ): '''simple docstring''' UpperCamelCase__ :List[Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) UpperCamelCase__ :int = np.random.RandomState(UpperCamelCase_ ).standard_normal((1, 4, 64, 64) ) UpperCamelCase__ :Any = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ , dtype=UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ) UpperCamelCase__ :int = ldmad_pipe.to(UpperCamelCase_ ) ldmad_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :List[Any] = self.get_inputs(UpperCamelCase_ ) UpperCamelCase__ :Tuple = ldmad_pipe(**UpperCamelCase_ ) UpperCamelCase__ , UpperCamelCase__ :List[str] = output.rgb, output.depth UpperCamelCase__ :List[str] = rgb[0, -3:, -3:, -1].flatten() UpperCamelCase__ :Optional[int] = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) UpperCamelCase__ :List[str] = np.array( [0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706] ) UpperCamelCase__ :Optional[int] = np.array( [0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_="cpu" , UpperCamelCase_=torch.floataa , UpperCamelCase_=0 ): '''simple docstring''' UpperCamelCase__ :List[str] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) UpperCamelCase__ :List[str] = np.random.RandomState(UpperCamelCase_ ).standard_normal((1, 4, 64, 64) ) UpperCamelCase__ :Any = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ , dtype=UpperCamelCase_ ) UpperCamelCase__ :List[str] = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 50, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ).to(UpperCamelCase_ ) ldmad_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :Any = self.get_inputs(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = ldmad_pipe(**UpperCamelCase_ ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = output.rgb, output.depth UpperCamelCase__ :Union[str, Any] = 0.495586 UpperCamelCase__ :List[str] = 0.33795515 UpperCamelCase__ :Tuple = 112.48518 UpperCamelCase__ :int = 98.489746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d-4c''' ).to(UpperCamelCase_ ) ldmad_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :Dict = self.get_inputs(UpperCamelCase_ ) UpperCamelCase__ :Any = ldmad_pipe(**UpperCamelCase_ ) UpperCamelCase__ , UpperCamelCase__ :Dict = output.rgb, output.depth UpperCamelCase__ :int = 0.4194127 UpperCamelCase__ :Optional[int] = 0.35375586 UpperCamelCase__ :int = 0.5638502 UpperCamelCase__ :Optional[int] = 0.34686103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
97
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowercase ( A__ ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): '''simple docstring''' super().__init__( features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , num_proc=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCamelCase__ :Any = Generator( cache_dir=UpperCamelCase_ , features=UpperCamelCase_ , generator=UpperCamelCase_ , gen_kwargs=UpperCamelCase_ , **UpperCamelCase_ , ) def lowerCAmelCase__ ( self ): '''simple docstring''' if self.streaming: UpperCamelCase__ :Optional[Any] = self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: UpperCamelCase__ :Optional[int] = None UpperCamelCase__ :int = None UpperCamelCase__ :Any = None UpperCamelCase__ :Any = None self.builder.download_and_prepare( download_config=UpperCamelCase_ , download_mode=UpperCamelCase_ , verification_mode=UpperCamelCase_ , base_path=UpperCamelCase_ , num_proc=self.num_proc , ) UpperCamelCase__ :List[Any] = self.builder.as_dataset( split='''train''' , verification_mode=UpperCamelCase_ , in_memory=self.keep_in_memory ) return dataset
97
1
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class snake_case__ ( snake_case_ ): def a__ ( self ): __a = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def a__ ( self ): with self.assertRaises(lowerCamelCase ): __a = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def a__ ( self ): with self.assertRaises(lowerCamelCase ): __a = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) ) def a__ ( self ): __a = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def a__ ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): __a = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) ) def a__ ( self ): __a = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def a__ ( self ): __a = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) ) self.assertEqual(arr.type , pa.string() ) def a__ ( self ): __a = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def a__ ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): __a = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) ) def a__ ( self ): __a = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def a__ ( self ): __a = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def a__ ( self ): import PIL.Image __a = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=lowerCamelCase ) as mock_cast_to_python_objects: __a = pa.array(TypedSequence([{"path": None, "bytes": b"image_bytes"}, pil_image] , type=Image() ) ) __a , __a = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , lowerCamelCase ) self.assertFalse(kwargs["optimize_list_casting"] ) def _lowerCamelCase( a , a ): __a = pa.BufferReader(a ) if isinstance(a , pa.Buffer ) else pa.memory_map(a ) __a = pa.ipc.open_stream(a ) __a = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _lowerCamelCase( a , a ): __a = pa.BufferOutputStream() __a = pa.schema(a ) if fields else None with ArrowWriter(stream=a , schema=a , writer_batch_size=a ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) __a , __a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __a = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _lowerCamelCase( ): __a = pa.BufferOutputStream() __a = Features({"labels": ClassLabel(names=["neg", "pos"] )} ) with ArrowWriter(stream=a , features=a ) as writer: writer.write({"labels": 0} ) writer.write({"labels": 1} ) __a , __a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata __a = pa.BufferReader(output.getvalue() ) __a = pa.ipc.open_stream(a ) __a = f.read_all() __a = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(a ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] ) def _lowerCamelCase( a ): __a = pa.BufferOutputStream() with ArrowWriter( stream=a , writer_batch_size=a , hash_salt="split_name" , check_duplicates=a , ) as writer: with pytest.raises(a ): writer.write({"col_1": "foo", "col_2": 1} , key=[1, 2] ) __a , __a = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 1_0] ) def _lowerCamelCase( a ): __a = pa.BufferOutputStream() with ArrowWriter( stream=a , writer_batch_size=a , hash_salt="split_name" , check_duplicates=a , ) as writer: with pytest.raises(a ): writer.write({"col_1": "foo", "col_2": 1} , key=1_0 ) writer.write({"col_1": "bar", "col_2": 2} , key=1_0 ) __a , __a = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 1_0] ) def _lowerCamelCase( a ): __a = pa.BufferOutputStream() with ArrowWriter( stream=a , writer_batch_size=a , hash_salt="split_name" , check_duplicates=a , ) as writer: writer.write({"col_1": "foo", "col_2": 1} , key=1 ) writer.write({"col_1": "bar", "col_2": 2} , key=2 ) __a , __a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _lowerCamelCase( a , a ): __a = pa.BufferOutputStream() __a = pa.schema(a ) if fields else None with ArrowWriter(stream=a , schema=a , writer_batch_size=a ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) writer.write_batch({"col_1": [], "col_2": []} ) __a , __a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __a = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _lowerCamelCase( a , a ): __a = pa.BufferOutputStream() __a = pa.schema(a ) if fields else None with ArrowWriter(stream=a , schema=a , writer_batch_size=a ) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) ) __a , __a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __a = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _lowerCamelCase( a , a ): __a = pa.BufferOutputStream() __a = pa.schema(a ) if fields else None with ArrowWriter(stream=a , schema=a , writer_batch_size=a ) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) ) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) ) __a , __a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __a = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _lowerCamelCase( ): with tempfile.TemporaryDirectory() as tmp_dir: __a = {"col_1": pa.string(), "col_2": pa.intaa()} __a = os.path.join(a , "test.arrow" ) with ArrowWriter(path=a , schema=pa.schema(a ) ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) __a , __a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(a , metadata=writer._schema.metadata ) _check_output(a , 1 ) def _lowerCamelCase( a ): if pa.types.is_list(a ): return get_base_dtype(arr_type.value_type ) else: return arr_type def _lowerCamelCase( a , a ): if isinstance(lst[0] , a ): change_first_primitive_element_in_list(lst[0] , a ) else: __a = value @pytest.mark.parametrize("optimized_int_type, expected_dtype" , [(None, pa.intaa()), (Value("int32" ), pa.intaa())] ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _lowerCamelCase( a , a , a ): __a = pa.array(TypedSequence(a , optimized_int_type=a ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype" , [ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ] , ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _lowerCamelCase( a , a , a ): # in range __a = pa.array(OptimizedTypedSequence(a , col=a ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications __a = copy.deepcopy(a ) __a = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(a , a ) __a = pa.array(OptimizedTypedSequence(a , col=a ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("raise_exception" , [False, True] ) def _lowerCamelCase( a , a ): __a = str(tmp_path / "dataset-train.arrow" ) try: with ArrowWriter(path=a ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def _lowerCamelCase( a ): __a = "mock://dataset-train.arrow" with ArrowWriter(path=a , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(a ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) __a , __a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(a ) def _lowerCamelCase( ): __a = pa.BufferOutputStream() with ParquetWriter(stream=a ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) __a , __a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 __a = pa.BufferReader(output.getvalue() ) __a = pq.read_table(a ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files" , [False, True] ) def _lowerCamelCase( a , a ): import PIL.Image __a = str(tmp_path / "test_image_rgb.jpg" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(a , format="png" ) __a = pa.BufferOutputStream() with ParquetWriter( stream=a , features=Features({"image": Image()} ) , embed_local_files=a ) as writer: writer.write({"image": image_path} ) writer.finalize() __a = pa.BufferReader(output.getvalue() ) __a = pq.read_table(a ) __a = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"] , a ) with open(a , "rb" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def _lowerCamelCase( ): __a = pa.schema([pa.field("col_1" , pa.string() , nullable=a )] ) __a = pa.BufferOutputStream() with ArrowWriter(stream=a ) as writer: writer._build_writer(inferred_schema=a ) assert writer._schema == pa.schema([pa.field("col_1" , pa.string() )] )
268
"""simple docstring""" import math def _lowerCamelCase( a ): __a = [] __a = 2 __a = int(math.sqrt(a ) ) # Size of every segment __a = [True] * (end + 1) __a = [] while start <= end: if temp[start] is True: in_prime.append(a ) for i in range(start * start , end + 1 , a ): __a = False start += 1 prime += in_prime __a = end + 1 __a = min(2 * end , a ) while low <= n: __a = [True] * (high - low + 1) for each in in_prime: __a = math.floor(low / each ) * each if t < low: t += each for j in range(a , high + 1 , a ): __a = False for j in range(len(a ) ): if temp[j] is True: prime.append(j + low ) __a = high + 1 __a = min(high + end , a ) return prime print(sieve(10**6))
268
1
'''simple docstring''' # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A__ : Dict ='''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A__ : Tuple =concatenate_datasets A__ : Dict =DownloadConfig A__ : int =DownloadManager A__ : Union[str, Any] =DownloadMode A__ : Tuple =DownloadConfig A__ : Optional[Any] =DownloadMode A__ : str =DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
70
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A =logging.get_logger(__name__) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase_ = 1_9_2 lowerCamelCase_ = 7_6_8 lowerCamelCase_ = 1_2 lowerCamelCase_ = 3 lowerCamelCase_ = [8_0_0, 1_3_3_3] lowerCamelCase_ = False elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = 3_3_0 lowerCamelCase_ = 1_4 lowerCamelCase_ = 6 lowerCamelCase_ = 1_3_2_0 elif "yolos_s" in yolos_name: lowerCamelCase_ = 3_8_4 lowerCamelCase_ = 1_5_3_6 lowerCamelCase_ = 1_2 lowerCamelCase_ = 6 elif "yolos_b" in yolos_name: lowerCamelCase_ = [8_0_0, 1_3_4_4] lowerCamelCase_ = 9_1 lowerCamelCase_ = "huggingface/label-files" lowerCamelCase_ = "coco-detection-id2label.json" lowerCamelCase_ = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ = in_proj_weight[: config.hidden_size, :] lowerCamelCase_ = in_proj_bias[: config.hidden_size] lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ = in_proj_weight[-config.hidden_size :, :] lowerCamelCase_ = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( lowerCamelCase__ ): if "backbone" in name: lowerCamelCase_ = name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase_ = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase_ = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase_ = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase_ = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase_ = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase_ = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase_ = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase_ = name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowerCamelCase__ ) if "qkv" in key: lowerCamelCase_ = key.split("." ) lowerCamelCase_ = int(key_split[2] ) lowerCamelCase_ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[ dim : dim * 2, : ] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = val return orig_state_dict def lowerCamelCase_ ( ): lowerCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase_ = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): lowerCamelCase_ = get_yolos_config(lowerCamelCase__ ) # load original state_dict lowerCamelCase_ = torch.load(lowerCamelCase__ , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase_ = YolosForObjectDetection(lowerCamelCase__ ) model.eval() lowerCamelCase_ = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase_ = 8_0_0 if yolos_name != "yolos_ti" else 5_1_2 lowerCamelCase_ = YolosImageProcessor(format="coco_detection" , size=lowerCamelCase__ ) lowerCamelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = outputs.logits, outputs.pred_boxes lowerCamelCase_ , lowerCamelCase_ = None, None if yolos_name == "yolos_ti": lowerCamelCase_ = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) lowerCamelCase_ = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase_ = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) lowerCamelCase_ = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase_ = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) lowerCamelCase_ = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) lowerCamelCase_ = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": lowerCamelCase_ = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) lowerCamelCase_ = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: lowerCamelCase_ = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase_ = model_mapping[yolos_name] image_processor.push_to_hub(lowerCamelCase__ , organization="hustvl" ) model.push_to_hub(lowerCamelCase__ , organization="hustvl" ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __A =parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
19
0
"""simple docstring""" from __future__ import annotations class lowercase__ : '''simple docstring''' def __init__( self : str , _UpperCAmelCase : int = 0 ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = key def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int ) -> list[str]: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content] def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : int ) -> list[str]: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content] def lowercase__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : int = 0 ) -> str: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned UpperCAmelCase_ = "" for ch in content: ans += chr(ord(_UpperCAmelCase ) ^ key ) return ans def lowercase__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : int = 0 ) -> str: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned UpperCAmelCase_ = "" for ch in content: ans += chr(ord(_UpperCAmelCase ) ^ key ) return ans def lowercase__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : int = 0 ) -> bool: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) try: with open(_UpperCAmelCase ) as fin, open("encrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_UpperCAmelCase , _UpperCAmelCase ) ) except OSError: return False return True def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : int ) -> bool: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) try: with open(_UpperCAmelCase ) as fin, open("decrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_UpperCAmelCase , _UpperCAmelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
