code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowercase: Optional[int] = logging.get_logger(__name__) class _lowercase ( snake_case__ ): """simple docstring""" __A = ["input_features", "is_longer"] def __init__(self , lowerCamelCase_=64 , lowerCamelCase_=48000 , lowerCamelCase_=480 , lowerCamelCase_=10 , lowerCamelCase_=1024 , lowerCamelCase_=0.0 , lowerCamelCase_=False , lowerCamelCase_ = 0 , lowerCamelCase_ = 14000 , lowerCamelCase_ = None , lowerCamelCase_ = "fusion" , lowerCamelCase_ = "repeatpad" , **lowerCamelCase_ , ): """simple docstring""" super().__init__( feature_size=snake_case__ , sampling_rate=snake_case__ , padding_value=snake_case__ , return_attention_mask=snake_case__ , **snake_case__ , ) a = top_db a = truncation a = padding a = fft_window_size a = (fft_window_size >> 1) + 1 a = hop_length a = max_length_s a = max_length_s * sampling_rate a = sampling_rate a = frequency_min a = frequency_max a = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case__ , min_frequency=snake_case__ , max_frequency=snake_case__ , sampling_rate=snake_case__ , norm=snake_case__ , mel_scale="htk" , ) a = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case__ , min_frequency=snake_case__ , max_frequency=snake_case__ , sampling_rate=snake_case__ , norm="slaney" , mel_scale="slaney" , ) def UpperCamelCase_ (self ): """simple docstring""" a = copy.deepcopy(self.__dict__ ) a = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" a = spectrogram( snake_case__ , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=snake_case__ , log_mel="dB" , ) return log_mel_spectrogram.T def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk a = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk a = [0] # randomly choose index for each part a = np.random.choice(ranges[0] ) a = np.random.choice(ranges[1] ) a = np.random.choice(ranges[2] ) a = mel[idx_front : idx_front + chunk_frames, :] a = mel[idx_middle : idx_middle + chunk_frames, :] a = mel[idx_back : idx_back + chunk_frames, :] a = torch.tensor(mel[None, None, :] ) a = torch.nn.functional.interpolate( snake_case__ , size=[chunk_frames, 64] , mode="bilinear" , align_corners=snake_case__ ) a = mel_shrink[0][0].numpy() a = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if waveform.shape[0] > max_length: if truncation == "rand_trunc": a = True # random crop to max_length (for compatibility) -> this should be handled by self.pad a = len(snake_case__ ) - max_length a = np.random.randint(0 , overflow + 1 ) a = waveform[idx : idx + max_length] a = self._np_extract_fbank_features(snake_case__ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": a = self._np_extract_fbank_features(snake_case__ , self.mel_filters ) a = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed a = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. a = np.stack([mel, mel, mel, mel] , axis=0 ) a = False else: a = self._random_mel_fusion(snake_case__ , snake_case__ , snake_case__ ) a = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: a = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": a = int(max_length / len(snake_case__ ) ) a = np.stack(np.tile(snake_case__ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": a = int(max_length / len(snake_case__ ) ) a = np.stack(np.tile(snake_case__ , snake_case__ ) ) a = np.pad(snake_case__ , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 ) if truncation == "fusion": a = self._np_extract_fbank_features(snake_case__ , self.mel_filters ) a = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: a = self._np_extract_fbank_features(snake_case__ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__(self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , **lowerCamelCase_ , ): """simple docstring""" a = truncation if truncation is not None else self.truncation a = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) a = isinstance(snake_case__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) a = is_batched_numpy or ( isinstance(snake_case__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a = [np.asarray(snake_case__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case__ , np.ndarray ): a = np.asarray(snake_case__ , dtype=np.floataa ) elif isinstance(snake_case__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a = [np.asarray(snake_case__ )] # convert to mel spectrogram, truncate and pad if needed. a = [ self._get_input_mel(snake_case__ , max_length if max_length else self.nb_max_samples , snake_case__ , snake_case__ ) for waveform in raw_speech ] a = [] a = [] for mel, longer in padded_inputs: input_mel.append(snake_case__ ) is_longer.append(snake_case__ ) if truncation == "fusion" and sum(snake_case__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer a = np.random.randint(0 , len(snake_case__ ) ) a = True if isinstance(input_mel[0] , snake_case__ ): a = [np.asarray(snake_case__ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool a = [[longer] for longer in is_longer] a = {"input_features": input_mel, "is_longer": is_longer} a = BatchFeature(snake_case__ ) if return_tensors is not None: a = input_features.convert_to_tensors(snake_case__ ) return input_features
227
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowercase__ ( snake_case__ ): _UpperCAmelCase :torch.FloatTensor class lowercase__ ( snake_case__, snake_case__ ): @register_to_config def __init__( self : Optional[int] , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : Tuple[str] = ("DownEncoderBlock2D",) , snake_case__ : Tuple[str] = ("UpDecoderBlock2D",) , snake_case__ : Tuple[int] = (64,) , snake_case__ : int = 1 , snake_case__ : str = "silu" , snake_case__ : int = 3 , snake_case__ : int = 32 , snake_case__ : int = 256 , snake_case__ : int = 32 , snake_case__ : Optional[int] = None , snake_case__ : float = 0.18_215 , snake_case__ : str = "group" , ): super().__init__() # pass init params to Encoder lowerCamelCase_ : List[str] =Encoder( in_channels=snake_case__ , out_channels=snake_case__ , down_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , double_z=snake_case__ , ) lowerCamelCase_ : Union[str, Any] =vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCamelCase_ : List[Any] =nn.Convad(snake_case__ , snake_case__ , 1 ) lowerCamelCase_ : int =VectorQuantizer(snake_case__ , snake_case__ , beta=0.25 , remap=snake_case__ , sane_index_shape=snake_case__ ) lowerCamelCase_ : int =nn.Convad(snake_case__ , snake_case__ , 1 ) # pass init params to Decoder lowerCamelCase_ : Union[str, Any] =Decoder( in_channels=snake_case__ , out_channels=snake_case__ , up_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , norm_type=snake_case__ , ) @apply_forward_hook def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ): lowerCamelCase_ : int =self.encoder(snake_case__ ) lowerCamelCase_ : Union[str, Any] =self.quant_conv(snake_case__ ) if not return_dict: return (h,) return VQEncoderOutput(latents=snake_case__ ) @apply_forward_hook def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : torch.FloatTensor , snake_case__ : bool = False , snake_case__ : bool = True ): # also go through quantization layer if not force_not_quantize: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Dict =self.quantize(snake_case__ ) else: lowerCamelCase_ : List[Any] =h lowerCamelCase_ : List[Any] =self.post_quant_conv(snake_case__ ) lowerCamelCase_ : Dict =self.decoder(snake_case__ , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ ) def UpperCAmelCase__ ( self : Any , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ): lowerCamelCase_ : Dict =sample lowerCamelCase_ : Optional[Any] =self.encode(snake_case__ ).latents lowerCamelCase_ : str =self.decode(snake_case__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ )
144
0
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Dict=None )->Tuple: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f"{torch_layer} layer.weight does not match" A__ = nn.Parameter(UpperCamelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"{torch_layer} layer.bias does not match" A__ = nn.Parameter(UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] )->Optional[Any]: # set torch weights for 1-to-1 comparison A__ = np.asarray(weights[0] ) A__ = np.asarray(weights[1] ) A__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCamelCase__ ).view(-1 , UpperCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def UpperCamelCase__( UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict )->Any: # set torch weights for 1-to-1 comparison A__ = np.asarray(weights[0] ) A__ = np.asarray(weights[1] ) A__ = np.asarray(weights[2] ) A__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCamelCase__ ).view(-1 , UpperCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def UpperCamelCase__( UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] )->Optional[int]: # layernorm 1 A__ = weights[0][0][0] A__ = np.asarray(layer_norm_a[0] ) A__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(UpperCamelCase__ ) , torch.tensor(UpperCamelCase__ ) , ) # lsh weights + output A__ = weights[0][1] if len(UpperCamelCase__ ) < 4: set_layer_weights_in_torch_lsh(UpperCamelCase__ , torch_block.attention , UpperCamelCase__ ) else: set_layer_weights_in_torch_local(UpperCamelCase__ , torch_block.attention , UpperCamelCase__ ) # intermediate weighs A__ = weights[2][0][1][2] # Chunked Feed Forward if len(UpperCamelCase__ ) == 4: A__ = intermediate_weights[2] # layernorm 2 A__ = np.asarray(intermediate_weights[0][0] ) A__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(UpperCamelCase__ ) , torch.tensor(UpperCamelCase__ ) , ) # intermediate dense A__ = np.asarray(intermediate_weights[1][0] ) A__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(UpperCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase__ ) , ) # intermediate out A__ = np.asarray(intermediate_weights[4][0] ) A__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(UpperCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase__ ) , ) def UpperCamelCase__( UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str )->Any: # reformer model A__ = torch_model.reformer # word embeds A__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(UpperCamelCase__ ) , ) if isinstance(weights[3] , UpperCamelCase__ ): A__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): A__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"{position_embeddings[emb_idx]} emb does not match" A__ = nn.Parameter(torch.tensor(UpperCamelCase__ ) ) A__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( UpperCamelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): A__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # output layer norm A__ = np.asarray(weights[7][0] ) A__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(UpperCamelCase__ ) , torch.tensor(UpperCamelCase__ ) , ) # output embeddings A__ = np.asarray(weights[9][0] ) A__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(UpperCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase__ ) , ) def UpperCamelCase__( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple )->Tuple: # Initialise PyTorch model A__ = ReformerConfig.from_json_file(UpperCamelCase__ ) print(f"Building PyTorch model from configuration: {config}" ) A__ = ReformerModelWithLMHead(UpperCamelCase__ ) with open(UpperCamelCase__ , '''rb''' ) as f: A__ = pickle.load(UpperCamelCase__ )['''weights'''] set_model_weights_in_torch(UpperCamelCase__ , UpperCamelCase__ , config.hidden_size ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": a__: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a__: Dict = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
39
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): A__ = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) A__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler('''sample_euler''' ) A__ = '''A painting of a squirrel eating a burger''' A__ = torch.manual_seed(0 ) A__ = sd_pipe([prompt],generator=__lowerCamelCase,guidance_scale=9.0,num_inference_steps=20,output_type='''np''' ) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): A__ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) A__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler('''sample_euler''' ) A__ = '''A painting of a squirrel eating a burger''' A__ = torch.manual_seed(0 ) A__ = sd_pipe([prompt],generator=__lowerCamelCase,guidance_scale=9.0,num_inference_steps=20,output_type='''np''' ) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def UpperCamelCase ( self ): A__ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) A__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) A__ = '''A painting of a squirrel eating a burger''' A__ = torch.manual_seed(0 ) A__ = sd_pipe( [prompt],generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=15,output_type='''np''',use_karras_sigmas=__lowerCamelCase,) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
39
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class a ( metaclass=_lowerCAmelCase ): UpperCAmelCase_ : Tuple =["torch", "scipy"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ): requires_backends(self , ['torch', 'scipy'] ) @classmethod def UpperCamelCase_ ( cls , *_lowerCamelCase , **_lowerCamelCase ): requires_backends(cls , ['torch', 'scipy'] ) @classmethod def UpperCamelCase_ ( cls , *_lowerCamelCase , **_lowerCamelCase ): requires_backends(cls , ['torch', 'scipy'] )
220
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _lowercase : Union[str, Any] = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowercase__ ( snake_case_ :List[Any] ): if isinstance(snake_case_ , torch.Tensor ): return image elif isinstance(snake_case_ , PIL.Image.Image ): __UpperCAmelCase = [image] __UpperCAmelCase = [trans(img.convert('''RGB''' ) ) for img in image] __UpperCAmelCase = torch.stack(snake_case_ ) return image class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : Any , _lowercase : str , _lowercase : str ): super().__init__() # make sure scheduler can always be converted to DDIM __UpperCAmelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowercase , scheduler=_lowercase ) def a ( self : int , _lowercase : List[str] ): if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def a ( self : List[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : int ): # get the original timestep using init_timestep __UpperCAmelCase = min(int(num_inference_steps * strength ) , _lowercase ) __UpperCAmelCase = max(num_inference_steps - init_timestep , 0 ) __UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[int]=None ): if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}''' ) __UpperCAmelCase = image.to(device=_lowercase , dtype=_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __UpperCAmelCase = init_latents.shape __UpperCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents print('''add noise to latents at timestep''' , _lowercase ) __UpperCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = init_latents return latents @torch.no_grad() def __call__( self : Any , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] = None , _lowercase : float = 0.8 , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : float = 0.0 , _lowercase : int = 50 , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ): self.check_inputs(_lowercase ) # 2. Preprocess image __UpperCAmelCase = preprocess(_lowercase ) # 3. set timesteps self.scheduler.set_timesteps(_lowercase , device=self.device ) __UpperCAmelCase , __UpperCAmelCase = self.get_timesteps(_lowercase , _lowercase , self.device ) __UpperCAmelCase = timesteps[:1].repeat(_lowercase ) # 4. Prepare latent variables __UpperCAmelCase = self.prepare_latents(_lowercase , _lowercase , _lowercase , self.unet.dtype , self.device , _lowercase ) __UpperCAmelCase = latents # 5. Denoising loop for t in self.progress_bar(_lowercase ): # 1. predict noise model_output __UpperCAmelCase = self.unet(_lowercase , _lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __UpperCAmelCase = self.scheduler.step( _lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase , ).prev_sample __UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_lowercase )
332
0
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: a__: List[str] = len(_SCREAMING_SNAKE_CASE ), len(grid[0] ) if ( min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) a__: Any = 0 count += depth_first_search(_SCREAMING_SNAKE_CASE , row + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) count += depth_first_search(_SCREAMING_SNAKE_CASE , row - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) count += depth_first_search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , col + 1 , _SCREAMING_SNAKE_CASE ) count += depth_first_search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , col - 1 , _SCREAMING_SNAKE_CASE ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
370
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __snake_case ( unittest.TestCase ): @property def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' torch.manual_seed(0) a__: str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def lowerCamelCase_ ( self) -> int: '''simple docstring''' torch.manual_seed(0) a__: List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0) a__: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowercase) def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: Union[str, Any] = self.dummy_uncond_unet a__: Optional[int] = DDIMScheduler() a__: Optional[int] = self.dummy_vq_model a__: Union[str, Any] = LDMPipeline(unet=lowercase , vqvae=lowercase , scheduler=lowercase) ldm.to(lowercase) ldm.set_progress_bar_config(disable=lowercase) a__: str = torch.manual_seed(0) a__: Dict = ldm(generator=lowercase , num_inference_steps=2 , output_type='numpy').images a__: Union[str, Any] = torch.manual_seed(0) a__: int = ldm(generator=lowercase , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase)[0] a__: Union[str, Any] = image[0, -3:, -3:, -1] a__: int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a__: int = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172]) a__: Optional[Any] = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance @slow @require_torch class __snake_case ( unittest.TestCase ): def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' a__: Union[str, Any] = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256') ldm.to(lowercase) ldm.set_progress_bar_config(disable=lowercase) a__: List[str] = torch.manual_seed(0) a__: Optional[int] = ldm(generator=lowercase , num_inference_steps=5 , output_type='numpy').images a__: Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) a__: int = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447]) a__: Any = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
203
0
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup __snake_case : List[str] = logging.get_logger(__name__) class lowerCamelCase ( __a ): '''simple docstring''' def __init__( self : List[Any] , **lowerCAmelCase_ : List[Any] ) -> str: '''simple docstring''' requires_backends(self , ["""bs4"""] ) super().__init__(**a_ ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: '''simple docstring''' A__ : Any =[] A__ : List[Any] =[] A__ : Dict =element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag A__ : Any =parent.find_all(child.name , recursive=a_ ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(a_ ) else next(i for i, s in enumerate(a_ , 1 ) if s is child ) ) A__ : Union[str, Any] =parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def lowercase__ ( self : List[str] , lowerCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' A__ : Tuple =BeautifulSoup(a_ , """html.parser""" ) A__ : Any =[] A__ : Dict =[] A__ : str =[] for element in html_code.descendants: if type(a_ ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue A__ : Dict =html.unescape(a_ ).strip() if not text_in_this_tag: continue all_doc_strings.append(a_ ) A__ : Dict =self.xpath_soup(a_ ) stringaxtag_seq.append(a_ ) stringaxsubs_seq.append(a_ ) if len(a_ ) != len(a_ ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(a_ ) != len(a_ ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def lowercase__ ( self : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] ) -> int: '''simple docstring''' A__ : str ="""""" for tagname, subs in zip(a_ , a_ ): xpath += f"/{tagname}" if subs != 0: xpath += f"[{subs}]" return xpath def __call__( self : Tuple , lowerCAmelCase_ : List[str] ) -> Optional[int]: '''simple docstring''' A__ : List[Any] =False # Check that strings has a valid type if isinstance(a_ , a_ ): A__ : Optional[int] =True elif isinstance(a_ , (list, tuple) ): if len(a_ ) == 0 or isinstance(html_strings[0] , a_ ): A__ : int =True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ f"but is of type {type(a_ )}." ) A__ : int =bool(isinstance(a_ , (list, tuple) ) and (isinstance(html_strings[0] , a_ )) ) if not is_batched: A__ : List[Any] =[html_strings] # Get nodes + xpaths A__ : List[str] =[] A__ : Any =[] for html_string in html_strings: A__ : Tuple =self.get_three_from_single(a_ ) nodes.append(a_ ) A__ : str =[] for node, tag_list, sub_list in zip(a_ , a_ , a_ ): A__ : Any =self.construct_xpath(a_ , a_ ) xpath_strings.append(a_ ) xpaths.append(a_ ) # return as Dict A__ : int ={"""nodes""": nodes, """xpaths""": xpaths} A__ : Tuple =BatchFeature(data=a_ , tensor_type=a_ ) return encoded_inputs
134
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase( unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Any = ort.SessionOptions() _snake_case : Union[str, Any] = False return options def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) _snake_case : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) _snake_case : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default _snake_case : Optional[Any] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""", revision="""onnx""", safety_checker=a_, feature_extractor=a_, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=a_ ) _snake_case : Optional[Any] = """A red cat sitting on a park bench""" _snake_case : Optional[int] = np.random.RandomState(0 ) _snake_case : Any = pipe( prompt=a_, image=a_, mask_image=a_, strength=0.75, guidance_scale=7.5, num_inference_steps=15, generator=a_, output_type="""np""", ) _snake_case : Dict = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
64
0
UpperCAmelCase : Union[str, Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __lowerCamelCase ( lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[int] ): '''simple docstring''' lowerCamelCase = [False] * len(lowerCamelCase__ ) lowerCamelCase = [s] lowerCamelCase = True while queue: lowerCamelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCamelCase__ ) lowerCamelCase = True lowerCamelCase = u return visited[t] def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase = [-1] * (len(lowerCamelCase__ )) lowerCamelCase = 0 lowerCamelCase = [] lowerCamelCase = [i[:] for i in graph] # Record original cut, copy. while bfs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase = float("""Inf""" ) lowerCamelCase = sink while s != source: # Find the minimum value in select path lowerCamelCase = min(lowerCamelCase__ , graph[parent[s]][s] ) lowerCamelCase = parent[s] max_flow += path_flow lowerCamelCase = sink while v != source: lowerCamelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCamelCase = parent[v] for i in range(len(lowerCamelCase__ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
66
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Union[str, Any] = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : Dict = ['''input_features'''] def __init__( self : int , _A : int=80 , _A : Union[str, Any]=16_000 , _A : Union[str, Any]=160 , _A : Any=30 , _A : str=400 , _A : Union[str, Any]=0.0 , _A : Tuple=False , **_A : List[str] , ) -> int: """simple docstring""" super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) lowercase : Optional[Any] = n_fft lowercase : Optional[int] = hop_length lowercase : Optional[int] = chunk_length lowercase : Union[str, Any] = chunk_length * sampling_rate lowercase : Optional[Any] = self.n_samples // hop_length lowercase : Optional[Any] = sampling_rate lowercase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_A , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def __a ( self : Dict , _A : np.array ) -> np.ndarray: """simple docstring""" lowercase : List[str] = spectrogram( _A , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) lowercase : Union[str, Any] = log_spec[:, :-1] lowercase : Optional[Any] = np.maximum(_A , log_spec.max() - 8.0 ) lowercase : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __a ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: lowercase : Optional[Any] = np.array(_A , np.intaa ) lowercase : List[str] = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): lowercase : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase : int = padding_value normed_input_values.append(_A ) else: lowercase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Union[str, Any] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = True , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , _A : Optional[str] = "max_length" , _A : Optional[int] = None , _A : Optional[int] = None , _A : Optional[bool] = None , **_A : int , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase : Union[str, Any] = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase : Optional[Any] = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): lowercase : List[Any] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : List[str] = [np.asarray([raw_speech] ).T] lowercase : Tuple = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding lowercase : str = self.pad( _A , padding=_A , max_length=max_length if max_length else self.n_samples , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowercase : Tuple = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) lowercase : str = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format lowercase : List[str] = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) lowercase : str = [self._np_extract_fbank_features(_A ) for waveform in input_features[0]] if isinstance(input_features[0] , _A ): lowercase : int = [np.asarray(_A , dtype=np.floataa ) for feature in input_features] else: lowercase : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowercase : List[str] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: lowercase : Any = padded_inputs.convert_to_tensors(_A ) return padded_inputs def __a ( self : Optional[Any] ) -> Dict[str, Any]: """simple docstring""" lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
308
def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(1_00, 0.2_5) = }''') print(f'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
308
1
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowerCAmelCase = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n' lowerCAmelCase = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n' lowerCAmelCase = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return float((preds == labels).mean() ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = simple_accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = float(fa_score(y_true=SCREAMING_SNAKE_CASE , y_pred=SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = float(pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0] ) lowercase__ = float(spearmanr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Any , UpperCamelCase_: Optional[Any] ) -> Optional[Any]: """simple docstring""" if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(UpperCamelCase_ , UpperCamelCase_ )} elif self.config_name == "stsb": return pearson_and_spearman(UpperCamelCase_ , UpperCamelCase_ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(UpperCamelCase_ , UpperCamelCase_ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(UpperCamelCase_ , UpperCamelCase_ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
93
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : _lowercase : int _lowercase : TreeNode | None = None _lowercase : TreeNode | None = None lowerCAmelCase = namedtuple('CoinsDistribResult', 'moves excess') def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if root is None: return 0 # Validation def count_nodes(SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(SCREAMING_SNAKE_CASE ) != count_coins(SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(SCREAMING_SNAKE_CASE ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase__ , lowercase__ = get_distrib(node.left ) lowercase__ , lowercase__ = get_distrib(node.right ) lowercase__ = 1 - left_distrib_excess lowercase__ = 1 - right_distrib_excess lowercase__ = ( left_distrib_moves + right_distrib_moves + abs(SCREAMING_SNAKE_CASE ) + abs(SCREAMING_SNAKE_CASE ) ) lowercase__ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return get_distrib(SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
93
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def a_ ( __snake_case : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =[2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowerCamelCase_ =True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ =True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ =True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCamelCase_ =[3, 3, 3, 3] lowerCamelCase_ =[5, 5, 5, 5] elif "fl4" in model_name: lowerCamelCase_ =[4, 4, 4, 4] lowerCamelCase_ =[3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCamelCase_ =[3, 3, 3, 3] if "lrf" in model_name: lowerCamelCase_ =[3, 3, 3, 3] else: lowerCamelCase_ =[2, 2, 2, 2] if "tiny" in model_name: lowerCamelCase_ =96 elif "small" in model_name: lowerCamelCase_ =96 elif "base" in model_name: lowerCamelCase_ =128 elif "large" in model_name: lowerCamelCase_ =192 elif "xlarge" in model_name: lowerCamelCase_ =256 elif "huge" in model_name: lowerCamelCase_ =352 # set label information lowerCamelCase_ ='''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowerCamelCase_ ='''imagenet-22k-id2label.json''' else: lowerCamelCase_ ='''imagenet-1k-id2label.json''' lowerCamelCase_ =json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ ={int(__snake_case ): v for k, v in idalabel.items()} lowerCamelCase_ ={v: k for k, v in idalabel.items()} lowerCamelCase_ =FocalNetConfig( embed_dim=__snake_case , depths=__snake_case , focal_levels=__snake_case , focal_windows=__snake_case , use_conv_embed=__snake_case , idalabel=__snake_case , labelaid=__snake_case , use_post_layernorm=__snake_case , use_layerscale=__snake_case , ) return config def a_ ( __snake_case : Any ) -> int: """simple docstring""" if "patch_embed.proj" in name: lowerCamelCase_ =name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCamelCase_ =name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowerCamelCase_ ='''encoder.''' + name if "encoder.layers" in name: lowerCamelCase_ =name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowerCamelCase_ =name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowerCamelCase_ =name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCamelCase_ =name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCamelCase_ =name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCamelCase_ =name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowerCamelCase_ ='''layernorm.weight''' if name == "norm.bias": lowerCamelCase_ ='''layernorm.bias''' if "head" in name: lowerCamelCase_ =name.replace('''head''' , '''classifier''' ) else: lowerCamelCase_ ='''focalnet.''' + name return name def a_ ( __snake_case : List[Any] , __snake_case : List[str] , __snake_case : int=False ) -> Optional[int]: """simple docstring""" # fmt: off lowerCamelCase_ ={ '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowerCamelCase_ =model_name_to_url[model_name] print('''Checkpoint URL: ''' , __snake_case ) lowerCamelCase_ =torch.hub.load_state_dict_from_url(__snake_case , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowerCamelCase_ =state_dict.pop(__snake_case ) lowerCamelCase_ =val lowerCamelCase_ =get_focalnet_config(__snake_case ) lowerCamelCase_ =FocalNetForImageClassification(__snake_case ) model.eval() # load state dict model.load_state_dict(__snake_case ) # verify conversion lowerCamelCase_ ='''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ =BitImageProcessor( do_resize=__snake_case , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=__snake_case , crop_size=224 , do_normalize=__snake_case , image_mean=__snake_case , image_std=__snake_case , ) lowerCamelCase_ =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) lowerCamelCase_ =processor(images=__snake_case , return_tensors='''pt''' ) lowerCamelCase_ =transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowerCamelCase_ =image_transforms(__snake_case ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __snake_case , atol=1e-4 ) lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCamelCase_ =torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowerCamelCase_ =torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowerCamelCase_ =torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowerCamelCase_ =torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowerCamelCase_ =torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowerCamelCase_ =torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": a_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) a_ : int = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
75
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __UpperCamelCase : lowercase : Union[str, Any] =XGLMConfig lowercase : Optional[Any] ={} lowercase : Optional[int] ='gelu' def __init__( self, lowerCAmelCase, lowerCAmelCase=14, lowerCAmelCase=7, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=99, lowerCAmelCase=32, lowerCAmelCase=2, lowerCAmelCase=4, lowerCAmelCase=37, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=0.0_2, ): """simple docstring""" lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_input_mask lowerCamelCase_ =use_labels lowerCamelCase_ =vocab_size lowerCamelCase_ =d_model lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =ffn_dim lowerCamelCase_ =activation_function lowerCamelCase_ =activation_dropout lowerCamelCase_ =attention_dropout lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =initializer_range lowerCamelCase_ =None lowerCamelCase_ =0 lowerCamelCase_ =2 lowerCamelCase_ =1 def lowercase__ ( self ): """simple docstring""" return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 ) lowerCamelCase_ =None if self.use_input_mask: lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ =self.get_config() lowerCamelCase_ =floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowercase__ ( self ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=lowerCAmelCase, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=lowerCAmelCase, ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) =config_and_inputs lowerCamelCase_ ={ '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : int =(TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowercase : Optional[Any] =(TFXGLMForCausalLM,) if is_tf_available() else () lowercase : Tuple =( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) lowercase : Optional[Any] =False lowercase : Optional[Any] =False lowercase : Optional[int] =False def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =TFXGLMModelTester(self ) lowerCamelCase_ =ConfigTester(self, config_class=lowerCAmelCase, n_embd=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =TFXGLMModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def lowercase__ ( self ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def lowercase__ ( self, lowerCAmelCase=True ): """simple docstring""" lowerCamelCase_ =TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) lowerCamelCase_ =tf.convert_to_tensor([[2, 268, 9_865]], dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowerCamelCase_ =[2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on lowerCamelCase_ =model.generate(lowerCAmelCase, do_sample=lowerCAmelCase, num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(), lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) lowerCamelCase_ =TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) lowerCamelCase_ =tokenizer('''Today is a nice day and''', return_tensors='''tf''' ) lowerCamelCase_ =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): lowerCamelCase_ =model.generate(lowerCAmelCase, do_sample=lowerCAmelCase, seed=[7, 0] ) lowerCamelCase_ =tokenizer.decode(output_ids[0], skip_special_tokens=lowerCAmelCase ) lowerCamelCase_ =( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(lowerCAmelCase, lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) lowerCamelCase_ =XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) lowerCamelCase_ ='''left''' # use different length sentences to test batching lowerCamelCase_ =[ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] lowerCamelCase_ =tokenizer(lowerCAmelCase, return_tensors='''tf''', padding=lowerCAmelCase ) lowerCamelCase_ =inputs['''input_ids'''] lowerCamelCase_ =model.generate(input_ids=lowerCAmelCase, attention_mask=inputs['''attention_mask'''], max_new_tokens=12 ) lowerCamelCase_ =tokenizer(sentences[0], return_tensors='''tf''' ).input_ids lowerCamelCase_ =model.generate(input_ids=lowerCAmelCase, max_new_tokens=12 ) lowerCamelCase_ =tokenizer(sentences[1], return_tensors='''tf''' ).input_ids lowerCamelCase_ =model.generate(input_ids=lowerCAmelCase, max_new_tokens=12 ) lowerCamelCase_ =tokenizer.batch_decode(lowerCAmelCase, skip_special_tokens=lowerCAmelCase ) lowerCamelCase_ =tokenizer.decode(output_non_padded[0], skip_special_tokens=lowerCAmelCase ) lowerCamelCase_ =tokenizer.decode(output_padded[0], skip_special_tokens=lowerCAmelCase ) lowerCamelCase_ =[ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, [non_padded_sentence, padded_sentence] )
75
1
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowercase__(A , A , A ) ->Optional[int]: """simple docstring""" lowercase__ : Optional[int]= AlbertConfig.from_json_file(A__ ) print(f'''Building PyTorch model from configuration: {config}''' ) lowercase__ : int= AlbertForPreTraining(A__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(A__ , A__ , A__ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
351
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : Union[str, Any] = False class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Dict= VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase__ : Any= "A painting of a squirrel eating a burger " lowercase__ : Optional[Any]= torch.manual_seed(0 ) lowercase__ : List[str]= pipe( prompt=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case__ ) lowercase__ : Optional[Any]= VersatileDiffusionTextToImagePipeline.from_pretrained(snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase__ : Any= generator.manual_seed(0 ) lowercase__ : Tuple= pipe( prompt=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Tuple= VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase__ : List[str]= "A painting of a squirrel eating a burger " lowercase__ : Union[str, Any]= torch.manual_seed(0 ) lowercase__ : Optional[Any]= pipe( prompt=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images lowercase__ : List[str]= image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ : Optional[int]= np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
150
0