241
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = XCLIPTextConfig() # derive patch size from model name UpperCAmelCase_ = model_name.find("patch" ) UpperCAmelCase_ = int(model_name[start_idx + len("patch" ) : start_idx + len("patch" ) + 2] ) UpperCAmelCase_ = XCLIPVisionConfig(patch_size=lowerCAmelCase__ , num_frames=lowerCAmelCase__ ) if "large" in model_name: UpperCAmelCase_ = 768 UpperCAmelCase_ = 3072 UpperCAmelCase_ = 12 UpperCAmelCase_ = 1024 UpperCAmelCase_ = 4096 UpperCAmelCase_ = 16 UpperCAmelCase_ = 24 UpperCAmelCase_ = 768 UpperCAmelCase_ = 3072 if model_name == "xclip-large-patch14-16-frames": UpperCAmelCase_ = 336 UpperCAmelCase_ = XCLIPConfig.from_text_vision_configs(lowerCAmelCase__ , lowerCAmelCase__ ) if "large" in model_name: UpperCAmelCase_ = 768 return config def a__ ( lowerCAmelCase__ ): # text encoder if name == "token_embedding.weight": UpperCAmelCase_ = name.replace("token_embedding.weight" , "text_model.embeddings.token_embedding.weight" ) if name == "positional_embedding": UpperCAmelCase_ = name.replace("positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "ln_1" in name: UpperCAmelCase_ = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: UpperCAmelCase_ = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: UpperCAmelCase_ = name.replace("c_fc" , "fc1" ) if "c_proj" in name: UpperCAmelCase_ = name.replace("c_proj" , "fc2" ) if name.startswith("transformer.resblocks" ): UpperCAmelCase_ = name.replace("transformer.resblocks" , "text_model.encoder.layers" ) if "attn.out_proj" in name and "message" not in name: UpperCAmelCase_ = name.replace("attn.out_proj" , "self_attn.out_proj" ) if "ln_final" in name: UpperCAmelCase_ = name.replace("ln_final" , "text_model.final_layer_norm" ) # visual encoder if name == "visual.class_embedding": UpperCAmelCase_ = name.replace("visual.class_embedding" , "vision_model.embeddings.class_embedding" ) if name == "visual.positional_embedding": UpperCAmelCase_ = name.replace("visual.positional_embedding" , "vision_model.embeddings.position_embedding.weight" ) if name.startswith("visual.transformer.resblocks" ): UpperCAmelCase_ = name.replace("visual.transformer.resblocks" , "vision_model.encoder.layers" ) if "visual.conv1" in name: UpperCAmelCase_ = name.replace("visual.conv1" , "vision_model.embeddings.patch_embedding" ) if "visual.ln_pre" in name: UpperCAmelCase_ = name.replace("visual.ln_pre" , "vision_model.pre_layernorm" ) if "visual.ln_post" in name: UpperCAmelCase_ = name.replace("visual.ln_post" , "vision_model.post_layernorm" ) if "visual.proj" in name: UpperCAmelCase_ = name.replace("visual.proj" , "visual_projection.weight" ) if "text_projection" in name: UpperCAmelCase_ = name.replace("text_projection" , "text_projection.weight" ) # things on top if "prompts_visual_proj" in name: UpperCAmelCase_ = name.replace("prompts_visual_proj" , "prompts_visual_projection" ) if "prompts_visual_ln" in name: UpperCAmelCase_ = name.replace("prompts_visual_ln" , "prompts_visual_layernorm" ) # mit if name == "mit.positional_embedding": UpperCAmelCase_ = name.replace("positional" , "position" ) if name.startswith("mit.resblocks" ): UpperCAmelCase_ = name.replace("mit.resblocks" , "mit.encoder.layers" ) # prompts generator if name.startswith("prompts_generator.norm" ): UpperCAmelCase_ = name.replace("prompts_generator.norm" , "prompts_generator.layernorm" ) return name def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): for key in orig_state_dict.copy().keys(): UpperCAmelCase_ = orig_state_dict.pop(lowerCAmelCase__ ) if "attn.in_proj" in key: UpperCAmelCase_ = key.split("." ) if key.startswith("visual" ): UpperCAmelCase_ = key_split[3] UpperCAmelCase_ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCAmelCase_ = val[ :dim, : ] UpperCAmelCase_ = val[ dim : dim * 2, : ] UpperCAmelCase_ = val[ -dim:, : ] else: UpperCAmelCase_ = val[ :dim ] UpperCAmelCase_ = val[ dim : dim * 2 ] UpperCAmelCase_ = val[ -dim: ] else: if "weight" in key: UpperCAmelCase_ = val[ :dim, : ] UpperCAmelCase_ = val[ dim : dim * 2, : ] UpperCAmelCase_ = val[ -dim:, : ] else: UpperCAmelCase_ = val[:dim] UpperCAmelCase_ = val[ dim : dim * 2 ] UpperCAmelCase_ = val[-dim:] elif key.startswith("mit" ): UpperCAmelCase_ = key_split[2] UpperCAmelCase_ = config.vision_config.mit_hidden_size if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[dim : dim * 2, :] UpperCAmelCase_ = val[-dim:, :] else: UpperCAmelCase_ = val[:dim] UpperCAmelCase_ = val[dim : dim * 2] UpperCAmelCase_ = val[-dim:] else: UpperCAmelCase_ = key_split[2] UpperCAmelCase_ = config.text_config.hidden_size if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[ dim : dim * 2, : ] UpperCAmelCase_ = val[-dim:, :] else: UpperCAmelCase_ = val[:dim] UpperCAmelCase_ = val[ dim : dim * 2 ] UpperCAmelCase_ = val[-dim:] else: UpperCAmelCase_ = rename_key(lowerCAmelCase__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCAmelCase_ = val.T UpperCAmelCase_ = val return orig_state_dict def a__ ( lowerCAmelCase__ ): if num_frames == 8: UpperCAmelCase_ = "eating_spaghetti_8_frames.npy" elif num_frames == 16: UpperCAmelCase_ = "eating_spaghetti.npy" elif num_frames == 32: UpperCAmelCase_ = "eating_spaghetti_32_frames.npy" UpperCAmelCase_ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename=lowerCAmelCase__ , repo_type="dataset" , ) UpperCAmelCase_ = np.load(lowerCAmelCase__ ) return list(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=False ): UpperCAmelCase_ = { # fully supervised kinetics-400 checkpoints "xclip-base-patch32": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth", "xclip-base-patch32-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth" ), "xclip-base-patch16": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth", "xclip-base-patch16-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth" ), "xclip-large-patch14": "https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb", "xclip-large-patch14-16-frames": "https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f", # fully supervised kinetics-600 checkpoints "xclip-base-patch16-kinetics-600": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth" ), "xclip-base-patch16-kinetics-600-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth" ), "xclip-large-patch14-kinetics-600": "https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be", # few shot "xclip-base-patch16-hmdb-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth" ), "xclip-base-patch16-hmdb-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth" ), "xclip-base-patch16-hmdb-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth" ), "xclip-base-patch16-hmdb-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth" ), "xclip-base-patch16-ucf-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth" ), "xclip-base-patch16-ucf-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth" ), "xclip-base-patch16-ucf-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth" ), "xclip-base-patch16-ucf-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth" ), # zero shot "xclip-base-patch16-zero-shot": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth", } UpperCAmelCase_ = model_to_url[model_name] UpperCAmelCase_ = 8 if "16-frames" in model_name: UpperCAmelCase_ = 16 elif "shot" in model_name: UpperCAmelCase_ = 32 UpperCAmelCase_ = get_xclip_config(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = XCLIPModel(lowerCAmelCase__ ) model.eval() if "drive" in checkpoint_url: UpperCAmelCase_ = "pytorch_model.bin" gdown.cached_download(lowerCAmelCase__ , lowerCAmelCase__ , quiet=lowerCAmelCase__ ) UpperCAmelCase_ = torch.load(lowerCAmelCase__ , map_location="cpu" )["model"] else: UpperCAmelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ )["model"] UpperCAmelCase_ = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = XCLIPModel(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCAmelCase_ = 336 if model_name == "xclip-large-patch14-16-frames" else 224 UpperCAmelCase_ = VideoMAEImageProcessor(size=lowerCAmelCase__ ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32" ) UpperCAmelCase_ = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32" ) UpperCAmelCase_ = XCLIPProcessor(image_processor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) UpperCAmelCase_ = prepare_video(lowerCAmelCase__ ) UpperCAmelCase_ = processor( text=["playing sports", "eating spaghetti", "go shopping"] , videos=lowerCAmelCase__ , return_tensors="pt" , padding=lowerCAmelCase__ ) print("Shape of pixel values:" , inputs.pixel_values.shape ) with torch.no_grad(): UpperCAmelCase_ = model(**lowerCAmelCase__ ) # Verify outputs UpperCAmelCase_ = outputs.logits_per_video UpperCAmelCase_ = logits_per_video.softmax(dim=1 ) print("Probs:" , lowerCAmelCase__ ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCAmelCase_ = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCAmelCase_ = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": UpperCAmelCase_ = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCAmelCase_ = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": UpperCAmelCase_ = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCAmelCase_ = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCAmelCase_ = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCAmelCase_ = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCAmelCase_ = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCAmelCase_ = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCAmelCase_ = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCAmelCase_ = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCAmelCase_ = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCAmelCase_ = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCAmelCase_ = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCAmelCase_ = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(f"""Model name {model_name} not supported""" ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print("Pushing model, processor and slow tokenizer files to the hub..." ) model.push_to_hub(lowerCAmelCase__ , organization="nielsr" ) processor.push_to_hub(lowerCAmelCase__ , organization="nielsr" ) slow_tokenizer.push_to_hub(lowerCAmelCase__ , organization="nielsr" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
241
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __magic_name__: List[str] = logging.get_logger(__name__) @dataclass class snake_case__ ( _lowerCAmelCase ): lowercase__ : Optional[Any] = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **lowerCAmelCase__ ) -> Optional[int]: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __magic_name__ : Optional[Any] = deprecated_arg[3:] __magic_name__ : Union[str, Any] = not kwargs.pop(lowerCAmelCase__ ) logger.warning( F'{deprecated_arg} is depreciated. Please use --no-{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}' ) __magic_name__ : Optional[int] = kwargs.pop("""tpu_name""" , self.tpu_name ) __magic_name__ : Dict = kwargs.pop("""device_idx""" , self.device_idx ) __magic_name__ : List[str] = kwargs.pop("""eager_mode""" , self.eager_mode ) __magic_name__ : int = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**lowerCAmelCase__ ) lowercase__ : str = field( default=_lowerCAmelCase , metadata={'''help''': '''Name of TPU'''} , ) lowercase__ : int = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) lowercase__ : bool = field(default=_lowerCAmelCase , metadata={'''help''': '''Benchmark models in eager model.'''} ) lowercase__ : bool = field( default=_lowerCAmelCase , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def __magic_name__ ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ["""tf"""] ) __magic_name__ : Optional[Any] = None if self.tpu: try: if self.tpu_name: __magic_name__ : int = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: __magic_name__ : int = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: __magic_name__ : Any = None return tpu @cached_property def __magic_name__ ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) __magic_name__ : str = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) __magic_name__ : Any = tf.distribute.OneDeviceStrategy(device=F'/gpu:{self.device_idx}' ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU __magic_name__ : Optional[int] = tf.distribute.OneDeviceStrategy(device=F'/cpu:{self.device_idx}' ) return strategy @property def __magic_name__ ( self ) -> bool: requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def __magic_name__ ( self ) -> "tf.distribute.Strategy": requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def __magic_name__ ( self ) -> Optional[Any]: requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def __magic_name__ ( self ) -> int: requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __magic_name__ ( self ) -> bool: return self.n_gpu > 0
342
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __magic_name__: str = logging.get_logger(__name__) __magic_name__: int = "▁" __magic_name__: List[str] = {"vocab_file": "sentencepiece.bpe.model"} __magic_name__: List[str] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } __magic_name__: Tuple = { "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off __magic_name__: int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class snake_case__ ( _lowerCAmelCase ): lowercase__ : str = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = ['''input_ids''', '''attention_mask'''] lowercase__ : List[int] = [] lowercase__ : List[int] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token __magic_name__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __magic_name__ : Optional[Any] = legacy_behaviour super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) __magic_name__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __magic_name__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __magic_name__ : List[Any] = 1 __magic_name__ : Dict = len(self.sp_model ) __magic_name__ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ ) } __magic_name__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} __magic_name__ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __magic_name__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __magic_name__ : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __magic_name__ : List[Any] = src_lang if src_lang is not None else """eng_Latn""" __magic_name__ : Any = self.lang_code_to_id[self._src_lang] __magic_name__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Any: __magic_name__ : List[Any] = self.__dict__.copy() __magic_name__ : int = None __magic_name__ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __magic_name__ : Any = {} __magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __magic_name__ ( self ) -> str: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __magic_name__ ( self ) -> str: return self._src_lang @src_lang.setter def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) __magic_name__ : Optional[int] = [1] * len(self.prefix_tokens ) __magic_name__ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : str = [self.sep_token_id] __magic_name__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __magic_name__ : Dict = src_lang __magic_name__ : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Tuple = tgt_lang_id return inputs def __magic_name__ ( self ) -> int: __magic_name__ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __magic_name__ : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip() return out_string def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , """wb""" ) as fi: __magic_name__ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding: __magic_name__ : List[str] = src_lang __magic_name__ : Dict = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : str = [self.cur_lang_code] __magic_name__ : List[Any] = [self.eos_token_id] def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : Optional[int] = [self.cur_lang_code] __magic_name__ : Union[str, Any] = [self.eos_token_id]
342
1
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Any = inspect.getfile(accelerate.test_utils ) _snake_case : Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _snake_case : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _snake_case : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def UpperCamelCase_ ( self : int ): '''simple docstring''' print(f"""Found {torch.cuda.device_count()} devices.""" ) _snake_case : Tuple = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase_ ( self : Dict ): '''simple docstring''' print(f"""Found {torch.cuda.device_count()} devices.""" ) _snake_case : Dict = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(f"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : List[str] = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' print(f"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _snake_case : Tuple = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase_ = Accelerator() lowerCAmelCase_ = (accelerator.state.process_index + 2, 10) lowerCAmelCase_ = torch.randint(0, 10, shape).to(accelerator.device) lowerCAmelCase_ = """""" lowerCAmelCase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowerCAmelCase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowerCAmelCase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
260
from __future__ import annotations def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int | None = None , lowerCAmelCase: int | None = None )-> None: if start is None: _snake_case : int = 0 if end is None: _snake_case : Optional[int] = len(lowerCAmelCase ) - 1 if start >= end: return _snake_case : int = (start + end) // 2 slowsort(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) slowsort(lowerCAmelCase , mid + 1 , lowerCAmelCase ) if sequence[end] < sequence[mid]: _snake_case , _snake_case : str = sequence[mid], sequence[end] slowsort(lowerCAmelCase , lowerCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
260
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCamelCase__( A__ , unittest.TestCase): UpperCAmelCase__ : Any = XGLMTokenizer UpperCAmelCase__ : Optional[Any] = XGLMTokenizerFast UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : Any = True def lowerCAmelCase__ ( self: Optional[Any] ): super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase = XGLMTokenizer(snake_case_ , keep_accents=snake_case_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = """<pad>""" __lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(snake_case_ ) , 10_08 ) def lowerCAmelCase__ ( self: Union[str, Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 10_08 ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = XGLMTokenizer(snake_case_ , keep_accents=snake_case_ ) __lowerCamelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(snake_case_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCamelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual( snake_case_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def lowerCAmelCase__ ( self: List[Any] ): return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def lowerCAmelCase__ ( self: Tuple ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(snake_case_ , f.name ) __lowerCamelCase = XGLMTokenizer(f.name , keep_accents=snake_case_ ) __lowerCamelCase = pickle.dumps(snake_case_ ) pickle.loads(snake_case_ ) def lowerCAmelCase__ ( self: Tuple ): if not self.test_rust_tokenizer: return __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = """I was born in 92000, and this is falsé.""" __lowerCamelCase = tokenizer.tokenize(snake_case_ ) __lowerCamelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCamelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) __lowerCamelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = tokenizer.encode(snake_case_ ) __lowerCamelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase__ ( self: int ): __lowerCamelCase = """Hello World!""" __lowerCamelCase = [2, 3_12_27, 44_47, 35] self.assertListEqual(snake_case_ , self.big_tokenizer.encode(snake_case_ ) ) @slow def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off __lowerCamelCase = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(snake_case_ , self.big_tokenizer.encode(snake_case_ ) ) @slow def lowerCAmelCase__ ( self: Optional[Any] ): # fmt: off __lowerCamelCase = { """input_ids""": [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""facebook/xglm-564M""" , padding=snake_case_ , )
12
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE_ = '''bart''' SCREAMING_SNAKE_CASE_ = True @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __lowerCAmelCase = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __lowerCAmelCase = qar_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = (None, None) if MODEL_TYPE == "bart": __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __lowerCAmelCase = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __lowerCAmelCase = sas_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = faiss.StandardGpuResources() __lowerCAmelCase = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __lowerCAmelCase = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) __lowerCAmelCase = faiss.index_cpu_to_gpu(_lowerCAmelCase , 1 , _lowerCAmelCase ) wikiaab_gpu_index_flat.add(_lowerCAmelCase ) # TODO fix for larger GPU else: __lowerCAmelCase , __lowerCAmelCase = (None, None) __lowerCAmelCase = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): __lowerCAmelCase = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __lowerCAmelCase = elia["""train_eli5"""] __lowerCAmelCase = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCAmelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_indexes() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_models() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_train_data() def lowercase (_lowerCAmelCase , _lowerCAmelCase=10 ): __lowerCAmelCase = embed_questions_for_retrieval([question] , _lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase , __lowerCAmelCase = eli5_train_q_index.search(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = [elia_train[int(_lowerCAmelCase )] for i in I[0]] return nn_examples def lowercase (_lowerCAmelCase , _lowerCAmelCase="wiki40b" , _lowerCAmelCase="dense" , _lowerCAmelCase=10 ): if source == "none": __lowerCAmelCase , __lowerCAmelCase = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCAmelCase , __lowerCAmelCase = query_qa_dense_index( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: __lowerCAmelCase , __lowerCAmelCase = query_es_index( _lowerCAmelCase , _lowerCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCAmelCase , ) __lowerCAmelCase = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __lowerCAmelCase = """question: {} context: {}""".format(_lowerCAmelCase , _lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCAmelCase : None), } ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=64 , _lowerCAmelCase=256 , _lowerCAmelCase=False , _lowerCAmelCase=2 , _lowerCAmelCase=0.95 , _lowerCAmelCase=0.8 ): with torch.no_grad(): __lowerCAmelCase = qa_sas_generate( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_answers=1 , num_beams=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase , do_sample=_lowerCAmelCase , temp=_lowerCAmelCase , top_p=_lowerCAmelCase , top_k=_lowerCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar SCREAMING_SNAKE_CASE_ = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' SCREAMING_SNAKE_CASE_ = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE_ = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE_ = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Demo options''') if demo_options: SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', action_list, index=3, ) SCREAMING_SNAKE_CASE_ = action_list.index(action_st) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) SCREAMING_SNAKE_CASE_ = show_type == '''Show full text of passages''' else: SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: SCREAMING_SNAKE_CASE_ = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: SCREAMING_SNAKE_CASE_ = '''wiki40b''' SCREAMING_SNAKE_CASE_ = '''dense''' SCREAMING_SNAKE_CASE_ = '''beam''' SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 64 SCREAMING_SNAKE_CASE_ = 256 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Generation options''') if generate_options: SCREAMING_SNAKE_CASE_ = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE_ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = None # start main text SCREAMING_SNAKE_CASE_ = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] SCREAMING_SNAKE_CASE_ = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE_ = st.text_input('''Enter your question here:''', '''''') else: SCREAMING_SNAKE_CASE_ = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''dense''', n_results=10) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''sparse''', n_results=10) SCREAMING_SNAKE_CASE_ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE_ = support_list[:10] SCREAMING_SNAKE_CASE_ = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE_ = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) SCREAMING_SNAKE_CASE_ = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE_ = '''[{}]({})'''.format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE_ = sec_titles.split(''' & ''') SCREAMING_SNAKE_CASE_ = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE_ = find_nearest_training(question) SCREAMING_SNAKE_CASE_ = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) SCREAMING_SNAKE_CASE_ = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) SCREAMING_SNAKE_CASE_ = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
0
"""simple docstring""" # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def _snake_case ( UpperCAmelCase_ : Union[str, Any] ): A__ = [False] * len(UpperCAmelCase_ ) A__ = [-1] * len(UpperCAmelCase_ ) def dfs(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ): A__ = True A__ = c for u in graph[v]: if not visited[u]: dfs(UpperCAmelCase_ , 1 - c ) for i in range(len(UpperCAmelCase_ ) ): if not visited[i]: dfs(UpperCAmelCase_ , 0 ) for i in range(len(UpperCAmelCase_ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph SCREAMING_SNAKE_CASE_ : List[Any] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
69
"""simple docstring""" import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class a ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = tempfile.mkdtemp() A__ = SamImageProcessor() A__ = SamProcessor(UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self: Optional[int] , **UpperCamelCase: List[str] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase ).image_processor def UpperCamelCase ( self: List[str] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self: Any ): """simple docstring""" A__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_image_processor(do_normalize=UpperCamelCase , padding_value=1.0 ) A__ = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.get_image_processor() A__ = SamProcessor(image_processor=UpperCamelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(UpperCamelCase , return_tensors="""np""" ) A__ = processor(images=UpperCamelCase , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def UpperCamelCase ( self: Any ): """simple docstring""" A__ = self.get_image_processor() A__ = SamProcessor(image_processor=UpperCamelCase ) A__ = [torch.ones((1, 3, 5, 5) )] A__ = [[17_64, 26_46]] A__ = [[6_83, 10_24]] A__ = processor.post_process_masks(UpperCamelCase , UpperCamelCase , UpperCamelCase ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A__ = processor.post_process_masks( UpperCamelCase , torch.tensor(UpperCamelCase ) , torch.tensor(UpperCamelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np A__ = [np.ones((1, 3, 5, 5) )] A__ = processor.post_process_masks(UpperCamelCase , np.array(UpperCamelCase ) , np.array(UpperCamelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A__ = [[1, 0], [0, 1]] with self.assertRaises(UpperCamelCase ): A__ = processor.post_process_masks(UpperCamelCase , np.array(UpperCamelCase ) , np.array(UpperCamelCase ) ) @require_vision @require_tf class a ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = tempfile.mkdtemp() A__ = SamImageProcessor() A__ = SamProcessor(UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self: Optional[int] , **UpperCamelCase: str ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase ).image_processor def UpperCamelCase ( self: List[str] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_image_processor(do_normalize=UpperCamelCase , padding_value=1.0 ) A__ = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase ) def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.get_image_processor() A__ = SamProcessor(image_processor=UpperCamelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(UpperCamelCase , return_tensors="""np""" ) A__ = processor(images=UpperCamelCase , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def UpperCamelCase ( self: Any ): """simple docstring""" A__ = self.get_image_processor() A__ = SamProcessor(image_processor=UpperCamelCase ) A__ = [tf.ones((1, 3, 5, 5) )] A__ = [[17_64, 26_46]] A__ = [[6_83, 10_24]] A__ = processor.post_process_masks(UpperCamelCase , UpperCamelCase , UpperCamelCase , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A__ = processor.post_process_masks( UpperCamelCase , tf.convert_to_tensor(UpperCamelCase ) , tf.convert_to_tensor(UpperCamelCase ) , return_tensors="""tf""" , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np A__ = [np.ones((1, 3, 5, 5) )] A__ = processor.post_process_masks( UpperCamelCase , np.array(UpperCamelCase ) , np.array(UpperCamelCase ) , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A__ = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): A__ = processor.post_process_masks( UpperCamelCase , np.array(UpperCamelCase ) , np.array(UpperCamelCase ) , return_tensors="""tf""" ) @require_vision @require_torchvision class a ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = tempfile.mkdtemp() A__ = SamImageProcessor() A__ = SamProcessor(UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self: Tuple , **UpperCamelCase: Tuple ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase ).image_processor def UpperCamelCase ( self: Optional[int] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.get_image_processor() A__ = SamProcessor(image_processor=UpperCamelCase ) A__ = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) A__ = [tf.convert_to_tensor(UpperCamelCase )] A__ = [torch.tensor(UpperCamelCase )] A__ = [[17_64, 26_46]] A__ = [[6_83, 10_24]] A__ = processor.post_process_masks( UpperCamelCase , UpperCamelCase , UpperCamelCase , return_tensors="""tf""" ) A__ = processor.post_process_masks( UpperCamelCase , UpperCamelCase , UpperCamelCase , return_tensors="""pt""" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def UpperCamelCase ( self: Dict ): """simple docstring""" A__ = self.get_image_processor() A__ = SamProcessor(image_processor=UpperCamelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(UpperCamelCase , return_tensors="""pt""" )["""pixel_values"""].numpy() A__ = processor(images=UpperCamelCase , return_tensors="""pt""" )["""pixel_values"""].numpy() A__ = image_processor(UpperCamelCase , return_tensors="""tf""" )["""pixel_values"""].numpy() A__ = processor(images=UpperCamelCase , return_tensors="""tf""" )["""pixel_values"""].numpy() self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase ) ) self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase ) ) self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase ) )
69
1
def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] __UpperCamelCase :List[Any] = grid[0] for row_n in range(1 , len(SCREAMING_SNAKE_CASE ) ): __UpperCamelCase :Dict = grid[row_n] __UpperCamelCase :List[str] = fill_row(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = grid[row_n] return grid[-1][-1] def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(SCREAMING_SNAKE_CASE ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
43
import random def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[Any] = a[left_index] __UpperCamelCase :Any = left_index + 1 for j in range(left_index + 1 , SCREAMING_SNAKE_CASE ): if a[j] < pivot: __UpperCamelCase , __UpperCamelCase :str = a[i], a[j] i += 1 __UpperCamelCase , __UpperCamelCase :Optional[int] = a[i - 1], a[left_index] return i - 1 def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if left < right: __UpperCamelCase :int = random.randint(SCREAMING_SNAKE_CASE , right - 1 ) __UpperCamelCase , __UpperCamelCase :List[str] = ( a[left], a[pivot], ) # switches the pivot with the left most bound __UpperCamelCase :Dict = partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) quick_sort_random( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # recursive quicksort to the left of the pivot point quick_sort_random( SCREAMING_SNAKE_CASE , pivot_index + 1 , SCREAMING_SNAKE_CASE ) # recursive quicksort to the right of the pivot point def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Tuple = input('''Enter numbers separated by a comma:\n''' ).strip() __UpperCamelCase :Union[str, Any] = [int(SCREAMING_SNAKE_CASE ) for item in user_input.split(''',''' )] quick_sort_random(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) ) print(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
43