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') lowerCamelCase = logging.getLogger(__name__) @dataclass class A : UpperCamelCase__ : Optional[int] =field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) UpperCamelCase__ : Union[str, Any] =field( default=UpperCamelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) UpperCamelCase__ : Optional[Any] =field( default=UpperCamelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) UpperCamelCase__ : Optional[int] =field( default=UpperCamelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) UpperCamelCase__ : Tuple =field( default=UpperCamelCase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) UpperCamelCase__ : Union[str, Any] =field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) UpperCamelCase__ : Optional[Any] =field( default=UpperCamelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) @dataclass class A : UpperCamelCase__ : int =field(default=UpperCamelCase_ , metadata={'help': 'The input training data file (a text file).'} ) UpperCamelCase__ : str =field( default=UpperCamelCase_ , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) UpperCamelCase__ : int =field( default=UpperCamelCase_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) UpperCamelCase__ : Dict =field( default=UpperCamelCase_ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) UpperCamelCase__ : List[Any] =field( default=UpperCamelCase_ , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. If passed, sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) UpperCamelCase__ : Union[str, Any] =field( default=UpperCamelCase_ , metadata={ 'help': ( 'Whether to pad all samples to the maximum sentence length. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch. More ' 'efficient on GPU but very bad for TPU.' ) } , ) UpperCamelCase__ : int =field( default=UpperCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) UpperCamelCase__ : Any =field( default=UpperCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def lowerCamelCase ( self : str ) -> Dict: """simple docstring""" if self.train_file is not None: _lowerCamelCase : List[Any] =self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _lowerCamelCase : Union[str, Any] =self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A : UpperCamelCase__ : List[str] =42 UpperCamelCase__ : Any =True UpperCamelCase__ : List[str] =None UpperCamelCase__ : Any =None def __call__( self : Optional[Any] , lowercase_ : Dict ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : List[str] ='label' if 'label' in features[0].keys() else 'labels' _lowerCamelCase : List[Any] =[feature.pop(lowerCamelCase__ ) for feature in features] _lowerCamelCase : Dict =len(lowerCamelCase__ ) _lowerCamelCase : List[str] =len(features[0]['input_ids'] ) _lowerCamelCase : List[Any] =[ [{k: v[i] for k, v in feature.items()} for i in range(lowerCamelCase__ )] for feature in features ] _lowerCamelCase : str =list(chain(*lowerCamelCase__ ) ) _lowerCamelCase : Tuple =self.tokenizer.pad( lowerCamelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten _lowerCamelCase : str ={k: v.view(lowerCamelCase__ , lowerCamelCase__ , -1 ) for k, v in batch.items()} # Add back labels _lowerCamelCase : Optional[int] =torch.tensor(lowerCamelCase__ , dtype=torch.intaa ) return batch def a_ ( ): '''simple docstring''' _lowerCamelCase : Any =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase : Optional[int] =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase : str =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , UpperCAmelCase_ , UpperCAmelCase_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCamelCase : Optional[Any] =training_args.get_process_log_level() logger.setLevel(UpperCAmelCase_ ) datasets.utils.logging.set_verbosity(UpperCAmelCase_ ) transformers.utils.logging.set_verbosity(UpperCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _lowerCamelCase : Union[str, Any] =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCamelCase : List[str] =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _lowerCamelCase : Optional[int] ={} if data_args.train_file is not None: _lowerCamelCase : Tuple =data_args.train_file if data_args.validation_file is not None: _lowerCamelCase : Tuple =data_args.validation_file _lowerCamelCase : Any =data_args.train_file.split('.' )[-1] _lowerCamelCase : Union[str, Any] =load_dataset( UpperCAmelCase_ , data_files=UpperCAmelCase_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _lowerCamelCase : List[str] =load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Union[str, Any] =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCamelCase : int =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCamelCase : Dict =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _lowerCamelCase : Any =[F'''ending{i}''' for i in range(4 )] _lowerCamelCase : int ='sent1' _lowerCamelCase : List[str] ='sent2' if data_args.max_seq_length is None: _lowerCamelCase : int =tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) _lowerCamelCase : int =1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) _lowerCamelCase : Optional[int] =min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(SCREAMING_SNAKE_CASE__ : Dict ): _lowerCamelCase : str =[[context] * 4 for context in examples[context_name]] _lowerCamelCase : Optional[Any] =examples[question_header_name] _lowerCamelCase : Tuple =[ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(UpperCAmelCase_ ) ] # Flatten out _lowerCamelCase : Optional[int] =list(chain(*UpperCAmelCase_ ) ) _lowerCamelCase : Optional[Any] =list(chain(*UpperCAmelCase_ ) ) # Tokenize _lowerCamelCase : Tuple =tokenizer( UpperCAmelCase_ , UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(UpperCAmelCase_ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) _lowerCamelCase : Optional[Any] =raw_datasets['train'] if data_args.max_train_samples is not None: _lowerCamelCase : Tuple =min(len(UpperCAmelCase_ ) , data_args.max_train_samples ) _lowerCamelCase : Tuple =train_dataset.select(range(UpperCAmelCase_ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): _lowerCamelCase : Union[str, Any] =train_dataset.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) _lowerCamelCase : str =raw_datasets['validation'] if data_args.max_eval_samples is not None: _lowerCamelCase : Union[str, Any] =min(len(UpperCAmelCase_ ) , data_args.max_eval_samples ) _lowerCamelCase : str =eval_dataset.select(range(UpperCAmelCase_ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): _lowerCamelCase : Dict =eval_dataset.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _lowerCamelCase : List[Any] =( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=UpperCAmelCase_ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(SCREAMING_SNAKE_CASE__ : Tuple ): _lowerCamelCase : Union[str, Any] =eval_predictions _lowerCamelCase : List[str] =np.argmax(UpperCAmelCase_ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _lowerCamelCase : Optional[int] =Trainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCAmelCase_ , data_collator=UpperCAmelCase_ , compute_metrics=UpperCAmelCase_ , ) # Training if training_args.do_train: _lowerCamelCase : Optional[int] =None if training_args.resume_from_checkpoint is not None: _lowerCamelCase : str =training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCamelCase : int =last_checkpoint _lowerCamelCase : List[str] =trainer.train(resume_from_checkpoint=UpperCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload _lowerCamelCase : Union[str, Any] =train_result.metrics _lowerCamelCase : Optional[Any] =( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCAmelCase_ ) ) _lowerCamelCase : Optional[Any] =min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) trainer.log_metrics('train' , UpperCAmelCase_ ) trainer.save_metrics('train' , UpperCAmelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowerCamelCase : List[Any] =trainer.evaluate() _lowerCamelCase : Dict =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCAmelCase_ ) _lowerCamelCase : int =min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) trainer.log_metrics('eval' , UpperCAmelCase_ ) trainer.save_metrics('eval' , UpperCAmelCase_ ) _lowerCamelCase : Optional[int] ={ 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase_ ) else: trainer.create_model_card(**UpperCAmelCase_ ) def a_ ( SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' main() if __name__ == "__main__": main()
199
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class lowercase__ ( lowercase ): def __init__( self : Any ,lowerCamelCase__ : str ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[str] ): '''simple docstring''' _UpperCamelCase : str = dataset _UpperCamelCase : Optional[Any] = process _UpperCamelCase : Optional[Any] = params def __len__( self : Tuple ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : Tuple ,lowerCamelCase__ : List[str] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.dataset[i] _UpperCamelCase : Dict = self.process(lowerCamelCase__ ,**self.params ) return processed class lowercase__ ( lowercase ): def __init__( self : Union[str, Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[int]=None ): '''simple docstring''' _UpperCamelCase : Optional[int] = loader _UpperCamelCase : Tuple = infer _UpperCamelCase : List[str] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _UpperCamelCase : Any = None _UpperCamelCase : Union[str, Any] = loader_batch_size # Internal bookkeeping _UpperCamelCase : Optional[Any] = None _UpperCamelCase : str = None def __len__( self : List[str] ): '''simple docstring''' return len(self.loader ) def __iter__( self : int ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = iter(self.loader ) return self def UpperCamelCase_ ( self : Any ): '''simple docstring''' if isinstance(self._loader_batch_data ,torch.Tensor ): # Batch data is simple tensor, just fetch the slice _UpperCamelCase : Union[str, Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _UpperCamelCase : Union[str, Any] = {} for k, element in self._loader_batch_data.items(): if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): # Convert ModelOutput to tuple first _UpperCamelCase : str = element.to_tuple() if isinstance(element[0] ,torch.Tensor ): _UpperCamelCase : Union[str, Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] ,np.ndarray ): _UpperCamelCase : str = tuple(np.expand_dims(el[self._loader_batch_index] ,0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(lowerCamelCase__ ,lowerCamelCase__ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] ,torch.Tensor ): _UpperCamelCase : Dict = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] ,np.ndarray ): _UpperCamelCase : Tuple = tuple(np.expand_dims(el[self._loader_batch_index] ,0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _UpperCamelCase : Optional[int] = None elif isinstance(element[self._loader_batch_index] ,torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCamelCase : int = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] ,np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCamelCase : Optional[Any] = np.expand_dims(element[self._loader_batch_index] ,0 ) else: # This is typically a list, so no need to `unsqueeze`. _UpperCamelCase : Union[str, Any] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _UpperCamelCase : Optional[int] = self._loader_batch_data.__class__(lowerCamelCase__ ) self._loader_batch_index += 1 return result def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _UpperCamelCase : Tuple = next(self.iterator ) _UpperCamelCase : List[str] = self.infer(lowerCamelCase__ ,**self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(lowerCamelCase__ ,torch.Tensor ): _UpperCamelCase : List[Any] = processed else: _UpperCamelCase : List[Any] = list(processed.keys() )[0] _UpperCamelCase : Optional[int] = processed[key] if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): _UpperCamelCase : int = len(lowerCamelCase__ ) else: _UpperCamelCase : List[str] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCamelCase : int = observed_batch_size # Setting internal index to unwrap the batch _UpperCamelCase : Dict = processed _UpperCamelCase : str = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class lowercase__ ( lowercase ): def __init__( self : str ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Any=None ): '''simple docstring''' super().__init__(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) def __iter__( self : Dict ): '''simple docstring''' _UpperCamelCase : str = iter(self.loader ) _UpperCamelCase : List[str] = None return self def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' if self.subiterator is None: _UpperCamelCase : Tuple = self.infer(next(self.iterator ) ,**self.params ) try: # Try to return next item _UpperCamelCase : Optional[Any] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _UpperCamelCase : List[Any] = self.infer(next(self.iterator ) ,**self.params ) _UpperCamelCase : int = next(self.subiterator ) return processed class lowercase__ ( lowercase ): def __iter__( self : List[str] ): '''simple docstring''' _UpperCamelCase : Dict = iter(self.loader ) return self def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _UpperCamelCase : Dict = False _UpperCamelCase : Tuple = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _UpperCamelCase : Dict = self.loader_batch_item() _UpperCamelCase : List[str] = item.pop('is_last' ) accumulator.append(lowerCamelCase__ ) if is_last: return accumulator while not is_last: _UpperCamelCase : List[Any] = self.infer(next(self.iterator ) ,**self.params ) if self.loader_batch_size is not None: if isinstance(lowerCamelCase__ ,torch.Tensor ): _UpperCamelCase : str = processed else: _UpperCamelCase : Any = list(processed.keys() )[0] _UpperCamelCase : Tuple = processed[key] if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): _UpperCamelCase : Dict = len(lowerCamelCase__ ) else: _UpperCamelCase : Tuple = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCamelCase : Any = observed_batch_size _UpperCamelCase : List[Any] = processed _UpperCamelCase : int = 0 while self._loader_batch_index < self.loader_batch_size: _UpperCamelCase : List[Any] = self.loader_batch_item() _UpperCamelCase : Optional[Any] = item.pop('is_last' ) accumulator.append(lowerCamelCase__ ) if is_last: return accumulator else: _UpperCamelCase : Any = processed _UpperCamelCase : List[Any] = item.pop('is_last' ) accumulator.append(lowerCamelCase__ ) return accumulator class lowercase__ ( lowercase ): def __init__( self : Tuple ,lowerCamelCase__ : Dataset ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : int = dataset _UpperCamelCase : str = key def __len__( self : Dict ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : Tuple ,lowerCamelCase__ : Tuple ): '''simple docstring''' return self.dataset[i][self.key] class lowercase__ ( lowercase ): def __init__( self : List[Any] ,lowerCamelCase__ : Dataset ,lowerCamelCase__ : str ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : int = dataset _UpperCamelCase : Optional[Any] = keya _UpperCamelCase : str = keya def __len__( self : List[Any] ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : List[str] ,lowerCamelCase__ : Optional[int] ): '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
83
0
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase__ : List[str] = logging.get_logger(__name__) @add_end_docstrings(A__ ) class __lowerCamelCase ( A__ ): '''simple docstring''' def __init__( self : List[Any] , *a_ : Optional[int] , **a_ : Optional[int] ): super().__init__(*a_ , **a_ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def lowerCamelCase ( self : str , a_ : Optional[Any]=None , a_ : Tuple=None , a_ : Optional[Any]=None ): lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : Union[str, Any] = {} if prompt is not None: lowerCAmelCase_ : Any = prompt if generate_kwargs is not None: lowerCAmelCase_ : Tuple = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowerCAmelCase_ : str = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) lowerCAmelCase_ : Union[str, Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[Any] , a_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **a_ : List[Any] ): return super().__call__(a_ , **a_ ) def lowerCamelCase ( self : int , a_ : str , a_ : Union[str, Any]=None ): lowerCAmelCase_ : Union[str, Any] = load_image(a_ ) if prompt is not None: if not isinstance(a_ , a_ ): raise ValueError( f'''Received an invalid text input, got - {type(a_ )} - but expected a single string. ''' "Note also that one single text can be provided for conditional image to text generation." ) lowerCAmelCase_ : List[Any] = self.model.config.model_type if model_type == "git": lowerCAmelCase_ : List[Any] = self.image_processor(images=a_ , return_tensors=self.framework ) lowerCAmelCase_ : Optional[int] = self.tokenizer(text=a_ , add_special_tokens=a_ ).input_ids lowerCAmelCase_ : str = [self.tokenizer.cls_token_id] + input_ids lowerCAmelCase_ : Optional[Any] = torch.tensor(a_ ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": lowerCAmelCase_ : Optional[Any] = self.image_processor(images=a_ , header_text=a_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowerCAmelCase_ : Any = self.image_processor(images=a_ , return_tensors=self.framework ) lowerCAmelCase_ : Dict = self.tokenizer(a_ , return_tensors=self.framework ) model_inputs.update(a_ ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: lowerCAmelCase_ : Optional[Any] = self.image_processor(images=a_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowerCAmelCase_ : List[str] = None return model_inputs def lowerCamelCase ( self : Dict , a_ : str , a_ : Dict=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , a_ ) and all(x is None for x in model_inputs["input_ids"] ) ): lowerCAmelCase_ : str = None if generate_kwargs is None: lowerCAmelCase_ : List[Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowerCAmelCase_ : str = model_inputs.pop(self.model.main_input_name ) lowerCAmelCase_ : Dict = self.model.generate(a_ , **a_ , **a_ ) return model_outputs def lowerCamelCase ( self : str , a_ : List[str] ): lowerCAmelCase_ : int = [] for output_ids in model_outputs: lowerCAmelCase_ : Optional[Any] = { "generated_text": self.tokenizer.decode( a_ , skip_special_tokens=a_ , ) } records.append(a_ ) return records
364
"""simple docstring""" import os def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" with open(os.path.dirname(__UpperCamelCase ) + "/grid.txt" ) as f: lowerCAmelCase_ : str = [] # noqa: E741 for _ in range(20 ): l.append([int(__UpperCamelCase ) for x in f.readline().split()] ) lowerCAmelCase_ : Dict = 0 # right for i in range(20 ): for j in range(17 ): lowerCAmelCase_ : Optional[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowerCAmelCase_ : Dict = temp # down for i in range(17 ): for j in range(20 ): lowerCAmelCase_ : Union[str, Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowerCAmelCase_ : List[str] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): lowerCAmelCase_ : Optional[Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowerCAmelCase_ : List[Any] = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): lowerCAmelCase_ : List[Any] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowerCAmelCase_ : str = temp return maximum if __name__ == "__main__": print(solution())
161
0
class __snake_case : def __init__( self ): '''simple docstring''' lowercase : Optional[Any] = """""" lowercase : Tuple = """""" lowercase : List[Any] = [] def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: lowercase : List[str] = self.__min_dist_top_down_dp(m - 1 ,n - 1 ) else: lowercase : Any = self.__min_dist_top_down_dp(snake_case ,n - 1 ) lowercase : List[Any] = self.__min_dist_top_down_dp(m - 1 ,snake_case ) lowercase : Tuple = self.__min_dist_top_down_dp(m - 1 ,n - 1 ) lowercase : Union[str, Any] = 1 + min(snake_case ,snake_case ,snake_case ) return self.dp[m][n] def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = worda lowercase : Dict = worda lowercase : str = [[-1 for _ in range(len(snake_case ) )] for _ in range(len(snake_case ) )] return self.__min_dist_top_down_dp(len(snake_case ) - 1 ,len(snake_case ) - 1 ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[int] = worda lowercase : int = worda lowercase : List[Any] = len(snake_case ) lowercase : Tuple = len(snake_case ) lowercase : str = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty lowercase : str = j elif j == 0: # second string is empty lowercase : Dict = i elif worda[i - 1] == worda[j - 1]: # last characters are equal lowercase : str = self.dp[i - 1][j - 1] else: lowercase : Dict = self.dp[i][j - 1] lowercase : Optional[int] = self.dp[i - 1][j] lowercase : Dict = self.dp[i - 1][j - 1] lowercase : int = 1 + min(snake_case ,snake_case ,snake_case ) return self.dp[m][n] if __name__ == "__main__": lowercase : Union[str, Any] = EditDistance() print("""****************** Testing Edit Distance DP Algorithm ******************""") print() lowercase : Optional[Any] = input("""Enter the first string: """).strip() lowercase : str = input("""Enter the second string: """).strip() print() print(F'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(F'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print("""*************** End of Testing Edit Distance DP Algorithm ***************""")
20
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): _SCREAMING_SNAKE_CASE = y_points[i] for i in range(2 ,snake_case__ ): for j in range(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
306
0
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class A__ ( __UpperCAmelCase ): """simple docstring""" def __lowercase ( self , lowercase) -> List[str]: '''simple docstring''' with open(lowercase , encoding='utf-8') as input_file: a__ : Any = re.compile(r'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)') a__ : Optional[int] = input_file.read() a__ : Union[str, Any] = regexp.search(lowercase) return match def __lowercase ( self , lowercase) -> List[Any]: '''simple docstring''' with open(lowercase , encoding='utf-8') as input_file: a__ : Union[str, Any] = re.compile(r'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL) a__ : Dict = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` a__ : Any = regexp.finditer(lowercase) a__ : List[str] = [match for match in matches if match is not None and match.group(1) is not None] return matches[0] if matches else None def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : List[str] = Path('./datasets') a__ : int = list(dataset_paths.absolute().glob('**/*.py')) for dataset in dataset_files: if self._no_encoding_on_file_open(str(lowercase)): raise AssertionError(F'open(...) must use utf-8 encoding in {dataset}') def __lowercase ( self) -> str: '''simple docstring''' a__ : Optional[int] = Path('./datasets') a__ : List[str] = list(dataset_paths.absolute().glob('**/*.py')) for dataset in dataset_files: if self._no_print_statements(str(lowercase)): raise AssertionError(F'print statement found in {dataset}. Use datasets.logger/logging instead.')
225
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=4 , ) -> Tuple: '''simple docstring''' a__ : str = parent a__ : Optional[Any] = batch_size a__ : str = seq_length a__ : int = is_training a__ : str = use_attention_mask a__ : List[str] = use_token_type_ids a__ : Optional[Any] = use_labels a__ : List[Any] = vocab_size a__ : Tuple = hidden_size a__ : Dict = num_hidden_layers a__ : List[str] = num_attention_heads a__ : int = intermediate_size a__ : Any = hidden_act a__ : Optional[int] = hidden_dropout_prob a__ : Tuple = attention_probs_dropout_prob a__ : Tuple = max_position_embeddings a__ : Optional[int] = type_vocab_size a__ : List[Any] = type_sequence_label_size a__ : Union[str, Any] = initializer_range a__ : str = num_choices def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a__ : Dict = None if self.use_attention_mask: a__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length]) a__ : Dict = None if self.use_token_type_ids: a__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a__ : Dict = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Tuple = self.prepare_config_and_inputs() a__ , a__ , a__ , a__ : Optional[int] = config_and_inputs a__ : str = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : Union[str, Any] = self.prepare_config_and_inputs() a__ , a__ , a__ , a__ : int = config_and_inputs a__ : str = True a__ : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) a__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Optional[Any] = True __A : Tuple = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Optional[Any] = FlaxBertModelTester(self) @slow def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Union[str, Any] = FlaxBertModel.from_pretrained('bert-base-cased') a__ : Optional[Any] = model(np.ones((1, 1))) self.assertIsNotNone(lowercase)
225
1
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
198
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase ( a__ ): '''simple docstring''' def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCAmelCase , '''width_multiplier''' ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=64 , __lowerCAmelCase=2 , __lowerCAmelCase=3 , __lowerCAmelCase="swish" , __lowerCAmelCase=3 , __lowerCAmelCase=32 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=10 , __lowerCAmelCase=None , __lowerCAmelCase=0.2_5 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , ) -> List[Any]: lowercase__ : List[str] = parent lowercase__ : List[Any] = batch_size lowercase__ : List[str] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Tuple = num_channels lowercase__ : List[str] = make_divisible(512 * width_multiplier , divisor=8 ) lowercase__ : Optional[int] = hidden_act lowercase__ : List[Any] = conv_kernel_size lowercase__ : Dict = output_stride lowercase__ : List[Any] = classifier_dropout_prob lowercase__ : str = use_labels lowercase__ : List[Any] = is_training lowercase__ : Tuple = num_labels lowercase__ : Optional[int] = initializer_range lowercase__ : Tuple = scope lowercase__ : List[Any] = width_multiplier lowercase__ : Optional[int] = ffn_dropout lowercase__ : int = attn_dropout def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Any = None lowercase__ : Tuple = None if self.use_labels: lowercase__ : str = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ : int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase__ : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCAmelCase( self ) -> Tuple: return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: lowercase__ : Optional[int] = MobileViTVaModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : str = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: lowercase__ : Optional[Any] = self.num_labels lowercase__ : Dict = MobileViTVaForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : Optional[Any] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: lowercase__ : str = self.num_labels lowercase__ : List[Any] = MobileViTVaForSemanticSegmentation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : int = model(__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowercase__ : Union[str, Any] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCAmelCase( self ) -> int: lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = config_and_inputs lowercase__ : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> int: lowercase__ : Tuple = MobileViTVaModelTester(self ) lowercase__ : Any = MobileViTVaConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def _lowerCAmelCase( self ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def _lowerCAmelCase( self ) -> str: pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def _lowerCAmelCase( self ) -> Optional[Any]: pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def _lowerCAmelCase( self ) -> Optional[int]: pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def _lowerCAmelCase( self ) -> Any: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowerCAmelCase( self ) -> str: pass def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(__lowerCAmelCase ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : str = [*signature.parameters.keys()] lowercase__ : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> str: lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Union[str, Any]: def check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): lowercase__ : Optional[int] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase__ : List[Any] = outputs.hidden_states lowercase__ : Optional[int] = 5 self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowercase__ : str = 2 for i in range(len(__lowerCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Tuple = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Dict: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCAmelCase ) @slow def _lowerCAmelCase( self ) -> List[str]: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Dict = MobileViTVaModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def __UpperCamelCase ( ): lowercase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCAmelCase( self ) -> int: return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Dict = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( __lowerCAmelCase ) lowercase__ : List[Any] = self.default_image_processor lowercase__ : Optional[int] = prepare_img() lowercase__ : int = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase__ : List[str] = model(**__lowerCAmelCase ) # verify the logits lowercase__ : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) lowercase__ : int = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) ) @slow def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : Dict = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : int = model.to(__lowerCAmelCase ) lowercase__ : Any = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : str = prepare_img() lowercase__ : Optional[int] = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase__ : str = model(**__lowerCAmelCase ) lowercase__ : Tuple = outputs.logits # verify the logits lowercase__ : List[Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __lowerCAmelCase ) lowercase__ : Union[str, Any] = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=__lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowerCAmelCase , atol=1E-4 ) ) @slow def _lowerCAmelCase( self ) -> Any: lowercase__ : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : List[str] = model.to(__lowerCAmelCase ) lowercase__ : Optional[int] = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : int = prepare_img() lowercase__ : List[str] = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**__lowerCAmelCase ) lowercase__ : Optional[int] = outputs.logits.detach().cpu() lowercase__ : Any = image_processor.post_process_semantic_segmentation(outputs=__lowerCAmelCase , target_sizes=[(50, 60)] ) lowercase__ : Optional[int] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __lowerCAmelCase ) lowercase__ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=__lowerCAmelCase ) lowercase__ : Union[str, Any] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __lowerCAmelCase )
198
1
'''simple docstring''' import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __snake_case: '''simple docstring''' def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=64 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.0_2 , A_=3 , A_=4 , A_=None , ) -> List[Any]: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = embedding_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def __snake_case ( self ) -> Dict: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self ) -> Any: return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Any: lowerCAmelCase = MegatronBertModel(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ , attention_mask=A_ , token_type_ids=A_ ) lowerCAmelCase = model(A_ , token_type_ids=A_ ) lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[int]: lowerCAmelCase = MegatronBertForMaskedLM(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: lowerCAmelCase = MegatronBertForCausalLM(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Tuple: lowerCAmelCase = MegatronBertForNextSentencePrediction(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[str]: lowerCAmelCase = MegatronBertForPreTraining(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , next_sentence_label=A_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: lowerCAmelCase = MegatronBertForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model( A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Tuple: lowerCAmelCase = self.num_labels lowerCAmelCase = MegatronBertForSequenceClassification(A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[str]: lowerCAmelCase = self.num_labels lowerCAmelCase = MegatronBertForTokenClassification(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: lowerCAmelCase = self.num_choices lowerCAmelCase = MegatronBertForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self ) -> List[str]: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) = config_and_inputs lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __snake_case( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Optional[Any] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase : Any = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase : str = True # test_resize_embeddings = False UpperCAmelCase : Union[str, Any] = False def __snake_case ( self , A_ , A_ , A_=False ) -> List[Any]: lowerCAmelCase = super()._prepare_for_class(A_ , A_ , return_labels=A_ ) if return_labels: if model_class in get_values(A_ ): lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A_ ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) return inputs_dict def __snake_case ( self ) -> str: lowerCAmelCase = MegatronBertModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def __snake_case ( self ) -> Optional[int]: self.config_tester.run_common_tests() def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*A_ ) def __snake_case ( self ) -> Dict: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*A_ ) def __snake_case ( self ) -> List[str]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*A_ ) def __snake_case ( self ) -> Dict: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*A_ ) def __snake_case ( self ) -> str: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*A_ ) def __snake_case ( self ) -> int: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*A_ ) def __snake_case ( self ) -> str: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*A_ ) def __snake_case ( self ) -> List[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*A_ ) def _snake_case ( _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: """simple docstring""" return torch.tensor( _SCREAMING_SNAKE_CASE , dtype=torch.long , device=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class __snake_case( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip("""Model is not available.""" ) def __snake_case ( self ) -> List[Any]: lowerCAmelCase = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: lowerCAmelCase = os.path.join(os.environ["""MYDIR"""] , A_ ) lowerCAmelCase = MegatronBertModel.from_pretrained(A_ ) model.to(A_ ) model.half() lowerCAmelCase = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase = model(A_ )[0] lowerCAmelCase = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , A_ ) lowerCAmelCase = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3 ): for jj in range(3 ): lowerCAmelCase = output[0, ii, jj] lowerCAmelCase = expected[3 * ii + jj] lowerCAmelCase = """ii={} jj={} a={} b={}""".format(A_ , A_ , A_ , A_ ) self.assertTrue(math.isclose(A_ , A_ , rel_tol=A_ , abs_tol=A_ ) , msg=A_ )
187
'''simple docstring''' from __future__ import annotations def _snake_case ( _SCREAMING_SNAKE_CASE : int | str ) -> bool: """simple docstring""" lowerCAmelCase = str(_SCREAMING_SNAKE_CASE ) return n == n[::-1] def _snake_case ( _SCREAMING_SNAKE_CASE : int = 1_000_000 ) -> Dict: """simple docstring""" lowerCAmelCase = 0 for i in range(1 , _SCREAMING_SNAKE_CASE ): if is_palindrome(_SCREAMING_SNAKE_CASE ) and is_palindrome(bin(_SCREAMING_SNAKE_CASE ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
187
1
"""simple docstring""" class lowerCamelCase : '''simple docstring''' def __init__(self ): """simple docstring""" UpperCAmelCase__ : dict[str, TrieNode] = {} # Mapping from char to TrieNode UpperCAmelCase__ : int = False def _a (self , _lowerCamelCase ): """simple docstring""" for word in words: self.insert(_lowerCamelCase ) def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Any = self for char in word: if char not in curr.nodes: UpperCAmelCase__ : Optional[int] = TrieNode() UpperCAmelCase__ : int = curr.nodes[char] UpperCAmelCase__ : int = True def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Tuple = self for char in word: if char not in curr.nodes: return False UpperCAmelCase__ : Tuple = curr.nodes[char] return curr.is_leaf def _a (self , _lowerCamelCase ): """simple docstring""" def _delete(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool: if index == len(_lowerCamelCase ): # If word does not exist if not curr.is_leaf: return False UpperCAmelCase__ : List[Any] = False return len(curr.nodes ) == 0 UpperCAmelCase__ : List[Any] = word[index] UpperCAmelCase__ : Union[str, Any] = curr.nodes.get(_lowerCamelCase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted UpperCAmelCase__ : Dict = _delete(_lowerCamelCase , _lowerCamelCase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , _lowerCamelCase , 0 ) def a__ ( lowerCAmelCase , lowerCAmelCase ) -> None: if node.is_leaf: print(lowerCAmelCase , end=""" """ ) for key, value in node.nodes.items(): print_words(lowerCAmelCase , word + key ) def a__ ( ) -> bool: UpperCAmelCase__ : Union[str, Any] = """banana bananas bandana band apple all beast""".split() UpperCAmelCase__ : Dict = TrieNode() root.insert_many(lowerCAmelCase ) # print_words(root, "") assert all(root.find(lowerCAmelCase ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def a__ ( lowerCAmelCase , lowerCAmelCase ) -> None: print(str(lowerCAmelCase ) , """works!""" if passes else """doesn't work :(""" ) def a__ ( ) -> None: assert test_trie() def a__ ( ) -> None: print_results("""Testing trie functionality""" , test_trie() ) if __name__ == "__main__": main()
171
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict _A = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def a__ ( lowerCAmelCase , lowerCAmelCase ) -> List[Any]: return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def a__ ( lowerCAmelCase ) -> List[Any]: UpperCAmelCase__ : Dict = _TestCommandArgs(dataset=lowerCAmelCase , all_configs=lowerCAmelCase , save_infos=lowerCAmelCase ) UpperCAmelCase__ : List[Any] = TestCommand(*lowerCAmelCase ) test_command.run() UpperCAmelCase__ : List[Any] = os.path.join(lowerCAmelCase , """README.md""" ) assert os.path.exists(lowerCAmelCase ) UpperCAmelCase__ : List[str] = DatasetInfosDict.from_directory(lowerCAmelCase ) UpperCAmelCase__ : List[Any] = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 2_35_15_63, """num_examples""": 1_00_00, }, { """name""": """validation""", """num_bytes""": 23_84_18, """num_examples""": 10_00, }, ] , download_size=3_94_06_80 , dataset_size=2_58_99_81 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = getattr(dataset_infos["""default"""] , lowerCAmelCase ), getattr(expected_dataset_infos["""default"""] , lowerCAmelCase ) if key == "num_bytes": assert is_apercent_close(lowerCAmelCase , lowerCAmelCase ) elif key == "splits": assert list(lowerCAmelCase ) == list(lowerCAmelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
171
1
from math import isqrt def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(__UpperCAmelCase ) + 1 ) ) def UpperCAmelCase_ ( __UpperCAmelCase : int = 10**6 ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 7 while prime_candidate < max_prime: primes_count += is_prime(__UpperCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'''{solution() = }''')
365
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> str: SCREAMING_SNAKE_CASE_ = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> dict[str, str]: SCREAMING_SNAKE_CASE_ = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key SCREAMING_SNAKE_CASE_ = remove_duplicates(key.upper() ) SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) # First fill cipher with key characters SCREAMING_SNAKE_CASE_ = {alphabet[i]: char for i, char in enumerate(__UpperCAmelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__UpperCAmelCase ) , 26 ): SCREAMING_SNAKE_CASE_ = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 SCREAMING_SNAKE_CASE_ = alphabet[i - offset] SCREAMING_SNAKE_CASE_ = char return cipher_alphabet def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : dict[str, str] ) -> str: return "".join(cipher_map.get(__UpperCAmelCase , __UpperCAmelCase ) for ch in message.upper() ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : dict[str, str] ) -> str: SCREAMING_SNAKE_CASE_ = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__UpperCAmelCase , __UpperCAmelCase ) for ch in message.upper() ) def UpperCAmelCase_ ( ) -> None: SCREAMING_SNAKE_CASE_ = input('Enter message to encode or decode: ' ).strip() SCREAMING_SNAKE_CASE_ = input('Enter keyword: ' ).strip() SCREAMING_SNAKE_CASE_ = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: SCREAMING_SNAKE_CASE_ = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) SCREAMING_SNAKE_CASE_ = create_cipher_map(__UpperCAmelCase ) print(func(__UpperCAmelCase , __UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
210
0
from collections.abc import Iterable from typing import Generic, TypeVar _lowercase: int = TypeVar("_T") class _lowercase ( Generic[_T] ): """simple docstring""" def __init__(self , lowerCamelCase_ = None ): """simple docstring""" a = list(iterable or [] ) a = [] def __len__(self ): """simple docstring""" return len(self._stacka ) + len(self._stacka ) def __repr__(self ): """simple docstring""" return F'''Queue({tuple(self._stacka[::-1] + self._stacka )})''' def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" self._stacka.append(_snake_case ) def UpperCamelCase_ (self ): """simple docstring""" a = self._stacka.pop a = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("Queue is empty" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
227
from argparse import ArgumentParser from . import BaseTransformersCLICommand def _UpperCAmelCase ( snake_case ): """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __lowerCAmelCase ( lowerCamelCase__ ): @staticmethod def snake_case ( _snake_case ): """simple docstring""" _lowerCAmelCase = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=_snake_case , default=_snake_case , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=_snake_case , help="""Name of the model to download""" ) download_parser.set_defaults(func=_snake_case ) def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = model _lowerCAmelCase = cache _lowerCAmelCase = force _lowerCAmelCase = trust_remote_code def snake_case ( self ): """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
82