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __lowerCAmelCase = False class __a ( unittest.TestCase ): pass @nightly @require_torch_gpu class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Dict = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: List[Any] = '''A painting of a squirrel eating a burger ''' lowercase__: List[Any] = torch.manual_seed(0 ) lowercase__: Optional[int] = pipe( prompt=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase__ ) lowercase__: str = VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: Optional[Any] = generator.manual_seed(0 ) lowercase__: Optional[Any] = pipe( prompt=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: Union[str, Any] = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: Dict = '''A painting of a squirrel eating a burger ''' lowercase__: int = torch.manual_seed(0 ) lowercase__: Any = pipe( prompt=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images lowercase__: List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__: str = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
352
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def snake_case_ ( snake_case , snake_case , snake_case ) -> Any: lowercase__: Dict = os.path.abspath(snake_case ) logger.info(f'Converting TensorFlow checkpoint from {tf_path}' ) # Load weights from TF model lowercase__: Optional[Any] = tf.train.list_variables(snake_case ) lowercase__: List[Any] = [] lowercase__: Tuple = [] lowercase__: int = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") lowercase__: Union[str, Any] = full_name.split('/' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'Skipping non-model layer {full_name}' ) continue if "optimizer" in full_name: logger.info(f'Skipping optimization layer {full_name}' ) continue if name[0] == "model": # ignore initial 'model' lowercase__: str = name[1:] # figure out how many levels deep the name is lowercase__: Optional[Any] = 0 for _name in name: if _name.startswith('layer_with_weights' ): depth += 1 else: break layer_depth.append(snake_case ) # read data lowercase__: Optional[Any] = tf.train.load_variable(snake_case , snake_case ) names.append('/'.join(snake_case ) ) arrays.append(snake_case ) logger.info(f'Read a total of {len(snake_case ):,} layers' ) # Sanity check if len(set(snake_case ) ) != 1: raise ValueError(f'Found layer names with different depths (layer depth {list(set(snake_case ) )})' ) lowercase__: Any = list(set(snake_case ) )[0] if layer_depth != 1: raise ValueError( 'The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP' ' heads.' ) # convert layers logger.info('Converting weights...' ) for full_name, array in zip(snake_case , snake_case ): lowercase__: Optional[int] = full_name.split('/' ) lowercase__: List[Any] = model lowercase__: Any = [] for i, m_name in enumerate(snake_case ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('layer_with_weights' ): lowercase__: Any = int(m_name.split('-' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['embeddings', 'LayerNorm'] ) lowercase__: str = getattr(snake_case , 'embeddings' ) lowercase__: int = getattr(snake_case , 'LayerNorm' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['encoder', 'layer', str(layer_num - 4 )] ) lowercase__: int = getattr(snake_case , 'encoder' ) lowercase__: List[str] = getattr(snake_case , 'layer' ) lowercase__: Union[str, Any] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['pooler', 'dense'] ) lowercase__: Tuple = getattr(snake_case , 'pooler' ) lowercase__: Tuple = getattr(snake_case , 'dense' ) elif m_name == "embeddings": trace.append('embeddings' ) lowercase__: Union[str, Any] = getattr(snake_case , 'embeddings' ) if layer_num == 0: trace.append('word_embeddings' ) lowercase__: Union[str, Any] = getattr(snake_case , 'word_embeddings' ) elif layer_num == 1: trace.append('position_embeddings' ) lowercase__: Dict = getattr(snake_case , 'position_embeddings' ) elif layer_num == 2: trace.append('token_type_embeddings' ) lowercase__: Optional[Any] = getattr(snake_case , 'token_type_embeddings' ) else: raise ValueError(f'Unknown embedding layer with name {full_name}' ) trace.append('weight' ) lowercase__: List[str] = getattr(snake_case , 'weight' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['attention', 'self'] ) lowercase__: int = getattr(snake_case , 'attention' ) lowercase__: Union[str, Any] = getattr(snake_case , 'self' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['attention', 'output', 'LayerNorm'] ) lowercase__: str = getattr(snake_case , 'attention' ) lowercase__: Optional[Any] = getattr(snake_case , 'output' ) lowercase__: List[Any] = getattr(snake_case , 'LayerNorm' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['attention', 'output', 'dense'] ) lowercase__: Optional[Any] = getattr(snake_case , 'attention' ) lowercase__: Optional[int] = getattr(snake_case , 'output' ) lowercase__: Optional[Any] = getattr(snake_case , 'dense' ) elif m_name == "_output_dense": # output dense trace.extend(['output', 'dense'] ) lowercase__: Union[str, Any] = getattr(snake_case , 'output' ) lowercase__: List[Any] = getattr(snake_case , 'dense' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['output', 'LayerNorm'] ) lowercase__: Any = getattr(snake_case , 'output' ) lowercase__: str = getattr(snake_case , 'LayerNorm' ) elif m_name == "_key_dense": # attention key trace.append('key' ) lowercase__: Tuple = getattr(snake_case , 'key' ) elif m_name == "_query_dense": # attention query trace.append('query' ) lowercase__: List[str] = getattr(snake_case , 'query' ) elif m_name == "_value_dense": # attention value trace.append('value' ) lowercase__: Optional[int] = getattr(snake_case , 'value' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['intermediate', 'dense'] ) lowercase__: Any = getattr(snake_case , 'intermediate' ) lowercase__: str = getattr(snake_case , 'dense' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('output' ) lowercase__: Union[str, Any] = getattr(snake_case , 'output' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('bias' ) lowercase__: str = getattr(snake_case , 'bias' ) elif m_name in ["kernel", "gamma"]: trace.append('weight' ) lowercase__: Tuple = getattr(snake_case , 'weight' ) else: logger.warning(f'Ignored {m_name}' ) # for certain layers reshape is necessary lowercase__: Any = '.'.join(snake_case ) if re.match(R'(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)' , snake_case ) or re.match( R'(\S+)\.attention\.output\.dense\.weight' , snake_case ): lowercase__: Union[str, Any] = array.reshape(pointer.data.shape ) if "kernel" in full_name: lowercase__: str = array.transpose() if pointer.shape == array.shape: lowercase__: Union[str, Any] = torch.from_numpy(snake_case ) else: raise ValueError( f'Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:' f' {array.shape}' ) logger.info(f'Successfully set variable {full_name} to PyTorch layer {trace}' ) return model def snake_case_ ( snake_case , snake_case , snake_case ) -> Any: # Instantiate model logger.info(f'Loading model based on config from {config_path}...' ) lowercase__: int = BertConfig.from_json_file(snake_case ) lowercase__: Tuple = BertModel(snake_case ) # Load weights from checkpoint logger.info(f'Loading weights from checkpoint {tf_checkpoint_path}...' ) load_tfa_weights_in_bert(snake_case , snake_case , snake_case ) # Save pytorch-model logger.info(f'Saving PyTorch model to {pytorch_dump_path}...' ) torch.save(model.state_dict() , snake_case ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) __lowerCAmelCase = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
288
0
"""simple docstring""" from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _snake_case ( _snake_case : Dict , _snake_case : int ): lowerCAmelCase : Dict = k_size // 2 lowerCAmelCase, lowerCAmelCase : int = mgrid[0 - center : k_size - center, 0 - center : k_size - center] lowerCAmelCase : Dict = 1 / (2 * pi * sigma) * exp(-(square(_snake_case ) + square(_snake_case )) / (2 * square(_snake_case )) ) return g def _snake_case ( _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[str] ): lowerCAmelCase, lowerCAmelCase : Optional[Any] = image.shape[0], image.shape[1] # dst image height and width lowerCAmelCase : str = height - k_size + 1 lowerCAmelCase : Any = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows lowerCAmelCase : int = zeros((dst_height * dst_width, k_size * k_size) ) lowerCAmelCase : Optional[int] = 0 for i, j in product(range(_snake_case ) , range(_snake_case ) ): lowerCAmelCase : Union[str, Any] = ravel(image[i : i + k_size, j : j + k_size] ) lowerCAmelCase : List[str] = window row += 1 # turn the kernel into shape(k*k, 1) lowerCAmelCase : Dict = gen_gaussian_kernel(_snake_case , _snake_case ) lowerCAmelCase : Union[str, Any] = ravel(_snake_case ) # reshape and get the dst image lowerCAmelCase : Any = dot(_snake_case , _snake_case ).reshape(_snake_case , _snake_case ).astype(_snake_case ) return dst if __name__ == "__main__": # read original image snake_case__ : Dict = imread(R'''../image_data/lena.jpg''') # turn image in gray scale value snake_case__ : int = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size snake_case__ : Optional[int] = gaussian_filter(gray, 3, sigma=1) snake_case__ : Union[str, Any] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
60
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __lowerCAmelCase = logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class __a ( __UpperCamelCase ): def __init__( self , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' lowercase__: int = {} if "candidate_labels" in kwargs: lowercase__: Dict = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: lowercase__: List[Any] = kwargs['hypothesis_template'] return preprocess_params, {}, {} def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__="This is a photo of {}." ) -> int: '''simple docstring''' lowercase__: Optional[int] = load_image(lowerCAmelCase__ ) lowercase__: Dict = self.image_processor(images=[image] , return_tensors=self.framework ) lowercase__: Tuple = candidate_labels lowercase__: List[str] = [hypothesis_template.format(lowerCAmelCase__ ) for x in candidate_labels] lowercase__: Optional[Any] = self.tokenizer(lowerCAmelCase__ , return_tensors=self.framework , padding=lowerCAmelCase__ ) lowercase__: str = [text_inputs] return inputs def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: str = model_inputs.pop('candidate_labels' ) lowercase__: List[str] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , lowerCAmelCase__ ): lowercase__: Any = text_inputs[0] else: # Batching case. lowercase__: Optional[int] = text_inputs[0][0] lowercase__: Tuple = self.model(**lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__: Any = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' lowercase__: Tuple = model_outputs.pop('candidate_labels' ) lowercase__: Dict = model_outputs['logits'][0] if self.framework == "pt": lowercase__: Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__: Dict = probs.tolist() if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase__: Dict = [scores] elif self.framework == "tf": lowercase__: Optional[int] = stable_softmax(lowerCAmelCase__ , axis=-1 ) lowercase__: Union[str, Any] = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) lowercase__: List[Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(lowerCAmelCase__ , lowerCAmelCase__ ) , key=lambda lowerCAmelCase__ : -x[0] ) ] return result
196
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __a = logging.get_logger(__name__) __a = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __SCREAMING_SNAKE_CASE ( a_ ): A : List[Any] = "gptj" A : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , SCREAMING_SNAKE_CASE__=50400 , SCREAMING_SNAKE_CASE__=2048 , SCREAMING_SNAKE_CASE__=4096 , SCREAMING_SNAKE_CASE__=28 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=64 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="gelu_new" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=50256 , SCREAMING_SNAKE_CASE__=50256 , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ , ): lowercase : Dict = vocab_size lowercase : List[Any] = n_positions lowercase : Optional[int] = n_embd lowercase : List[Any] = n_layer lowercase : int = n_head lowercase : Any = n_inner lowercase : Optional[Any] = rotary_dim lowercase : Optional[Any] = activation_function lowercase : Any = resid_pdrop lowercase : str = embd_pdrop lowercase : int = attn_pdrop lowercase : Dict = layer_norm_epsilon lowercase : Any = initializer_range lowercase : List[Any] = use_cache lowercase : Union[str, Any] = bos_token_id lowercase : Any = eos_token_id super().__init__( bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( a_ ): def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "default" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , ): super().__init__(SCREAMING_SNAKE_CASE__ , task=SCREAMING_SNAKE_CASE__ , patching_specs=SCREAMING_SNAKE_CASE__ , use_past=SCREAMING_SNAKE_CASE__ ) if not getattr(self._config , '''pad_token_id''' , SCREAMING_SNAKE_CASE__ ): # TODO: how to do that better? lowercase : int = 0 @property def __lowerCamelCase ( self ): lowercase : Any = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE__ , direction='''inputs''' ) lowercase : Any = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase : str = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __lowerCamelCase ( self ): return self._config.n_layer @property def __lowerCamelCase ( self ): return self._config.n_head def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , ): lowercase : Tuple = super(SCREAMING_SNAKE_CASE__ , self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , is_pair=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) # We need to order the input in the way they appears in the forward() lowercase : Dict = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase , lowercase : List[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase : Optional[Any] = seqlen + 2 lowercase : Tuple = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase : int = [ (torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ )) for _ in range(self.num_layers ) ] lowercase : int = common_inputs['''attention_mask'''] if self.use_past: lowercase : Union[str, Any] = ordered_inputs['''attention_mask'''].dtype lowercase : Dict = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ )] , dim=1 ) return ordered_inputs @property def __lowerCamelCase ( self ): return 13
350
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self ): lowercase : int = 0 @slow def __lowerCamelCase ( self ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowercase : Optional[Any] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(SCREAMING_SNAKE_CASE__ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowercase : str = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(SCREAMING_SNAKE_CASE__ ) , 0 ) def __lowerCamelCase ( self ): lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def __lowerCamelCase ( self ): lowercase : Any = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def __lowerCamelCase ( self ): lowercase : Union[str, Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Check that tokenizer_type ≠ model_type lowercase : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def __lowerCamelCase ( self ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''vocab.txt''' ) ) lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , tokenizer_type='''bert''' , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''merges.txt''' ) ) lowercase : Any = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , tokenizer_type='''gpt2''' , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_tokenizers def __lowerCamelCase ( self ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''vocab.txt''' ) ) lowercase : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , tokenizer_type='''bert''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''merges.txt''' ) ) lowercase : int = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , tokenizer_type='''gpt2''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def __lowerCamelCase ( self ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowercase : Union[str, Any] = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , SCREAMING_SNAKE_CASE__ ) else: self.assertEqual(tokenizer.do_lower_case , SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def __lowerCamelCase ( self ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): lowercase : str = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def __lowerCamelCase ( self ): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai lowercase : Any = TOKENIZER_MAPPING.values() lowercase : Tuple = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(SCREAMING_SNAKE_CASE__ ) @require_tokenizers def __lowerCamelCase ( self ): self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , SCREAMING_SNAKE_CASE__ ) @require_tokenizers def __lowerCamelCase ( self ): lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = '''Hello, world. How are you?''' lowercase : Any = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertEqual('''[UNK]''' , tokens[0] ) lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def __lowerCamelCase ( self ): lowercase : int = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def __lowerCamelCase ( self ): lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Any = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def __lowerCamelCase ( self ): lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): # Check