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class __lowerCAmelCase : # setable values snake_case : Optional[int] = None snake_case : Optional[jnp.ndarray] = None snake_case : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def snake_case_ (cls ): return cls() @dataclass class __lowerCAmelCase ( __a ): snake_case : jnp.ndarray snake_case : jnp.ndarray snake_case : KarrasVeSchedulerState class __lowerCAmelCase ( __a , __a ): @property def snake_case_ (self ): return True @register_to_config def __init__(self , lowerCAmelCase__ = 0.0_2 , lowerCAmelCase__ = 1_0_0 , lowerCAmelCase__ = 1.0_0_7 , lowerCAmelCase__ = 8_0 , lowerCAmelCase__ = 0.0_5 , lowerCAmelCase__ = 5_0 , ): pass def snake_case_ (self ): return KarrasVeSchedulerState.create() def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = () ): _UpperCAmelCase : Any = jnp.arange(0 , lowerCAmelCase__ )[::-1].copy() _UpperCAmelCase : Union[str, Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=lowerCAmelCase__ , schedule=jnp.array(lowerCAmelCase__ , dtype=jnp.floataa ) , timesteps=lowerCAmelCase__ , ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): if self.config.s_min <= sigma <= self.config.s_max: _UpperCAmelCase : Union[str, Any] = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: _UpperCAmelCase : Any = 0 # sample eps ~ N(0, S_noise^2 * I) _UpperCAmelCase : Dict = random.split(lowerCAmelCase__ , num=1 ) _UpperCAmelCase : Dict = self.config.s_noise * random.normal(key=lowerCAmelCase__ , shape=sample.shape ) _UpperCAmelCase : str = sigma + gamma * sigma _UpperCAmelCase : Optional[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = True , ): _UpperCAmelCase : Tuple = sample_hat + sigma_hat * model_output _UpperCAmelCase : List[Any] = (sample_hat - pred_original_sample) / sigma_hat _UpperCAmelCase : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase__ , derivative=lowerCAmelCase__ , state=lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = True , ): _UpperCAmelCase : List[str] = sample_prev + sigma_prev * model_output _UpperCAmelCase : Union[str, Any] = (sample_prev - pred_original_sample) / sigma_prev _UpperCAmelCase : Optional[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase__ , derivative=lowerCAmelCase__ , state=lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): raise NotImplementedError()
170
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowerCAmelCase_ : Dict = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') lowerCAmelCase_ : Tuple = parser.parse_args() lowerCAmelCase_ : Union[str, Any] = '''cpu''' lowerCAmelCase_ : List[Any] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' lowerCAmelCase_ : List[Any] = '''path-to-your-trained-model''' lowerCAmelCase_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowerCAmelCase_ : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowerCAmelCase_ : str = pipe.to(device) # to channels last lowerCAmelCase_ : Dict = pipe.unet.to(memory_format=torch.channels_last) lowerCAmelCase_ : Union[str, Any] = pipe.vae.to(memory_format=torch.channels_last) lowerCAmelCase_ : Optional[int] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowerCAmelCase_ : Any = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowerCAmelCase_ : str = torch.randn(2, 4, 64, 64) lowerCAmelCase_ : str = torch.rand(1) * 999 lowerCAmelCase_ : Any = torch.randn(2, 77, 768) lowerCAmelCase_ : Optional[Any] = (sample, timestep, encoder_hidden_status) try: lowerCAmelCase_ : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowerCAmelCase_ : Optional[int] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase_ : Dict = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase_ : Optional[int] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowerCAmelCase_ : Optional[int] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowerCAmelCase_ : str = 666 lowerCAmelCase_ : int = torch.Generator(device).manual_seed(seed) lowerCAmelCase_ : Dict = {'''generator''': generator} if args.steps is not None: lowerCAmelCase_ : Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowerCAmelCase_ : Tuple = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
170
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = jnp.ones((batch_size, length) ) / length return scores def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = None __lowerCamelCase = 20 __lowerCamelCase = self._get_uniform_logits(batch_size=2 , length=lowerCamelCase__ ) # tweak scores to not be uniform anymore __lowerCamelCase = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch __lowerCamelCase = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax __lowerCamelCase = jax.nn.softmax(lowerCamelCase__ , axis=-1 ) __lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) __lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=1.3 ) __lowerCamelCase = jax.nn.softmax(temp_dist_warper_sharper(lowerCamelCase__ , scores.copy() , cur_len=lowerCamelCase__ ) , axis=-1 ) __lowerCamelCase = jax.nn.softmax(temp_dist_warper_smoother(lowerCamelCase__ , scores.copy() , cur_len=lowerCamelCase__ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = None __lowerCamelCase = 10 __lowerCamelCase = 2 # create ramp distribution __lowerCamelCase = np.broadcast_to(np.arange(lowerCamelCase__ )[None, :] , (batch_size, vocab_size) ).copy() __lowerCamelCase = ramp_logits[1:, : vocab_size // 2] + vocab_size __lowerCamelCase = FlaxTopKLogitsWarper(3 ) __lowerCamelCase = top_k_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case __lowerCamelCase = 5 __lowerCamelCase = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) __lowerCamelCase = np.broadcast_to(np.arange(lowerCamelCase__ )[None, :] , (batch_size, length) ).copy() __lowerCamelCase = top_k_warp_safety_check(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = None __lowerCamelCase = 10 __lowerCamelCase = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) __lowerCamelCase = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) __lowerCamelCase = FlaxTopPLogitsWarper(0.8 ) __lowerCamelCase = np.exp(top_p_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 __lowerCamelCase = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # check edge cases with negative and extreme logits __lowerCamelCase = np.broadcast_to(np.arange(lowerCamelCase__ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme __lowerCamelCase = ramp_logits[1] * 1_00.0 # make sure at least 2 tokens are kept __lowerCamelCase = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) __lowerCamelCase = top_p_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = 4 __lowerCamelCase = 0 __lowerCamelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase__ ) # check that min length is applied at length 5 __lowerCamelCase = ids_tensor((batch_size, 20) , vocab_size=20 ) __lowerCamelCase = 5 __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = min_dist_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = 15 __lowerCamelCase = min_dist_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertFalse(jnp.isinf(lowerCamelCase__ ).any() ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = 4 __lowerCamelCase = 0 __lowerCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase__ ) # check that all scores are -inf except the bos_token_id score __lowerCamelCase = ids_tensor((batch_size, 1) , vocab_size=20 ) __lowerCamelCase = 1 __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = logits_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 __lowerCamelCase = 3 __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = logits_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertFalse(jnp.isinf(lowerCamelCase__ ).any() ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = 4 __lowerCamelCase = 0 __lowerCamelCase = 5 __lowerCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) # check that all scores are -inf except the eos_token_id when max_length is reached __lowerCamelCase = ids_tensor((batch_size, 4) , vocab_size=20 ) __lowerCamelCase = 4 __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = logits_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached __lowerCamelCase = 3 __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = logits_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertFalse(jnp.isinf(lowerCamelCase__ ).any() ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = 4 __lowerCamelCase = 10 __lowerCamelCase = 15 __lowerCamelCase = 2 __lowerCamelCase = 1 __lowerCamelCase = 15 # dummy input_ids and scores __lowerCamelCase = ids_tensor((batch_size, sequence_length) , lowerCamelCase__ ) __lowerCamelCase = input_ids.copy() __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = scores.copy() # instantiate all dist processors __lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) __lowerCamelCase = FlaxTopKLogitsWarper(3 ) __lowerCamelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __lowerCamelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase__ ) __lowerCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = 10 # no processor list __lowerCamelCase = temp_dist_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = top_k_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = top_p_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = min_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = bos_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = eos_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) # with processor list __lowerCamelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __lowerCamelCase = processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = 4 __lowerCamelCase = 10 __lowerCamelCase = 15 __lowerCamelCase = 2 __lowerCamelCase = 1 __lowerCamelCase = 15 # dummy input_ids and scores __lowerCamelCase = ids_tensor((batch_size, sequence_length) , lowerCamelCase__ ) __lowerCamelCase = input_ids.copy() __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = scores.copy() # instantiate all dist processors __lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) __lowerCamelCase = FlaxTopKLogitsWarper(3 ) __lowerCamelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __lowerCamelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase__ ) __lowerCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = 10 # no processor list def run_no_processor_list(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = temp_dist_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = top_k_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = top_p_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = min_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = bos_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = eos_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) return scores # with processor list def run_processor_list(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __lowerCamelCase = processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) return scores __lowerCamelCase = jax.jit(lowerCamelCase__ ) __lowerCamelCase = jax.jit(lowerCamelCase__ ) __lowerCamelCase = jitted_run_no_processor_list(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = jitted_run_processor_list(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
90
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = [0 for i in range(r + 1 )] # nc0 = 1 _lowerCAmelCase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _lowerCAmelCase = min(lowerCAmelCase , lowerCAmelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
70
0
import random from .binary_exp_mod import bin_exp_mod def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Optional[int]=1_000 ) -> Tuple: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd __lowerCAmelCase : str = n - 1 __lowerCAmelCase : List[str] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) __lowerCAmelCase : Optional[int] = 0 while count < prec: __lowerCAmelCase : List[Any] = random.randint(2 , n - 1 ) __lowerCAmelCase : List[str] = bin_exp_mod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if b != 1: __lowerCAmelCase : str = True for _ in range(SCREAMING_SNAKE_CASE ): if b == n - 1: __lowerCAmelCase : List[str] = False break __lowerCAmelCase : Union[str, Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _UpperCAmelCase = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
232
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class snake_case_ ( __lowercase ,unittest.TestCase ): A_ = PegasusTokenizer A_ = PegasusTokenizerFast A_ = True A_ = True def UpperCAmelCase__ ( self : List[str] )->Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase : Optional[int] = PegasusTokenizer(_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ ( self : str )->Dict: '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def UpperCAmelCase__ ( self : Optional[Any] , **_snake_case : Tuple )->PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCAmelCase__ ( self : Dict , _snake_case : List[Any] )->Tuple: '''simple docstring''' return ("This is a test", "This is a test") def UpperCAmelCase__ ( self : Union[str, Any] )->Dict: '''simple docstring''' __lowerCAmelCase : Dict = """</s>""" __lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def UpperCAmelCase__ ( self : int )->Tuple: '''simple docstring''' __lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_snake_case ) , 1103 ) def UpperCAmelCase__ ( self : Optional[int] )->Optional[int]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def UpperCAmelCase__ ( self : Dict )->str: '''simple docstring''' __lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : str = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) __lowerCAmelCase : str = rust_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] __lowerCAmelCase : Tuple = py_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : Optional[int] )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : List[str] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __lowerCAmelCase : Tuple = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" __lowerCAmelCase : List[str] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] __lowerCAmelCase : str = tokenizer([raw_input_str] , return_tensors=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : List[str] )->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 __lowerCAmelCase : Tuple = """To ensure a smooth flow of bank resolutions.""" __lowerCAmelCase : Optional[Any] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] __lowerCAmelCase : int = tokenizer([raw_input_str] , return_tensors=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase__ ( self : Any )->Any: '''simple docstring''' __lowerCAmelCase : List[Any] = ["""This is going to be way too long.""" * 150, """short example"""] __lowerCAmelCase : Union[str, Any] = ["""not super long but more than 5 tokens""", """tiny"""] __lowerCAmelCase : Dict = self._large_tokenizer(_snake_case , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) __lowerCAmelCase : Tuple = self._large_tokenizer( text_target=_snake_case , max_length=5 , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_snake_case ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase__ ( self : Optional[Any] )->Any: '''simple docstring''' __lowerCAmelCase : Optional[Any] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class snake_case_ ( __lowercase ,unittest.TestCase ): A_ = PegasusTokenizer A_ = PegasusTokenizerFast A_ = True A_ = True def UpperCAmelCase__ ( self : Tuple )->Tuple: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase : Any = PegasusTokenizer(_snake_case , offset=0 , mask_token_sent=_snake_case , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ ( self : Any )->str: '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def UpperCAmelCase__ ( self : Union[str, Any] , **_snake_case : Optional[Any] )->PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCAmelCase__ ( self : List[str] , _snake_case : Optional[int] )->Union[str, Any]: '''simple docstring''' return ("This is a test", "This is a test") def UpperCAmelCase__ ( self : List[Any] )->str: '''simple docstring''' __lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : int = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) __lowerCAmelCase : str = rust_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] __lowerCAmelCase : Tuple = py_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) @require_torch def UpperCAmelCase__ ( self : str )->Optional[Any]: '''simple docstring''' __lowerCAmelCase : int = ["""This is going to be way too long.""" * 1000, """short example"""] __lowerCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] __lowerCAmelCase : str = self._large_tokenizer(_snake_case , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) __lowerCAmelCase : List[Any] = self._large_tokenizer( text_target=_snake_case , max_length=5 , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_snake_case ) == 2 # input_ids, attention_mask. def UpperCAmelCase__ ( self : Optional[Any] )->Any: '''simple docstring''' __lowerCAmelCase : Tuple = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) __lowerCAmelCase : Optional[Any] = self._large_tokenizer(_snake_case ).input_ids self.assertListEqual( _snake_case , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
232
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowerCamelCase : List[str] = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
336
from __future__ import annotations def a__ ( UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Union[str, Any] = len(UpperCAmelCase ) # We need to create solution object to save path. UpperCAmelCase : int = [[0 for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )] UpperCAmelCase : Union[str, Any] = run_maze(UpperCAmelCase , 0 , 0 , UpperCAmelCase ) if solved: print('''\n'''.join(str(UpperCAmelCase ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def a__ ( UpperCAmelCase : list[list[int]] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Dict = len(UpperCAmelCase ) # Final check point. if i == j == (size - 1): UpperCAmelCase : Dict = 1 return True UpperCAmelCase : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds UpperCAmelCase : List[Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. UpperCAmelCase : Any = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited UpperCAmelCase : str = 1 # check for directions if ( run_maze(UpperCAmelCase , i + 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j + 1 , UpperCAmelCase ) or run_maze(UpperCAmelCase , i - 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j - 1 , UpperCAmelCase ) ): return True UpperCAmelCase : Any = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
336
1
'''simple docstring''' from __future__ import annotations def a ( lowerCamelCase__ ): '''simple docstring''' if len(lowercase_ ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) A_ : Optional[int] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
362
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ShapEPipeline __SCREAMING_SNAKE_CASE : Optional[int] = ['prompt'] __SCREAMING_SNAKE_CASE : str = ['prompt'] __SCREAMING_SNAKE_CASE : Dict = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : Union[str, Any] = False @property def _a (self ): return 32 @property def _a (self ): return 32 @property def _a (self ): return self.time_input_dim * 4 @property def _a (self ): return 8 @property def _a (self ): A_ : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def _a (self ): torch.manual_seed(0 ) A_ : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowercase ) @property def _a (self ): torch.manual_seed(0 ) A_ : Any = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } A_ : List[str] = PriorTransformer(**lowercase ) return model @property def _a (self ): torch.manual_seed(0 ) A_ : str = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } A_ : Dict = ShapERenderer(**lowercase ) return model def _a (self ): A_ : Optional[int] = self.dummy_prior A_ : Optional[int] = self.dummy_text_encoder A_ : int = self.dummy_tokenizer A_ : Dict = self.dummy_renderer A_ : Tuple = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=lowercase , clip_sample=lowercase , clip_sample_range=1.0 , ) A_ : Union[str, Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def _a (self , lowercase , lowercase=0 ): if str(lowercase ).startswith("""mps""" ): A_ : Any = torch.manual_seed(lowercase ) else: A_ : str = torch.Generator(device=lowercase ).manual_seed(lowercase ) A_ : List[str] = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def _a (self ): A_ : str = """cpu""" A_ : Union[str, Any] = self.get_dummy_components() A_ : Optional[int] = self.pipeline_class(**lowercase ) A_ : str = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : Dict = pipe(**self.get_dummy_inputs(lowercase ) ) A_ : Dict = output.images[0] A_ : int = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) A_ : Tuple = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a (self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a (self ): A_ : Tuple = torch_device == """cpu""" A_ : Union[str, Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowercase , relax_max_difference=lowercase , ) def _a (self ): A_ : List[Any] = self.get_dummy_components() A_ : Any = self.pipeline_class(**lowercase ) A_ : Any = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : int = 1 A_ : Union[str, Any] = 2 A_ : Dict = self.get_dummy_inputs(lowercase ) for key in inputs.keys(): if key in self.batch_params: A_ : Optional[Any] = batch_size * [inputs[key]] A_ : List[Any] = pipe(**lowercase , num_images_per_prompt=lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a (self ): A_ : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) A_ : Tuple = ShapEPipeline.from_pretrained("""openai/shap-e""" ) A_ : int = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : int = torch.Generator(device=lowercase ).manual_seed(0 ) A_ : List[str] = pipe( """a shark""" , generator=lowercase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowercase , lowercase )
135
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { '''facebook/timesformer''': '''https://huggingface.co/facebook/timesformer/resolve/main/config.json''', } class a ( __snake_case ): SCREAMING_SNAKE_CASE : Optional[int] = """timesformer""" def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : int=224 , __SCREAMING_SNAKE_CASE : Union[str, Any]=16 , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Any=8 , __SCREAMING_SNAKE_CASE : int=768 , __SCREAMING_SNAKE_CASE : int=12 , __SCREAMING_SNAKE_CASE : str=12 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3072 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Any=0.0 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : Any=0.02 , __SCREAMING_SNAKE_CASE : List[Any]=1e-6 , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : Optional[Any]="divided_space_time" , __SCREAMING_SNAKE_CASE : List[Any]=0 , **__SCREAMING_SNAKE_CASE : int , ) -> Dict: super().__init__(**__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = num_frames lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = qkv_bias lowerCamelCase_ = attention_type lowerCamelCase_ = drop_path_rate
183
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase : int ) -> list[int]: lowerCamelCase_ = [True] * limit lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowerCamelCase_ = i * 2 while index < limit: lowerCamelCase_ = False lowerCamelCase_ = index + i lowerCamelCase_ = [2] for i in range(3 , _lowerCamelCase , 2 ): if is_prime[i]: primes.append(_lowerCamelCase ) return primes def lowerCamelCase__ ( _lowerCamelCase : int = 1000000 ) -> int: lowerCamelCase_ = prime_sieve(_lowerCamelCase ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 for i in range(len(_lowerCamelCase ) ): for j in range(i + length , len(_lowerCamelCase ) ): lowerCamelCase_ = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowerCamelCase_ = j - i lowerCamelCase_ = sol return largest if __name__ == "__main__": print(F'''{solution() = }''')
183
1
from typing import Union import fire import torch from tqdm import tqdm def lowerCamelCase__ ( snake_case_ : str , snake_case_ : str = "cpu" , snake_case_ : Union[str, None] = None ) -> None: __snake_case = torch.load(__A , map_location=__A ) for k, v in tqdm(state_dict.items() ): if not isinstance(__A , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) __snake_case = v.half() if save_path is None: # overwrite src_path __snake_case = src_path torch.save(__A , __A ) if __name__ == "__main__": fire.Fire(convert)
357
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : int ): """simple docstring""" super().tearDown() gc.collect() def a (self : Dict ): """simple docstring""" __snake_case , __snake_case = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''' , from_pt=a__ , dtype=jnp.bfloataa ) __snake_case , __snake_case = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=a__ , from_pt=a__ , dtype=jnp.bfloataa ) __snake_case = controlnet_params __snake_case = '''bird''' __snake_case = jax.device_count() __snake_case = pipe.prepare_text_inputs([prompts] * num_samples ) __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) __snake_case = pipe.prepare_image_inputs([canny_image] * num_samples ) __snake_case = jax.random.PRNGKey(0 ) __snake_case = jax.random.split(a__ , jax.device_count() ) __snake_case = replicate(a__ ) __snake_case = shard(a__ ) __snake_case = shard(a__ ) __snake_case = pipe( prompt_ids=a__ , image=a__ , params=a__ , prng_seed=a__ , num_inference_steps=50 , jit=a__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) __snake_case = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __snake_case = images[0, 253:256, 253:256, -1] __snake_case = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __snake_case = jnp.array( [0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def a (self : Dict ): """simple docstring""" __snake_case , __snake_case = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''' , from_pt=a__ , dtype=jnp.bfloataa ) __snake_case , __snake_case = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=a__ , from_pt=a__ , dtype=jnp.bfloataa ) __snake_case = controlnet_params __snake_case = '''Chef in the kitchen''' __snake_case = jax.device_count() __snake_case = pipe.prepare_text_inputs([prompts] * num_samples ) __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) __snake_case = pipe.prepare_image_inputs([pose_image] * num_samples ) __snake_case = jax.random.PRNGKey(0 ) __snake_case = jax.random.split(a__ , jax.device_count() ) __snake_case = replicate(a__ ) __snake_case = shard(a__ ) __snake_case = shard(a__ ) __snake_case = pipe( prompt_ids=a__ , image=a__ , params=a__ , prng_seed=a__ , num_inference_steps=50 , jit=a__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) __snake_case = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __snake_case = images[0, 253:256, 253:256, -1] __snake_case = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __snake_case = jnp.array( [[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
238
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""", """google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""", """google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'big_bird' def __init__( self , lowercase=50358 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu_new" , lowercase=0.1 , lowercase=0.1 , lowercase=4096 , lowercase=2 , lowercase=0.02 , lowercase=1e-12 , lowercase=True , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=66 , lowercase="block_sparse" , lowercase=True , lowercase=False , lowercase=64 , lowercase=3 , lowercase=None , **lowercase , ) -> Optional[int]: '''simple docstring''' super().__init__( pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , sep_token_id=lowercase , **lowercase , ) A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = type_vocab_size A__ = layer_norm_eps A__ = use_cache A__ = rescale_embeddings A__ = attention_type A__ = use_bias A__ = block_size A__ = num_random_blocks A__ = classifier_dropout class a__ ( snake_case ): """simple docstring""" @property def UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A__ = {0: "batch", 1: "choice", 2: "sequence"} else: A__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
68
'''simple docstring''' import numpy as np def UpperCamelCase( UpperCAmelCase_ ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
151
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class _a ( _lowerCAmelCase ): A = (PNDMScheduler,) A = (('''num_inference_steps''', 50),) def __snake_case (self, **SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCAmelCase_: Optional[int] = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", } config.update(**SCREAMING_SNAKE_CASE_ ) return config def __snake_case (self, SCREAMING_SNAKE_CASE_=0, **SCREAMING_SNAKE_CASE_ ) -> str: UpperCAmelCase_: int = dict(self.forward_default_kwargs ) UpperCAmelCase_: Union[str, Any] = kwargs.pop("""num_inference_steps""", SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = self.dummy_sample UpperCAmelCase_: Any = 0.1 * sample UpperCAmelCase_: List[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: UpperCAmelCase_: Optional[int] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # copy over dummy past residuals UpperCAmelCase_: Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # copy over dummy past residuals UpperCAmelCase_: List[str] = dummy_past_residuals[:] UpperCAmelCase_: Optional[Any] = scheduler.step_prk(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ).prev_sample UpperCAmelCase_: List[Any] = new_scheduler.step_prk(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_: int = scheduler.step_plms(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ).prev_sample UpperCAmelCase_: Union[str, Any] = new_scheduler.step_plms(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __snake_case (self ) -> Union[str, Any]: pass def __snake_case (self, SCREAMING_SNAKE_CASE_=0, **SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCAmelCase_: List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_: Dict = kwargs.pop("""num_inference_steps""", SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = self.dummy_sample UpperCAmelCase_: List[str] = 0.1 * sample UpperCAmelCase_: Union[str, Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: UpperCAmelCase_: Tuple = self.get_scheduler_config() UpperCAmelCase_: str = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_: Optional[int] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_: int = dummy_past_residuals[:] UpperCAmelCase_: Any = scheduler.step_prk(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ).prev_sample UpperCAmelCase_: List[str] = new_scheduler.step_prk(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_: Tuple = scheduler.step_plms(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ).prev_sample UpperCAmelCase_: int = new_scheduler.step_plms(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __snake_case (self, **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: Union[str, Any] = self.scheduler_classes[0] UpperCAmelCase_: int = self.get_scheduler_config(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = 10 UpperCAmelCase_: Union[str, Any] = self.dummy_model() UpperCAmelCase_: Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase_: Optional[Any] = model(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = scheduler.step_prk(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase_: Optional[int] = model(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = scheduler.step_plms(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ).prev_sample return sample def __snake_case (self ) -> Tuple: UpperCAmelCase_: List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_: Tuple = kwargs.pop("""num_inference_steps""", SCREAMING_SNAKE_CASE_ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase_: int = self.get_scheduler_config() UpperCAmelCase_: List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = self.dummy_sample UpperCAmelCase_: List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE_, """set_timesteps""" ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE_, """set_timesteps""" ): UpperCAmelCase_: Optional[int] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_: List[str] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] UpperCAmelCase_: List[str] = dummy_past_residuals[:] UpperCAmelCase_: Optional[int] = scheduler.step_prk(SCREAMING_SNAKE_CASE_, 0, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ).prev_sample UpperCAmelCase_: Any = scheduler.step_prk(SCREAMING_SNAKE_CASE_, 1, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) UpperCAmelCase_: Optional[int] = scheduler.step_plms(SCREAMING_SNAKE_CASE_, 0, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ).prev_sample UpperCAmelCase_: str = scheduler.step_plms(SCREAMING_SNAKE_CASE_, 1, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def __snake_case (self ) -> str: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Dict: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = self.scheduler_classes[0] UpperCAmelCase_: Optional[int] = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_: Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps, torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ), ) def __snake_case (self ) -> Dict: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1], [0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_, beta_end=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Optional[int]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[str]: for t in [1, 5, 10]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Tuple: for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Tuple: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_: Optional[Any] = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_: Dict = self.dummy_sample UpperCAmelCase_: Union[str, Any] = 0.1 * sample UpperCAmelCase_: Optional[int] = self.get_scheduler_config() UpperCAmelCase_: Dict = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase_: Optional[int] = scheduler.step_prk(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ).prev_sample def __snake_case (self ) -> str: with self.assertRaises(SCREAMING_SNAKE_CASE_ ): UpperCAmelCase_: Optional[Any] = self.scheduler_classes[0] UpperCAmelCase_: int = self.get_scheduler_config() UpperCAmelCase_: Dict = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample ).prev_sample def __snake_case (self ) -> str: UpperCAmelCase_: List[str] = self.full_loop() UpperCAmelCase_: Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1E-3 def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Optional[int] = self.full_loop(prediction_type="""v_prediction""" ) UpperCAmelCase_: List[str] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: List[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1E-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1E-3 def __snake_case (self ) -> Union[str, Any]: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_: Tuple = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE_, beta_start=0.0_1 ) UpperCAmelCase_: Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1E-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1E-3 def __snake_case (self ) -> Optional[Any]: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_: Optional[Any] = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE_, beta_start=0.0_1 ) UpperCAmelCase_: Any = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1E-3
82
from collections import defaultdict class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCAmelCase_: Optional[int] = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 UpperCAmelCase_: List[Any] = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(SCREAMING_SNAKE_CASE_ ) ) ] UpperCAmelCase_: Union[str, Any] = defaultdict(SCREAMING_SNAKE_CASE_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 UpperCAmelCase_: List[Any] = (1 << len(SCREAMING_SNAKE_CASE_ )) - 1 def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement UpperCAmelCase_: List[Any] = self.count_ways_until(SCREAMING_SNAKE_CASE_, task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p), task_no + 1 ) # save the value. UpperCAmelCase_: List[Any] = total_ways_util return self.dp[mask][task_no] def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> str: # Store the list of persons for each task for i in range(len(SCREAMING_SNAKE_CASE_ ) ): for j in task_performed[i]: self.task[j].append(SCREAMING_SNAKE_CASE_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0, 1 ) if __name__ == "__main__": a : Optional[Any] = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. a : Optional[Any] = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
82
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING lowercase : str = logging.get_logger(__name__) class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = 'upernet' def __init__( self :Any , a :Union[str, Any]=None , a :str=5_1_2 , a :Any=0.02 , a :Union[str, Any]=[1, 2, 3, 6] , a :int=True , a :str=0.4 , a :Optional[Any]=3_8_4 , a :List[Any]=2_5_6 , a :Any=1 , a :Any=False , a :Union[str, Any]=2_5_5 , **a :Any , ) -> Dict: super().__init__(**a ) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCamelCase : Any = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"] ) elif isinstance(a , a ): __UpperCamelCase : str = backbone_config.get("model_type" ) __UpperCamelCase : List[Any] = CONFIG_MAPPING[backbone_model_type] __UpperCamelCase : str = config_class.from_dict(a ) __UpperCamelCase : str = backbone_config __UpperCamelCase : List[str] = hidden_size __UpperCamelCase : List[Any] = initializer_range __UpperCamelCase : Optional[int] = pool_scales __UpperCamelCase : Optional[Any] = use_auxiliary_head __UpperCamelCase : List[Any] = auxiliary_loss_weight __UpperCamelCase : Union[str, Any] = auxiliary_in_channels __UpperCamelCase : str = auxiliary_channels __UpperCamelCase : str = auxiliary_num_convs __UpperCamelCase : Union[str, Any] = auxiliary_concat_input __UpperCamelCase : List[str] = loss_ignore_index def _lowerCamelCase ( self :List[str] ) -> Tuple: __UpperCamelCase : int = copy.deepcopy(self.__dict__ ) __UpperCamelCase : Any = self.backbone_config.to_dict() __UpperCamelCase : Any = self.__class__.model_type return output
232
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[list[int]]) -> bool: '''simple docstring''' __UpperCamelCase : Any = len(_lowerCamelCase) # We need to create solution object to save path. __UpperCamelCase : List[str] = [[0 for _ in range(_lowerCamelCase)] for _ in range(_lowerCamelCase)] __UpperCamelCase : Optional[int] = run_maze(_lowerCamelCase , 0 , 0 , _lowerCamelCase) if solved: print("\n".join(str(_lowerCamelCase) for row in solutions)) else: print("No solution exists!") return solved def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[list[int]] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[list[int]]) -> bool: '''simple docstring''' __UpperCamelCase : Tuple = len(_lowerCamelCase) # Final check point. if i == j == (size - 1): __UpperCamelCase : Optional[int] = 1 return True __UpperCamelCase : List[Any] = (not i < 0) and (not j < 0) # Check lower bounds __UpperCamelCase : List[str] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __UpperCamelCase : int = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __UpperCamelCase : Tuple = 1 # check for directions if ( run_maze(_lowerCamelCase , i + 1 , _lowerCamelCase , _lowerCamelCase) or run_maze(_lowerCamelCase , _lowerCamelCase , j + 1 , _lowerCamelCase) or run_maze(_lowerCamelCase , i - 1 , _lowerCamelCase , _lowerCamelCase) or run_maze(_lowerCamelCase , _lowerCamelCase , j - 1 , _lowerCamelCase) ): return True __UpperCamelCase : Tuple = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
232
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor A__ : Optional[Any] = logging.get_logger(__name__) class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Union[str, Any] , *__a : Optional[Any] , **__a : List[str] ) -> None: '''simple docstring''' warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , __a , ) super().__init__(*__a , **__a )
352
'''simple docstring''' import math def a_ ( _UpperCAmelCase : int ) -> list: __snake_case : Optional[Any] = [True] * n __snake_case : Optional[int] = False __snake_case : Dict = False __snake_case : List[Any] = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): __snake_case : Optional[int] = i * 2 while index < n: __snake_case : Union[str, Any] = False __snake_case : int = index + i __snake_case : Dict = [2] for i in range(3 ,_UpperCAmelCase ,2 ): if is_prime[i]: primes.append(_UpperCAmelCase ) return primes def a_ ( _UpperCAmelCase : int = 99_99_66_66_33_33 ) -> int: __snake_case : List[Any] = math.floor(math.sqrt(_UpperCAmelCase ) ) + 1_00 __snake_case : Tuple = prime_sieve(_UpperCAmelCase ) __snake_case : List[Any] = 0 __snake_case : List[Any] = 0 __snake_case : Optional[int] = primes[prime_index] while (last_prime**2) <= limit: __snake_case : Optional[int] = primes[prime_index + 1] __snake_case : Union[str, Any] = last_prime**2 __snake_case : Dict = next_prime**2 # Get numbers divisible by lps(current) __snake_case : Optional[Any] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) __snake_case : Optional[Any] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps __snake_case : List[str] = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair __snake_case : Dict = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
0
0
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin _snake_case = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowercase : def __init__( self , _a , _a=16 , _a=13 , _a=7 , _a=14 , _a=10 , _a=19 , _a=5 , _a=4 , _a=True , _a=16 , _a=2 , _a=4 , _a=4 , _a="gelu" , _a=0.1 , _a=0.1 , _a=[1, 2, 3, 4, 5] , _a=25 , _a=5 , ) -> Optional[Any]: _A : str = d_model _A : Any = parent _A : List[str] = batch_size _A : Any = prediction_length _A : str = context_length _A : Any = cardinality _A : str = num_time_features _A : str = lags_sequence _A : List[Any] = embedding_dimension _A : int = is_training _A : Tuple = hidden_size _A : Any = num_hidden_layers _A : Optional[Any] = num_attention_heads _A : Tuple = intermediate_size _A : List[Any] = hidden_act _A : Tuple = hidden_dropout_prob _A : Optional[Any] = attention_probs_dropout_prob _A : Any = context_length _A : str = prediction_length + label_length _A : int = label_length _A : List[str] = moving_average _A : Dict = autocorrelation_factor def a__ ( self ) -> List[str]: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def a__ ( self , _a ) -> Optional[int]: _A : int = config.context_length + max(config.lags_sequence ) _A : Optional[int] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _A : List[str] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _A : Optional[Any] = floats_tensor([self.batch_size, _past_length] ) _A : Optional[Any] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _A : Union[str, Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _A : Union[str, Any] = floats_tensor([self.batch_size, config.prediction_length] ) _A : str = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def a__ ( self ) -> Tuple: _A : List[Any] = self.get_config() _A : int = self.prepare_autoformer_inputs_dict(_a ) return config, inputs_dict def a__ ( self ) -> Optional[int]: _A , _A : Tuple = self.prepare_config_and_inputs() return config, inputs_dict def a__ ( self , _a , _a ) -> Optional[Any]: _A : Dict = AutoformerModel(config=_a ).to(_a ).eval() _A : int = model(**_a ) _A : str = outputs.encoder_last_hidden_state _A : Optional[Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _A : str = model.get_encoder() encoder.save_pretrained(_a ) _A : Optional[Any] = AutoformerEncoder.from_pretrained(_a ).to(_a ) _A , _A , _A , _A , _A : Optional[int] = model.create_network_inputs(**_a ) _A , _A : str = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _A : Union[str, Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _A : str = encoder(inputs_embeds=_a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) _A : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _A : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _A : Tuple = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _A : int = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Tuple = model.get_decoder() decoder.save_pretrained(_a ) _A : Tuple = AutoformerDecoder.from_pretrained(_a ).to(_a ) _A : List[Any] = decoder( trend=_a , inputs_embeds=_a , encoder_hidden_states=_a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _a = (AutoformerForPrediction,) if is_torch_available() else () _a = {"feature-extraction": AutoformerModel} if is_torch_available() else {} _a = False _a = False _a = False _a = False _a = False _a = False def a__ ( self ) -> Dict: _A : Optional[int] = AutoformerModelTester(self ) _A : Union[str, Any] = ConfigTester(self , config_class=_a , has_text_modality=_a ) def a__ ( self ) -> int: self.config_tester.run_common_tests() def a__ ( self ) -> Optional[int]: _A , _A : Any = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _A : Dict = model_class(_a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_a ) _A , _A : Any = model_class.from_pretrained(_a , output_loading_info=_a ) self.assertEqual(info["""missing_keys"""] , [] ) def a__ ( self ) -> str: _A : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_a ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def a__ ( self ) -> Optional[int]: pass def a__ ( self ) -> str: _A : Union[str, Any] = inspect.signature(getattr(_a , """forward""" ) ) # The main input is the name of the argument after `self` _A : Union[str, Any] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , _a ) def a__ ( self ) -> List[Any]: _A , _A : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : str = model_class(_a ) _A : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : List[str] = [*signature.parameters.keys()] _A : Tuple = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(_a )] , _a ) def a__ ( self ) -> Optional[Any]: _A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _A : Any = True _A : str = getattr(self.model_tester , """seq_length""" , _a ) _A : Dict = getattr(self.model_tester , """decoder_seq_length""" , _a ) _A : str = getattr(self.model_tester , """encoder_seq_length""" , _a ) _A : List[Any] = getattr(self.model_tester , """d_model""" , _a ) _A : Optional[int] = getattr(self.model_tester , """num_attention_heads""" , _a ) _A : List[str] = d_model // num_attention_heads for model_class in self.all_model_classes: _A : Optional[Any] = True _A : List[str] = False _A : Optional[int] = True _A : Union[str, Any] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _A : List[Any] = model(**self._prepare_for_class(_a , _a ) ) _A : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _A : Dict = True _A : List[Any] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _A : int = model(**self._prepare_for_class(_a , _a ) ) _A : Tuple = outputs.encoder_attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _A : List[str] = len(_a ) _A : int = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(_a , _a ) # decoder attentions _A : Dict = outputs.decoder_attentions self.assertIsInstance(_a , (list, tuple) ) self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _A : Optional[Any] = outputs.cross_attentions self.assertIsInstance(_a , (list, tuple) ) self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _A : Dict = True _A : Any = True _A : str = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _A : List[str] = model(**self._prepare_for_class(_a , _a ) ) self.assertEqual(out_len + 2 , len(_a ) ) _A : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def a__ ( self ) -> int: super().test_retain_grad_hidden_states_attentions() def lowerCAmelCase_ ( snake_case_="train-batch.pt" ): _A : Optional[int] = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""",filename=snake_case_,repo_type="""dataset""" ) _A : List[str] = torch.load(snake_case_,map_location=snake_case_ ) return batch @require_torch @slow class lowercase ( unittest.TestCase ): def a__ ( self ) -> Any: _A : Optional[int] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(_a ) _A : Any = prepare_batch() with torch.no_grad(): _A : Union[str, Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] _A : List[Any] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , _a ) _A : str = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=_a ) self.assertTrue(torch.allclose(output[0, :3, :3] , _a , atol=_a ) ) def a__ ( self ) -> Optional[Any]: _A : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(_a ) _A : Optional[Any] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): _A : List[str] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state _A : Optional[int] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , _a ) _A : Tuple = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=_a ) self.assertTrue(torch.allclose(output[0, :3, :3] , _a , atol=_a ) ) def a__ ( self ) -> List[str]: _A : Union[str, Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(_a ) _A : Optional[int] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): _A : str = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) _A : str = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , _a ) _A : int = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=_a ) _A : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , _a , rtol=1e-1 ) )
26
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ ): print("""Loading config file...""" ) def flatten_yaml_as_dict(snake_case_,snake_case_="",snake_case_="." ): _A : Union[str, Any] = [] for k, v in d.items(): _A : Optional[int] = parent_key + sep + k if parent_key else k if isinstance(snake_case_,collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case_,snake_case_,sep=snake_case_ ).items() ) else: items.append((new_key, v) ) return dict(snake_case_ ) _A : List[Any] = argparse.Namespace() with open(snake_case_,"""r""" ) as yaml_file: try: _A : List[Any] = yaml.load(snake_case_,Loader=yaml.FullLoader ) _A : Optional[int] = flatten_yaml_as_dict(snake_case_ ) for k, v in flat_cfg.items(): setattr(snake_case_,snake_case_,snake_case_ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case_,str(snake_case_ ) ) ) return config def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[Any] = MobileViTVaConfig() _A : Tuple = False # dataset if task_name.startswith("""imagenet1k_""" ): _A : Dict = 1000 if int(task_name.strip().split("""_""" )[-1] ) == 384: _A : int = 384 else: _A : int = 256 _A : List[str] = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): _A : Union[str, Any] = 21000 if int(task_name.strip().split("""_""" )[-1] ) == 384: _A : str = 384 else: _A : List[Any] = 256 _A : List[str] = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): _A : int = 151 _A : int = 512 _A : Optional[int] = """ade20k-id2label.json""" _A : Any = True elif task_name.startswith("""voc_""" ): _A : List[Any] = 21 _A : Dict = 512 _A : Dict = """pascal-voc-id2label.json""" _A : int = True # orig_config _A : Any = load_orig_config_file(snake_case_ ) assert getattr(snake_case_,"""model.classification.name""",-1 ) == "mobilevit_v2", "Invalid model" _A : List[Any] = getattr(snake_case_,"""model.classification.mitv2.width_multiplier""",1.0 ) assert ( getattr(snake_case_,"""model.classification.mitv2.attn_norm_layer""",-1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _A : str = getattr(snake_case_,"""model.classification.activation.name""","""swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _A : Optional[int] = getattr(snake_case_,"""model.segmentation.output_stride""",16 ) if "_deeplabv3" in task_name: _A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_rates""",[12, 24, 36] ) _A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_out_channels""",512 ) _A : str = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_dropout""",0.1 ) # id2label _A : List[Any] = """huggingface/label-files""" _A : List[Any] = json.load(open(hf_hub_download(snake_case_,snake_case_,repo_type="""dataset""" ),"""r""" ) ) _A : str = {int(snake_case_ ): v for k, v in idalabel.items()} _A : str = idalabel _A : Dict = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Any = dct.pop(snake_case_ ) _A : Union[str, Any] = val def lowerCAmelCase_ ( snake_case_,snake_case_=False ): if base_model: _A : Optional[int] = """""" else: _A : Dict = """mobilevitv2.""" _A : int = [] for k in state_dict.keys(): if k[:8] == "encoder.": _A : Any = k[8:] else: _A : List[str] = k if ".block." in k: _A : Any = k_new.replace(""".block.""",""".""" ) if ".conv." in k: _A : List[Any] = k_new.replace(""".conv.""",""".convolution.""" ) if ".norm." in k: _A : Any = k_new.replace(""".norm.""",""".normalization.""" ) if "conv_1." in k: _A : int = k_new.replace("""conv_1.""",f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: _A : Optional[Any] = k_new.replace(f'''layer_{i}.''',f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: _A : Tuple = k_new.replace(""".exp_1x1.""",""".expand_1x1.""" ) if ".red_1x1." in k: _A : Optional[int] = k_new.replace(""".red_1x1.""",""".reduce_1x1.""" ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: _A : Optional[int] = k_new.replace(f'''layer_{i}.0.''',f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: _A : Union[str, Any] = k_new.replace(f'''layer_{i}.1.local_rep.0.''',f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: _A : str = k_new.replace(f'''layer_{i}.1.local_rep.1.''',f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: _A : Optional[int] = [0, 1] elif i == 4: _A : Union[str, Any] = [0, 1, 2, 3] elif i == 5: _A : Optional[Any] = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: _A : Union[str, Any] = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''',f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: _A : List[str] = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''',f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: _A : Optional[Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''',f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: _A : Optional[Any] = k_new.replace("""pre_norm_attn.0.""","""layernorm_before.""" ) if "pre_norm_attn.1." in k: _A : str = k_new.replace("""pre_norm_attn.1.""","""attention.""" ) if "pre_norm_ffn.0." in k: _A : Optional[Any] = k_new.replace("""pre_norm_ffn.0.""","""layernorm_after.""" ) if "pre_norm_ffn.1." in k: _A : Dict = k_new.replace("""pre_norm_ffn.1.""","""ffn.conv1.""" ) if "pre_norm_ffn.3." in k: _A : List[str] = k_new.replace("""pre_norm_ffn.3.""","""ffn.conv2.""" ) if "classifier.1." in k: _A : List[str] = k_new.replace("""classifier.1.""","""classifier.""" ) if "seg_head." in k: _A : List[Any] = k_new.replace("""seg_head.""","""segmentation_head.""" ) if ".aspp_layer." in k: _A : List[Any] = k_new.replace(""".aspp_layer.""",""".""" ) if ".aspp_pool." in k: _A : Optional[Any] = k_new.replace(""".aspp_pool.""",""".""" ) rename_keys.append((k, k_new) ) return rename_keys def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(snake_case_ ) for k in keys_to_ignore: state_dict.pop(snake_case_,snake_case_ ) def lowerCAmelCase_ ( ): _A : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _A : List[Any] = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : List[Any] = get_mobilevitva_config(snake_case_,snake_case_ ) # load original state_dict _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): _A : Optional[Any] = MobileViTVaForSemanticSegmentation(snake_case_ ).eval() _A : str = False else: _A : int = MobileViTVaForImageClassification(snake_case_ ).eval() _A : List[Any] = False # remove and rename some keys of load the original model _A : List[Any] = checkpoint remove_unused_keys(snake_case_ ) _A : Optional[Any] = create_rename_keys(snake_case_,base_model=snake_case_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case_,snake_case_,snake_case_ ) # load modified state_dict model.load_state_dict(snake_case_ ) # Check outputs on an image, prepared by MobileViTImageProcessor _A : str = MobileViTImageProcessor(crop_size=config.image_size,size=config.image_size + 32 ) _A : List[Any] = image_processor(images=prepare_img(),return_tensors="""pt""" ) _A : Optional[Any] = model(**snake_case_ ) # verify classification model if task_name.startswith("""imagenet""" ): _A : List[Any] = outputs.logits _A : Optional[int] = logits.argmax(-1 ).item() print("""Predicted class:""",model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant _A : int = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ) assert torch.allclose(logits[0, :3],snake_case_,atol=1e-4 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
26
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=None , ) -> str: """simple docstring""" A : Dict = parent A : int = batch_size A : List[Any] = seq_length A : Optional[Any] = is_training A : Union[str, Any] = use_input_mask A : Any = use_token_type_ids A : List[Any] = use_labels A : List[str] = vocab_size A : int = hidden_size A : Optional[int] = num_hidden_layers A : List[str] = num_attention_heads A : Tuple = intermediate_size A : int = hidden_act A : str = hidden_dropout_prob A : Any = attention_probs_dropout_prob A : Tuple = max_position_embeddings A : List[str] = type_vocab_size A : Any = type_sequence_label_size A : int = initializer_range A : int = num_labels A : List[Any] = num_choices A : int = scope def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Dict = None if self.use_input_mask: A : Any = random_attention_mask([self.batch_size, self.seq_length] ) A : Any = None if self.use_token_type_ids: A : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A : Optional[int] = None A : str = None A : Optional[Any] = None if self.use_labels: A : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) A : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , use_stable_embedding=SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" A : Union[str, Any] = OpenLlamaModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Tuple = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE ) A : Any = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" A : Optional[Any] = True A : Optional[Any] = OpenLlamaModel(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Optional[Any] = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , ) A : Union[str, Any] = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , ) A : Optional[int] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" A : Any = OpenLlamaForCausalLM(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Optional[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" A : str = True A : Dict = True A : Dict = OpenLlamaForCausalLM(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() # first forward pass A : Union[str, Any] = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE , ) A : List[str] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) A : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A : str = torch.cat([input_ids, next_tokens] , dim=-1 ) A : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) A : List[Any] = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] A : int = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] # select random slice A : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() A : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : str = self.prepare_config_and_inputs() ( A ) : Union[str, Any] = config_and_inputs A : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class A ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __magic_name__ = (OpenLlamaForCausalLM,) if is_torch_available() else () __magic_name__ = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : List[Any] = OpenLlamaModelTester(self ) A : Any = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A : int = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : int = self.model_tester.prepare_config_and_inputs_for_common() A : Dict = 3 A : Optional[Any] = input_dict['''input_ids'''] A : Optional[Any] = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE ) A : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A : Union[str, Any] = OpenLlamaForSequenceClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : List[str] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : str = self.model_tester.prepare_config_and_inputs_for_common() A : List[str] = 3 A : int = '''single_label_classification''' A : Dict = input_dict['''input_ids'''] A : List[Any] = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE ) A : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A : Tuple = OpenLlamaForSequenceClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : str = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() A : Any = 3 A : Union[str, Any] = '''multi_label_classification''' A : Any = input_dict['''input_ids'''] A : Optional[int] = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A : Union[str, Any] = OpenLlamaForSequenceClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Optional[int] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" A : str = self.model_tester.prepare_config_and_inputs_for_common() A : Optional[Any] = ids_tensor([1, 10] , config.vocab_size ) A : Optional[int] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A : Optional[Any] = OpenLlamaModel(SCREAMING_SNAKE_CASE ) original_model.to(SCREAMING_SNAKE_CASE ) original_model.eval() A : Dict = original_model(SCREAMING_SNAKE_CASE ).last_hidden_state A : str = original_model(SCREAMING_SNAKE_CASE ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A : Dict = {'''type''': scaling_type, '''factor''': 10.0} A : List[str] = OpenLlamaModel(SCREAMING_SNAKE_CASE ) scaled_model.to(SCREAMING_SNAKE_CASE ) scaled_model.eval() A : Optional[Any] = scaled_model(SCREAMING_SNAKE_CASE ).last_hidden_state A : List[str] = scaled_model(SCREAMING_SNAKE_CASE ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-5 ) )
369
'''simple docstring''' from __future__ import annotations from random import random class A : def __init__( self , SCREAMING_SNAKE_CASE = None ) -> Tuple: """simple docstring""" A : Optional[Any] = value A : Any = random() A : Node | None = None A : Node | None = None def __repr__( self ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return F'\'{self.value}: {self.prior:.5}\'' else: return pformat( {F'{self.value}: {self.prior:.5}': (self.left, self.right)} , indent=1 ) def __str__( self ) -> str: """simple docstring""" A : Optional[Any] = str(self.value ) + ''' ''' A : Union[str, Any] = str(self.left or '''''' ) A : Any = str(self.right or '''''' ) return value + left + right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: A, A : Any = split(root.left , snake_case__ ) return left, root else: A, A : Optional[int] = split(root.right , snake_case__ ) return root, right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: A : List[str] = merge(left.right , snake_case__ ) return left else: A : Tuple = merge(snake_case__ , right.left ) return right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : List[Any] = Node(snake_case__ ) A, A : Tuple = split(snake_case__ , snake_case__ ) return merge(merge(snake_case__ , snake_case__ ) , snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A, A : Dict = split(snake_case__ , value - 1 ) A, A : Any = split(snake_case__ , snake_case__ ) return merge(snake_case__ , snake_case__ ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' for arg in args.split(): if arg[0] == "+": A : int = insert(snake_case__ , int(arg[1:] ) ) elif arg[0] == "-": A : int = erase(snake_case__ , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def lowerCAmelCase_ ( ): '''simple docstring''' A : Union[str, Any] = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) A : Optional[int] = input() while args != "q": A : str = interact_treap(snake_case__ , snake_case__ ) print(snake_case__ ) A : Union[str, Any] = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
311
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A_ : Union[str, Any] = logging.get_logger(__name__) def A ( snake_case__ , snake_case__=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] # fmt: off # stem: rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") ) rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") ) rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") ) # backbone rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias""") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE__ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) # fmt: on return rename_keys def A ( snake_case__ , snake_case__ , snake_case__=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE__ = """""" else: SCREAMING_SNAKE_CASE__ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE__ = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[-config.hidden_size :] def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = dct.pop(snake_case__ ) SCREAMING_SNAKE_CASE__ = val def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def A ( snake_case__ , snake_case__ , snake_case__=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = BitConfig( global_padding="""same""" , layer_type="""bottleneck""" , depths=(3, 4, 9) , out_features=["""stage3"""] , embedding_dynamic_padding=snake_case__ , ) SCREAMING_SNAKE_CASE__ = ViTHybridConfig(backbone_config=snake_case__ , image_size=3_84 , num_labels=10_00 ) SCREAMING_SNAKE_CASE__ = False # load original model from timm SCREAMING_SNAKE_CASE__ = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE__ = timm_model.state_dict() if base_model: remove_classification_head_(snake_case__ ) SCREAMING_SNAKE_CASE__ = create_rename_keys(snake_case__ , snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) read_in_q_k_v(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE__ = """huggingface/label-files""" SCREAMING_SNAKE_CASE__ = """imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE__ = {int(snake_case__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = idalabel SCREAMING_SNAKE_CASE__ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": SCREAMING_SNAKE_CASE__ = ViTHybridModel(snake_case__ ).eval() else: SCREAMING_SNAKE_CASE__ = ViTHybridForImageClassification(snake_case__ ).eval() model.load_state_dict(snake_case__ ) # create image processor SCREAMING_SNAKE_CASE__ = create_transform(**resolve_data_config({} , model=snake_case__ ) ) SCREAMING_SNAKE_CASE__ = transform.transforms SCREAMING_SNAKE_CASE__ = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } SCREAMING_SNAKE_CASE__ = ViTHybridImageProcessor( do_resize=snake_case__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=snake_case__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=snake_case__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = transform(snake_case__ ).unsqueeze(0 ) SCREAMING_SNAKE_CASE__ = processor(snake_case__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(snake_case__ , snake_case__ ) # verify logits with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(snake_case__ ) SCREAMING_SNAKE_CASE__ = outputs.logits print("""Predicted class:""" , logits.argmax(-1 ).item() ) if base_model: SCREAMING_SNAKE_CASE__ = timm_model.forward_features(snake_case__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(snake_case__ , outputs.pooler_output , atol=1e-3 ) else: SCREAMING_SNAKE_CASE__ = timm_model(snake_case__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(snake_case__ , outputs.logits , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f"""Pushing model and processor to the hub {vit_name}""" ) model.push_to_hub(f"""ybelkada/{vit_name}""" ) processor.push_to_hub(f"""ybelkada/{vit_name}""" ) if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) A_ : Union[str, Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
165
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' with open(snake_case__ ) as metadata_file: SCREAMING_SNAKE_CASE__ = json.load(snake_case__ ) SCREAMING_SNAKE_CASE__ = LukeConfig(use_entity_aware_attention=snake_case__ , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE__ = torch.load(snake_case__ , map_location="""cpu""" ) # Load the entity vocab file SCREAMING_SNAKE_CASE__ = load_entity_vocab(snake_case__ ) SCREAMING_SNAKE_CASE__ = RobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE__ = AddedToken("""<ent>""" , lstrip=snake_case__ , rstrip=snake_case__ ) SCREAMING_SNAKE_CASE__ = AddedToken("""<ent2>""" , lstrip=snake_case__ , rstrip=snake_case__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(snake_case__ ) with open(os.path.join(snake_case__ , LukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE__ = LukeTokenizer.from_pretrained(snake_case__ ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE__ = state_dict["""embeddings.word_embeddings.weight"""] SCREAMING_SNAKE_CASE__ = word_emb[tokenizer.convert_tokens_to_ids(["""@"""] )[0]].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ = word_emb[tokenizer.convert_tokens_to_ids(["""#"""] )[0]].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE__ = f"""encoder.layer.{layer_index}.attention.self.""" SCREAMING_SNAKE_CASE__ = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE__ = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE__ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE__ = state_dict["""entity_embeddings.entity_embeddings.weight"""] SCREAMING_SNAKE_CASE__ = entity_emb[entity_vocab["""[MASK]"""]] SCREAMING_SNAKE_CASE__ = LukeModel(config=snake_case__ ).eval() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.load_state_dict(snake_case__ , strict=snake_case__ ) if not (len(snake_case__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f"""Missing keys {", ".join(snake_case__ )}. Expected only missing embeddings.position_ids""" ) if not (all(key.startswith("""entity_predictions""" ) or key.startswith("""lm_head""" ) for key in unexpected_keys )): raise ValueError( """Unexpected keys""" f""" {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}""" ) # Check outputs SCREAMING_SNAKE_CASE__ = LukeTokenizer.from_pretrained(snake_case__ , task="""entity_classification""" ) SCREAMING_SNAKE_CASE__ = ( """Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the""" """ new world number one avoid a humiliating second- round exit at Wimbledon .""" ) SCREAMING_SNAKE_CASE__ = (39, 42) SCREAMING_SNAKE_CASE__ = tokenizer(snake_case__ , entity_spans=[span] , add_prefix_space=snake_case__ , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = model(**snake_case__ ) # Verify word hidden states if model_size == "large": SCREAMING_SNAKE_CASE__ = torch.Size((1, 42, 10_24) ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[0.01_33, 0.08_65, 0.00_95], [0.30_93, -0.25_76, -0.74_18], [-0.17_20, -0.21_17, -0.28_69]] ) else: # base SCREAMING_SNAKE_CASE__ = torch.Size((1, 42, 7_68) ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0.00_37, 0.13_68, -0.00_91], [0.10_99, 0.33_29, -0.10_95], [0.07_65, 0.53_35, 0.11_79]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": SCREAMING_SNAKE_CASE__ = torch.Size((1, 1, 10_24) ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0.04_66, -0.01_06, -0.01_79]] ) else: # base SCREAMING_SNAKE_CASE__ = torch.Size((1, 1, 7_68) ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0.14_57, 0.10_44, 0.01_74]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , snake_case__ , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(snake_case__ ) ) model.save_pretrained(snake_case__ ) def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} with open(snake_case__ , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = line.rstrip().split("""\t""" ) SCREAMING_SNAKE_CASE__ = index return entity_vocab if __name__ == "__main__": A_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) A_ : Optional[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
165
1
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowercase__ : Tuple = 5_00_00 lowercase__ : Optional[int] = 50_00 lowercase__ , lowercase__ : str = os.path.split(__file__) lowercase__ : str = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a__ ( lowercase : Dict, lowercase : List[Any] ) -> Any: """simple docstring""" for i in range(_lowerCAmelCase ): _UpperCamelCase = dataset[i] @get_duration def a__ ( lowercase : Dict, lowercase : Optional[Any], lowercase : str ) -> Union[str, Any]: """simple docstring""" for i in range(0, len(_lowerCAmelCase ), _lowerCAmelCase ): _UpperCamelCase = dataset[i : i + batch_size] @get_duration def a__ ( lowercase : Optional[Any], lowercase : str, lowercase : str ) -> Dict: """simple docstring""" with dataset.formatted_as(type=_lowerCAmelCase ): for i in range(_lowerCAmelCase ): _UpperCamelCase = dataset[i] @get_duration def a__ ( lowercase : List[Any], lowercase : Tuple, lowercase : Tuple, lowercase : Tuple ) -> List[Any]: """simple docstring""" with dataset.formatted_as(type=_lowerCAmelCase ): for i in range(0, _lowerCAmelCase, _lowerCAmelCase ): _UpperCamelCase = dataset[i : i + batch_size] def a__ ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase = {"""num examples""": SPEED_TEST_N_EXAMPLES} _UpperCamelCase = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1000}), ] _UpperCamelCase = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('''generating dataset''' ) _UpperCamelCase = datasets.Features( {'''list''': datasets.Sequence(datasets.Value('''float32''' ) ), '''numbers''': datasets.Value('''float32''' )} ) _UpperCamelCase = generate_example_dataset( os.path.join(_lowerCAmelCase, '''dataset.arrow''' ), _lowerCAmelCase, num_examples=_lowerCAmelCase, seq_shapes={'''list''': (100,)}, ) print('''first set of iterations''' ) for func, kwargs in functions: print(func.__name__, str(_lowerCAmelCase ) ) _UpperCamelCase = func(_lowerCAmelCase, **_lowerCAmelCase ) print('''shuffling dataset''' ) _UpperCamelCase = dataset.shuffle() print('''Second set of iterations (after shuffling''' ) for func, kwargs in functions_shuffled: print('''shuffled ''', func.__name__, str(_lowerCAmelCase ) ) _UpperCamelCase = func( _lowerCAmelCase, **_lowerCAmelCase ) with open(_lowerCAmelCase, '''wb''' ) as f: f.write(json.dumps(_lowerCAmelCase ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
371
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase__ : Any = logging.getLogger(__name__) def a__ ( lowercase : Optional[Any], lowercase : Tuple ) -> Any: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) _snake_case : str = field(metadata={'help': 'Should contain the data files for the task.'} ) _snake_case : int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _snake_case : bool = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def a__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''', training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1 ), training_args.fpaa, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''', lowercase ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(lowercase ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=lowercase, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=lowercase, cache_dir=model_args.cache_dir, ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=lowercase, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=lowercase, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None ) def compute_metrics(lowercase : EvalPrediction ) -> Dict: _UpperCamelCase = np.argmax(p.predictions, axis=1 ) return {"acc": simple_accuracy(lowercase, p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(lowercase, pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=lowercase, args=lowercase, train_dataset=lowercase, eval_dataset=lowercase, compute_metrics=lowercase, data_collator=lowercase, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir, '''eval_results.txt''' ) if trainer.is_world_master(): with open(lowercase, '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''', lowercase, lowercase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(lowercase ) return results def a__ ( lowercase : Tuple ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
287
0
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = 42 # [batch_size x 3] snake_case_ = 42 # [batch_size x 3] snake_case_ = 42 # [batch_size x 3] snake_case_ = 42 # [batch_size x 3] snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def UpperCamelCase_ ( self : Optional[Any] ): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase_ ( self : Optional[int] ): return torch.from_numpy(np.array([self.width, self.height] ,dtype=np.floataa ) ) def UpperCamelCase_ ( self : List[Any] ): return torch.from_numpy(np.array([self.x_fov, self.y_fov] ,dtype=np.floataa ) ) def UpperCamelCase_ ( self : Dict ): __A = torch.arange(self.height * self.width ) __A = torch.stack( [ pixel_indices % self.width, torch.div(A ,self.width ,rounding_mode="trunc" ), ] ,axis=1 ,) return coords @property def UpperCamelCase_ ( self : Any ): __A , *__A = self.shape __A = int(np.prod(A ) ) __A = self.get_image_coords() __A = torch.broadcast_to(coords.unsqueeze(0 ) ,[batch_size * inner_batch_size, *coords.shape] ) __A = self.get_camera_rays(A ) __A = rays.view(A ,inner_batch_size * self.height * self.width ,2 ,3 ) return rays def UpperCamelCase_ ( self : str ,A : torch.Tensor ): __A , *__A , __A = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] __A = coords.view(A ,-1 ,2 ) __A = self.resolution() __A = self.fov() __A = (flat.float() / (res - 1)) * 2 - 1 __A = fracs * torch.tan(fov / 2 ) __A = fracs.view(A ,-1 ,2 ) __A = ( self.z.view(A ,1 ,3 ) + self.x.view(A ,1 ,3 ) * fracs[:, :, :1] + self.y.view(A ,1 ,3 ) * fracs[:, :, 1:] ) __A = directions / directions.norm(dim=-1 ,keepdim=A ) __A = torch.stack( [ torch.broadcast_to(self.origin.view(A ,1 ,3 ) ,[batch_size, directions.shape[1], 3] ), directions, ] ,dim=2 ,) return rays.view(A ,*A ,2 ,3 ) def UpperCamelCase_ ( self : Optional[Any] ,A : int ,A : int ): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin ,x=self.x ,y=self.y ,z=self.z ,width=A ,height=A ,x_fov=self.x_fov ,y_fov=self.y_fov ,) def UpperCAmelCase ( a_ ) -> DifferentiableProjectiveCamera: """simple docstring""" __A = [] __A = [] __A = [] __A = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): __A = np.array([np.sin(a_ ), np.cos(a_ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) __A = -z * 4 __A = np.array([np.cos(a_ ), -np.sin(a_ ), 0.0] ) __A = np.cross(a_ , a_ ) origins.append(a_ ) xs.append(a_ ) ys.append(a_ ) zs.append(a_ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(a_ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(a_ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(a_ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(a_ , axis=0 ) ).float() , width=a_ , height=a_ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(a_ )) , )
15
def SCREAMING_SNAKE_CASE__ ( ) -> int: return [ a * b * (1000 - a - b) for a in range(1 ,999 ) for b in range(lowercase ,999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"""{solution() = }""")
124
0
'''simple docstring''' from heapq import heappop, heappush import numpy as np def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' snake_case_ ,snake_case_ = grid.shape snake_case_ = [-1, 1, 0, 0] snake_case_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] snake_case_ ,snake_case_ = [(0, source)], set() snake_case_ = np.full((rows, cols), np.inf ) snake_case_ = 0 snake_case_ = np.empty((rows, cols), dtype=__UpperCAmelCase ) snake_case_ = None while queue: ((snake_case_) ,(snake_case_)) = heappop(__UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: snake_case_ = [] while (x, y) != source: path.append((x, y) ) snake_case_ ,snake_case_ = predecessors[x, y] path.append(__UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__UpperCAmelCase ) ): snake_case_ ,snake_case_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: snake_case_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__UpperCAmelCase, (dist + 1, (nx, ny)) ) snake_case_ = dist + 1 snake_case_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
72
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> list[list]: '''simple docstring''' snake_case_ = current_set.copy() for row_index, row in enumerate(__UpperCAmelCase ): snake_case_ = row[0] for column_index, column in enumerate(__UpperCAmelCase ): if magnitude == 0: snake_case_ = column continue snake_case_ = column / magnitude # Subtract to cancel term snake_case_ = current_set[0] snake_case_ = [first_row] snake_case_ = current_set[1::] for row in current_set: snake_case_ = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(__UpperCAmelCase ) continue for column_index in range(len(__UpperCAmelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(__UpperCAmelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: snake_case_ = final_set[0] snake_case_ = [] snake_case_ = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) snake_case_ = simplify(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, __UpperCAmelCase ) snake_case_ = resultant return final_set def __magic_name__ ( __UpperCAmelCase ) -> list: '''simple docstring''' if len(__UpperCAmelCase ) == 0: raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) snake_case_ = len(__UpperCAmelCase ) + 1 if any(len(__UpperCAmelCase ) != _length for item in equations ): raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) for row in equations: if any(not isinstance(__UpperCAmelCase, (int, float) ) for column in row ): raise ValueError('''solve_simultaneous() requires lists of integers''' ) if len(__UpperCAmelCase ) == 1: return [equations[0][-1] / equations[0][0]] snake_case_ = equations.copy() if any(0 in row for row in data_set ): snake_case_ = data_set.copy() snake_case_ = [] for row_index, row in enumerate(__UpperCAmelCase ): if 0 not in row: snake_case_ = data_set.pop(__UpperCAmelCase ) break if not full_row: raise ValueError('''solve_simultaneous() requires at least 1 full equation''' ) data_set.insert(0, __UpperCAmelCase ) snake_case_ = data_set.copy() snake_case_ = simplify(__UpperCAmelCase ) snake_case_ = simplified[::-1] snake_case_ = [] for row in simplified: snake_case_ = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue snake_case_ = row.copy()[: len(__UpperCAmelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(__UpperCAmelCase ) == 0: solutions.append(0 ) continue snake_case_ = temp_row[1::] snake_case_ = temp_row[::-1] for column_index, column in enumerate(__UpperCAmelCase ): current_solution -= column * solutions[column_index] solutions.append(__UpperCAmelCase ) snake_case_ = [] for item in solutions: final.append(float(round(__UpperCAmelCase, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() a : str = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
72
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A ={ 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
163
import math def _a ( a :int ) -> list: a = [True] * n a = False a = False a = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): a = i * 2 while index < n: a = False a = index + i a = [2] for i in range(3 , a , 2 ): if is_prime[i]: primes.append(a ) return primes def _a ( a :int = 999_966_663_333 ) -> int: a = math.floor(math.sqrt(a ) ) + 100 a = prime_sieve(a ) a = 0 a = 0 a = primes[prime_index] while (last_prime**2) <= limit: a = primes[prime_index + 1] a = last_prime**2 a = next_prime**2 # Get numbers divisible by lps(current) a = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) a = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps a = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair a = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
0
0
from collections import deque from .hash_table import HashTable class __A ( __snake_case ): """simple docstring""" def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(UpperCAmelCase_ ) lowerCamelCase =self.values[key] def _snake_case ( self ): return ( sum(self.charge_factor - len(UpperCAmelCase_ ) for slot in self.values ) / self.size_table * self.charge_factor ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(UpperCAmelCase_ ) == 0 ): return key return super()._collision_resolution(UpperCAmelCase_ , UpperCAmelCase_ )