we can load the tokenizer config of an online model. lowercase : Optional[Any] = get_tokenizer_config('''bert-base-cased''' ) lowercase : str = config.pop('''_commit_hash''' , SCREAMING_SNAKE_CASE__ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(SCREAMING_SNAKE_CASE__ , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowercase : Union[str, Any] = get_tokenizer_config(SCREAMING_SNAKE_CASE__ ) self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowercase : str = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = get_tokenizer_config(SCREAMING_SNAKE_CASE__ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def __lowerCamelCase ( self ): try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE__ ) AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE__ ): AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ ) lowercase : int = CustomTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : str = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def __lowerCamelCase ( self ): try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE__ ) # Can register in two steps AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , fast_tokenizer_class=SCREAMING_SNAKE_CASE__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ , fast_tokenizer_class=SCREAMING_SNAKE_CASE__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE__ ): AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , fast_tokenizer_class=SCREAMING_SNAKE_CASE__ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowercase : Union[str, Any] = BertTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE__ ) bert_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = CustomTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __lowerCamelCase ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowercase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowercase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def __lowerCamelCase ( self ): class __SCREAMING_SNAKE_CASE ( A__ ): A : str = False class __SCREAMING_SNAKE_CASE ( A__ ): A : Dict = NewTokenizer A : Optional[int] = False try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE__ ) AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ ) AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , fast_tokenizer_class=SCREAMING_SNAKE_CASE__ ) # If remote code is not set, the default is to use local lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowercase : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowercase : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowercase : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) lowercase : List[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __lowerCamelCase ( self ): lowercase : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowercase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __lowerCamelCase ( self ): with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , '''bert-base is not a local folder and is not a valid model identifier''' ): lowercase : List[Any] = AutoTokenizer.from_pretrained('''bert-base''' ) def __lowerCamelCase ( self ): with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , revision='''aaaaaa''' ) def __lowerCamelCase ( self ): # Make sure we have cached the tokenizer. lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: lowercase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
173
0
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def SCREAMING_SNAKE_CASE_ ( *__A : str , __A : Optional[Union[Dict, Any]] = None , __A : Tuple=True , __A : int=2 ) -> Optional[Any]: """simple docstring""" from .. import __version__ a_ : Dict = take_from a_ : List[str] = () if not isinstance(args[0] , __A ): a_ : Optional[Any] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__A ).base_version ) >= version.parse(__A ): raise ValueError( F"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" F""" version {__version__} is >= {version_name}""" ) a_ : Optional[Any] = None if isinstance(__A , __A ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__A ),) a_ : Optional[int] = F"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__A , __A ): values += (getattr(__A , __A ),) a_ : int = F"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: a_ : Union[str, Any] = F"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: a_ : str = warning + ' ' if standard_warn else '' warnings.warn(warning + message , __A , stacklevel=__A ) if isinstance(__A , __A ) and len(__A ) > 0: a_ : List[Any] = inspect.getouterframes(inspect.currentframe() )[1] a_ : Dict = call_frame.filename a_ : Union[str, Any] = call_frame.lineno a_ : Union[str, Any] = call_frame.function a_ , a_ : Dict = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__A ) == 0: return elif len(__A ) == 1: return values[0] return values
32
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) __A =getLogger(__name__) def a ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 8 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : Any="val" , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Any=False , _UpperCAmelCase : Union[str, Any]="summarization" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : Dict = None , _UpperCAmelCase : Dict="" , **_UpperCAmelCase : List[str] , ): '''simple docstring''' __UpperCAmelCase : Any = str(_UpperCAmelCase ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = Path(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = save_dir.joinpath(f'rank_{local_rank}_output.json' ) torch.cuda.set_device(_UpperCAmelCase ) __UpperCAmelCase : int = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).cuda() if fpaa: __UpperCAmelCase : Any = model.half() # determine if we need to increase num_beams use_task_specific_params(_UpperCAmelCase , _UpperCAmelCase ) # update config with task specific params __UpperCAmelCase : List[str] = generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: __UpperCAmelCase : Any = num_return_sequences __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(_UpperCAmelCase ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. if max_source_length is None: __UpperCAmelCase : Optional[Any] = tokenizer.model_max_length if prefix is None: __UpperCAmelCase : str = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' __UpperCAmelCase : Union[str, Any] = SeqaSeqDataset( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , max_target_length=10_24 , type_path=_UpperCAmelCase , n_obs=_UpperCAmelCase , prefix=_UpperCAmelCase , **_UpperCAmelCase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. __UpperCAmelCase : str = ds.make_sortish_sampler(_UpperCAmelCase , distributed=_UpperCAmelCase , add_extra_examples=_UpperCAmelCase , shuffle=_UpperCAmelCase ) __UpperCAmelCase : List[Any] = DataLoader(_UpperCAmelCase , sampler=_UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=ds.collate_fn ) __UpperCAmelCase : List[Any] = [] for batch in tqdm(_UpperCAmelCase ): __UpperCAmelCase : str = model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=_UpperCAmelCase , num_beams=_UpperCAmelCase , **_UpperCAmelCase , ) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) __UpperCAmelCase : List[str] = batch['''ids'''] if num_return_sequences > 1: __UpperCAmelCase : Any = chunks(_UpperCAmelCase , _UpperCAmelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(_UpperCAmelCase ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(_UpperCAmelCase , _UpperCAmelCase ) return results, sampler.num_replicas def a ( ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=_UpperCAmelCase , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=_UpperCAmelCase , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=_UpperCAmelCase , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=_UpperCAmelCase , default=_UpperCAmelCase ) parser.add_argument( '''--type_path''' , type=_UpperCAmelCase , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=_UpperCAmelCase , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=_UpperCAmelCase , default=8 , required=_UpperCAmelCase , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=_UpperCAmelCase , default=-1 , required=_UpperCAmelCase , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=_UpperCAmelCase , default=1 , required=_UpperCAmelCase , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=_UpperCAmelCase , default=6_00 , required=_UpperCAmelCase , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase ) parser.add_argument('''--tgt_lang''' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase ) parser.add_argument( '''--prefix''' , type=_UpperCAmelCase , required=_UpperCAmelCase , default=_UpperCAmelCase , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) __UpperCAmelCase : Any = time.time() __UpperCAmelCase , __UpperCAmelCase : Any = parser.parse_known_args() __UpperCAmelCase : List[Any] = parse_numeric_n_bool_cl_kwargs(_UpperCAmelCase ) if generate_kwargs and args.local_rank <= 0: print(f'parsed the following generate kwargs: {generate_kwargs}' ) __UpperCAmelCase : Union[str, Any] = Path(args.save_dir + '''_tmp''' ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) # this handles locking. __UpperCAmelCase : int = list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(f'Found files at {json_save_dir} please move or remove them.' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. __UpperCAmelCase : List[Any] = {} if args.src_lang is not None: __UpperCAmelCase : List[str] = args.src_lang if args.tgt_lang is not None: __UpperCAmelCase : List[Any] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=_UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : int = eval_data_dir( args.data_dir , _UpperCAmelCase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=_UpperCAmelCase , **_UpperCAmelCase , ) if args.local_rank <= 0: __UpperCAmelCase : int = Path(args.save_dir ) save_dir.mkdir(exist_ok=_UpperCAmelCase ) __UpperCAmelCase : List[str] = gather_results_from_each_node(_UpperCAmelCase , _UpperCAmelCase , args.sync_timeout ) __UpperCAmelCase : List[Any] = combine_partial_results(_UpperCAmelCase ) if args.num_return_sequences > 1: __UpperCAmelCase : int = save_dir.joinpath('''pseudolabel_results.json''' ) print(f'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' ) save_json(_UpperCAmelCase , _UpperCAmelCase ) return __UpperCAmelCase : str = Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(_UpperCAmelCase ) as f: __UpperCAmelCase : int = [x.rstrip() for x in f.readlines()][: len(_UpperCAmelCase )] # Calculate metrics, save metrics, and save _generations.txt __UpperCAmelCase : Optional[Any] = '''translation''' in args.task __UpperCAmelCase : Optional[int] = calculate_bleu if calc_bleu else calculate_rouge __UpperCAmelCase : Union[str, Any] = '''bleu''' if calc_bleu else '''rouge''' __UpperCAmelCase : Dict = score_fn(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = len(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = time.time() - start_time __UpperCAmelCase : List[str] = round(runtime / metrics['''n_obs'''] , 4 ) __UpperCAmelCase : List[str] = num_replicas # TODO(@stas00): add whatever metadata to metrics __UpperCAmelCase : List[Any] = save_dir.joinpath(f'{args.type_path}_{metric_name}.json' ) save_json(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase ) print(_UpperCAmelCase ) write_txt_file(_UpperCAmelCase , save_dir.joinpath(f'{args.type_path}_generations.txt' ) ) if args.debug: write_txt_file(_UpperCAmelCase , save_dir.joinpath(f'{args.type_path}.target' ) ) else: shutil.rmtree(_UpperCAmelCase ) def a ( _UpperCAmelCase : int ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [] for partial_result in partial_results: records.extend(_UpperCAmelCase ) __UpperCAmelCase : List[str] = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["id"] ) __UpperCAmelCase : Union[str, Any] = [x['''pred'''] for x in records] return preds def a ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = time.time() logger.info('''waiting for all nodes to finish''' ) __UpperCAmelCase : Any = None while (time.time() - start_wait) < timeout: __UpperCAmelCase : List[Any] = list(save_dir.glob('''rank_*.json''' ) ) if len(_UpperCAmelCase ) < num_replicas: continue try: # make sure all json files are fully saved __UpperCAmelCase : Union[str, Any] = lmap(_UpperCAmelCase , _UpperCAmelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
226
0
'''simple docstring''' import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) snake_case_ : Optional[Any] = 'bert-base-cased' snake_case_ : Any = 'fp16' snake_case_ : Optional[Any] = 'bf16' snake_case_ : Dict = [FPaa, BFaa] @require_fsdp @require_cuda class lowercase__ ( __UpperCamelCase ): def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' super().setUp() _UpperCamelCase : int = dict( ACCELERATE_USE_FSDP='true' ,MASTER_ADDR='localhost' ,MASTER_PORT='10999' ,RANK='0' ,LOCAL_RANK='0' ,WORLD_SIZE='1' ,) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(_lowerCAmelCase ): _UpperCamelCase : str = self.dist_env.copy() _UpperCamelCase : int = F'{i + 1}' _UpperCamelCase : List[str] = strategy with mockenv_context(**_lowerCAmelCase ): _UpperCamelCase : Any = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy ,ShardingStrategy(i + 1 ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(_lowerCAmelCase ): _UpperCamelCase : int = self.dist_env.copy() _UpperCamelCase : int = prefetch_policy with mockenv_context(**_lowerCAmelCase ): _UpperCamelCase : Union[str, Any] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch ,BackwardPrefetch(i + 1 ) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(_lowerCAmelCase ): _UpperCamelCase : Union[str, Any] = self.dist_env.copy() _UpperCamelCase : Any = state_dict_type with mockenv_context(**_lowerCAmelCase ): _UpperCamelCase : List[Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type ,StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = AutoModel.from_pretrained(_lowerCAmelCase ) for policy in FSDP_AUTO_WRAP_POLICY: _UpperCamelCase : str = self.dist_env.copy() _UpperCamelCase : List[str] = policy if policy == "TRANSFORMER_BASED_WRAP": _UpperCamelCase : List[str] = """BertLayer""" elif policy == "SIZE_BASED_WRAP": _UpperCamelCase : str = """2000""" with mockenv_context(**_lowerCAmelCase ): _UpperCamelCase : List[Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_lowerCAmelCase ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) _UpperCamelCase : int = self.dist_env.copy() _UpperCamelCase : Any = """TRANSFORMER_BASED_WRAP""" _UpperCamelCase : Optional[Any] = """T5Layer""" with mockenv_context(**_lowerCAmelCase ): _UpperCamelCase : str = FullyShardedDataParallelPlugin() with self.assertRaises(_lowerCAmelCase ) as cm: fsdp_plugin.set_auto_wrap_policy(_lowerCAmelCase ) self.assertTrue('Could not find the transformer layer class to wrap in the model.' in str(cm.exception ) ) _UpperCamelCase : Any = self.dist_env.copy() _UpperCamelCase : str = """SIZE_BASED_WRAP""" _UpperCamelCase : Optional[int] = """0""" with mockenv_context(**_lowerCAmelCase ): _UpperCamelCase : Tuple = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_lowerCAmelCase ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: _UpperCamelCase : int = self.dist_env.copy() _UpperCamelCase : Any = mp_dtype with mockenv_context(**_lowerCAmelCase ): _UpperCamelCase : Optional[Any] = Accelerator() if mp_dtype == "fp16": _UpperCamelCase : Tuple = torch.floataa elif mp_dtype == "bf16": _UpperCamelCase : Tuple = torch.bfloataa _UpperCamelCase : List[str] = MixedPrecision(param_dtype=_lowerCAmelCase ,reduce_dtype=_lowerCAmelCase ,buffer_dtype=_lowerCAmelCase ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy ,_lowerCAmelCase ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler ,_lowerCAmelCase ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(_lowerCAmelCase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: _UpperCamelCase : List[Any] = self.dist_env.copy() _UpperCamelCase : Tuple = str(_lowerCAmelCase ).lower() with mockenv_context(**_lowerCAmelCase ): _UpperCamelCase : int = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload ,CPUOffload(offload_params=_lowerCAmelCase ) ) @require_fsdp @require_multi_gpu @slow class lowercase__ ( __UpperCamelCase ): def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' super().setUp() _UpperCamelCase : Optional[Any] = 0.8_2 _UpperCamelCase : List[Any] = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] _UpperCamelCase : Dict = { """multi_gpu_fp16""": 3200, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000, """fsdp_full_shard_transformer_based_wrap_fp16""": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } _UpperCamelCase : List[str] = 160 _UpperCamelCase : Dict = 160 _UpperCamelCase : Dict = inspect.getfile(accelerate.test_utils ) _UpperCamelCase : List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps'] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : List[str] = os.path.join(self.test_scripts_folder ,'test_performance.py' ) _UpperCamelCase : Union[str, Any] = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: _UpperCamelCase : Tuple = cmd.copy() for i, strategy in enumerate(_lowerCAmelCase ): if