362
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase__ : List[Any] =logging.get_logger(__name__) UpperCAmelCase__ : Dict ={'''vocab_file''': '''spiece.model'''} UpperCAmelCase__ : Dict ={ '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } UpperCAmelCase__ : List[str] ={ '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) UpperCAmelCase__ : Any =0 UpperCAmelCase__ : List[Any] =1 UpperCAmelCase__ : Union[str, Any] =2 UpperCAmelCase__ : Tuple =3 UpperCAmelCase__ : int =4 class __A ( a ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = """left""" def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=False , UpperCAmelCase_=True , UpperCAmelCase_=False , UpperCAmelCase_="<s>" , UpperCAmelCase_="</s>" , UpperCAmelCase_="<unk>" , UpperCAmelCase_="<sep>" , UpperCAmelCase_="<pad>" , UpperCAmelCase_="<cls>" , UpperCAmelCase_="<mask>" , UpperCAmelCase_=["<eop>", "<eod>"] , UpperCAmelCase_ = None , **UpperCAmelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token lowerCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) lowerCamelCase =3 lowerCamelCase =do_lower_case lowerCamelCase =remove_space lowerCamelCase =keep_accents lowerCamelCase =vocab_file lowerCamelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) @property def _snake_case ( self ): return len(self.sp_model ) def _snake_case ( self ): lowerCamelCase ={self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): lowerCamelCase =self.__dict__.copy() lowerCamelCase =None return state def __setstate__( self , UpperCAmelCase_ ): lowerCamelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCamelCase ={} lowerCamelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , UpperCAmelCase_ ): if self.remove_space: lowerCamelCase =""" """.join(inputs.strip().split() ) else: lowerCamelCase =inputs lowerCamelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: lowerCamelCase =unicodedata.normalize("""NFKD""" , UpperCAmelCase_ ) lowerCamelCase ="""""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] ) if self.do_lower_case: lowerCamelCase =outputs.lower() return outputs def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase =self.preprocess_text(UpperCAmelCase_ ) lowerCamelCase =self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) lowerCamelCase =[] for piece in pieces: if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): lowerCamelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase =cur_pieces[1:] else: lowerCamelCase =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase_ ) else: new_pieces.append(UpperCAmelCase_ ) return new_pieces def _snake_case ( self , UpperCAmelCase_ ): return self.sp_model.PieceToId(UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ ): return self.sp_model.IdToPiece(UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase ="""""".join(UpperCAmelCase_ ).replace(UpperCAmelCase_ , """ """ ).strip() return out_string def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = True , **UpperCAmelCase_ , ): lowerCamelCase =kwargs.pop("""use_source_tokenizer""" , UpperCAmelCase_ ) lowerCamelCase =self.convert_ids_to_tokens(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCamelCase =[] lowerCamelCase =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase_ ) ) lowerCamelCase =[] sub_texts.append(UpperCAmelCase_ ) else: current_sub_text.append(UpperCAmelCase_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase_ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowerCamelCase ="""""".join(UpperCAmelCase_ ) lowerCamelCase =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCamelCase =self.clean_up_tokenization(UpperCAmelCase_ ) return clean_text else: return text def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): lowerCamelCase =[self.sep_token_id] lowerCamelCase =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is not None: return ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] return ([0] * len(UpperCAmelCase_ )) + [1, 1] def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): lowerCamelCase =[self.sep_token_id] lowerCamelCase =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase =os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , """wb""" ) as fi: lowerCamelCase =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
262
0
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase : Dict = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class A ( _lowerCamelCase , unittest.TestCase ): __magic_name__ = PegasusTokenizer __magic_name__ = PegasusTokenizerFast __magic_name__ = True __magic_name__ = True def __lowerCAmelCase ( self ) -> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing A : int = PegasusTokenizer(_UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self ) -> str: """simple docstring""" return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return ("This is a test", "This is a test") def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Union[str, Any] = '''</s>''' A : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(_UpperCamelCase ) , 1103 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) A : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) A : Any = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) A : List[Any] = rust_tokenizer([raw_input_str] , return_tensors=_UpperCamelCase , add_special_tokens=_UpperCamelCase ).input_ids[0] A : Any = py_tokenizer([raw_input_str] , return_tensors=_UpperCamelCase , add_special_tokens=_UpperCamelCase ).input_ids[0] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word A : List[Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' A : Optional[int] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] A : List[str] = tokenizer([raw_input_str] , return_tensors=_UpperCamelCase ).input_ids[0] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : List[str] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 A : Union[str, Any] = '''To ensure a smooth flow of bank resolutions.''' A : Dict = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] A : Dict = tokenizer([raw_input_str] , return_tensors=_UpperCamelCase ).input_ids[0] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : str = ['''This is going to be way too long.''' * 150, '''short example'''] A : Union[str, Any] = ['''not super long but more than 5 tokens''', '''tiny'''] A : str = self._large_tokenizer(_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors='''pt''' ) A : Optional[Any] = self._large_tokenizer( text_target=_UpperCamelCase , max_length=5 , padding=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCamelCase ) == 2 # input_ids, attention_mask. @slow def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : int = {'''input_ids''': [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class A ( _lowerCamelCase , unittest.TestCase ): __magic_name__ = PegasusTokenizer __magic_name__ = PegasusTokenizerFast __magic_name__ = True __magic_name__ = True def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing A : int = PegasusTokenizer(_UpperCamelCase , offset=0 , mask_token_sent=_UpperCamelCase , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return ("This is a test", "This is a test") def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) A : Tuple = self.tokenizer_class.from_pretrained(self.tmpdirname ) A : Union[str, Any] = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) A : str = rust_tokenizer([raw_input_str] , return_tensors=_UpperCamelCase , add_special_tokens=_UpperCamelCase ).input_ids[0] A : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=_UpperCamelCase , add_special_tokens=_UpperCamelCase ).input_ids[0] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) @require_torch def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Optional[int] = ['''This is going to be way too long.''' * 1000, '''short example'''] A : str = ['''not super long but more than 5 tokens''', '''tiny'''] A : List[Any] = self._large_tokenizer(_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors='''pt''' ) A : Optional[Any] = self._large_tokenizer( text_target=_UpperCamelCase , max_length=5 , padding=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCamelCase ) == 2 # input_ids, attention_mask. def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Optional[Any] = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) A : str = self._large_tokenizer(_UpperCamelCase ).input_ids self.assertListEqual( _UpperCamelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
3
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html snake_case__ : Tuple = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _a ( lowerCamelCase: Any , lowerCamelCase: Union[str, Any] , lowerCamelCase: int=None , lowerCamelCase: Optional[Any]=None , lowerCamelCase: Tuple=None , lowerCamelCase: Union[str, Any]=None , lowerCamelCase: Optional[Any]=None , lowerCamelCase: Optional[Any]=None , ) -> Union[str, Any]: '''simple docstring''' if attention_mask is None: __A = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __A = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __A = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __A = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __A = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class A_ : def __init__(self :int , _UpperCamelCase :Optional[int] , _UpperCamelCase :Dict=13 , _UpperCamelCase :Optional[Any]=7 , _UpperCamelCase :str=True , _UpperCamelCase :Tuple=False , _UpperCamelCase :int=99 , _UpperCamelCase :int=16 , _UpperCamelCase :int=2 , _UpperCamelCase :int=4 , _UpperCamelCase :str=4 , _UpperCamelCase :Dict="gelu" , _UpperCamelCase :int=0.1 , _UpperCamelCase :Tuple=0.1 , _UpperCamelCase :Union[str, Any]=32 , _UpperCamelCase :Any=2 , _UpperCamelCase :Union[str, Any]=1 , _UpperCamelCase :Tuple=0 , _UpperCamelCase :List[str]=0.0_2 , )-> str: __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = eos_token_id __A = pad_token_id __A = bos_token_id __A = initializer_range def _lowerCAmelCase (self :Optional[int] )-> Union[str, Any]: __A = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __A = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __A = shift_tokens_right(_UpperCamelCase , 1 , 2 ) __A = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_UpperCamelCase , ) __A = prepare_blenderbot_inputs_dict(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return config, inputs_dict def _lowerCAmelCase (self :Union[str, Any] )-> Tuple: __A , __A = self.prepare_config_and_inputs() return config, inputs_dict def _lowerCAmelCase (self :Dict , _UpperCamelCase :Union[str, Any] , _UpperCamelCase :Dict , _UpperCamelCase :Optional[int] )-> str: __A = 20 __A = model_class_name(_UpperCamelCase ) __A = model.encode(inputs_dict['''input_ids'''] ) __A , __A = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __A = model.init_cache(decoder_input_ids.shape[0] , _UpperCamelCase , _UpperCamelCase ) __A = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) __A = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __A = model.decode( decoder_input_ids[:, :-1] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , ) __A = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __A = model.decode( decoder_input_ids[:, -1:] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_UpperCamelCase , ) __A = model.decode(_UpperCamelCase , _UpperCamelCase ) __A = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def _lowerCAmelCase (self :Optional[int] , _UpperCamelCase :int , _UpperCamelCase :List[str] , _UpperCamelCase :Any )-> Dict: __A = 20 __A = model_class_name(_UpperCamelCase ) __A = model.encode(inputs_dict['''input_ids'''] ) __A , __A = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __A = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __A = model.init_cache(decoder_input_ids.shape[0] , _UpperCamelCase , _UpperCamelCase ) __A = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __A = model.decode( decoder_input_ids[:, :-1] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , ) __A = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __A = model.decode( decoder_input_ids[:, -1:] , _UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , ) __A = model.decode(_UpperCamelCase , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase ) __A = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class A_ ( unittest.TestCase ): lowerCAmelCase__ = 99 def _lowerCAmelCase (self :Dict )-> int: __A = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __A = input_ids.shape[0] __A = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _lowerCAmelCase (self :Any )-> List[Any]: __A , __A , __A = self._get_config_and_data() __A = FlaxBlenderbotForConditionalGeneration(_UpperCamelCase ) __A = lm_model(input_ids=_UpperCamelCase ) __A = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _UpperCamelCase ) def _lowerCAmelCase (self :int )-> Dict: __A = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __A = FlaxBlenderbotForConditionalGeneration(_UpperCamelCase ) __A = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __A = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __A = lm_model(input_ids=_UpperCamelCase , decoder_input_ids=_UpperCamelCase ) __A = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _UpperCamelCase ) def _lowerCAmelCase (self :Tuple )-> Tuple: __A = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __A = shift_tokens_right(_UpperCamelCase , 1 , 2 ) __A = np.equal(_UpperCamelCase , 1 ).astype(np.floataa ).sum() __A = np.equal(_UpperCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_UpperCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class A_ ( _lowerCamelCase , unittest.TestCase , _lowerCamelCase ): lowerCAmelCase__ = True lowerCAmelCase__ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowerCAmelCase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _lowerCAmelCase (self :List[str] )-> Optional[int]: __A = FlaxBlenderbotModelTester(self ) def _lowerCAmelCase (self :List[str] )-> List[str]: __A , __A = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def _lowerCAmelCase (self :Dict )-> List[str]: __A , __A = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def _lowerCAmelCase (self :Union[str, Any] )-> Union[str, Any]: __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __A = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) __A = model_class(_UpperCamelCase ) @jax.jit def encode_jitted(_UpperCamelCase :int , _UpperCamelCase :int=None , **_UpperCamelCase :Dict ): return model.encode(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) with self.subTest('''JIT Enabled''' ): __A = encode_jitted(**_UpperCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __A = encode_jitted(**_UpperCamelCase ).to_tuple() self.assertEqual(len(_UpperCamelCase ) , len(_UpperCamelCase ) ) for jitted_output, output in zip(_UpperCamelCase , _UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _lowerCAmelCase (self :List[str] )-> List[Any]: __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __A = model_class(_UpperCamelCase ) __A = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) __A = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(_UpperCamelCase :str , _UpperCamelCase :Tuple , _UpperCamelCase :Dict ): return model.decode( decoder_input_ids=_UpperCamelCase , decoder_attention_mask=_UpperCamelCase , encoder_outputs=_UpperCamelCase , ) with self.subTest('''JIT Enabled''' ): __A = decode_jitted(**_UpperCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __A = decode_jitted(**_UpperCamelCase ).to_tuple() self.assertEqual(len(_UpperCamelCase ) , len(_UpperCamelCase ) ) for jitted_output, output in zip(_UpperCamelCase , _UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowerCAmelCase (self :int )-> Optional[int]: for model_class_name in self.all_model_classes: __A = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __A = np.ones((1, 1) ) * model.config.eos_token_id __A = model(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def _lowerCAmelCase (self :Dict )-> List[str]: __A = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} __A = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} __A = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=_UpperCamelCase ) __A = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) __A = ['''Sam'''] __A = tokenizer(_UpperCamelCase , return_tensors='''jax''' ) __A = model.generate(**_UpperCamelCase , **_UpperCamelCase ) __A = '''Sam is a great name. It means "sun" in Gaelic.''' __A = tokenizer.batch_decode(_UpperCamelCase , **_UpperCamelCase ) assert generated_txt[0].strip() == tgt_text
117
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging SCREAMING_SNAKE_CASE_ : List[str] = logging.get_logger(__name__) class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = ["pixel_values"] def __init__( self: str , UpperCamelCase: bool = True , UpperCamelCase: Optional[Dict[str, int]] = None , UpperCamelCase: PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase: bool = True , UpperCamelCase: bool = True , UpperCamelCase: Union[int, float] = 1 / 2_55 , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: bool = True , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , **UpperCamelCase: List[str] , ): """simple docstring""" super().__init__(**UpperCamelCase ) A__ = size if size is not None else {"""height""": 2_24, """width""": 2_24} A__ = get_size_dict(UpperCamelCase ) A__ = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} A__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase , param_name="""crop_size""" ) A__ = do_resize A__ = do_rescale A__ = do_normalize A__ = do_center_crop A__ = crop_size A__ = size A__ = resample A__ = rescale_factor A__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN A__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: np.ndarray , UpperCamelCase: Dict[str, int] , UpperCamelCase: PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: List[Any] , ): """simple docstring""" A__ = get_size_dict(UpperCamelCase ) if "shortest_edge" in size: A__ = get_resize_output_image_size(UpperCamelCase , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: A__ = (size["""height"""], size["""width"""]) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: np.ndarray , UpperCamelCase: Dict[str, int] , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: List[str] , ): """simple docstring""" A__ = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase , **UpperCamelCase ) def UpperCamelCase ( self: Dict , UpperCamelCase: np.ndarray , UpperCamelCase: float , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: int ): """simple docstring""" return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def UpperCamelCase ( self: List[Any] , UpperCamelCase: np.ndarray , UpperCamelCase: Union[float, List[float]] , UpperCamelCase: Union[float, List[float]] , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: List[str] , ): """simple docstring""" return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: ImageInput , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: PILImageResampling = None , UpperCamelCase: bool = None , UpperCamelCase: int = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[float] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[str, TensorType]] = None , UpperCamelCase: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase: str , ): """simple docstring""" A__ = do_resize if do_resize is not None else self.do_resize A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(UpperCamelCase , param_name="""crop_size""" , default_to_square=UpperCamelCase ) A__ = resample if resample is not None else self.resample A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = size if size is not None else self.size A__ = get_size_dict(UpperCamelCase ) if not is_batched(UpperCamelCase ): A__ = [images] if not valid_images(UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. A__ = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: A__ = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images] if do_center_crop: A__ = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images] if do_rescale: A__ = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] if do_normalize: A__ = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images] A__ = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] A__ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
69
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 SCREAMING_SNAKE_CASE_ : Any = data_utils.TransfoXLTokenizer SCREAMING_SNAKE_CASE_ : Union[str, Any] = data_utils.TransfoXLCorpus SCREAMING_SNAKE_CASE_ : str = data_utils SCREAMING_SNAKE_CASE_ : List[Any] = data_utils def _snake_case ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCAmelCase_ , """rb""" ) as fp: A__ = pickle.load(UpperCAmelCase_ , encoding="""latin1""" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) A__ = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""pretrained_vocab_file"""] print(F"""Save vocabulary to {pytorch_vocab_dump_path}""" ) A__ = corpus.vocab.__dict__ torch.save(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = corpus.__dict__ corpus_dict_no_vocab.pop("""vocab""" , UpperCAmelCase_ ) A__ = pytorch_dump_folder_path + """/""" + CORPUS_NAME print(F"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(UpperCAmelCase_ , UpperCAmelCase_ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model A__ = os.path.abspath(UpperCAmelCase_ ) A__ = os.path.abspath(UpperCAmelCase_ ) print(F"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": A__ = TransfoXLConfig() else: A__ = TransfoXLConfig.from_json_file(UpperCAmelCase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) A__ = TransfoXLLMHeadModel(UpperCAmelCase_ ) A__ = load_tf_weights_in_transfo_xl(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Save pytorch-model A__ = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) print(F"""Save PyTorch model to {os.path.abspath(UpperCAmelCase_ )}""" ) torch.save(model.state_dict() , UpperCAmelCase_ ) print(F"""Save configuration file to {os.path.abspath(UpperCAmelCase_ )}""" ) with open(UpperCAmelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) SCREAMING_SNAKE_CASE_ : Any = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
69
1
"""simple docstring""" import json import sys def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): with open(UpperCamelCase_ , encoding="""utf-8""" ) as f: __SCREAMING_SNAKE_CASE = json.load(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = results[benchmark_name] __SCREAMING_SNAKE_CASE = benchmark_name.split("""/""" )[-1] output_md.append(f"### Benchmark: {benchmark_file_name}" ) __SCREAMING_SNAKE_CASE = """| metric |""" __SCREAMING_SNAKE_CASE = """|--------|""" __SCREAMING_SNAKE_CASE = """| new / old (diff) |""" for metric_name in sorted(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = benchmark_res[metric_name] __SCREAMING_SNAKE_CASE = metric_vals["""new"""] __SCREAMING_SNAKE_CASE = metric_vals.get("""old""" , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = metric_vals.get("""diff""" , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = f" {new_val:f}" if isinstance(UpperCamelCase_ , (int, float) ) else """None""" if old_val is not None: val_str += f" / {old_val:f}" if isinstance(UpperCamelCase_ , (int, float) ) else "None" if dif_val is not None: val_str += f" ({dif_val:f})" if isinstance(UpperCamelCase_ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.writelines("""\n""".join(UpperCamelCase_ ) ) if __name__ == "__main__": __magic_name__ = sys.argv[1] __magic_name__ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
100
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ = 10**9 ): __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __SCREAMING_SNAKE_CASE = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
100
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=a__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=a__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=a__ ) return parser.parse_args() def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = parse_args() # Import training_script as a module. SCREAMING_SNAKE_CASE : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) SCREAMING_SNAKE_CASE : Optional[int] = script_fpath.stem SCREAMING_SNAKE_CASE : List[Any] = importlib.import_module(a__ ) # Patch sys.argv SCREAMING_SNAKE_CASE : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
19
import math a__ : List[str] = 10 a__ : Optional[int] = 7 a__ : int = BALLS_PER_COLOUR * NUM_COLOURS def UpperCAmelCase_( a__ = 20 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = math.comb(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) SCREAMING_SNAKE_CASE : Any = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
19
1
from math import ceil def __lowerCAmelCase ( a__ = 1001 ) -> int: __a = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __a = 2 * i + 1 __a = 2 * i __a = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A : List[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
6
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a_ : Union[str, Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Tuple =['pixel_values'] def __init__( self, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = PILImageResampling.BICUBIC, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = 1 / 255, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, **lowerCAmelCase, ): """simple docstring""" super().__init__(**lowerCAmelCase ) lowerCamelCase_ =size if size is not None else {'''shortest_edge''': 224} lowerCamelCase_ =get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase ) lowerCamelCase_ =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowerCamelCase_ =get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase, param_name='''crop_size''' ) lowerCamelCase_ =do_resize lowerCamelCase_ =size lowerCamelCase_ =resample lowerCamelCase_ =do_center_crop lowerCamelCase_ =crop_size lowerCamelCase_ =do_rescale lowerCamelCase_ =rescale_factor lowerCamelCase_ =do_normalize lowerCamelCase_ =image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCamelCase_ =image_std if image_std is not None else OPENAI_CLIP_STD lowerCamelCase_ =do_convert_rgb def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = PILImageResampling.BICUBIC, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowerCamelCase_ =get_resize_output_image_size(lowerCAmelCase, size=size['''shortest_edge'''], default_to_square=lowerCAmelCase ) return resize(lowerCAmelCase, size=lowerCAmelCase, resample=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCAmelCase, size=(size['''height'''], size['''width''']), data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" return rescale(lowerCAmelCase, scale=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" return normalize(lowerCAmelCase, mean=lowerCAmelCase, std=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = ChannelDimension.FIRST, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =do_resize if do_resize is not None else self.do_resize lowerCamelCase_ =size if size is not None else self.size lowerCamelCase_ =get_size_dict(lowerCAmelCase, param_name='''size''', default_to_square=lowerCAmelCase ) lowerCamelCase_ =resample if resample is not None else self.resample lowerCamelCase_ =do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ =crop_size if crop_size is not None else self.crop_size lowerCamelCase_ =get_size_dict(lowerCAmelCase, param_name='''crop_size''', default_to_square=lowerCAmelCase ) lowerCamelCase_ =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ =do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ =image_mean if image_mean is not None else self.image_mean lowerCamelCase_ =image_std if image_std is not None else self.image_std lowerCamelCase_ =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCamelCase_ =make_list_of_images(lowerCAmelCase ) if not valid_images(lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCamelCase_ =[convert_to_rgb(lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. lowerCamelCase_ =[to_numpy_array(lowerCAmelCase ) for image in images] if do_resize: lowerCamelCase_ =[self.resize(image=lowerCAmelCase, size=lowerCAmelCase, resample=lowerCAmelCase ) for image in images] if do_center_crop: lowerCamelCase_ =[self.center_crop(image=lowerCAmelCase, size=lowerCAmelCase ) for image in images] if do_rescale: lowerCamelCase_ =[self.rescale(image=lowerCAmelCase, scale=lowerCAmelCase ) for image in images] if do_normalize: lowerCamelCase_ =[self.normalize(image=lowerCAmelCase, mean=lowerCAmelCase, std=lowerCAmelCase ) for image in images] lowerCamelCase_ =[to_channel_dimension_format(lowerCAmelCase, lowerCAmelCase ) for image in images] lowerCamelCase_ ={'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase, tensor_type=lowerCAmelCase )
75
0
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() def snake_case__ ( self : int ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''' , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) _UpperCamelCase , _UpperCamelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=lowerCAmelCase__ , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) _UpperCamelCase = controlnet_params _UpperCamelCase = '''bird''' _UpperCamelCase = jax.device_count() _UpperCamelCase = pipe.prepare_text_inputs([prompts] * num_samples ) _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) _UpperCamelCase = pipe.prepare_image_inputs([canny_image] * num_samples ) _UpperCamelCase = jax.random.PRNGKey(0 ) _UpperCamelCase = jax.random.split(lowerCAmelCase__ , jax.device_count() ) _UpperCamelCase = replicate(lowerCAmelCase__ ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = pipe( prompt_ids=lowerCAmelCase__ , image=lowerCAmelCase__ , params=lowerCAmelCase__ , prng_seed=lowerCAmelCase__ , num_inference_steps=50 , jit=lowerCAmelCase__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _UpperCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCamelCase = images[0, 253:256, 253:256, -1] _UpperCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCamelCase = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''' , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) _UpperCamelCase , _UpperCamelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=lowerCAmelCase__ , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) _UpperCamelCase = controlnet_params _UpperCamelCase = '''Chef in the kitchen''' _UpperCamelCase = jax.device_count() _UpperCamelCase = pipe.prepare_text_inputs([prompts] * num_samples ) _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) _UpperCamelCase = pipe.prepare_image_inputs([pose_image] * num_samples ) _UpperCamelCase = jax.random.PRNGKey(0 ) _UpperCamelCase = jax.random.split(lowerCAmelCase__ , jax.device_count() ) _UpperCamelCase = replicate(lowerCAmelCase__ ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = pipe( prompt_ids=lowerCAmelCase__ , image=lowerCAmelCase__ , params=lowerCAmelCase__ , prng_seed=lowerCAmelCase__ , num_inference_steps=50 , jit=lowerCAmelCase__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _UpperCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCamelCase = images[0, 253:256, 253:256, -1] _UpperCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCamelCase = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
287
'''simple docstring''' def a__ ( lowercase : int, lowercase : int, lowercase : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(lowercase : int, lowercase : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 _UpperCamelCase = update_area_of_max_square(lowercase, col + 1 ) _UpperCamelCase = update_area_of_max_square(row + 1, col + 1 ) _UpperCamelCase = update_area_of_max_square(row + 1, lowercase ) if mat[row][col]: _UpperCamelCase = 1 + min([right, diagonal, down] ) _UpperCamelCase = max(largest_square_area[0], lowercase ) return sub_problem_sol else: return 0 _UpperCamelCase = [0] update_area_of_max_square(0, 0 ) return largest_square_area[0] def a__ ( lowercase : int, lowercase : int, lowercase : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( lowercase : int, lowercase : int, lowercase : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] _UpperCamelCase = update_area_of_max_square_using_dp_array(lowercase, col + 1, lowercase ) _UpperCamelCase = update_area_of_max_square_using_dp_array(row + 1, col + 1, lowercase ) _UpperCamelCase = update_area_of_max_square_using_dp_array(row + 1, lowercase, lowercase ) if mat[row][col]: _UpperCamelCase = 1 + min([right, diagonal, down] ) _UpperCamelCase = max(largest_square_area[0], lowercase ) _UpperCamelCase = sub_problem_sol return sub_problem_sol else: return 0 _UpperCamelCase = [0] _UpperCamelCase = [[-1] * cols for _ in range(lowercase )] update_area_of_max_square_using_dp_array(0, 0, lowercase ) return largest_square_area[0] def a__ ( lowercase : int, lowercase : int, lowercase : list[list[int]] ) -> int: """simple docstring""" _UpperCamelCase = [[0] * (cols + 1) for _ in range(rows + 1 )] _UpperCamelCase = 0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): _UpperCamelCase = dp_array[row][col + 1] _UpperCamelCase = dp_array[row + 1][col + 1] _UpperCamelCase = dp_array[row + 1][col] if mat[row][col] == 1: _UpperCamelCase = 1 + min(lowercase, lowercase, lowercase ) _UpperCamelCase = max(dp_array[row][col], lowercase ) else: _UpperCamelCase = 0 return largest_square_area def a__ ( lowercase : int, lowercase : int, lowercase : list[list[int]] ) -> int: """simple docstring""" _UpperCamelCase = [0] * (cols + 1) _UpperCamelCase = [0] * (cols + 1) _UpperCamelCase = 0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): _UpperCamelCase = current_row[col + 1] _UpperCamelCase = next_row[col + 1] _UpperCamelCase = next_row[col] if mat[row][col] == 1: _UpperCamelCase = 1 + min(lowercase, lowercase, lowercase ) _UpperCamelCase = max(current_row[col], lowercase ) else: _UpperCamelCase = 0 _UpperCamelCase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
287
1
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class snake_case__ : """simple docstring""" @staticmethod def __UpperCAmelCase ( *__lowerCamelCase : int , **__lowerCamelCase : Optional[int] ) -> Dict: pass @is_pipeline_test @require_vision @require_torch class snake_case__ (unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __UpperCAmelCase ( self : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Dict ) -> Union[str, Any]: a = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) a = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ) -> Optional[Any]: a = object_detector(examples[0] , threshold=0.0 ) a = len(__lowerCamelCase ) self.assertGreater(__lowerCamelCase , 0 ) self.assertEqual( __lowerCamelCase , [ { "score": ANY(__lowerCamelCase ), "label": ANY(__lowerCamelCase ), "box": {"xmin": ANY(__lowerCamelCase ), "ymin": ANY(__lowerCamelCase ), "xmax": ANY(__lowerCamelCase ), "ymax": ANY(__lowerCamelCase )}, } for i in range(__lowerCamelCase ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: pass @require_torch def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: a = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) a = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.7_235, "label": "cat", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.7_218, "label": "remote", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.7_184, "label": "couch", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.6_748, "label": "remote", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.6_656, "label": "cat", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.6_614, "label": "couch", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.6_456, "label": "remote", "box": {"xmin": 4_94, "ymin": 1_05, "xmax": 5_21, "ymax": 1_27}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 2_74, "xmax": 93, "ymax": 2_97}}, {"score": 0.6_419, "label": "cat", "box": {"xmin": 4_94, "ymin": 1_05, "xmax": 5_21, "ymax": 1_27}}, ] , ) a = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.7_235, "label": "cat", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.7_218, "label": "remote", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.7_184, "label": "couch", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.6_748, "label": "remote", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.6_656, "label": "cat", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.6_614, "label": "couch", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.6_456, "label": "remote", "box": {"xmin": 4_94, "ymin": 1_05, "xmax": 5_21, "ymax": 1_27}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 2_74, "xmax": 93, "ymax": 2_97}}, {"score": 0.6_419, "label": "cat", "box": {"xmin": 4_94, "ymin": 1_05, "xmax": 5_21, "ymax": 1_27}}, ] ] , ) @require_torch @slow def __UpperCAmelCase ( self : List[Any] ) -> Dict: a = pipeline("zero-shot-object-detection" ) a = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 3_15, "ymax": 4_72}}, {"score": 0.1_474, "label": "remote", "box": {"xmin": 3_35, "ymin": 74, "xmax": 3_71, "ymax": 1_87}}, {"score": 0.1_208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_42, "ymax": 4_76}}, ] , ) a = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 3_15, "ymax": 4_72}}, {"score": 0.1_474, "label": "remote", "box": {"xmin": 3_35, "ymin": 74, "xmax": 3_71, "ymax": 1_87}}, {"score": 0.1_208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_42, "ymax": 4_76}}, ], [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 3_15, "ymax": 4_72}}, {"score": 0.1_474, "label": "remote", "box": {"xmin": 3_35, "ymin": 74, "xmax": 3_71, "ymax": 1_87}}, {"score": 0.1_208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_42, "ymax": 4_76}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def __UpperCAmelCase ( self : List[str] ) -> Tuple: pass @require_torch @slow def __UpperCAmelCase ( self : Any ) -> Tuple: a = 0.2 a = pipeline("zero-shot-object-detection" ) a = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=__lowerCamelCase , ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 3_15, "ymax": 4_72}}, ] , ) @require_torch @slow def __UpperCAmelCase ( self : str ) -> Any: a = 2 a = pipeline("zero-shot-object-detection" ) a = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=__lowerCamelCase , ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}}, ] , )
107
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) __lowerCAmelCase : str = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = """openai-gpt""" SCREAMING_SNAKE_CASE_ : Tuple = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : str , __lowerCamelCase : List[str]=4_04_78 , __lowerCamelCase : List[Any]=5_12 , __lowerCamelCase : List[str]=7_68 , __lowerCamelCase : List[str]=12 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Any=1e-5 , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : Optional[int]="cls_index" , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Tuple=0.1 , **__lowerCamelCase : Union[str, Any] , ) -> List[str]: a = vocab_size a = n_positions a = n_embd a = n_layer a = n_head a = afn a = resid_pdrop a = embd_pdrop a = attn_pdrop a = layer_norm_epsilon a = initializer_range a = summary_type a = summary_use_proj a = summary_activation a = summary_first_dropout a = summary_proj_to_labels super().__init__(**__lowerCamelCase )
107
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ : Tuple = logging.get_logger(__name__) lowerCAmelCase_ : Dict = '▁' lowerCAmelCase_ : List[str] = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ : Any = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } lowerCAmelCase_ : str = { 'facebook/xglm-564M': 20_48, } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =VOCAB_FILES_NAMES __a =PRETRAINED_VOCAB_FILES_MAP __a =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a =['input_ids', 'attention_mask'] def __init__( self : Optional[int] , __a : Optional[int] , __a : Tuple="<s>" , __a : Any="</s>" , __a : Tuple="</s>" , __a : List[Any]="<s>" , __a : List[Any]="<unk>" , __a : Dict="<pad>" , __a : Optional[Dict[str, Any]] = None , **__a : Any , ): _a = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer _a = 7 _a = [f'<madeupword{i}>' for i in range(self.num_madeup_words )] _a = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__a ) ) _a = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _a = 1 # Mimic fairseq token-to-id alignment for the first 4 token _a = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} _a = len(self.sp_model ) _a = {f'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__a ) _a = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Any ): _a = self.__dict__.copy() _a = None _a = self.sp_model.serialized_model_proto() return state def __setstate__( self : Tuple , __a : Optional[Any] ): _a = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _a = {} _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase__ ( self : Tuple , __a : List[int] , __a : Optional[List[int]] = None ): if token_ids_a is None: return [self.sep_token_id] + token_ids_a _a = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCamelCase__ ( self : Optional[Any] , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a )) def UpperCamelCase__ ( self : Union[str, Any] , __a : List[int] , __a : Optional[List[int]] = None ): _a = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCamelCase__ ( self : Tuple ): return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCamelCase__ ( self : List[Any] ): _a = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self : Union[str, Any] , __a : str ): return self.sp_model.encode(__a , out_type=__a ) def UpperCamelCase__ ( self : Any , __a : Tuple ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _a = self.sp_model.PieceToId(__a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase__ ( self : Any , __a : int ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase__ ( self : str , __a : Optional[Any] ): _a = "".join(__a ).replace(__a , " " ).strip() return out_string def UpperCamelCase__ ( self : Union[str, Any] , __a : str , __a : Optional[str] = None ): if not os.path.isdir(__a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _a = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , "wb" ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,)
346
'''simple docstring''' def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Union[str, Any]: _enforce_args(lowercase , lowercase ) if n == 0: return 0 _a = float("-inf" ) for i in range(1 , n + 1 ): _a = max( lowercase , prices[i - 1] + naive_cut_rod_recursive(n - i , lowercase ) ) return max_revue def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Tuple: _enforce_args(lowercase , lowercase ) _a = [float("-inf" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(lowercase , lowercase , lowercase ) def _lowerCamelCase ( lowercase : int , lowercase : list , lowercase : list ) -> List[str]: if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _a = float("-inf" ) for i in range(1 , n + 1 ): _a = max( lowercase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , lowercase , lowercase ) , ) _a = max_revenue return max_rev[n] def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Any: _enforce_args(lowercase , lowercase ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _a = [float("-inf" ) for _ in range(n + 1 )] _a = 0 for i in range(1 , n + 1 ): _a = max_rev[i] for j in range(1 , i + 1 ): _a = max(lowercase , prices[j - 1] + max_rev[i - j] ) _a = max_revenue_i return max_rev[n] def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Dict: if n < 0: _a = F'n must be greater than or equal to 0. Got n = {n}' raise ValueError(lowercase ) if n > len(lowercase ): _a = ( "Each integral piece of rod must have a corresponding price. " F'Got n = {n} but length of prices = {len(lowercase )}' ) raise ValueError(lowercase ) def _lowerCamelCase ( ) -> Any: _a = [6, 10, 12, 15, 20, 23] _a = len(lowercase ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _a = 36 _a = top_down_cut_rod(lowercase , lowercase ) _a = bottom_up_cut_rod(lowercase , lowercase ) _a = naive_cut_rod_recursive(lowercase , lowercase ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
346
1
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _lowerCamelCase =logging.get_logger(__name__) class a_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self : Dict ,*snake_case : int ,**snake_case : Dict ): warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' ,snake_case ,) super().__init__(*snake_case ,**snake_case )
334
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase =[ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] _lowerCamelCase =[ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =torch.load(lowerCAmelCase_, map_location='cpu' ) return sd def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE =OrderedDict() SCREAMING_SNAKE_CASE =torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE =key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE =new_key.replace(name_pair[0], name_pair[1] ) SCREAMING_SNAKE_CASE =d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE =new_d['cls.predictions.bias'] return new_d @torch.no_grad() def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE ='pretraining' if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512} SCREAMING_SNAKE_CASE ='multichoice' elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} SCREAMING_SNAKE_CASE ='vqa_advanced' elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048, 'num_labels': 3129} SCREAMING_SNAKE_CASE ='vqa' elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE ={ 'visual_embedding_dim': 1024, 'num_labels': 2, } SCREAMING_SNAKE_CASE ='nlvr' SCREAMING_SNAKE_CASE =VisualBertConfig(**lowerCAmelCase_ ) # Load State Dict SCREAMING_SNAKE_CASE =load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =get_new_dict(lowerCAmelCase_, lowerCAmelCase_ ) if model_type == "pretraining": SCREAMING_SNAKE_CASE =VisualBertForPreTraining(lowerCAmelCase_ ) elif model_type == "vqa": SCREAMING_SNAKE_CASE =VisualBertForQuestionAnswering(lowerCAmelCase_ ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE =VisualBertForVisualReasoning(lowerCAmelCase_ ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE =VisualBertForMultipleChoice(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # Save Checkpoints Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") _lowerCamelCase =parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
334
1
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _SCREAMING_SNAKE_CASE = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Path , __snake_case : Union[str, None] = None , __snake_case : Union[List[str], None] = None , __snake_case : Union[str, List[str], None] = None , __snake_case : bool = True , )-> Optional[Any]: snake_case = [file for file in os.listdir(__snake_case ) if os.path.isfile(os.path.join(__snake_case , __snake_case ) )] if identifier is not None: snake_case = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__snake_case , __snake_case ): for n_ in n_identifier: snake_case = [file for file in files if n_ not in file] else: snake_case = [file for file in files if n_identifier not in file] snake_case = ignore_files or [] ignore_files.append("""__init__.py""" ) snake_case = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __snake_case ) if only_modules: snake_case = file.split(""".""" )[0] try: snake_case = getattr(__snake_case , __snake_case ) snake_case = doctest.DocTestSuite(__snake_case ) snake_case = unittest.TextTestRunner().run(__snake_case ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: snake_case = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowerCAmelCase ( self : List[Any] )-> str: snake_case = Path("""src/transformers""" ) snake_case = """modeling""" snake_case = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__snake_case , identifier=__snake_case , ignore_files=__snake_case ) def lowerCAmelCase ( self : List[str] )-> Optional[Any]: snake_case = Path("""src/transformers""" ) snake_case = """tokenization""" self.analyze_directory(__snake_case , identifier=__snake_case ) def lowerCAmelCase ( self : List[str] )-> List[str]: snake_case = Path("""src/transformers""" ) snake_case = """configuration""" self.analyze_directory(__snake_case , identifier=__snake_case ) def lowerCAmelCase ( self : List[Any] )-> Tuple: snake_case = Path("""src/transformers""" ) snake_case = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__snake_case , n_identifier=__snake_case ) def lowerCAmelCase ( self : Dict )-> str: snake_case = Path("""docs/source""" ) snake_case = ["""favicon.ico"""] self.analyze_directory(__snake_case , ignore_files=__snake_case , only_modules=__snake_case )
3
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __lowerCamelCase ( __lowerCAmelCase : dict ) -> tuple: return (data["data"], data["target"]) def __lowerCamelCase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ) -> XGBClassifier: snake_case = XGBClassifier() classifier.fit(__lowerCAmelCase , __lowerCAmelCase ) return classifier def __lowerCamelCase ( ) -> None: snake_case = load_iris() snake_case , snake_case = data_handling(__lowerCAmelCase ) snake_case , snake_case , snake_case , snake_case = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 ) snake_case = iris["""target_names"""] # Create an XGBoost Classifier from the training data snake_case = xgboost(__lowerCAmelCase , __lowerCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
3
1
"""simple docstring""" def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 1 for i in range(1 , num + 1 ): fact *= i return fact def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 0 while number > 0: SCREAMING_SNAKE_CASE__ = number % 10 sum_of_digits += last_digit SCREAMING_SNAKE_CASE__ = number // 10 # Removing the last_digit from the given number return sum_of_digits def A ( snake_case__ = 1_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = factorial(snake_case__ ) SCREAMING_SNAKE_CASE__ = split_and_add(snake_case__ ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
165
"""simple docstring""" def A ( snake_case__ = 10_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1, 1 SCREAMING_SNAKE_CASE__ = 2 while True: SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = fa + fa SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = fa, f index += 1 for _ in str(snake_case__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
165
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __lowerCamelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
286
import sys __lowerCamelCase : List[str] = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def SCREAMING_SNAKE_CASE ( snake_case_ : str = N ): snake_case__ : Any = -sys.maxsize - 1 for i in range(len(snake_case_ ) - 12 ): snake_case__ : Tuple = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case__ : Dict = product return largest_product if __name__ == "__main__": print(f"{solution() = }")
286
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __magic_name__: Union[str, Any] = 10 def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" for i in range(_snake_case, _snake_case ): if array[i] == target: return i return -1 def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : str = 0 __magic_name__ : str = len(_snake_case ) while left <= right: if right - left < precision: return lin_search(_snake_case, _snake_case, _snake_case, _snake_case ) __magic_name__ : Optional[Any] = (left + right) // 3 + 1 __magic_name__ : int = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __magic_name__ : List[str] = one_third - 1 elif array[two_third] < target: __magic_name__ : Any = two_third + 1 else: __magic_name__ : Optional[Any] = one_third + 1 __magic_name__ : Any = two_third - 1 else: return -1 def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" if left < right: if right - left < precision: return lin_search(_snake_case, _snake_case, _snake_case, _snake_case ) __magic_name__ : Optional[int] = (left + right) // 3 + 1 __magic_name__ : List[str] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_snake_case, one_third - 1, _snake_case, _snake_case ) elif array[two_third] < target: return rec_ternary_search(two_third + 1, _snake_case, _snake_case, _snake_case ) else: return rec_ternary_search(one_third + 1, two_third - 1, _snake_case, _snake_case ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __magic_name__: Optional[Any] = input("Enter numbers separated by comma:\n").strip() __magic_name__: List[Any] = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." __magic_name__: List[str] = int(input("Enter the number to be found in the list:\n").strip()) __magic_name__: Dict = ite_ternary_search(collection, target) __magic_name__: Any = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"""Iterative search: {target} found at positions: {resulta}""") print(F"""Recursive search: {target} found at positions: {resulta}""") else: print("Not found")
342
"""simple docstring""" from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='new-model' if is_tf_available(): class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =NewModelConfig @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = '''bert-base-cased''' __snake_case : Dict = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : int = TFAutoModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = '''bert-base-cased''' __snake_case : Optional[Any] = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : List[Any] = TFAutoModelForPreTraining.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : Dict = TFAutoModelForCausalLM.from_pretrained(a_ ) __snake_case , __snake_case : int = TFAutoModelForCausalLM.from_pretrained(a_ , output_loading_info=a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[str] = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : Optional[Any] = TFAutoModelForMaskedLM.from_pretrained(a_ ) __snake_case , __snake_case : int = TFAutoModelForMaskedLM.from_pretrained(a_ , output_loading_info=a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(a_ ) __snake_case , __snake_case : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(a_ , output_loading_info=a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: __snake_case : Any = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : Dict = TFAutoModelForSequenceClassification.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: __snake_case : Optional[int] = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : Optional[Any] = TFAutoModelForQuestionAnswering.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow @require_tensorflow_probability def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __snake_case : Dict = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained(a_ ) __snake_case , __snake_case : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained( a_ , output_loading_info=a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = TFAutoModelWithLMHead.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=a_ ) , 1_44_10 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=a_ ) , 1_44_10 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(a_ , a_ ) __snake_case : Optional[Any] = copy.deepcopy(model.config ) __snake_case : int = ['''FunnelBaseModel'''] __snake_case : Any = TFAutoModel.from_config(a_ ) self.assertIsInstance(a_ , a_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a_ ) __snake_case : Dict = TFAutoModel.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' try: AutoConfig.register('''new-model''' , a_ ) __snake_case : List[str] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(a_ ): auto_class.register(a_ , a_ ) auto_class.register(a_ , a_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a_ ): auto_class.register(a_ , a_ ) # Now that the config is registered, it can be used as any other config with the auto-API __snake_case : Union[str, Any] = BertModelTester(self ).get_config() __snake_case : str = NewModelConfig(**tiny_config.to_dict() ) __snake_case : Optional[int] = auto_class.from_config(a_ ) self.assertIsInstance(a_ , a_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a_ ) __snake_case : Optional[int] = auto_class.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' with self.assertRaisesRegex( a_ , '''bert-base is not a local folder and is not a valid model identifier''' ): __snake_case : Any = TFAutoModel.from_pretrained('''bert-base''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' with self.assertRaisesRegex( a_ , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __snake_case : Dict = TFAutoModel.from_pretrained(a_ , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' with self.assertRaisesRegex( a_ , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): __snake_case : Any = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' with self.assertRaisesRegex(a_ , '''Use `from_pt=True` to load this model''' ): __snake_case : Dict = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: __snake_case : List[Any] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __snake_case : Dict = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: __snake_case : Dict = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
102
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.dummy_uncond_unet __snake_case : Any = ScoreSdeVeScheduler() __snake_case : int = ScoreSdeVePipeline(unet=_A , scheduler=_A ) sde_ve.to(_A ) sde_ve.set_progress_bar_config(disable=_A ) __snake_case : List[str] = torch.manual_seed(0 ) __snake_case : str = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=_A ).images __snake_case : Any = torch.manual_seed(0 ) __snake_case : Tuple = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=_A , return_dict=_A )[ 0 ] __snake_case : Optional[int] = image[0, -3:, -3:, -1] __snake_case : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __snake_case : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = '''google/ncsnpp-church-256''' __snake_case : Union[str, Any] = UNetaDModel.from_pretrained(_A ) __snake_case : List[Any] = ScoreSdeVeScheduler.from_pretrained(_A ) __snake_case : Any = ScoreSdeVePipeline(unet=_A , scheduler=_A ) sde_ve.to(_A ) sde_ve.set_progress_bar_config(disable=_A ) __snake_case : Union[str, Any] = torch.manual_seed(0 ) __snake_case : Optional[int] = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=_A ).images __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __snake_case : Optional[int] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
363
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =['image_processor', 'tokenizer'] lowerCamelCase__ ='CLIPImageProcessor' lowerCamelCase__ =('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self , a_=None , a_=None , **a_ ): '''simple docstring''' __snake_case : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a_ , ) __snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a_ , a_ ) def __call__(self , a_=None , a_=None , a_=None , **a_ ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case : Dict = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if images is not None: __snake_case : Optional[int] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None and images is not None: __snake_case : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.batch_decode(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.decode(*a_ , **a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
24
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a__ : Dict = {'tokenization_bertweet': ['BertweetTokenizer']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
80
from __future__ import annotations import numpy as np def a__ ( snake_case ): """simple docstring""" return np.maximum(0 , snake_case ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
303
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : List[str] = { """configuration_blip_2""": [ """BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Blip2Config""", """Blip2QFormerConfig""", """Blip2VisionConfig""", ], """processing_blip_2""": ["""Blip2Processor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ """BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Blip2Model""", """Blip2QFormerModel""", """Blip2PreTrainedModel""", """Blip2ForConditionalGeneration""", """Blip2VisionModel""", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys UpperCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
358
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Dict = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'vit_mae' def __init__( self : Dict ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : Optional[Any]=12 ,__lowerCamelCase : List[str]=12 ,__lowerCamelCase : Optional[int]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : Union[str, Any]=0.0 ,__lowerCamelCase : Optional[int]=0.0 ,__lowerCamelCase : Dict=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=2_24 ,__lowerCamelCase : str=16 ,__lowerCamelCase : Union[str, Any]=3 ,__lowerCamelCase : Optional[Any]=True ,__lowerCamelCase : Dict=16 ,__lowerCamelCase : List[str]=5_12 ,__lowerCamelCase : int=8 ,__lowerCamelCase : int=20_48 ,__lowerCamelCase : Optional[Any]=0.75 ,__lowerCamelCase : int=False ,**__lowerCamelCase : Any ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = image_size a = patch_size a = num_channels a = qkv_bias a = decoder_num_attention_heads a = decoder_hidden_size a = decoder_num_hidden_layers a = decoder_intermediate_size a = mask_ratio a = norm_pix_loss
330
0
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowercase : Optional[Any] = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class A ( unittest.TestCase ): def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , ) -> List[Any]: """simple docstring""" A : List[Any] = [file for file in os.listdir(SCREAMING_SNAKE_CASE ) if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )] if identifier is not None: A : Optional[int] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for n_ in n_identifier: A : Union[str, Any] = [file for file in files if n_ not in file] else: A : Any = [file for file in files if n_identifier not in file] A : Union[str, Any] = ignore_files or [] ignore_files.append('''__init__.py''' ) A : int = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , SCREAMING_SNAKE_CASE ) if only_modules: A : List[Any] = file.split('''.''' )[0] try: A : Dict = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Tuple = doctest.DocTestSuite(SCREAMING_SNAKE_CASE ) A : Optional[int] = unittest.TextTestRunner().run(SCREAMING_SNAKE_CASE ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: A : Optional[int] = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Optional[Any] = Path('''src/transformers''' ) A : Any = '''modeling''' A : Tuple = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(SCREAMING_SNAKE_CASE , identifier=SCREAMING_SNAKE_CASE , ignore_files=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Dict = Path('''src/transformers''' ) A : Optional[Any] = '''tokenization''' self.analyze_directory(SCREAMING_SNAKE_CASE , identifier=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Any = Path('''src/transformers''' ) A : Optional[int] = '''configuration''' self.analyze_directory(SCREAMING_SNAKE_CASE , identifier=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Tuple = Path('''src/transformers''' ) A : Dict = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(SCREAMING_SNAKE_CASE , n_identifier=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : List[Any] = Path('''docs/source''' ) A : List[str] = ['''favicon.ico'''] self.analyze_directory(SCREAMING_SNAKE_CASE , ignore_files=SCREAMING_SNAKE_CASE , only_modules=SCREAMING_SNAKE_CASE )
3
'''simple docstring''' from scipy.stats import pearsonr import datasets lowercase : Optional[int] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' lowercase : Optional[Any] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' lowercase : str = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: """simple docstring""" if return_pvalue: A : Union[str, Any] = pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0] )}
3
1
"""simple docstring""" import numpy as np def snake_case (A_ :np.ndarray , A_ :float ): '''simple docstring''' return np.where(vector > 0 , A_ , (alpha * (np.exp(A_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
368
"""simple docstring""" def snake_case (A_ :list[int] , A_ :str ): '''simple docstring''' a : Optional[int] = int(A_ ) # Initialize Result a : int = [] # Traverse through all denomination for denomination in reversed(A_ ): # Find denominations while int(A_ ) >= int(A_ ): total_value -= int(A_ ) answer.append(A_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": _UpperCamelCase : Dict = [] _UpperCamelCase : str = '0' if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): _UpperCamelCase : Dict = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) _UpperCamelCase : Optional[int] = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter _UpperCamelCase : Union[str, Any] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] _UpperCamelCase : Dict = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(f'''Following is minimal change for {value}: ''') _UpperCamelCase : Tuple = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
186
0
"""simple docstring""" import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = logging.get_logger() # the current default level is logging.WARNING SCREAMING_SNAKE_CASE = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(lowerCAmelCase__ ) def __A ( self ) -> Any: SCREAMING_SNAKE_CASE = logging.get_verbosity() SCREAMING_SNAKE_CASE = logging.get_logger('transformers.models.bart.tokenization_bart' ) SCREAMING_SNAKE_CASE = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(lowerCAmelCase__ ) as cl: logger.warning(lowerCAmelCase__ ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(lowerCAmelCase__ ) as cl: logger.warning(lowerCAmelCase__ ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(lowerCAmelCase__ ) as cl: logger.warning(lowerCAmelCase__ ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(lowerCAmelCase__ ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def __A ( self ) -> str: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var SCREAMING_SNAKE_CASE = logging.get_logger('transformers.models.bart.tokenization_bart' ) SCREAMING_SNAKE_CASE = os.getenv('TRANSFORMERS_VERBOSITY' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = logging.log_levels[env_level_str] SCREAMING_SNAKE_CASE = logging.get_verbosity() self.assertEqual( lowerCAmelCase__ , lowerCAmelCase__ , F'TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}' , ) # restore to the original level SCREAMING_SNAKE_CASE = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def __A ( self ) -> int: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() SCREAMING_SNAKE_CASE = logging.logging.getLogger() with CaptureLogger(lowerCAmelCase__ ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def __A ( self ) -> List[Any]: # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() SCREAMING_SNAKE_CASE = logging.get_logger('transformers.models.bart.tokenization_bart' ) SCREAMING_SNAKE_CASE = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(lowerCAmelCase__ ) as cl: logger.warning_advice(lowerCAmelCase__ ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(lowerCAmelCase__ ) as cl: logger.warning_advice(lowerCAmelCase__ ) self.assertEqual(cl.out , msg + '\n' ) def lowercase () -> Optional[Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
113
"""simple docstring""" def lowercase (SCREAMING_SNAKE_CASE_ : int = 10_00 ) -> int: SCREAMING_SNAKE_CASE = 2**power SCREAMING_SNAKE_CASE = 0 while n: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
113
1
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowercase__ : str = TypeVar("T") class a__ ( Generic[T] ): def __init__( self , A = True ) -> None: '''simple docstring''' a = {} # dictionary of lists a = directed def lowerCAmelCase_ ( self , A , A ) -> GraphAdjacencyList[T]: '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(A ) self.adj_list[destination_vertex].append(A ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(A ) a = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(A ) a = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: a = [destination_vertex] a = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(A ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(A ) a = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: a = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: a = [destination_vertex] a = [] return self def __repr__( self ) -> str: '''simple docstring''' return pformat(self.adj_list )
365
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : int = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class a__ ( UpperCamelCase__ , UpperCamelCase__ ): a : Any = """resnet""" a : Tuple = ["""basic""", """bottleneck"""] def __init__( self , A=3 , A=64 , A=[256, 512, 1024, 2048] , A=[3, 4, 6, 3] , A="bottleneck" , A="relu" , A=False , A=None , A=None , **A , ) -> Any: '''simple docstring''' super().__init__(**A ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) a = num_channels a = embedding_size a = hidden_sizes a = depths a = layer_type a = hidden_act a = downsample_in_first_stage a = ["stem"] + [F'''stage{idx}''' for idx in range(1 , len(A ) + 1 )] a , a = get_aligned_output_features_output_indices( out_features=A , out_indices=A , stage_names=self.stage_names ) class a__ ( UpperCamelCase__ ): a : Optional[int] = version.parse("""1.11""" ) @property def lowerCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase_ ( self ) -> float: '''simple docstring''' return 1e-3
180
0
"""simple docstring""" def snake_case_ ( A_ : int, A_ : int ): '''simple docstring''' if not isinstance(A_, A_ ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(A_, A_ ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) _lowerCamelCase : Optional[int] = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(A_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
72
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _a ( UpperCAmelCase ) -> str: """simple docstring""" lowerCamelCase__ : int = tmp_path / '''file.csv''' lowerCamelCase__ : Tuple = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(UpperCAmelCase , '''w''' ) as f: f.write(UpperCAmelCase ) return str(UpperCAmelCase ) @pytest.fixture def _a ( UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Any = tmp_path / '''malformed_file.csv''' lowerCamelCase__ : List[str] = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(UpperCAmelCase , '''w''' ) as f: f.write(UpperCAmelCase ) return str(UpperCAmelCase ) @pytest.fixture def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" lowerCamelCase__ : Dict = tmp_path / '''csv_with_image.csv''' lowerCamelCase__ : int = textwrap.dedent( f"\\n image\n {image_file}\n " ) with open(UpperCAmelCase , '''w''' ) as f: f.write(UpperCAmelCase ) return str(UpperCAmelCase ) @pytest.fixture def _a ( UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : Union[str, Any] = tmp_path / '''csv_with_label.csv''' lowerCamelCase__ : List[Any] = textwrap.dedent( '''\ label good bad good ''' ) with open(UpperCAmelCase , '''w''' ) as f: f.write(UpperCAmelCase ) return str(UpperCAmelCase ) @pytest.fixture def _a ( UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : int = tmp_path / '''csv_with_int_list.csv''' lowerCamelCase__ : Dict = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(UpperCAmelCase , '''w''' ) as f: f.write(UpperCAmelCase ) return str(UpperCAmelCase ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : Union[str, Any] = Csv() lowerCamelCase__ : List[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(UpperCAmelCase , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(UpperCAmelCase ) in record.message for record in caplog.records ) @require_pil def _a ( UpperCAmelCase ) -> Optional[Any]: """simple docstring""" with open(UpperCAmelCase , encoding='''utf-8''' ) as f: lowerCamelCase__ : Tuple = f.read().splitlines()[1] lowerCamelCase__ : Any = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) lowerCamelCase__ : List[str] = csv._generate_tables([[csv_file_with_image]] ) lowerCamelCase__ : Dict = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() lowerCamelCase__ : Tuple = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def _a ( UpperCAmelCase ) -> List[Any]: """simple docstring""" with open(UpperCAmelCase , encoding='''utf-8''' ) as f: lowerCamelCase__ : List[Any] = f.read().splitlines()[1:] lowerCamelCase__ : List[Any] = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) lowerCamelCase__ : Optional[Any] = csv._generate_tables([[csv_file_with_label]] ) lowerCamelCase__ : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() lowerCamelCase__ : str = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(UpperCAmelCase ) for label in labels] def _a ( UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : List[str] = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda UpperCAmelCase : [int(UpperCAmelCase ) for i in x.split()]} ) lowerCamelCase__ : Optional[Any] = csv._generate_tables([[csv_file_with_int_list]] ) lowerCamelCase__ : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) lowerCamelCase__ : Tuple = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
142
0
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class A : lowercase_ = 42 # setable values lowercase_ = 42 lowercase_ = 42 lowercase_ = None @classmethod def __lowerCAmelCase ( cls : str , lowerCAmelCase_ : CommonSchedulerState , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray ) -> str: """simple docstring""" return cls(common=lowerCAmelCase_ , init_noise_sigma=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) @dataclass class A ( _a ): lowercase_ = 42 class A ( _a ,_a ): lowercase_ = [e.name for e in FlaxKarrasDiffusionSchedulers] lowercase_ = 42 @property def __lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return True @register_to_config def __init__( self : Tuple , lowerCAmelCase_ : int = 10_00 , lowerCAmelCase_ : float = 0.0_0_0_1 , lowerCAmelCase_ : float = 0.0_2 , lowerCAmelCase_ : str = "linear" , lowerCAmelCase_ : Optional[jnp.ndarray] = None , lowerCAmelCase_ : str = "fixed_small" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : str = "epsilon" , lowerCAmelCase_ : jnp.dtype = jnp.floataa , ) -> Optional[Any]: """simple docstring""" _a = dtype def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Optional[CommonSchedulerState] = None ) -> DDPMSchedulerState: """simple docstring""" if common is None: _a = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution _a = jnp.array(1.0 , dtype=self.dtype ) _a = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=lowerCAmelCase_ , init_noise_sigma=lowerCAmelCase_ , timesteps=lowerCAmelCase_ , ) def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : DDPMSchedulerState , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : Optional[int] = None ) -> jnp.ndarray: """simple docstring""" return sample def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : DDPMSchedulerState , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple = () ) -> DDPMSchedulerState: """simple docstring""" _a = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _a = (jnp.arange(0 , lowerCAmelCase_ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ , ) def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : DDPMSchedulerState , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Dict=None ) -> Optional[Any]: """simple docstring""" _a = state.common.alphas_cumprod[t] _a = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _a = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: _a = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": _a = jnp.clip(lowerCAmelCase_ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": _a = jnp.log(jnp.clip(lowerCAmelCase_ , a_min=1e-20 ) ) elif variance_type == "fixed_large": _a = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log _a = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": _a = variance _a = state.common.betas[t] _a = (predicted_variance + 1) / 2 _a = frac * max_log + (1 - frac) * min_log return variance def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : DDPMSchedulerState , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : int , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : Optional[jax.random.KeyArray] = None , lowerCAmelCase_ : bool = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: """simple docstring""" _a = timestep if key is None: _a = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: _a , _a = jnp.split(lowerCAmelCase_ , sample.shape[1] , axis=1 ) else: _a = None # 1. compute alphas, betas _a = state.common.alphas_cumprod[t] _a = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) _a = 1 - alpha_prod_t _a = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _a = model_output elif self.config.prediction_type == "v_prediction": _a = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: _a = jnp.clip(lowerCAmelCase_ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _a = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t _a = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _a = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): _a = jax.random.split(lowerCAmelCase_ , num=1 ) _a = jax.random.normal(lowerCAmelCase_ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(lowerCAmelCase_ , lowerCAmelCase_ , predicted_variance=lowerCAmelCase_ ) ** 0.5) * noise _a = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) _a = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=lowerCAmelCase_ , state=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : DDPMSchedulerState , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray , ) -> jnp.ndarray: """simple docstring""" return add_noise_common(state.common , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : DDPMSchedulerState , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray , ) -> jnp.ndarray: """simple docstring""" return get_velocity_common(state.common , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __len__( self : Any ) -> str: """simple docstring""" return self.config.num_train_timesteps
179
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case : Dict = logging.get_logger(__name__) _snake_case : Optional[Any] = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class A ( _a ,_a ): lowercase_ = 'nat' lowercase_ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[str] , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : List[Any]=64 , lowerCAmelCase_ : Dict=[3, 4, 6, 5] , lowerCAmelCase_ : Dict=[2, 4, 8, 16] , lowerCAmelCase_ : str=7 , lowerCAmelCase_ : Dict=3.0 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : int="gelu" , lowerCAmelCase_ : List[str]=0.0_2 , lowerCAmelCase_ : str=1e-5 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : List[Any] , ) -> Any: """simple docstring""" super().__init__(**lowerCAmelCase_ ) _a = patch_size _a = num_channels _a = embed_dim _a = depths _a = len(lowerCAmelCase_ ) _a = num_heads _a = kernel_size _a = mlp_ratio _a = qkv_bias _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = drop_path_rate _a = hidden_act _a = layer_norm_eps _a = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _a = int(embed_dim * 2 ** (len(lowerCAmelCase_ ) - 1) ) _a = layer_scale_init_value _a = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] _a , _a = get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
179
1
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __lowerCamelCase = logging.get_logger(__name__) @dataclass class A__ : lowercase = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) lowercase = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) lowercase = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowercase = field( default=UpperCamelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.task_name.lower() class A__ ( UpperCamelCase__ ): lowercase = "train" lowercase = "dev" lowercase = "test" class A__ ( UpperCamelCase__ ): lowercase = 42 lowercase = 42 lowercase = 42 def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = Split.train , UpperCamelCase__ = None , ) -> Dict: '''simple docstring''' warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , UpperCamelCase__ , ) A_ = args A_ = glue_processors[args.task_name]() A_ = glue_output_modes[args.task_name] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): try: A_ = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file A_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) A_ = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ = label_list[2], label_list[1] A_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ = cached_features_file + """.lock""" with FileLock(UpperCamelCase__ ): if os.path.exists(UpperCamelCase__ ) and not args.overwrite_cache: A_ = time.time() A_ = torch.load(UpperCamelCase__ ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: A_ = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: A_ = self.processor.get_test_examples(args.data_dir ) else: A_ = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: A_ = examples[:limit_length] A_ = glue_convert_examples_to_features( UpperCamelCase__ , UpperCamelCase__ , max_length=args.max_seq_length , label_list=UpperCamelCase__ , output_mode=self.output_mode , ) A_ = time.time() torch.save(self.features , UpperCamelCase__ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> str: '''simple docstring''' return len(self.features ) def __getitem__( self , UpperCamelCase__ ) -> InputFeatures: '''simple docstring''' return self.features[i] def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' return self.label_list
162