strategy.lower() in config: cmd_config.append(F'--fsdp_sharding_strategy={i+1}' ) break if "fp32" in config: cmd_config.append('--mixed_precision=no' ) else: cmd_config.append('--mixed_precision=fp16' ) if "cpu_offload" in config: cmd_config.append('--fsdp_offload_params=True' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F'--fsdp_auto_wrap_policy={policy}' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000' ) cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', F'--performance_lower_bound={self.performance_lower_bound}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowerCAmelCase ,env=os.environ.copy() ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Any = os.path.join(self.test_scripts_folder ,'test_checkpointing.py' ) _UpperCamelCase : Dict = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(_lowerCAmelCase ): _UpperCamelCase : int = cmd.copy() cmd_config.append(F'--fsdp_sharding_strategy={i+1}' ) if strategy != "FULL_SHARD": continue _UpperCamelCase : List[Any] = len(_lowerCAmelCase ) for state_dict_type in FSDP_STATE_DICT_TYPE: _UpperCamelCase : List[str] = cmd_config[:state_dict_config_index] cmd_config.append(F'--fsdp_state_dict_type={state_dict_type}' ) cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', '--partial_train_epoch=1', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowerCAmelCase ,env=os.environ.copy() ) _UpperCamelCase : Optional[int] = cmd_config[:-1] _UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdir ,'epoch_0' ) cmd_config.extend( [ F'--resume_from_checkpoint={resume_from_checkpoint}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowerCAmelCase ,env=os.environ.copy() ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : Optional[int] = os.path.join(self.test_scripts_folder ,'test_peak_memory_usage.py' ) _UpperCamelCase : Dict = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): _UpperCamelCase : Any = cmd.copy() if "fp16" in spec: cmd_config.extend(['--mixed_precision=fp16'] ) else: cmd_config.extend(['--mixed_precision=no'] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['--use_fsdp'] ) for i, strategy in enumerate(_lowerCAmelCase ): if strategy.lower() in spec: cmd_config.append(F'--fsdp_sharding_strategy={i+1}' ) break if "cpu_offload" in spec: cmd_config.append('--fsdp_offload_params=True' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F'--fsdp_auto_wrap_policy={policy}' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000' ) cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', F'--peak_memory_upper_bound={peak_mem_upper_bound}', F'--n_train={self.n_train}', F'--n_val={self.n_val}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowerCAmelCase ,env=os.environ.copy() )
370
'''simple docstring''' class lowercase__ : def __init__( self : List[str] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Any ): '''simple docstring''' _UpperCamelCase : Dict = None _UpperCamelCase : List[Any] = None _UpperCamelCase : int = graph self._normalize_graph(lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : List[str] = len(lowerCamelCase__ ) _UpperCamelCase : Tuple = None def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Any ): '''simple docstring''' if sources is int: _UpperCamelCase : Optional[int] = [sources] if sinks is int: _UpperCamelCase : Union[str, Any] = [sinks] if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: return _UpperCamelCase : List[str] = sources[0] _UpperCamelCase : str = sinks[0] # make fake vertex if there are more # than one source or sink if len(lowerCamelCase__ ) > 1 or len(lowerCamelCase__ ) > 1: _UpperCamelCase : Dict = 0 for i in sources: max_input_flow += sum(self.graph[i] ) _UpperCamelCase : Tuple = len(self.graph ) + 1 for room in self.graph: room.insert(0 ,0 ) self.graph.insert(0 ,[0] * size ) for i in sources: _UpperCamelCase : List[Any] = max_input_flow _UpperCamelCase : Tuple = 0 _UpperCamelCase : int = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _UpperCamelCase : Optional[int] = max_input_flow _UpperCamelCase : Optional[int] = size - 1 def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : Any ): '''simple docstring''' _UpperCamelCase : str = algorithm(self ) class lowercase__ : def __init__( self : List[str] ,lowerCamelCase__ : Optional[int] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = flow_network _UpperCamelCase : List[str] = flow_network.verticesCount _UpperCamelCase : List[str] = flow_network.sourceIndex _UpperCamelCase : Any = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _UpperCamelCase : List[Any] = flow_network.graph _UpperCamelCase : Any = False def UpperCamelCase_ ( self : str ): '''simple docstring''' if not self.executed: self._algorithm() _UpperCamelCase : Any = True def UpperCamelCase_ ( self : Any ): '''simple docstring''' pass class lowercase__ ( lowercase ): def __init__( self : Union[str, Any] ,lowerCamelCase__ : List[str] ): '''simple docstring''' super().__init__(lowerCamelCase__ ) # use this to save your result _UpperCamelCase : Tuple = -1 def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class lowercase__ ( lowercase ): def __init__( self : Optional[Any] ,lowerCamelCase__ : Dict ): '''simple docstring''' super().__init__(lowerCamelCase__ ) _UpperCamelCase : Dict = [[0] * self.verticies_count for i in range(self.verticies_count )] _UpperCamelCase : Optional[Any] = [0] * self.verticies_count _UpperCamelCase : List[str] = [0] * self.verticies_count def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Dict = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _UpperCamelCase : List[str] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _UpperCamelCase : int = 0 while i < len(lowerCamelCase__ ): _UpperCamelCase : List[Any] = vertices_list[i] _UpperCamelCase : str = self.heights[vertex_index] self.process_vertex(lowerCamelCase__ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 ,vertices_list.pop(lowerCamelCase__ ) ) _UpperCamelCase : Dict = 0 else: i += 1 _UpperCamelCase : Optional[Any] = sum(self.preflow[self.source_index] ) def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : Dict ): '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(lowerCamelCase__ ,lowerCamelCase__ ) self.relabel(lowerCamelCase__ ) def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : List[str] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = min( self.excesses[from_index] ,self.graph[from_index][to_index] - self.preflow[from_index][to_index] ,) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : Optional[int] ): '''simple docstring''' _UpperCamelCase : Tuple = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _UpperCamelCase : List[Any] = self.heights[to_index] if min_height is not None: _UpperCamelCase : Any = min_height + 1 if __name__ == "__main__": snake_case_ : List[str] = [0] snake_case_ : int = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] snake_case_ : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network snake_case_ : List[Any] = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate snake_case_ : Tuple = flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
236
0
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir('fixtures/test_sentencepiece.model') _a = get_tests_dir('fixtures/test_sentencepiece_bpe.model') _a = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = CamembertTokenizer SCREAMING_SNAKE_CASE__ : List[Any] = CamembertTokenizerFast SCREAMING_SNAKE_CASE__ : Tuple = True SCREAMING_SNAKE_CASE__ : str = True def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ : str = CamembertTokenizer(lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = "<pad>" UpperCAmelCase_ : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>NOTUSED" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowercase_ ) , 1004 ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = CamembertTokenizer(lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : List[str] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) UpperCAmelCase_ : Tuple = "I was born in 92000, and this is falsé." UpperCAmelCase_ : List[str] = tokenizer.encode(lowercase_ ) UpperCAmelCase_ : Optional[int] = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase_ : Any = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) UpperCAmelCase_ : List[Any] = tokenizer.convert_ids_to_tokens(lowercase_ ) UpperCAmelCase_ : List[Any] = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase_ : Optional[int] = self.get_tokenizer() UpperCAmelCase_ : List[str] = self.get_rust_tokenizer() UpperCAmelCase_ : str = "I was born in 92000, and this is falsé." UpperCAmelCase_ : List[str] = tokenizer.tokenize(lowercase_ ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase_ : Union[str, Any] = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase_ : Any = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = tokenizer.encode(lowercase_ ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" # fmt: off UpperCAmelCase_ : int = {"input_ids": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 2_7575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 2_2804, 1_8818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 1_0326, 24, 2267, 20, 416, 5072, 1_5612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. UpperCAmelCase_ : Tuple = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name="camembert-base" , revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf" , sequences=lowercase_ , )
61
import argparse import datetime def lowerCAmelCase__( lowercase : str ) -> str: __snake_case : int = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } __snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase ) < 11: raise ValueError("Must be 10 characters long" ) # Get month __snake_case : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12" ) __snake_case : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get day __snake_case : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31" ) # Get second separator __snake_case : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get year __snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?" ) # Get datetime obj for validation __snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) ) # Start math if m <= 2: __snake_case : Optional[Any] = y - 1 __snake_case : Tuple = m + 12 # maths var __snake_case : int = int(str(lowercase )[:2] ) __snake_case : int = int(str(lowercase )[2:] ) __snake_case : int = int(2.6 * m - 5.3_9 ) __snake_case : int = int(c / 4 ) __snake_case : int = int(k / 4 ) __snake_case : int = int(d + k ) __snake_case : int = int(t + u + v + x ) __snake_case : int = int(z - (2 * c) ) __snake_case : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer." ) # Response __snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) _UpperCamelCase = parser.parse_args() zeller(args.date_input)
326
0
import numpy as np def lowerCAmelCase_ ( __a , __a , __a = 1e-12 , __a = 100 , ) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(__a )[0] == np.shape(__a )[1] # Ensure proper dimensionality. assert np.shape(__a )[0] == np.shape(__a )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__a ) == np.iscomplexobj(__a ) lowerCamelCase__: str =np.iscomplexobj(__a ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__a , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. lowerCamelCase__: int =False lowerCamelCase__: List[str] =0 lowerCamelCase__: int =0 lowerCamelCase__: int =1e12 while not convergence: # Multiple matrix by the vector. lowerCamelCase__: Union[str, Any] =np.dot(__a , __a ) # Normalize the resulting output vector. lowerCamelCase__: int =w / np.linalg.norm(__a ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) lowerCamelCase__: Optional[Any] =vector.conj().T if is_complex else vector.T lowerCamelCase__: Optional[int] =np.dot(__a , np.dot(__a , __a ) ) # Check convergence. lowerCamelCase__: Tuple =np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: lowerCamelCase__: Any =True lowerCamelCase__: List[Any] =lambda_ if is_complex: lowerCamelCase__: Dict =np.real(lambda_ ) return lambda_, vector def lowerCAmelCase_ ( ) -> None: """simple docstring""" lowerCamelCase__: Union[str, Any] =np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) lowerCamelCase__: Dict =np.array([41, 4, 20] ) lowerCamelCase__: Any =real_input_matrix.astype(np.complexaaa ) lowerCamelCase__: int =np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T lowerCamelCase__: List[Any] =np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": lowerCamelCase__: Optional[Any] =real_input_matrix lowerCamelCase__: int =real_vector elif problem_type == "complex": lowerCamelCase__: Dict =complex_input_matrix lowerCamelCase__: str =complex_vector # Our implementation. lowerCamelCase__ , lowerCamelCase__: str =power_iteration(__a , __a ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). lowerCamelCase__ , lowerCamelCase__: int =np.linalg.eigh(__a ) # Last eigenvalue is the maximum one. lowerCamelCase__: Any =eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. lowerCamelCase__: Tuple =eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__a ) - np.abs(__a ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
273
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Tuple: '''simple docstring''' lowerCamelCase__: List[str] =inspect.getfile(accelerate.test_utils) lowerCamelCase__: str =os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ["scripts", "external_deps", "test_metrics.py"]) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase__: str =test_metrics @require_cpu def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' debug_launcher(self.test_metrics.main , num_processes=1) @require_cpu def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' debug_launcher(self.test_metrics.main) @require_single_gpu def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' self.test_metrics.main() @require_multi_gpu def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""") lowerCamelCase__: Optional[Any] =["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(UpperCAmelCase_ , env=os.environ.copy())
273
1
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib UpperCAmelCase__ : Optional[int] = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } UpperCAmelCase__ : List[Any] = logging.WARNING def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : Optional[Any] = os.getenv("""DATASETS_VERBOSITY""" ,_snake_case ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'''Unknown option DATASETS_VERBOSITY={env_level_str}, ''' f'''has to be one of: { ', '.join(log_levels.keys() ) }''' ) return _default_log_level def lowercase_ ( ): return __name__.split(""".""" )[0] def lowercase_ ( ): return logging.getLogger(_get_library_name() ) def lowercase_ ( ): # Apply our default configuration to the library root logger. SCREAMING_SNAKE_CASE__ : Optional[Any] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : Optional[Any] = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def lowercase_ ( _snake_case = None ): if name is None: SCREAMING_SNAKE_CASE__ : Optional[Any] = _get_library_name() return logging.getLogger(_snake_case ) def lowercase_ ( ): return _get_library_root_logger().getEffectiveLevel() def lowercase_ ( _snake_case ): _get_library_root_logger().setLevel(_snake_case ) def lowercase_ ( ): return set_verbosity(_snake_case ) def lowercase_ ( ): return set_verbosity(_snake_case ) def lowercase_ ( ): return set_verbosity(_snake_case ) def lowercase_ ( ): return set_verbosity(_snake_case ) def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : Tuple = False def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : str = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class lowerCAmelCase_ : """simple docstring""" def __init__(self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> int: # pylint: disable=unused-argument """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = args[0] if args else None def __iter__(self ) -> int: """simple docstring""" return iter(self._iterator ) def __getattr__(self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" def empty_fn(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): # pylint: disable=unused-argument return return empty_fn def __enter__(self ) -> Dict: """simple docstring""" return self def __exit__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" return UpperCAmelCase__ : str = True class lowerCAmelCase_ : """simple docstring""" def __call__(self , *SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) else: return EmptyTqdm(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCAmelCase__ : Tuple = _tqdm_cls() def lowercase_ ( ): global _tqdm_active return bool(_tqdm_active ) def lowercase_ ( ): global _tqdm_active SCREAMING_SNAKE_CASE__ : Union[str, Any] = True def lowercase_ ( ): global _tqdm_active SCREAMING_SNAKE_CASE__ : str = False
25