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> Union[str, Any]: for attribute in key.split(""".""" ): snake_case : Optional[Any] = getattr(lowercase ,lowercase ) if weight_type is not None: snake_case : Any = getattr(lowercase ,lowercase ).shape else: snake_case : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case : str = value elif weight_type == "weight_g": snake_case : Optional[int] = value elif weight_type == "weight_v": snake_case : List[str] = value elif weight_type == "bias": snake_case : int = value else: snake_case : str = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> List[Any]: snake_case : Optional[Any] = [] snake_case : Optional[Any] = fairseq_model.state_dict() snake_case : Tuple = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowercase ,lowercase ,lowercase ,lowercase ,hf_model.config.feat_extract_norm == """group""" ,) snake_case : Any = True else: for key, mapped_key in MAPPING.items(): snake_case : Optional[int] = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): snake_case : Union[str, Any] = True if "*" in mapped_key: snake_case : Dict = name.split(lowercase )[0].split(""".""" )[-2] snake_case : str = mapped_key.replace("""*""" ,lowercase ) if "weight_g" in name: snake_case : int = """weight_g""" elif "weight_v" in name: snake_case : Optional[int] = """weight_v""" elif "weight" in name: snake_case : Tuple = """weight""" elif "bias" in name: snake_case : List[Any] = """bias""" else: snake_case : List[str] = None set_recursively(lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> Dict: snake_case : str = full_name.split("""conv_layers.""" )[-1] snake_case : Dict = name.split(""".""" ) snake_case : Any = int(items[0] ) snake_case : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case : List[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case : Tuple = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase=None ,lowercase=None ,lowercase=True ) -> Union[str, Any]: if config_path is not None: snake_case : Optional[int] = HubertConfig.from_pretrained(lowercase ) else: snake_case : Tuple = HubertConfig() if is_finetuned: if dict_path: snake_case : List[str] = Dictionary.load(lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case : Optional[int] = target_dict.pad_index snake_case : Any = target_dict.bos_index snake_case : Dict = target_dict.eos_index snake_case : List[str] = len(target_dict.symbols ) snake_case : Union[str, Any] = os.path.join(lowercase ,"""vocab.json""" ) if not os.path.isdir(lowercase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowercase ) ) return os.makedirs(lowercase ,exist_ok=lowercase ) with open(lowercase ,"""w""" ,encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices ,lowercase ) snake_case : Union[str, Any] = WavaVecaCTCTokenizer( lowercase ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=lowercase ,) snake_case : Union[str, Any] = True if config.feat_extract_norm == """layer""" else False snake_case : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16000 ,padding_value=0 ,do_normalize=lowercase ,return_attention_mask=lowercase ,) snake_case : Dict = WavaVecaProcessor(feature_extractor=lowercase ,tokenizer=lowercase ) processor.save_pretrained(lowercase ) snake_case : List[Any] = HubertForCTC(lowercase ) else: snake_case : Any = HubertModel(lowercase ) if is_finetuned: snake_case , snake_case , snake_case : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case : Any = model[0].eval() recursively_load_weights(lowercase ,lowercase ,lowercase ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCamelCase : List[str] = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
124
0
def __lowerCamelCase (UpperCAmelCase__ : int ): assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and number_of_steps > 0 ), F"number_of_steps needs to be positive integer, your input {number_of_steps}" if number_of_steps == 1: return 1 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1, 1 for _ in range(number_of_steps - 1 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
367
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowercase ( unittest.TestCase ): def __snake_case( self : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE = { "do_resize": True, "size": {"height": 224, "width": 224}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], "image_std": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], "do_convert_rgb": True, } SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , _UpperCamelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_UpperCamelCase , _UpperCamelCase ) def __snake_case( self : Union[str, Any] , **_UpperCamelCase : str ) -> int: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __snake_case( self : List[str] , **_UpperCamelCase : Tuple ) -> str: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __snake_case( self : List[Any] , **_UpperCamelCase : Optional[Any] ) -> Any: '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __snake_case( self : Optional[Any] ) -> int: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __snake_case( self : Dict ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case( self : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase ) SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCamelCase ) def __snake_case( self : str ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = self.get_tokenizer(cls_token="(CLS)" , sep_token="(SEP)" ) SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=_UpperCamelCase ) SCREAMING_SNAKE_CASE = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="(CLS)" , sep_token="(SEP)" , do_normalize=_UpperCamelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCamelCase ) def __snake_case( self : List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = image_processor(_UpperCamelCase , return_tensors="np" ) SCREAMING_SNAKE_CASE = processor(images=_UpperCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __snake_case( self : List[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) SCREAMING_SNAKE_CASE = "Alexandra,T-shirt的价格是15便士。" SCREAMING_SNAKE_CASE = processor(text=_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer(_UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __snake_case( self : Optional[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) SCREAMING_SNAKE_CASE = "Alexandra,T-shirt的价格是15便士。" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=_UpperCamelCase , images=_UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase ): processor() def __snake_case( self : Optional[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def __snake_case( self : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) SCREAMING_SNAKE_CASE = "Alexandra,T-shirt的价格是15便士。" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=_UpperCamelCase , images=_UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
206
0
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class _a ( unittest.TestCase ): def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = get_activation('''swish''' ) self.assertIsInstance(lowercase , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = get_activation('''silu''' ) self.assertIsInstance(lowercase , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = get_activation('''mish''' ) self.assertIsInstance(lowercase , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = get_activation('''gelu''' ) self.assertIsInstance(lowercase , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
34
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def snake_case_ (_a : Tuple ): return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def snake_case_ (): UpperCAmelCase = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_a ) UpperCAmelCase = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_a ) EnvironmentCommand.register_subcommand(_a ) TestCommand.register_subcommand(_a ) RunBeamCommand.register_subcommand(_a ) DummyDataCommand.register_subcommand(_a ) # Parse args UpperCAmelCase , UpperCAmelCase = parser.parse_known_args() if not hasattr(_a , '''func''' ): parser.print_help() exit(1 ) UpperCAmelCase = parse_unknown_args(_a ) # Run UpperCAmelCase = args.func(_a , **_a ) service.run() if __name__ == "__main__": main()
34
1
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class lowerCamelCase : '''simple docstring''' def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A__ : str =TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A__ : int =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A__ : Union[str, Any] =UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) A__ : Dict =DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) A__ : Union[str, Any] =IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' torch.manual_seed(0 ) A__ : List[Any] =TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A__ : str =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A__ : Dict =UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.414 , time_embedding_act_fn="""gelu""" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) A__ : Optional[int] =DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) A__ : int =DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) A__ : List[str] =IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' A__ : Tuple =self.get_dummy_components() A__ : str =self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Optional[int] =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : str =inputs["""prompt"""] A__ : Optional[int] =inputs["""generator"""] A__ : Optional[Any] =inputs["""num_inference_steps"""] A__ : Union[str, Any] =inputs["""output_type"""] if "image" in inputs: A__ : Union[str, Any] =inputs["""image"""] else: A__ : List[Any] =None if "mask_image" in inputs: A__ : Union[str, Any] =inputs["""mask_image"""] else: A__ : Tuple =None if "original_image" in inputs: A__ : Optional[Any] =inputs["""original_image"""] else: A__ : Tuple =None A__ , A__ : Optional[Any] =pipe.encode_prompt(lowerCAmelCase_ ) # inputs with prompt converted to embeddings A__ : Optional[int] ={ """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: A__ : int =image if mask_image is not None: A__ : Tuple =mask_image if original_image is not None: A__ : Optional[int] =original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Any =pipe(**lowerCAmelCase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase_ ) A__ : int =self.pipeline_class.from_pretrained(lowerCAmelCase_ ) pipe_loaded.to(lowerCAmelCase_ ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCAmelCase_ , lowerCAmelCase_ ) is None , f"`{optional_component}` did not stay set to None after loading." , ) A__ : Dict =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : int =inputs["""generator"""] A__ : str =inputs["""num_inference_steps"""] A__ : Optional[Any] =inputs["""output_type"""] # inputs with prompt converted to embeddings A__ : List[Any] ={ """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: A__ : int =image if mask_image is not None: A__ : int =mask_image if original_image is not None: A__ : Optional[int] =original_image A__ : List[str] =pipe_loaded(**lowerCAmelCase_ )[0] A__ : Union[str, Any] =np.abs(to_np(lowerCAmelCase_ ) - to_np(lowerCAmelCase_ ) ).max() self.assertLess(lowerCAmelCase_ , 1e-4 ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' A__ : Union[str, Any] =self.get_dummy_components() A__ : int =self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : List[Any] =pipe(**lowerCAmelCase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase_ ) A__ : List[Any] =self.pipeline_class.from_pretrained(lowerCAmelCase_ ) pipe_loaded.to(lowerCAmelCase_ ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests A__ : int =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : Tuple =pipe_loaded(**lowerCAmelCase_ )[0] A__ : Tuple =np.abs(to_np(lowerCAmelCase_ ) - to_np(lowerCAmelCase_ ) ).max() self.assertLess(lowerCAmelCase_ , 1e-4 )
136
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) __snake_case : Optional[Any] = None __snake_case : Optional[Any] = { '7B': 1_1008, '13B': 1_3824, '30B': 1_7920, '65B': 2_2016, '70B': 2_8672, } __snake_case : Union[str, Any] = { '7B': 1, '7Bf': 1, '13B': 2, '13Bf': 2, '30B': 4, '65B': 8, '70B': 8, '70Bf': 8, } def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : str=1, __snake_case : Tuple=256 ) -> str: """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def __lowerCamelCase ( __snake_case : Tuple ) -> Tuple: """simple docstring""" with open(__snake_case, """r""" ) as f: return json.load(__snake_case ) def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Tuple ) -> Dict: """simple docstring""" with open(__snake_case, """w""" ) as f: json.dump(__snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Any, __snake_case : Any, __snake_case : Tuple=True ) -> Any: """simple docstring""" os.makedirs(__snake_case, exist_ok=__snake_case ) A__ : List[Any] =os.path.join(__snake_case, """tmp""" ) os.makedirs(__snake_case, exist_ok=__snake_case ) A__ : Dict =read_json(os.path.join(__snake_case, """params.json""" ) ) A__ : Dict =NUM_SHARDS[model_size] A__ : List[str] =params["""n_layers"""] A__ : int =params["""n_heads"""] A__ : str =n_heads // num_shards A__ : Tuple =params["""dim"""] A__ : Union[str, Any] =dim // n_heads A__ : str =1_00_00.0 A__ : Any =1.0 / (base ** (torch.arange(0, __snake_case, 2 ).float() / dims_per_head)) if "n_kv_heads" in params: A__ : Optional[Any] =params["""n_kv_heads"""] # for GQA / MQA A__ : int =n_heads_per_shard // num_key_value_heads A__ : int =dim // num_key_value_heads else: # compatibility with other checkpoints A__ : List[Any] =n_heads A__ : List[str] =n_heads_per_shard A__ : Dict =dim # permute for sliced rotary def permute(__snake_case : Tuple, __snake_case : Optional[int]=n_heads, __snake_case : int=dim, __snake_case : Optional[Any]=dim ): return w.view(__snake_case, dima // n_heads // 2, 2, __snake_case ).transpose(1, 2 ).reshape(__snake_case, __snake_case ) print(f"Fetching all parameters from the checkpoint at {input_base_path}." ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) A__ : List[str] =torch.load(os.path.join(__snake_case, """consolidated.00.pth""" ), map_location="""cpu""" ) else: # Sharded A__ : Optional[Any] =[ torch.load(os.path.join(__snake_case, f"consolidated.{i:02d}.pth" ), map_location="""cpu""" ) for i in range(__snake_case ) ] A__ : Optional[Any] =0 A__ : str ={"""weight_map""": {}} for layer_i in range(__snake_case ): A__ : Dict =f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded A__ : Dict ={ f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wq.weight"] ), f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wk.weight"] ), f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"], f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"], f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"], f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"], f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"], f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"], f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. A__ : Any ={ f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ f"layers.{layer_i}.attention_norm.weight" ].clone(), f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ f"layers.{layer_i}.ffn_norm.weight" ].clone(), } A__ : Optional[Any] =permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(__snake_case, __snake_case, __snake_case ) for i in range(__snake_case ) ], dim=0, ).reshape(__snake_case, __snake_case ) ) A__ : int =permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view( __snake_case, __snake_case, __snake_case ) for i in range(__snake_case ) ], dim=0, ).reshape(__snake_case, __snake_case ), __snake_case, __snake_case, __snake_case, ) A__ : int =torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view( __snake_case, __snake_case, __snake_case ) for i in range(__snake_case ) ], dim=0, ).reshape(__snake_case, __snake_case ) A__ : List[str] =torch.cat( [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(__snake_case )], dim=1 ) A__ : Optional[int] =torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(__snake_case )], dim=0 ) A__ : str =torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(__snake_case )], dim=1 ) A__ : List[str] =torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(__snake_case )], dim=0 ) A__ : List[Any] =inv_freq for k, v in state_dict.items(): A__ : Optional[Any] =filename param_count += v.numel() torch.save(__snake_case, os.path.join(__snake_case, __snake_case ) ) A__ : Tuple =f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded A__ : Tuple ={ """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: A__ : Any ={ """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(__snake_case )], dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__snake_case )], dim=0 ), } for k, v in state_dict.items(): A__ : int =filename param_count += v.numel() torch.save(__snake_case, os.path.join(__snake_case, __snake_case ) ) # Write configs A__ : Union[str, Any] ={"""total_size""": param_count * 2} write_json(__snake_case, os.path.join(__snake_case, """pytorch_model.bin.index.json""" ) ) A__ : Optional[Any] =params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 A__ : List[Any] =params["""multiple_of"""] if """multiple_of""" in params else 256 A__ : int =LlamaConfig( hidden_size=__snake_case, intermediate_size=compute_intermediate_size(__snake_case, __snake_case, __snake_case ), num_attention_heads=params["""n_heads"""], num_hidden_layers=params["""n_layers"""], rms_norm_eps=params["""norm_eps"""], num_key_value_heads=__snake_case, ) config.save_pretrained(__snake_case ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) A__ : List[Any] =LlamaForCausalLM.from_pretrained(__snake_case, torch_dtype=torch.floataa, low_cpu_mem_usage=__snake_case ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(__snake_case, safe_serialization=__snake_case ) shutil.rmtree(__snake_case ) def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Dict ) -> Tuple: """simple docstring""" A__ : List[Any] =LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}." ) A__ : List[str] =tokenizer_class(__snake_case ) tokenizer.save_pretrained(__snake_case ) def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : List[str] =argparse.ArgumentParser() parser.add_argument( """--input_dir""", help="""Location of LLaMA weights, which contains tokenizer.model and model folders""", ) parser.add_argument( """--model_size""", choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""], ) parser.add_argument( """--output_dir""", help="""Location to write HF model and tokenizer""", ) parser.add_argument("""--safe_serialization""", type=__snake_case, help="""Whether or not to save using `safetensors`.""" ) A__ : Any =parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir, input_base_path=os.path.join(args.input_dir, args.model_size ), model_size=args.model_size, safe_serialization=args.safe_serialization, ) A__ : List[Any] =os.path.join(args.input_dir, """tokenizer.model""" ) write_tokenizer(args.output_dir, __snake_case ) if __name__ == "__main__": main()
136
1
"""simple docstring""" import qiskit def __lowerCamelCase ( a_ : int , a_ : int ) -> qiskit.result.counts.Counts: __SCREAMING_SNAKE_CASE :Tuple = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register __SCREAMING_SNAKE_CASE :Union[str, Any] = qiskit.QuantumCircuit(a_ , a_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator __SCREAMING_SNAKE_CASE :Tuple = qiskit.execute(a_ , a_ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(a_ ) if __name__ == "__main__": lowerCamelCase_ = single_qubit_measure(2, 2) print(f'Total count for various states are: {counts}')
191
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __lowerCamelCase ( ) -> Any: __SCREAMING_SNAKE_CASE :Tuple = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a_ ) __SCREAMING_SNAKE_CASE :str = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=a_ ) env_command_parser(subparsers=a_ ) launch_command_parser(subparsers=a_ ) tpu_command_parser(subparsers=a_ ) test_command_parser(subparsers=a_ ) # Let's go __SCREAMING_SNAKE_CASE :int = parser.parse_args() if not hasattr(a_ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(a_ ) if __name__ == "__main__": main()
191
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _UpperCAmelCase ( lowerCAmelCase__): def __init__( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : str ): snake_case_ : Optional[Any] = dataset snake_case_ : int = process snake_case_ : List[str] = params def __len__( self : Tuple ): return len(self.dataset ) def __getitem__( self : int , lowercase_ : Tuple ): snake_case_ : List[str] = self.dataset[i] snake_case_ : Optional[int] = self.process(lowercase_ , **self.params ) return processed class _UpperCAmelCase ( lowerCAmelCase__): def __init__( self : List[str] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : List[Any]=None ): snake_case_ : Union[str, Any] = loader snake_case_ : Optional[int] = infer snake_case_ : Optional[Any] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether snake_case_ : Tuple = None snake_case_ : Union[str, Any] = loader_batch_size # Internal bookkeeping snake_case_ : Tuple = None snake_case_ : Union[str, Any] = None def __len__( self : List[str] ): return len(self.loader ) def __iter__( self : List[str] ): snake_case_ : int = iter(self.loader ) return self def _snake_case ( self : Any ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice snake_case_ : List[Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) snake_case_ : int = {} for k, element in self._loader_batch_data.items(): if isinstance(lowercase_ , lowercase_ ): # Convert ModelOutput to tuple first snake_case_ : str = element.to_tuple() if isinstance(element[0] , torch.Tensor ): snake_case_ : List[str] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): snake_case_ : Dict = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(lowercase_ , lowercase_ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): snake_case_ : List[Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): snake_case_ : Union[str, Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around snake_case_ : int = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers snake_case_ : Optional[int] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers snake_case_ : List[Any] = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. snake_case_ : Dict = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 snake_case_ : List[str] = self._loader_batch_data.__class__(lowercase_ ) self._loader_batch_index += 1 return result def _snake_case ( self : Dict ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch snake_case_ : List[str] = next(self.iterator ) snake_case_ : List[Any] = self.infer(lowercase_ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(lowercase_ , torch.Tensor ): snake_case_ : Dict = processed else: snake_case_ : Any = list(processed.keys() )[0] snake_case_ : Tuple = processed[key] if isinstance(lowercase_ , lowercase_ ): snake_case_ : Any = len(lowercase_ ) else: snake_case_ : Union[str, Any] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. snake_case_ : Union[str, Any] = observed_batch_size # Setting internal index to unwrap the batch snake_case_ : Optional[Any] = processed snake_case_ : Union[str, Any] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _UpperCAmelCase ( lowerCAmelCase__): def __init__( self : List[Any] , lowercase_ : int , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Dict=None ): super().__init__(lowercase_ , lowercase_ , lowercase_ ) def __iter__( self : Optional[Any] ): snake_case_ : Optional[int] = iter(self.loader ) snake_case_ : int = None return self def _snake_case ( self : Dict ): if self.subiterator is None: snake_case_ : str = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item snake_case_ : Tuple = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators snake_case_ : Dict = self.infer(next(self.iterator ) , **self.params ) snake_case_ : List[str] = next(self.subiterator ) return processed class _UpperCAmelCase ( lowerCAmelCase__): def __iter__( self : Any ): snake_case_ : Dict = iter(self.loader ) return self def _snake_case ( self : Optional[Any] ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. snake_case_ : List[Any] = False snake_case_ : List[Any] = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: snake_case_ : Optional[int] = self.loader_batch_item() snake_case_ : Optional[int] = item.pop('''is_last''' ) accumulator.append(lowercase_ ) if is_last: return accumulator while not is_last: snake_case_ : Dict = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(lowercase_ , torch.Tensor ): snake_case_ : Optional[int] = processed else: snake_case_ : Dict = list(processed.keys() )[0] snake_case_ : Tuple = processed[key] if isinstance(lowercase_ , lowercase_ ): snake_case_ : Optional[Any] = len(lowercase_ ) else: snake_case_ : Tuple = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. snake_case_ : Optional[Any] = observed_batch_size snake_case_ : str = processed snake_case_ : List[str] = 0 while self._loader_batch_index < self.loader_batch_size: snake_case_ : Union[str, Any] = self.loader_batch_item() snake_case_ : Optional[int] = item.pop('''is_last''' ) accumulator.append(lowercase_ ) if is_last: return accumulator else: snake_case_ : Any = processed snake_case_ : int = item.pop('''is_last''' ) accumulator.append(lowercase_ ) return accumulator class _UpperCAmelCase ( lowerCAmelCase__): def __init__( self : Union[str, Any] , lowercase_ : Dataset , lowercase_ : str ): snake_case_ : str = dataset snake_case_ : Any = key def __len__( self : Optional[int] ): return len(self.dataset ) def __getitem__( self : Union[str, Any] , lowercase_ : Any ): return self.dataset[i][self.key] class _UpperCAmelCase ( lowerCAmelCase__): def __init__( self : List[Any] , lowercase_ : Dataset , lowercase_ : str , lowercase_ : str ): snake_case_ : int = dataset snake_case_ : List[Any] = keya snake_case_ : str = keya def __len__( self : int ): return len(self.dataset ) def __getitem__( self : List[Any] , lowercase_ : int ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
155
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class _UpperCAmelCase ( unittest.TestCase): _lowerCAmelCase : Optional[int] = MODEL_FOR_CAUSAL_LM_MAPPING _lowerCAmelCase : Union[str, Any] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _snake_case ( self : Any ): snake_case_ : Dict = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output snake_case_ : List[str] = text_generator('''This is a test''' , do_sample=lowercase_ ) self.assertEqual( lowercase_ , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) snake_case_ : Tuple = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( lowercase_ , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) snake_case_ : int = text_generator('''This is a test''' , do_sample=lowercase_ , num_return_sequences=2 , return_tensors=lowercase_ ) self.assertEqual( lowercase_ , [ {'''generated_token_ids''': ANY(lowercase_ )}, {'''generated_token_ids''': ANY(lowercase_ )}, ] , ) snake_case_ : Tuple = text_generator.model.config.eos_token_id snake_case_ : Any = '''<pad>''' snake_case_ : Optional[Any] = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=lowercase_ , num_return_sequences=2 , batch_size=2 , return_tensors=lowercase_ , ) self.assertEqual( lowercase_ , [ [ {'''generated_token_ids''': ANY(lowercase_ )}, {'''generated_token_ids''': ANY(lowercase_ )}, ], [ {'''generated_token_ids''': ANY(lowercase_ )}, {'''generated_token_ids''': ANY(lowercase_ )}, ], ] , ) @require_tf def _snake_case ( self : Any ): snake_case_ : List[str] = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output snake_case_ : List[Any] = text_generator('''This is a test''' , do_sample=lowercase_ ) self.assertEqual( lowercase_ , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) snake_case_ : Tuple = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=lowercase_ ) self.assertEqual( lowercase_ , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def _snake_case ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : int ): snake_case_ : str = TextGenerationPipeline(model=lowercase_ , tokenizer=lowercase_ ) return text_generator, ["This is a test", "Another test"] def _snake_case ( self : Any ): snake_case_ : int = '''Hello I believe in''' snake_case_ : Dict = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ : Optional[Any] = text_generator(lowercase_ ) self.assertEqual( lowercase_ , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) snake_case_ : Any = text_generator(lowercase_ , stop_sequence=''' fe''' ) self.assertEqual(lowercase_ , [{'''generated_text''': '''Hello I believe in fe'''}] ) def _snake_case ( self : Optional[int] , lowercase_ : str , lowercase_ : List[Any] ): snake_case_ : Any = text_generator.model snake_case_ : str = text_generator.tokenizer snake_case_ : Tuple = text_generator('''This is a test''' ) self.assertEqual(lowercase_ , [{'''generated_text''': ANY(lowercase_ )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) snake_case_ : Any = text_generator('''This is a test''' , return_full_text=lowercase_ ) self.assertEqual(lowercase_ , [{'''generated_text''': ANY(lowercase_ )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) snake_case_ : Optional[Any] = pipeline(task='''text-generation''' , model=lowercase_ , tokenizer=lowercase_ , return_full_text=lowercase_ ) snake_case_ : str = text_generator('''This is a test''' ) self.assertEqual(lowercase_ , [{'''generated_text''': ANY(lowercase_ )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) snake_case_ : List[str] = text_generator('''This is a test''' , return_full_text=lowercase_ ) self.assertEqual(lowercase_ , [{'''generated_text''': ANY(lowercase_ )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) snake_case_ : List[Any] = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=lowercase_ ) self.assertEqual( lowercase_ , [ [{'''generated_text''': ANY(lowercase_ )}, {'''generated_text''': ANY(lowercase_ )}], [{'''generated_text''': ANY(lowercase_ )}, {'''generated_text''': ANY(lowercase_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: snake_case_ : List[Any] = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=lowercase_ ) self.assertEqual( lowercase_ , [ [{'''generated_text''': ANY(lowercase_ )}, {'''generated_text''': ANY(lowercase_ )}], [{'''generated_text''': ANY(lowercase_ )}, {'''generated_text''': ANY(lowercase_ )}], ] , ) with self.assertRaises(lowercase_ ): snake_case_ : int = text_generator('''test''' , return_full_text=lowercase_ , return_text=lowercase_ ) with self.assertRaises(lowercase_ ): snake_case_ : Dict = text_generator('''test''' , return_full_text=lowercase_ , return_tensors=lowercase_ ) with self.assertRaises(lowercase_ ): snake_case_ : Dict = text_generator('''test''' , return_text=lowercase_ , return_tensors=lowercase_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): snake_case_ : str = text_generator('''''' ) self.assertEqual(lowercase_ , [{'''generated_text''': ANY(lowercase_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): snake_case_ : List[str] = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. snake_case_ : List[Any] = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) snake_case_ : Tuple = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(lowercase_ ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def _snake_case ( self : Optional[int] ): import torch # Classic `model_kwargs` snake_case_ : List[str] = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) snake_case_ : Tuple = pipe('''This is a test''' ) self.assertEqual( lowercase_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) snake_case_ : Optional[Any] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) snake_case_ : Optional[Any] = pipe('''This is a test''' ) self.assertEqual( lowercase_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 snake_case_ : Tuple = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) snake_case_ : int = pipe('''This is a test''' ) self.assertEqual( lowercase_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def _snake_case ( self : List[str] ): import torch snake_case_ : Any = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def _snake_case ( self : Dict ): import torch snake_case_ : int = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=lowercase_ , top_p=0.5 ) def _snake_case ( self : int ): snake_case_ : int = '''Hello world''' snake_case_ : List[Any] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": snake_case_ : Optional[Any] = logging.get_logger('''transformers.generation.tf_utils''' ) else: snake_case_ : Dict = logging.get_logger('''transformers.generation.utils''' ) snake_case_ : Tuple = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(lowercase_ ) as cl: snake_case_ : List[Any] = text_generator(lowercase_ , max_length=10 , max_new_tokens=1 ) self.assertIn(lowercase_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(lowercase_ ) as cl: snake_case_ : int = text_generator(lowercase_ , max_new_tokens=1 ) self.assertNotIn(lowercase_ , cl.out ) with CaptureLogger(lowercase_ ) as cl: snake_case_ : Optional[Any] = text_generator(lowercase_ , max_length=10 ) self.assertNotIn(lowercase_ , cl.out )
155
1
"""simple docstring""" def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = generate_pascal_triangle(lowercase_ ) for row_idx in range(lowercase_ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def _lowerCAmelCase ( lowercase_ ): if not isinstance(lowercase_ , lowercase_ ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) UpperCAmelCase = [] for current_row_idx in range(lowercase_ ): UpperCAmelCase = populate_current_row(lowercase_ , lowercase_ ) triangle.append(lowercase_ ) return triangle def _lowerCAmelCase ( lowercase_ , lowercase_ ): UpperCAmelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 UpperCAmelCase , UpperCAmelCase = 1, 1 for current_col_idx in range(1 , lowercase_ ): calculate_current_element( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return current_row def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): UpperCAmelCase = triangle[current_row_idx - 1][current_col_idx - 1] UpperCAmelCase = triangle[current_row_idx - 1][current_col_idx] UpperCAmelCase = above_to_left_elt + above_to_right_elt def _lowerCAmelCase ( lowercase_ ): if not isinstance(lowercase_ , lowercase_ ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) UpperCAmelCase = [[1]] for row_index in range(1 , lowercase_ ): UpperCAmelCase = [0] + result[-1] + [0] UpperCAmelCase = row_index + 1 # Calculate the number of distinct elements in a row UpperCAmelCase = sum(divmod(lowercase_ , 2 ) ) UpperCAmelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] UpperCAmelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() UpperCAmelCase = row_first_half + row_second_half result.append(lowercase_ ) return result def _lowerCAmelCase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase_ , lowercase_ ) -> None: UpperCAmelCase = F"""{func.__name__}({value})""" UpperCAmelCase = timeit(F"""__main__.{call}""" , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowercase_ , lowercase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
78
import cmath import math def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" UpperCamelCase__ : Union[str, Any] = math.radians(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = math.radians(SCREAMING_SNAKE_CASE ) # Convert voltage and current to rectangular form UpperCamelCase__ : str = cmath.rect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = cmath.rect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
146
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __snake_case ( snake_case_): """simple docstring""" lowercase = ['image_processor', 'tokenizer'] lowercase = 'CLIPImageProcessor' lowercase = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self : str , lowerCamelCase : List[str]=None , lowerCamelCase : Dict=None , **lowerCamelCase : Union[str, Any] ) -> Dict: lowerCAmelCase_ : Dict = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCamelCase , ) lowerCAmelCase_ : Optional[int] = kwargs.pop("""feature_extractor""" ) lowerCAmelCase_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase , lowerCamelCase ) def __call__( self : Optional[int] , lowerCamelCase : Dict=None , lowerCamelCase : Optional[Any]=None , lowerCamelCase : Union[str, Any]=None , **lowerCamelCase : List[str] ) -> Union[str, Any]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: lowerCAmelCase_ : List[str] = self.tokenizer(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if images is not None: lowerCAmelCase_ : Optional[Any] = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if text is not None and images is not None: lowerCAmelCase_ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase ) , tensor_type=lowerCamelCase ) def __lowercase ( self : Optional[Any] , *lowerCamelCase : Dict , **lowerCamelCase : int ) -> int: return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def __lowercase ( self : int , *lowerCamelCase : List[Any] , **lowerCamelCase : Union[str, Any] ) -> Optional[Any]: return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property def __lowercase ( self : Dict ) -> Tuple: lowerCAmelCase_ : int = self.tokenizer.model_input_names lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
356
'''simple docstring''' from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=_SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = ['note_seq'] def __init__( self : Tuple , *lowerCamelCase : Optional[int] , **lowerCamelCase : Tuple ) -> Any: requires_backends(self , ["""note_seq"""] ) @classmethod def __lowercase ( cls : Optional[Any] , *lowerCamelCase : List[Any] , **lowerCamelCase : Dict ) -> List[Any]: requires_backends(cls , ["""note_seq"""] ) @classmethod def __lowercase ( cls : Union[str, Any] , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : List[Any] ) -> Optional[int]: requires_backends(cls , ["""note_seq"""] )
89
0
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a__ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = 1 A__ = 3 A__ = (32, 32) A__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase ) return image @property def UpperCamelCase ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(lowercase ) @property def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' def extract(*lowercase , **lowercase ): class a__ : """simple docstring""" def __init__( self ) -> List[Any]: '''simple docstring''' A__ = torch.ones([0] ) def UpperCamelCase ( self , lowercase ) -> Optional[int]: '''simple docstring''' self.pixel_values.to(lowercase ) return self return Out() return extract def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' A__ = "cpu" # ensure determinism for the device-dependent torch.Generator A__ = self.dummy_cond_unet A__ = PNDMScheduler(skip_prk_steps=lowercase ) A__ = self.dummy_vae A__ = self.dummy_text_encoder A__ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) A__ = 77 A__ = self.dummy_image.to(lowercase ) A__ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk A__ = AltDiffusionImgaImgPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) A__ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowercase ) A__ = alt_pipe.to(lowercase ) alt_pipe.set_progress_bar_config(disable=lowercase ) A__ = "A painting of a squirrel eating a burger" A__ = torch.Generator(device=lowercase ).manual_seed(0 ) A__ = alt_pipe( [prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowercase , ) A__ = output.images A__ = torch.Generator(device=lowercase ).manual_seed(0 ) A__ = alt_pipe( [prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowercase , return_dict=lowercase , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = self.dummy_cond_unet A__ = PNDMScheduler(skip_prk_steps=lowercase ) A__ = self.dummy_vae A__ = self.dummy_text_encoder A__ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) A__ = 77 A__ = self.dummy_image.to(lowercase ) # put models in fp16 A__ = unet.half() A__ = vae.half() A__ = bert.half() # make sure here that pndm scheduler skips prk A__ = AltDiffusionImgaImgPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) A__ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowercase ) A__ = alt_pipe.to(lowercase ) alt_pipe.set_progress_bar_config(disable=lowercase ) A__ = "A painting of a squirrel eating a burger" A__ = torch.manual_seed(0 ) A__ = alt_pipe( [prompt] , generator=lowercase , num_inference_steps=2 , output_type="np" , image=lowercase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 A__ = init_image.resize((760, 504) ) A__ = "BAAI/AltDiffusion" A__ = AltDiffusionImgaImgPipeline.from_pretrained( lowercase , safety_checker=lowercase , ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() A__ = "A fantasy landscape, trending on artstation" A__ = torch.manual_seed(0 ) A__ = pipe( prompt=lowercase , image=lowercase , strength=0.75 , guidance_scale=7.5 , generator=lowercase , output_type="np" , ) A__ = output.images[0] A__ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) A__ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) A__ = init_image.resize((768, 512) ) A__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) A__ = "BAAI/AltDiffusion" A__ = AltDiffusionImgaImgPipeline.from_pretrained( lowercase , safety_checker=lowercase , ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() A__ = "A fantasy landscape, trending on artstation" A__ = torch.manual_seed(0 ) A__ = pipe( prompt=lowercase , image=lowercase , strength=0.75 , guidance_scale=7.5 , generator=lowercase , output_type="np" , ) A__ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
68
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _lowercase ( snake_case_ ): lowercase = 'megatron-bert' def __init__( self : List[str] , snake_case : Tuple=2_9_0_5_6 , snake_case : Dict=1_0_2_4 , snake_case : Dict=2_4 , snake_case : Union[str, Any]=1_6 , snake_case : Optional[int]=4_0_9_6 , snake_case : Optional[int]="gelu" , snake_case : Any=0.1 , snake_case : Tuple=0.1 , snake_case : Optional[int]=5_1_2 , snake_case : List[Any]=2 , snake_case : Tuple=0.02 , snake_case : Optional[Any]=1e-12 , snake_case : str=0 , snake_case : Optional[int]="absolute" , snake_case : Union[str, Any]=True , **snake_case : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=snake_case , **snake_case ) UpperCamelCase_ : Optional[Any] = vocab_size UpperCamelCase_ : Any = hidden_size UpperCamelCase_ : Union[str, Any] = num_hidden_layers UpperCamelCase_ : List[Any] = num_attention_heads UpperCamelCase_ : str = hidden_act UpperCamelCase_ : List[str] = intermediate_size UpperCamelCase_ : List[Any] = hidden_dropout_prob UpperCamelCase_ : Any = attention_probs_dropout_prob UpperCamelCase_ : Tuple = max_position_embeddings UpperCamelCase_ : Dict = type_vocab_size UpperCamelCase_ : Optional[int] = initializer_range UpperCamelCase_ : Optional[Any] = layer_norm_eps UpperCamelCase_ : Dict = position_embedding_type UpperCamelCase_ : List[str] = use_cache
175