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : int = '''yolos''' def __init__(self , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=[5_12, 8_64] , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=1_00 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.1 , **SCREAMING_SNAKE_CASE__ , ) -> Optional[Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE__ : int = num_hidden_layers SCREAMING_SNAKE_CASE__ : str = num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE__ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE__ : Dict = layer_norm_eps SCREAMING_SNAKE_CASE__ : List[str] = image_size SCREAMING_SNAKE_CASE__ : Optional[Any] = patch_size SCREAMING_SNAKE_CASE__ : List[str] = num_channels SCREAMING_SNAKE_CASE__ : List[str] = qkv_bias SCREAMING_SNAKE_CASE__ : Optional[int] = num_detection_tokens SCREAMING_SNAKE_CASE__ : Optional[Any] = use_mid_position_embeddings SCREAMING_SNAKE_CASE__ : List[str] = auxiliary_loss # Hungarian matcher SCREAMING_SNAKE_CASE__ : Optional[Any] = class_cost SCREAMING_SNAKE_CASE__ : List[str] = bbox_cost SCREAMING_SNAKE_CASE__ : List[Any] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE__ : Optional[Any] = bbox_loss_coefficient SCREAMING_SNAKE_CASE__ : List[str] = giou_loss_coefficient SCREAMING_SNAKE_CASE__ : int = eos_coefficient class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Dict = version.parse('''1.11''' ) @property def __magic_name__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __magic_name__ (self ) -> float: """simple docstring""" return 1E-4 @property def __magic_name__ (self ) -> int: """simple docstring""" return 12
25
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : Dict = { 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class lowerCamelCase_ ( __UpperCamelCase ): '''simple docstring''' lowercase_ = "xlm" lowercase_ = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any]=30_145 , _lowerCAmelCase : Optional[Any]=2_048 , _lowerCAmelCase : Dict=12 , _lowerCAmelCase : int=16 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : str=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=512 , _lowerCAmelCase : List[Any]=2_048**-0.5 , _lowerCAmelCase : List[str]=1E-12 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple="first" , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : List[str]=5 , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : Tuple=0 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Tuple , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = emb_dim SCREAMING_SNAKE_CASE_ = n_layers SCREAMING_SNAKE_CASE_ = n_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = gelu_activation SCREAMING_SNAKE_CASE_ = sinusoidal_embeddings SCREAMING_SNAKE_CASE_ = causal SCREAMING_SNAKE_CASE_ = asm SCREAMING_SNAKE_CASE_ = n_langs SCREAMING_SNAKE_CASE_ = use_lang_emb SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = bos_index SCREAMING_SNAKE_CASE_ = eos_index SCREAMING_SNAKE_CASE_ = pad_index SCREAMING_SNAKE_CASE_ = unk_index SCREAMING_SNAKE_CASE_ = mask_index SCREAMING_SNAKE_CASE_ = is_encoder SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = embed_init_std SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = summary_type SCREAMING_SNAKE_CASE_ = summary_use_proj SCREAMING_SNAKE_CASE_ = summary_activation SCREAMING_SNAKE_CASE_ = summary_proj_to_labels SCREAMING_SNAKE_CASE_ = summary_first_dropout SCREAMING_SNAKE_CASE_ = start_n_top SCREAMING_SNAKE_CASE_ = end_n_top SCREAMING_SNAKE_CASE_ = mask_token_id SCREAMING_SNAKE_CASE_ = lang_id if "n_words" in kwargs: SCREAMING_SNAKE_CASE_ = kwargs["""n_words"""] super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) class lowerCamelCase_ ( __UpperCamelCase ): '''simple docstring''' @property def lowerCAmelCase_ ( self : Dict ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
370
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> List[Any]: # vision encoder if "img_encoder.pos_embed" in name: SCREAMING_SNAKE_CASE_ = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: SCREAMING_SNAKE_CASE_ = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: SCREAMING_SNAKE_CASE_ = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: SCREAMING_SNAKE_CASE_ = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: SCREAMING_SNAKE_CASE_ = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: SCREAMING_SNAKE_CASE_ = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: SCREAMING_SNAKE_CASE_ = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: SCREAMING_SNAKE_CASE_ = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: SCREAMING_SNAKE_CASE_ = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: SCREAMING_SNAKE_CASE_ = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: SCREAMING_SNAKE_CASE_ = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: SCREAMING_SNAKE_CASE_ = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: SCREAMING_SNAKE_CASE_ = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: SCREAMING_SNAKE_CASE_ = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: SCREAMING_SNAKE_CASE_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: SCREAMING_SNAKE_CASE_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: SCREAMING_SNAKE_CASE_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: SCREAMING_SNAKE_CASE_ = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: SCREAMING_SNAKE_CASE_ = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: SCREAMING_SNAKE_CASE_ = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: SCREAMING_SNAKE_CASE_ = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: SCREAMING_SNAKE_CASE_ = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: SCREAMING_SNAKE_CASE_ = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: SCREAMING_SNAKE_CASE_ = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int ) -> List[str]: for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_ = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors SCREAMING_SNAKE_CASE_ = key.split('.' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = int(key_split[2] ), int(key_split[4] ) SCREAMING_SNAKE_CASE_ = config.vision_config.hidden_size if "weight" in key: SCREAMING_SNAKE_CASE_ = val[:dim, :] SCREAMING_SNAKE_CASE_ = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_ = val[-dim:, :] else: SCREAMING_SNAKE_CASE_ = val[:dim] SCREAMING_SNAKE_CASE_ = val[dim : dim * 2] SCREAMING_SNAKE_CASE_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors SCREAMING_SNAKE_CASE_ = key.split('.' ) SCREAMING_SNAKE_CASE_ = int(key_split[3] ) SCREAMING_SNAKE_CASE_ = config.text_config.hidden_size if "weight" in key: SCREAMING_SNAKE_CASE_ = val[:dim, :] SCREAMING_SNAKE_CASE_ = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE_ = val[-dim:, :] else: SCREAMING_SNAKE_CASE_ = val[:dim] SCREAMING_SNAKE_CASE_ = val[dim : dim * 2] SCREAMING_SNAKE_CASE_ = val[-dim:] else: SCREAMING_SNAKE_CASE_ = rename_key(__UpperCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): SCREAMING_SNAKE_CASE_ = val.squeeze_() else: SCREAMING_SNAKE_CASE_ = val return orig_state_dict def UpperCAmelCase_ ( ) -> List[Any]: SCREAMING_SNAKE_CASE_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE_ = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : Dict="groupvit-gcc-yfcc" , __UpperCAmelCase : Any=False ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = GroupViTConfig() SCREAMING_SNAKE_CASE_ = GroupViTModel(__UpperCAmelCase ).eval() SCREAMING_SNAKE_CASE_ = torch.load(__UpperCAmelCase , map_location='cpu' )['model'] SCREAMING_SNAKE_CASE_ = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__UpperCAmelCase ) == 0) # verify result SCREAMING_SNAKE_CASE_ = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = processor(text=['a photo of a cat', 'a photo of a dog'] , images=__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='pt' ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__UpperCAmelCase ) if model_name == "groupvit-gcc-yfcc": SCREAMING_SNAKE_CASE_ = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": SCREAMING_SNAKE_CASE_ = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(f"Model name {model_name} not supported." ) assert torch.allclose(outputs.logits_per_image , __UpperCAmelCase , atol=1E-3 ) processor.save_pretrained(__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) print('Successfully saved processor and model to' , __UpperCAmelCase ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(__UpperCAmelCase , organization='nielsr' ) model.push_to_hub(__UpperCAmelCase , organization='nielsr' ) if __name__ == "__main__": lowerCamelCase__ : int = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) lowerCamelCase__ : List[str] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
210
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class _A ( unittest.TestCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=18 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=True , ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Dict = image_size __UpperCAmelCase : Dict = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : List[Any] = size_divisor __UpperCAmelCase : Optional[Any] = do_rescale def __A ( self ) -> List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = GLPNImageProcessor if is_vision_available() else None def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = GLPNImageProcessingTester(self ) @property def __A ( self ) -> List[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """size_divisor""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """resample""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """do_rescale""" ) ) def __A ( self ) -> Any: '''simple docstring''' pass def __A ( self ) -> List[Any]: '''simple docstring''' # Initialize image_processing __UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __UpperCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __A ( self ) -> Dict: '''simple docstring''' # Initialize image_processing __UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __UpperCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __A ( self ) -> int: '''simple docstring''' # Initialize image_processing __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __UpperCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
254
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: _UpperCamelCase = None _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCamelCase = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 _UpperCamelCase = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : str = ["input_ids", "attention_mask"] _SCREAMING_SNAKE_CASE : Optional[Any] = TaTokenizer _SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase=100 , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> List[Any]: '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __UpperCAmelCase : List[Any] = [f'<extra_id_{i}>' for i in range(__UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens __UpperCAmelCase : Any = len(set(filter(lambda __UpperCAmelCase : bool("""extra_id_""" in str(__UpperCAmelCase ) ) , __UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , extra_ids=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Optional[int] = vocab_file __UpperCAmelCase : Any = False if not self.vocab_file else True __UpperCAmelCase : Optional[int] = extra_ids @staticmethod def __A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: __UpperCAmelCase : int = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f' {pretrained_model_name_or_path} automatically truncating your input to' f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , __UpperCAmelCase , ) return max_model_length def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCAmelCase : Any = os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) logger.info(f'Copy vocab file to {out_vocab_file}' ) return (out_vocab_file,) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : str = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: __UpperCAmelCase : Optional[Any] = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self ) -> Any: '''simple docstring''' return list( set(filter(lambda __UpperCAmelCase : bool(re.search(r"""<extra_id_\d+>""" , __UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' return [self.convert_tokens_to_ids(__UpperCAmelCase ) for token in self.get_sentinel_tokens()]
254
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin __a = get_tests_dir('''fixtures/test_sentencepiece.model''') __a = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} __a = '''>>zh<<''' __a = '''Helsinki-NLP/''' if is_torch_available(): __a = '''pt''' elif is_tf_available(): __a = '''tf''' else: __a = '''jax''' @require_sentencepiece class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : str = MarianTokenizer A : Dict = False A : List[Any] = True def __lowerCamelCase ( self ): super().setUp() lowercase : str = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] lowercase : List[Any] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowercase : Any = Path(self.tmpdirname ) save_json(lowercase_ , save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(lowercase_ , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase_ , save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(lowercase_ , save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) lowercase : Optional[Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return ( "This is a test", "This is a test", ) def __lowerCamelCase ( self ): lowercase : Union[str, Any] = '''</s>''' lowercase : List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def __lowerCamelCase ( self ): lowercase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(lowercase_ ) , 9 ) def __lowerCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __lowerCamelCase ( self ): lowercase : Any = MarianTokenizer.from_pretrained(f"""{ORG_NAME}opus-mt-en-de""" ) lowercase : int = en_de_tokenizer(['''I am a small frog'''] , return_tensors=lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) lowercase : Any = [38, 121, 14, 697, 38848, 0] self.assertListEqual(lowercase_ , batch.input_ids[0] ) lowercase : List[Any] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase_ ) lowercase : List[Any] = [x.name for x in Path(lowercase_ ).glob('''*''' )] self.assertIn('''source.spm''' , lowercase_ ) MarianTokenizer.from_pretrained(lowercase_ ) def __lowerCamelCase ( self ): lowercase : Optional[int] = self.get_tokenizer() lowercase : List[str] = tok( ['''I am a small frog''' * 1000, '''I am a small frog'''] , padding=lowercase_ , truncation=lowercase_ , return_tensors=lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def __lowerCamelCase ( self ): lowercase : Union[str, Any] = self.get_tokenizer() lowercase : int = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=lowercase_ , return_tensors=lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __lowerCamelCase ( self ): lowercase : Optional[int] = {'''input_ids''': [[43495, 462, 20, 42164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 38999, 6, 8, 464, 132, 1703, 492, 13, 4669, 37867, 13, 7525, 27, 1593, 988, 13, 33972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 12338, 2, 13958, 387, 2, 3629, 6953, 188, 2900, 2, 13958, 8011, 11501, 23, 8460, 4073, 34009, 20, 435, 11439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 37867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 26453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10767, 6, 316, 304, 4239, 3, 0], [148, 15722, 19, 1839, 12, 1350, 13, 22327, 5082, 5418, 47567, 35938, 59, 318, 19552, 108, 2183, 54, 14976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 19088, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100], [36, 6395, 12570, 39147, 11597, 6, 266, 4, 45405, 7296, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , ) def __lowerCamelCase ( self ): lowercase : List[str] = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) lowercase : Tuple = '''Tämä on testi''' lowercase : List[str] = '''This is a test''' lowercase : Union[str, Any] = [76, 7, 2047, 2] lowercase : Dict = [69, 12, 11, 940, 2] lowercase : Union[str, Any] = tokenizer(lowercase_ ).input_ids self.assertListEqual(lowercase_ , lowercase_ ) lowercase : List[str] = tokenizer(text_target=lowercase_ ).input_ids self.assertListEqual(lowercase_ , lowercase_ ) lowercase : Optional[Any] = tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ ) self.assertEqual(lowercase_ , lowercase_ )
369
def __lowercase ( _UpperCamelCase = 50 ) ->int: """simple docstring""" lowercase : str = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2, 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
173
0
'''simple docstring''' from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata _lowerCamelCase : int = "" if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class SCREAMING_SNAKE_CASE ( tr.AbstractTransform ): """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase__ : str = " " ): """simple docstring""" UpperCamelCase = sentence_delimiter def A ( self : Union[str, Any] , UpperCamelCase__ : str ): """simple docstring""" return list(UpperCamelCase__ ) def A ( self : List[str] , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = [] for sent_idx, sentence in enumerate(UpperCamelCase__ ): chars.extend(self.process_string(UpperCamelCase__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(UpperCamelCase__ ) - 1: chars.append(self.sentence_delimiter ) return chars _lowerCamelCase : Any = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: _lowerCamelCase : str = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) _lowerCamelCase : str = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" _lowerCamelCase : List[Any] = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n" _lowerCamelCase : Tuple = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def A ( self : Optional[Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', 'https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates', ] , ) def A ( self : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any]=False ): """simple docstring""" if concatenate_texts: return jiwer.compute_measures( UpperCamelCase__ , UpperCamelCase__ , truth_transform=UpperCamelCase__ , hypothesis_transform=UpperCamelCase__ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = jiwer.compute_measures( UpperCamelCase__ , UpperCamelCase__ , truth_transform=UpperCamelCase__ , hypothesis_transform=UpperCamelCase__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
28
'''simple docstring''' import math class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , UpperCamelCase__ : Optional[Any]=0 ): # a graph with Node 0,1,...,N-1 """simple docstring""" UpperCamelCase = n UpperCamelCase = [ [math.inf for j in range(0 , UpperCamelCase__ )] for i in range(0 , UpperCamelCase__ ) ] # adjacency matrix for weight UpperCamelCase = [ [math.inf for j in range(0 , UpperCamelCase__ )] for i in range(0 , UpperCamelCase__ ) ] # dp[i][j] stores minimum distance from i to j def A ( self : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ): """simple docstring""" UpperCamelCase = w def A ( self : str ): """simple docstring""" for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def A ( self : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] ): """simple docstring""" return self.dp[u][v] if __name__ == "__main__": _lowerCamelCase : List[str] = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
28
1
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels SCREAMING_SNAKE_CASE :int = object() # For specifying empty leaf dict `{}` SCREAMING_SNAKE_CASE :Optional[int] = object() def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: """simple docstring""" UpperCamelCase_ = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(SCREAMING_SNAKE_CASE_ ) - len(SCREAMING_SNAKE_CASE_ ) + 1 ): UpperCamelCase_ = [x.match(SCREAMING_SNAKE_CASE_ ) for x, y in zip(SCREAMING_SNAKE_CASE_ , ks[i:] )] if matches and all(SCREAMING_SNAKE_CASE_ ): return True return False def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> Tuple: """simple docstring""" def replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for rule, replacement in rules: if _match(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return replacement return val return replace def lowerCAmelCase( )-> Union[str, Any]: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , SCREAMING_SNAKE_CASE_ )), (("transformer", "wte", "embedding"), P("mp" , SCREAMING_SNAKE_CASE_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(SCREAMING_SNAKE_CASE_ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(SCREAMING_SNAKE_CASE_ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> str: """simple docstring""" UpperCamelCase_ = _get_partition_rules() UpperCamelCase_ = _replacement_rules(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = {k: _unmatched for k in flatten_dict(SCREAMING_SNAKE_CASE_ )} UpperCamelCase_ = {k: replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(SCREAMING_SNAKE_CASE_ ) )
359
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __magic_name__ ( snake_case , snake_case , snake_case , unittest.TestCase ): UpperCamelCase_ :int = AltDiffusionPipeline UpperCamelCase_ :int = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ :List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase_ :Any = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ :List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self )-> int: torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) UpperCamelCase_ = CLIPTextModel(_lowercase ) UpperCamelCase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) UpperCamelCase_ = 77 UpperCamelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCAmelCase_ ( self , _lowercase , _lowercase=0 )-> Optional[Any]: if str(_lowercase ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_lowercase ) else: UpperCamelCase_ = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self )-> Optional[Any]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def UpperCAmelCase_ ( self )-> str: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def UpperCAmelCase_ ( self )-> str: UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase_ = RobertaSeriesModelWithTransformation(_lowercase ) UpperCamelCase_ = text_encoder UpperCamelCase_ = AltDiffusionPipeline(**_lowercase ) UpperCamelCase_ = alt_pipe.to(_lowercase ) alt_pipe.set_progress_bar_config(disable=_lowercase ) UpperCamelCase_ = self.get_dummy_inputs(_lowercase ) UpperCamelCase_ = "A photo of an astronaut" UpperCamelCase_ = alt_pipe(**_lowercase ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = PNDMScheduler(skip_prk_steps=_lowercase ) torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase_ = RobertaSeriesModelWithTransformation(_lowercase ) UpperCamelCase_ = text_encoder UpperCamelCase_ = AltDiffusionPipeline(**_lowercase ) UpperCamelCase_ = alt_pipe.to(_lowercase ) alt_pipe.set_progress_bar_config(disable=_lowercase ) UpperCamelCase_ = self.get_dummy_inputs(_lowercase ) UpperCamelCase_ = alt_pipe(**_lowercase ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def UpperCAmelCase_ ( self )-> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self )-> str: # make sure here that pndm scheduler skips prk UpperCamelCase_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , safety_checker=_lowercase ) UpperCamelCase_ = alt_pipe.to(_lowercase ) alt_pipe.set_progress_bar_config(disable=_lowercase ) UpperCamelCase_ = "A painting of a squirrel eating a burger" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe([prompt] , generator=_lowercase , guidance_scale=6.0 , num_inference_steps=20 , output_type="np" ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" , subfolder="scheduler" ) UpperCamelCase_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , scheduler=_lowercase , safety_checker=_lowercase ) UpperCamelCase_ = alt_pipe.to(_lowercase ) alt_pipe.set_progress_bar_config(disable=_lowercase ) UpperCamelCase_ = "A painting of a squirrel eating a burger" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="numpy" ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
60
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__: str = logging.get_logger(__name__) UpperCamelCase__: Tuple = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """unispeech-sat""" def __init__( self : str , __snake_case : List[str]=32 , __snake_case : List[str]=768 , __snake_case : str=12 , __snake_case : int=12 , __snake_case : Union[str, Any]=3072 , __snake_case : List[Any]="gelu" , __snake_case : Union[str, Any]=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.1 , __snake_case : List[Any]=0.0 , __snake_case : Any=0.0 , __snake_case : Any=0.1 , __snake_case : List[str]=0.1 , __snake_case : Optional[Any]=0.02 , __snake_case : Dict=1E-5 , __snake_case : int="group" , __snake_case : Any="gelu" , __snake_case : Dict=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : Optional[int]=False , __snake_case : List[str]=128 , __snake_case : Any=16 , __snake_case : List[str]=False , __snake_case : List[str]=True , __snake_case : Union[str, Any]=0.05 , __snake_case : Tuple=10 , __snake_case : Optional[Any]=2 , __snake_case : Dict=0.0 , __snake_case : int=10 , __snake_case : Tuple=0 , __snake_case : Dict=320 , __snake_case : List[Any]=2 , __snake_case : int=0.1 , __snake_case : str=100 , __snake_case : List[Any]=256 , __snake_case : str=256 , __snake_case : Tuple=0.1 , __snake_case : int="mean" , __snake_case : List[str]=False , __snake_case : Optional[Any]=False , __snake_case : str=256 , __snake_case : Tuple=(512, 512, 512, 512, 1500) , __snake_case : Union[str, Any]=(5, 3, 3, 1, 1) , __snake_case : Dict=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Dict=0 , __snake_case : Optional[int]=1 , __snake_case : int=2 , __snake_case : List[Any]=504 , **__snake_case : Dict , ) -> Optional[int]: super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase : Tuple = hidden_size UpperCAmelCase : Optional[Any] = feat_extract_norm UpperCAmelCase : int = feat_extract_activation UpperCAmelCase : Optional[int] = list(__snake_case ) UpperCAmelCase : List[str] = list(__snake_case ) UpperCAmelCase : List[str] = list(__snake_case ) UpperCAmelCase : Tuple = conv_bias UpperCAmelCase : Union[str, Any] = num_conv_pos_embeddings UpperCAmelCase : Optional[Any] = num_conv_pos_embedding_groups UpperCAmelCase : Tuple = len(self.conv_dim ) UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : Tuple = hidden_act UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Dict = hidden_dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[int] = activation_dropout UpperCAmelCase : Any = feat_proj_dropout UpperCAmelCase : Optional[Any] = final_dropout UpperCAmelCase : int = layerdrop UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Any = vocab_size UpperCAmelCase : str = num_clusters UpperCAmelCase : Tuple = do_stable_layer_norm UpperCAmelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Dict = apply_spec_augment UpperCAmelCase : Optional[int] = mask_time_prob UpperCAmelCase : Union[str, Any] = mask_time_length UpperCAmelCase : Tuple = mask_time_min_masks UpperCAmelCase : Tuple = mask_feature_prob UpperCAmelCase : Optional[Any] = mask_feature_length UpperCAmelCase : List[str] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase : List[str] = num_codevectors_per_group UpperCAmelCase : List[Any] = num_codevector_groups UpperCAmelCase : Tuple = contrastive_logits_temperature UpperCAmelCase : Union[str, Any] = feat_quantizer_dropout UpperCAmelCase : Any = num_negatives UpperCAmelCase : int = codevector_dim UpperCAmelCase : Union[str, Any] = proj_codevector_dim UpperCAmelCase : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase : Tuple = ctc_loss_reduction UpperCAmelCase : List[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase : str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Tuple = list(__snake_case ) UpperCAmelCase : List[str] = list(__snake_case ) UpperCAmelCase : List[Any] = list(__snake_case ) UpperCAmelCase : Optional[Any] = xvector_output_dim @property def A ( self : Dict ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
23
"""simple docstring""" # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _UpperCamelCase : Optional[Any] = TypeVar('T') class a ( Generic[T] ): def __init__( self , _lowerCamelCase = True ): lowercase = {} # dictionary of lists lowercase = directed def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowerCamelCase ) self.adj_list[destination_vertex].append(_lowerCamelCase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowerCamelCase ) lowercase = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(_lowerCamelCase ) lowercase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: lowercase = [destination_vertex] lowercase = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowerCamelCase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowerCamelCase ) lowercase = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: lowercase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: lowercase = [destination_vertex] lowercase = [] return self def __repr__( self ): return pformat(self.adj_list )
220
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Tuple = logging.get_logger(__name__) _lowercase : Any = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'speech_to_text_2' _a = ['past_key_values'] _a = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Tuple, lowerCamelCase : List[str]=1_0000, lowerCamelCase : List[str]=6, lowerCamelCase : int=2048, lowerCamelCase : List[Any]=4, lowerCamelCase : Union[str, Any]=0.0, lowerCamelCase : Any=True, lowerCamelCase : Any="relu", lowerCamelCase : Any=256, lowerCamelCase : int=0.1, lowerCamelCase : str=0.0, lowerCamelCase : Any=0.0, lowerCamelCase : Optional[Any]=0.02, lowerCamelCase : str=2, lowerCamelCase : List[str]=True, lowerCamelCase : List[Any]=1, lowerCamelCase : List[str]=0, lowerCamelCase : Optional[int]=2, lowerCamelCase : Optional[Any]=1024, **lowerCamelCase : Any, )-> Dict: lowerCamelCase__ : Tuple =vocab_size lowerCamelCase__ : Optional[Any] =d_model lowerCamelCase__ : Dict =decoder_ffn_dim lowerCamelCase__ : List[str] =decoder_layers lowerCamelCase__ : int =decoder_attention_heads lowerCamelCase__ : List[Any] =dropout lowerCamelCase__ : List[str] =attention_dropout lowerCamelCase__ : int =activation_dropout lowerCamelCase__ : Any =activation_function lowerCamelCase__ : Optional[int] =init_std lowerCamelCase__ : Tuple =decoder_layerdrop lowerCamelCase__ : Optional[Any] =use_cache lowerCamelCase__ : str =decoder_layers lowerCamelCase__ : str =scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase__ : Optional[int] =max_target_positions super().__init__( pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, decoder_start_token_id=lowerCamelCase, **lowerCamelCase, )
359
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _lowercase : Any = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
272
0
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any]=False) -> Dict: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): __UpperCamelCase : str = len(set_a.intersection(SCREAMING_SNAKE_CASE__)) if alternative_union: __UpperCamelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE__) + len(SCREAMING_SNAKE_CASE__) else: __UpperCamelCase : List[Any] = len(set_a.union(SCREAMING_SNAKE_CASE__)) return intersection / union if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple)) and isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple)): __UpperCamelCase : Any = [element for element in set_a if element in set_b] if alternative_union: __UpperCamelCase : List[Any] = len(SCREAMING_SNAKE_CASE__) + len(SCREAMING_SNAKE_CASE__) return len(SCREAMING_SNAKE_CASE__) / union else: __UpperCamelCase : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(SCREAMING_SNAKE_CASE__) / len(SCREAMING_SNAKE_CASE__) return len(SCREAMING_SNAKE_CASE__) / len(SCREAMING_SNAKE_CASE__) return None if __name__ == "__main__": lowercase : Union[str, Any] = {'a', 'b', 'c', 'd', 'e'} lowercase : Union[str, Any] = {'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
232
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
0
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore snake_case = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" snake_case = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print("""\n""".join(upper_files) + """\n""") snake_case = [file for file in filepaths if """ """ in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print("""\n""".join(space_files) + """\n""") snake_case = [file for file in filepaths if """-""" in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print("""\n""".join(hyphen_files) + """\n""") snake_case = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print("""\n""".join(nodir_files) + """\n""") snake_case = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
319
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] snake_case = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = torch.load(lowercase , map_location="cpu" ) return sd def lowerCamelCase__ ( lowercase , lowercase , lowercase=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = OrderedDict() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE : Optional[Any] = key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE : Tuple = new_key.replace(name_pair[0] , name_pair[1] ) SCREAMING_SNAKE_CASE : Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE : Union[str, Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE : str = "pretraining" if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : str = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[int] = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[Any] = {"visual_embedding_dim": 512} SCREAMING_SNAKE_CASE : Union[str, Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : int = {"visual_embedding_dim": 2048} SCREAMING_SNAKE_CASE : Any = "vqa_advanced" elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Any = {"visual_embedding_dim": 2048, "num_labels": 3129} SCREAMING_SNAKE_CASE : Tuple = "vqa" elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : int = { "visual_embedding_dim": 1024, "num_labels": 2, } SCREAMING_SNAKE_CASE : Union[str, Any] = "nlvr" SCREAMING_SNAKE_CASE : List[Any] = VisualBertConfig(**lowercase ) # Load State Dict SCREAMING_SNAKE_CASE : Union[str, Any] = load_state_dict(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": SCREAMING_SNAKE_CASE : Union[str, Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") snake_case = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
319
1