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : List[str] ) -> Any: """simple docstring""" lowercase__ : List[str] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = '''The dog is cute and lives in the garden house''' lowercase__ : int = jnp.array([tokenizer.encode(_snake_case )] ) lowercase__ : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowercase__ : Tuple = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) lowercase__ : Optional[Any] = model(_snake_case )['''last_hidden_state'''] self.assertEqual(output.shape ,_snake_case ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,_snake_case ,atol=1e-3 ) )
302
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = ["image_processor", "tokenizer"] lowerCAmelCase : int = "ChineseCLIPImageProcessor" lowerCAmelCase : str = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Tuple ,_snake_case : str=None ,_snake_case : Union[str, Any]=None ,**_snake_case : str ) -> Any: """simple docstring""" lowercase__ : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,_snake_case ,) lowercase__ : Tuple = kwargs.pop('''feature_extractor''' ) lowercase__ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case ,_snake_case ) lowercase__ : List[Any] = self.image_processor def __call__( self : List[Any] ,_snake_case : Optional[int]=None ,_snake_case : Dict=None ,_snake_case : List[Any]=None ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase__ : str = self.tokenizer(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if images is not None: lowercase__ : str = self.image_processor(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if text is not None and images is not None: lowercase__ : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) ,tensor_type=_snake_case ) def UpperCAmelCase ( self : Any ,*_snake_case : List[Any] ,**_snake_case : Optional[int] ) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ,*_snake_case : Tuple ,**_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_snake_case ,**_snake_case ) @property def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.tokenizer.model_input_names lowercase__ : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_snake_case ,) return self.image_processor_class
302
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A ( __UpperCAmelCase ): __snake_case = ['image_processor', 'tokenizer'] __snake_case = 'LayoutLMv2ImageProcessor' __snake_case = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self, UpperCamelCase__=None, UpperCamelCase__=None, **UpperCamelCase__ ): """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', UpperCamelCase__, ) lowerCAmelCase_ = kwargs.pop('''feature_extractor''' ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCamelCase__, UpperCamelCase__ ) def __call__( self, UpperCamelCase__, UpperCamelCase__ = None, UpperCamelCase__ = None, UpperCamelCase__ = None, UpperCamelCase__ = None, UpperCamelCase__ = True, UpperCamelCase__ = False, UpperCamelCase__ = None, UpperCamelCase__ = None, UpperCamelCase__ = 0, UpperCamelCase__ = None, UpperCamelCase__ = None, UpperCamelCase__ = None, UpperCamelCase__ = False, UpperCamelCase__ = False, UpperCamelCase__ = False, UpperCamelCase__ = False, UpperCamelCase__ = True, UpperCamelCase__ = None, **UpperCamelCase__, ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowerCAmelCase_ = self.image_processor(images=UpperCamelCase__, return_tensors=UpperCamelCase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCamelCase__, UpperCamelCase__ ): lowerCAmelCase_ = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCAmelCase_ = features['''words'''] lowerCAmelCase_ = self.tokenizer( text=text if text is not None else features['''words'''], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features['''boxes'''], word_labels=UpperCamelCase__, add_special_tokens=UpperCamelCase__, padding=UpperCamelCase__, truncation=UpperCamelCase__, max_length=UpperCamelCase__, stride=UpperCamelCase__, pad_to_multiple_of=UpperCamelCase__, return_token_type_ids=UpperCamelCase__, return_attention_mask=UpperCamelCase__, return_overflowing_tokens=UpperCamelCase__, return_special_tokens_mask=UpperCamelCase__, return_offsets_mapping=UpperCamelCase__, return_length=UpperCamelCase__, verbose=UpperCamelCase__, return_tensors=UpperCamelCase__, **UpperCamelCase__, ) # add pixel values lowerCAmelCase_ = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowerCAmelCase_ = self.get_overflowing_images(UpperCamelCase__, encoded_inputs['''overflow_to_sample_mapping'''] ) lowerCAmelCase_ = images return encoded_inputs def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f" {len(UpperCamelCase__ )} and {len(UpperCamelCase__ )}" ) return images_with_overflow def SCREAMING_SNAKE_CASE__ ( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return self.tokenizer.decode(*UpperCamelCase__, **UpperCamelCase__ ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', UpperCamelCase__, ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', UpperCamelCase__, ) return self.image_processor
278
def __UpperCamelCase ( _A ): if not numbers: return 0 if not isinstance(_A , (list, tuple) ) or not all( isinstance(_A , _A ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) lowerCAmelCase_ = lowerCAmelCase_ = lowerCAmelCase_ = numbers[0] for i in range(1 , len(_A ) ): # update the maximum and minimum subarray products lowerCAmelCase_ = numbers[i] if number < 0: lowerCAmelCase_ , lowerCAmelCase_ = min_till_now, max_till_now lowerCAmelCase_ = max(_A , max_till_now * number ) lowerCAmelCase_ = min(_A , min_till_now * number ) # update the maximum product found till now lowerCAmelCase_ = max(_A , _A ) return max_prod
278
1
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _SCREAMING_SNAKE_CASE ( A__ , A__ , unittest.TestCase ): UpperCAmelCase_ :List[Any] = IFImgaImgSuperResolutionPipeline UpperCAmelCase_ :Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} UpperCAmelCase_ :Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) UpperCAmelCase_ :int = PipelineTesterMixin.required_optional_params - {"latents"} def __lowerCAmelCase ( self ) -> List[str]: return self._get_superresolution_dummy_components() def __lowerCAmelCase ( self , __A , __A=0 ) -> Optional[int]: if str(__A ).startswith("""mps""" ): lowerCAmelCase_ :Optional[int] = torch.manual_seed(__A ) else: lowerCAmelCase_ :Any = torch.Generator(device=__A ).manual_seed(__A ) lowerCAmelCase_ :int = floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A ) lowerCAmelCase_ :List[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(__A ) ).to(__A ) lowerCAmelCase_ :Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __lowerCAmelCase ( self ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __lowerCAmelCase ( self ) -> Tuple: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def __lowerCAmelCase ( self ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __lowerCAmelCase ( self ) -> str: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __lowerCAmelCase ( self ) -> Dict: self._test_save_load_local() def __lowerCAmelCase ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
371
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCAmelCase = 16 __UpperCAmelCase = 32 def _snake_case ( lowercase__ : Accelerator , lowercase__ : int = 1_6 ) -> str: '''simple docstring''' lowerCAmelCase_ :List[str] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase_ :Optional[Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase__ : int ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ :Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase_ :Optional[Any] = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ :str = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase__ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase_ :int = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase_ :List[Any] = 1_6 elif accelerator.mixed_precision != "no": lowerCAmelCase_ :List[str] = 8 else: lowerCAmelCase_ :Optional[int] = None return tokenizer.pad( lowercase__ , padding="""longest""" , max_length=lowercase__ , pad_to_multiple_of=lowercase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCAmelCase_ :Optional[Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) lowerCAmelCase_ :List[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __UpperCAmelCase = mocked_dataloaders # noqa: F811 def _snake_case ( lowercase__ : List[Any] , lowercase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowercase__ ) == "1": lowerCAmelCase_ :Optional[Any] = 2 # New Code # lowerCAmelCase_ :List[str] = int(args.gradient_accumulation_steps ) lowerCAmelCase_ :int = int(args.local_sgd_steps ) # Initialize accelerator lowerCAmelCase_ :str = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase__ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ :int = config["""lr"""] lowerCAmelCase_ :Union[str, Any] = int(config["""num_epochs"""] ) lowerCAmelCase_ :int = int(config["""seed"""] ) lowerCAmelCase_ :Union[str, Any] = int(config["""batch_size"""] ) lowerCAmelCase_ :Union[str, Any] = evaluate.load("""glue""" , """mrpc""" ) set_seed(lowercase__ ) lowerCAmelCase_ , lowerCAmelCase_ :Optional[int] = get_dataloaders(lowercase__ , lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ :Optional[int] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowercase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase_ :Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase_ :Optional[Any] = AdamW(params=model.parameters() , lr=lowercase__ ) # Instantiate scheduler lowerCAmelCase_ :Union[str, Any] = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowercase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Now we train the model for epoch in range(lowercase__ ): model.train() with LocalSGD( accelerator=lowercase__ , model=lowercase__ , local_sgd_steps=lowercase__ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowercase__ ): lowerCAmelCase_ :str = model(**lowercase__ ) lowerCAmelCase_ :Optional[int] = output.loss accelerator.backward(lowercase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase_ :Optional[int] = model(**lowercase__ ) lowerCAmelCase_ :Optional[int] = outputs.logits.argmax(dim=-1 ) lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) lowerCAmelCase_ :Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowercase__ ) def _snake_case ( ) -> Tuple: '''simple docstring''' lowerCAmelCase_ :str = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowercase__ , default=lowercase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=lowercase__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=lowercase__ , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowerCAmelCase_ :Optional[Any] = parser.parse_args() lowerCAmelCase_ :Tuple = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
1
0
"""simple docstring""" def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Optional[Any] = [0] * len(__UpperCamelCase ) snake_case_ :int = [] snake_case_ :List[Any] = [] snake_case_ :int = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: snake_case_ :Tuple = queue.pop(0 ) cnt += 1 topo.append(__UpperCamelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) if cnt != len(__UpperCamelCase ): print("""Cycle exists""" ) else: print(__UpperCamelCase ) # Adjacency List of Graph __a = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
66
"""simple docstring""" class UpperCAmelCase_ : def __init__( self , UpperCamelCase_ ) -> Tuple: __lowercase : Any = n __lowercase : Any = [None] * self.n __lowercase : Optional[int] = 0 # index of the first element __lowercase : Optional[int] = 0 __lowercase : Any = 0 def __len__( self ) -> int: return self.size def _lowerCamelCase ( self ) -> bool: return self.size == 0 def _lowerCamelCase ( self ) -> Optional[Any]: return False if self.is_empty() else self.array[self.front] def _lowerCamelCase ( self , UpperCamelCase_ ) -> Dict: if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) __lowercase : Any = data __lowercase : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def _lowerCamelCase ( self ) -> List[Any]: if self.size == 0: raise Exception('''UNDERFLOW''' ) __lowercase : Any = self.array[self.front] __lowercase : int = None __lowercase : Optional[int] = (self.front + 1) % self.n self.size -= 1 return temp
249
0
"""simple docstring""" import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Any: snake_case_ = AutoConfig.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) snake_case_ = AutoModelForSeqaSeqLM.from_config(UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) AutoTokenizer.from_pretrained(UpperCAmelCase ).save_pretrained(UpperCAmelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
355
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __UpperCamelCase = '''▁''' class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = BarthezTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", **lowerCAmelCase__, ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file, lowerCAmelCase__) return (out_vocab_file,)
312
0
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class snake_case__(_UpperCamelCase ): """simple docstring""" def snake_case ( self : str ): lowercase__ : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "num_attention_heads" ) ) class snake_case__: """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict=13 , SCREAMING_SNAKE_CASE : List[str]=64 , SCREAMING_SNAKE_CASE : Tuple=3 , SCREAMING_SNAKE_CASE : Optional[Any]=3 , SCREAMING_SNAKE_CASE : Tuple=2 , SCREAMING_SNAKE_CASE : Any=1 , SCREAMING_SNAKE_CASE : str=16 , SCREAMING_SNAKE_CASE : Tuple=[128, 256, 384] , SCREAMING_SNAKE_CASE : int=[4, 6, 8] , SCREAMING_SNAKE_CASE : Tuple=[2, 3, 4] , SCREAMING_SNAKE_CASE : List[str]=[16, 16, 16] , SCREAMING_SNAKE_CASE : str=0 , SCREAMING_SNAKE_CASE : Tuple=[2, 2, 2] , SCREAMING_SNAKE_CASE : Dict=[2, 2, 2] , SCREAMING_SNAKE_CASE : List[Any]=0.02 , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : List[str]=2 , ): lowercase__ : Any = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Tuple = image_size lowercase__ : List[Any] = num_channels lowercase__ : int = kernel_size lowercase__ : List[str] = stride lowercase__ : Dict = padding lowercase__ : Tuple = hidden_sizes lowercase__ : Tuple = num_attention_heads lowercase__ : List[Any] = depths lowercase__ : Optional[int] = key_dim lowercase__ : List[Any] = drop_path_rate lowercase__ : List[str] = patch_size lowercase__ : Union[str, Any] = attention_ratio lowercase__ : Union[str, Any] = mlp_ratio lowercase__ : Optional[Any] = initializer_range lowercase__ : str = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowercase__ : Union[str, Any] = is_training lowercase__ : Optional[int] = use_labels lowercase__ : List[Any] = num_labels lowercase__ : Optional[Any] = initializer_range def snake_case ( self : Optional[int] ): lowercase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Union[str, Any] = None if self.use_labels: lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def snake_case ( self : Any ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str ): lowercase__ : Union[str, Any] = LevitModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : str = model(SCREAMING_SNAKE_CASE ) lowercase__ : Dict = (self.image_size, self.image_size) lowercase__ , lowercase__ : List[Any] = image_size[0], image_size[1] for _ in range(4 ): lowercase__ : int = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) lowercase__ : List[str] = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any ): lowercase__ : Dict = self.num_labels lowercase__ : Dict = LevitForImageClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : int = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self : Any ): lowercase__ : str = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : List[str] = config_and_inputs lowercase__ : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case__(_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowercase_ = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def snake_case ( self : Optional[int] ): lowercase__ : Union[str, Any] = LevitModelTester(self ) lowercase__ : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def snake_case ( self : int ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self : Dict ): return @unittest.skip(reason="Levit does not use inputs_embeds" ) def snake_case ( self : Tuple ): pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def snake_case ( self : List[str] ): pass @unittest.skip(reason="Levit does not output attentions" ) def snake_case ( self : Tuple ): pass def snake_case ( self : List[str] ): lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Any = [*signature.parameters.keys()] lowercase__ : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def snake_case ( self : List[str] ): def check_hidden_states_output(SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str ): lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowercase__ : List[str] = outputs.hidden_states lowercase__ : int = len(self.model_tester.depths ) + 1 self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = (self.model_tester.image_size, self.model_tester.image_size) lowercase__ , lowercase__ : Optional[Any] = image_size[0], image_size[1] for _ in range(4 ): lowercase__ : Any = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) lowercase__ : Optional[Any] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Union[str, Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def snake_case ( self : Optional[int] ): pass def snake_case ( self : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=False ): lowercase__ : Optional[Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def snake_case ( self : str ): lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def snake_case ( self : int ): lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) def snake_case ( self : List[str] ): if not self.model_tester.is_training: return lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Any = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(SCREAMING_SNAKE_CASE ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.train() lowercase__ : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = model(**SCREAMING_SNAKE_CASE ).loss loss.backward() def snake_case ( self : List[str] ): lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase__ : Tuple = False lowercase__ : Union[str, Any] = True for model_class in self.all_model_classes: if model_class in get_values(SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowercase__ : Dict = model_class(SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.to(SCREAMING_SNAKE_CASE ) model.train() lowercase__ : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) lowercase__ : int = model(**SCREAMING_SNAKE_CASE ).loss loss.backward() def snake_case ( self : List[Any] ): lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(SCREAMING_SNAKE_CASE ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type["title"]}""" ): lowercase__ : str = problem_type["title"] lowercase__ : List[str] = problem_type["num_labels"] lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.train() lowercase__ : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) if problem_type["num_labels"] > 1: lowercase__ : Optional[int] = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) lowercase__ : Optional[Any] = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=SCREAMING_SNAKE_CASE ) as warning_list: lowercase__ : int = model(**SCREAMING_SNAKE_CASE ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def snake_case ( self : List[str] ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = LevitModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( ): """simple docstring""" lowercase__ : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class snake_case__(unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self : Any ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def snake_case ( self : int ): lowercase__ : Union[str, Any] = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( SCREAMING_SNAKE_CASE ) lowercase__ : str = self.default_image_processor lowercase__ : int = prepare_img() lowercase__ : Dict = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**SCREAMING_SNAKE_CASE ) # verify the logits lowercase__ : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
130
lowerCAmelCase__ = 0 # The first color of the flag. lowerCAmelCase__ = 1 # The second color of the flag. lowerCAmelCase__ = 2 # The third color of the flag. lowerCAmelCase__ = (red, white, blue) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" if not sequence: return [] if len(lowerCamelCase__ ) == 1: return list(lowerCamelCase__ ) lowercase__ : List[Any] = 0 lowercase__ : Any = len(lowerCamelCase__ ) - 1 lowercase__ : Dict = 0 while mid <= high: if sequence[mid] == colors[0]: lowercase__ , lowercase__ : int = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: lowercase__ , lowercase__ : Union[str, Any] = sequence[high], sequence[mid] high -= 1 else: lowercase__ : Tuple = F"""The elements inside the sequence must contains only {colors} values""" raise ValueError(lowerCamelCase__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = input('''Enter numbers separated by commas:\n''').strip() lowerCAmelCase__ = [int(item.strip()) for item in user_input.split(''',''')] print(f'''{dutch_national_flag_sort(unsorted)}''')
130
1
def _UpperCAmelCase (UpperCamelCase_ : list[list] ): '''simple docstring''' _lowerCAmelCase : Optional[int] = current_set.copy() for row_index, row in enumerate(UpperCamelCase_ ): _lowerCAmelCase : Optional[int] = row[0] for column_index, column in enumerate(UpperCamelCase_ ): if magnitude == 0: _lowerCAmelCase : Union[str, Any] = column continue _lowerCAmelCase : Optional[Any] = column / magnitude # Subtract to cancel term _lowerCAmelCase : Optional[Any] = current_set[0] _lowerCAmelCase : Dict = [first_row] _lowerCAmelCase : int = current_set[1::] for row in current_set: _lowerCAmelCase : Dict = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(UpperCamelCase_ ) continue for column_index in range(len(UpperCamelCase_ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(UpperCamelCase_ ) # Create next recursion iteration set if len(final_set[0] ) != 3: _lowerCAmelCase : List[str] = final_set[0] _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : List[Any] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _lowerCAmelCase : str = simplify(UpperCamelCase_ ) for i in range(len(UpperCamelCase_ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , UpperCamelCase_ ) _lowerCAmelCase : int = resultant return final_set def _UpperCAmelCase (UpperCamelCase_ : list[list] ): '''simple docstring''' if len(UpperCamelCase_ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) _lowerCAmelCase : str = len(UpperCamelCase_ ) + 1 if any(len(UpperCamelCase_ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(UpperCamelCase_ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(UpperCamelCase_ ) == 1: return [equations[0][-1] / equations[0][0]] _lowerCAmelCase : Dict = equations.copy() if any(0 in row for row in data_set ): _lowerCAmelCase : Dict = data_set.copy() _lowerCAmelCase : List[str] = [] for row_index, row in enumerate(UpperCamelCase_ ): if 0 not in row: _lowerCAmelCase : List[str] = data_set.pop(UpperCamelCase_ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , UpperCamelCase_ ) _lowerCAmelCase : Any = data_set.copy() _lowerCAmelCase : Dict = simplify(UpperCamelCase_ ) _lowerCAmelCase : Union[str, Any] = simplified[::-1] _lowerCAmelCase : list = [] for row in simplified: _lowerCAmelCase : Union[str, Any] = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _lowerCAmelCase : Tuple = row.copy()[: len(UpperCamelCase_ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(UpperCamelCase_ ) == 0: solutions.append(0 ) continue _lowerCAmelCase : Optional[int] = temp_row[1::] _lowerCAmelCase : Any = temp_row[::-1] for column_index, column in enumerate(UpperCamelCase_ ): current_solution -= column * solutions[column_index] solutions.append(UpperCamelCase_ ) _lowerCAmelCase : Optional[Any] = [] for item in solutions: final.append(float(round(UpperCamelCase_ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase : Union[str, Any] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
366
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __snake_case (_a ): lowerCAmelCase__ = "ibert" def __init__( self : int , _UpperCAmelCase : Optional[int]=3_0522 , _UpperCAmelCase : Union[str, Any]=768 , _UpperCAmelCase : str=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : str=1E-12 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any="none" , **_UpperCAmelCase : Optional[int] , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase : str = vocab_size _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = intermediate_size _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = type_vocab_size _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : str = position_embedding_type _lowerCAmelCase : int = quant_mode _lowerCAmelCase : str = force_dequant class __snake_case (_a ): @property def SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _lowerCAmelCase : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
159
0
from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]: """simple docstring""" A__ = list(range(len(lowercase_ ) ) ) A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ = 0 A__ = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ = 1 max_value += value[i] capacity -= weight[i] else: A__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
14
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __A : '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any=14 , UpperCAmelCase_ : Union[str, Any]=7 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : str=37 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : int=512 , UpperCAmelCase_ : Tuple=0.02 , ) ->List[str]: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = rotary_dim snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = initializer_range snake_case_ = None snake_case_ = vocab_size - 1 snake_case_ = vocab_size - 1 snake_case_ = vocab_size - 1 def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowerCAmelCase ( self : Dict ) ->Tuple: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCAmelCase ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict ) ->Tuple: """simple docstring""" snake_case_ = 20 snake_case_ = model_class_name(UpperCAmelCase_ ) snake_case_ = model.init_cache(input_ids.shape[0] , UpperCAmelCase_ ) snake_case_ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) snake_case_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) snake_case_ = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) snake_case_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) snake_case_ = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase_ , ) snake_case_ = model(UpperCAmelCase_ ) snake_case_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) ->Dict: """simple docstring""" snake_case_ = 20 snake_case_ = model_class_name(UpperCAmelCase_ ) snake_case_ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) snake_case_ = model.init_cache(input_ids.shape[0] , UpperCAmelCase_ ) snake_case_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) snake_case_ = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) snake_case_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) snake_case_ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) snake_case_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Any = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowercase: List[str] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" snake_case_ = FlaxGPTJModelTester(self ) def lowerCAmelCase ( self : int ) ->List[Any]: """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : List[str] ) ->Any: """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) @tooslow def lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" snake_case_ = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) snake_case_ = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ ) snake_case_ = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) snake_case_ = False snake_case_ = model.config.eos_token_id snake_case_ = jax.jit(model.generate ) snake_case_ = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences snake_case_ = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) snake_case_ = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @is_pt_flax_cross_test def lowerCAmelCase ( self : int ) ->str: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class snake_case_ = model_class.__name__[4:] # Skip the "Flax" at the beginning snake_case_ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ , snake_case_ = pt_inputs["""input_ids"""].shape snake_case_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase_ ): snake_case_ = 0 snake_case_ = 1 snake_case_ = 0 snake_case_ = 1 snake_case_ = pt_model_class(UpperCAmelCase_ ).eval() snake_case_ = model_class(UpperCAmelCase_ , dtype=jnp.floataa ) snake_case_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase_ ) snake_case_ = fx_state with torch.no_grad(): snake_case_ = pt_model(**UpperCAmelCase_ ).to_tuple() snake_case_ = fx_model(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase_ ) snake_case_ = model_class.from_pretrained(UpperCAmelCase_ , from_pt=UpperCAmelCase_ ) snake_case_ = fx_model_loaded(**UpperCAmelCase_ ).to_tuple() self.assertEqual( len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class snake_case_ = model_class.__name__[4:] # Skip the "Flax" at the beginning snake_case_ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = pt_model_class(UpperCAmelCase_ ).eval() snake_case_ = model_class(UpperCAmelCase_ , dtype=jnp.floataa ) snake_case_ = load_flax_weights_in_pytorch_model(UpperCAmelCase_ , fx_model.params ) snake_case_ , snake_case_ = pt_inputs["""input_ids"""].shape snake_case_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase_ ): snake_case_ = 0 snake_case_ = 1 snake_case_ = 0 snake_case_ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): snake_case_ = pt_model(**UpperCAmelCase_ ).to_tuple() snake_case_ = fx_model(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase_ ) snake_case_ = pt_model_class.from_pretrained(UpperCAmelCase_ , from_flax=UpperCAmelCase_ ) with torch.no_grad(): snake_case_ = pt_model_loaded(**UpperCAmelCase_ ).to_tuple() self.assertEqual( len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) snake_case_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ )
347
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : Dict = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "marian" lowerCAmelCase__ = ["past_key_values"] lowerCAmelCase__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , __SCREAMING_SNAKE_CASE : str=58_101 , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Optional[Any]=1_024 , __SCREAMING_SNAKE_CASE : Optional[Any]=12 , __SCREAMING_SNAKE_CASE : Any=4_096 , __SCREAMING_SNAKE_CASE : str=16 , __SCREAMING_SNAKE_CASE : str=12 , __SCREAMING_SNAKE_CASE : Optional[Any]=4_096 , __SCREAMING_SNAKE_CASE : int=16 , __SCREAMING_SNAKE_CASE : Any=0.0 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : List[str]="gelu" , __SCREAMING_SNAKE_CASE : int=1_024 , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.0 , __SCREAMING_SNAKE_CASE : Optional[int]=0.0 , __SCREAMING_SNAKE_CASE : str=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=58_100 , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : str=58_100 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0 , __SCREAMING_SNAKE_CASE : Optional[int]=True , **__SCREAMING_SNAKE_CASE : str , ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = decoder_vocab_size or vocab_size __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = decoder_layerdrop __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = scale_embedding # scale factor will be sqrt(d_model) if True __SCREAMING_SNAKE_CASE = share_encoder_decoder_embeddings super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , is_encoder_decoder=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , forced_eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) class lowerCAmelCase__ ( a ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def UpperCAmelCase__ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __SCREAMING_SNAKE_CASE = {0: """batch"""} __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """decoder_sequence"""} __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. __SCREAMING_SNAKE_CASE = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.num_layers for i in range(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = {0: """batch""", 2: """past_sequence + sequence"""} __SCREAMING_SNAKE_CASE = {0: """batch""", 2: """past_sequence + sequence"""} else: __SCREAMING_SNAKE_CASE = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def UpperCAmelCase__ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE = super().outputs else: __SCREAMING_SNAKE_CASE = super(__SCREAMING_SNAKE_CASE , self ).outputs if self.use_past: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.num_layers for i in range(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = {0: """batch""", 2: """past_sequence + sequence"""} __SCREAMING_SNAKE_CASE = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : PreTrainedTokenizer , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self._generate_dummy_inputs_for_encoder_and_decoder( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Generate decoder inputs __SCREAMING_SNAKE_CASE = seq_length if not self.use_past else 1 __SCREAMING_SNAKE_CASE = self._generate_dummy_inputs_for_encoder_and_decoder( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __SCREAMING_SNAKE_CASE = dict(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = common_inputs["""input_ids"""].shape __SCREAMING_SNAKE_CASE = common_inputs["""decoder_input_ids"""].shape[1] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.num_attention_heads __SCREAMING_SNAKE_CASE = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __SCREAMING_SNAKE_CASE = decoder_seq_length + 3 __SCREAMING_SNAKE_CASE = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __SCREAMING_SNAKE_CASE = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )] , dim=1 ) __SCREAMING_SNAKE_CASE = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.num_layers __SCREAMING_SNAKE_CASE = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) - min_num_layers __SCREAMING_SNAKE_CASE = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(__SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append( ( torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE ), ) ) # TODO: test this. __SCREAMING_SNAKE_CASE = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append((torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) ) return common_inputs def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : PreTrainedTokenizer , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self._generate_dummy_inputs_for_encoder_and_decoder( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __SCREAMING_SNAKE_CASE = seqlen + 2 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.num_layers __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.num_attention_heads __SCREAMING_SNAKE_CASE = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __SCREAMING_SNAKE_CASE = common_inputs["""attention_mask"""].dtype __SCREAMING_SNAKE_CASE = torch.cat( [common_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) __SCREAMING_SNAKE_CASE = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(__SCREAMING_SNAKE_CASE ) ] return common_inputs def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : PreTrainedTokenizer , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = compute_effective_axis_dimension( __SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __SCREAMING_SNAKE_CASE = tokenizer.num_special_tokens_to_add(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = compute_effective_axis_dimension( __SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence __SCREAMING_SNAKE_CASE = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size __SCREAMING_SNAKE_CASE = dict(tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) ) return common_inputs def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : PreTrainedTokenizer , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = self._generate_dummy_inputs_for_causal_lm( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) return common_inputs def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE = super()._flatten_past_key_values_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = super(__SCREAMING_SNAKE_CASE , self )._flatten_past_key_values_( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @property def UpperCAmelCase__ ( self : str ) -> float: """simple docstring""" return 1E-4
331
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( a , a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = AltDiffusionPipeline lowerCAmelCase__ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) __SCREAMING_SNAKE_CASE = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) __SCREAMING_SNAKE_CASE = 77 __SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict=0 ) -> List[str]: """simple docstring""" if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder __SCREAMING_SNAKE_CASE = RobertaSeriesModelWithTransformation(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = text_encoder __SCREAMING_SNAKE_CASE = AltDiffusionPipeline(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """A photo of an astronaut""" __SCREAMING_SNAKE_CASE = alt_pipe(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder __SCREAMING_SNAKE_CASE = RobertaSeriesModelWithTransformation(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = text_encoder __SCREAMING_SNAKE_CASE = AltDiffusionPipeline(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , safety_checker=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = alt_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=20 , output_type="""np""" ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" , subfolder="""scheduler""" ) __SCREAMING_SNAKE_CASE = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , scheduler=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = alt_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="""numpy""" ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
331
1
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def _snake_case ( lowercase__ ): return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Dict = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue _lowerCamelCase : int = key.replace('heads.cmd.mim_head.cls.predictions' , 'mmm_image_head' ) _lowerCamelCase : Union[str, Any] = key.replace('heads.cmd.mlm_head.cls.predictions' , 'mmm_text_head' ) _lowerCamelCase : List[str] = key.replace('heads.cmd.itm_head.cls' , 'itm_head' ) _lowerCamelCase : List[str] = key.replace('heads.cmd.itm_head.pooler' , 'itm_head.pooler' ) _lowerCamelCase : Union[str, Any] = key.replace('heads.cmd.clip_head.logit_scale' , 'flava.logit_scale' ) _lowerCamelCase : Optional[int] = key.replace('heads.fairseq_mlm.cls.predictions' , 'mlm_head' ) _lowerCamelCase : int = key.replace('heads.imagenet.mim_head.cls.predictions' , 'mim_head' ) _lowerCamelCase : List[Any] = key.replace('mm_text_projection' , 'flava.text_to_mm_projection' ) _lowerCamelCase : str = key.replace('mm_image_projection' , 'flava.image_to_mm_projection' ) _lowerCamelCase : Dict = key.replace('image_encoder.module' , 'flava.image_model' ) _lowerCamelCase : Optional[Any] = key.replace('text_encoder.module' , 'flava.text_model' ) _lowerCamelCase : List[Any] = key.replace('mm_encoder.module.encoder.cls_token' , 'flava.multimodal_model.cls_token' ) _lowerCamelCase : Optional[Any] = key.replace('mm_encoder.module' , 'flava.multimodal_model' ) _lowerCamelCase : List[Any] = key.replace('text_projection' , 'flava.text_projection' ) _lowerCamelCase : Any = key.replace('image_projection' , 'flava.image_projection' ) _lowerCamelCase : Any = value.float() for key, value in codebook_state_dict.items(): _lowerCamelCase : Dict = value return upgrade @torch.no_grad() def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): if config_path is not None: _lowerCamelCase : List[str] = FlavaConfig.from_pretrained(snake_case_ ) else: _lowerCamelCase : str = FlavaConfig() _lowerCamelCase : int = FlavaForPreTraining(snake_case_ ).eval() _lowerCamelCase : int = convert_dalle_checkpoint(snake_case_ , snake_case_ , save_checkpoint=snake_case_ ) if os.path.exists(snake_case_ ): _lowerCamelCase : List[str] = torch.load(snake_case_ , map_location='cpu' ) else: _lowerCamelCase : str = torch.hub.load_state_dict_from_url(snake_case_ , map_location='cpu' ) _lowerCamelCase : Any = upgrade_state_dict(snake_case_ , snake_case_ ) hf_model.load_state_dict(snake_case_ ) _lowerCamelCase : Dict = hf_model.state_dict() _lowerCamelCase : Optional[Any] = count_parameters(snake_case_ ) _lowerCamelCase : Dict = count_parameters(snake_case_ ) + count_parameters(snake_case_ ) assert torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) hf_model.save_pretrained(snake_case_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowercase__ = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
96
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : List[Any] ) -> List[Any]: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : str=True ) -> Optional[Any]: '''simple docstring''' model.train() UpperCAmelCase_ = model(snake_case_ ) UpperCAmelCase_ = F.mse_loss(snake_case_ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Any=False ) -> Dict: '''simple docstring''' set_seed(42 ) UpperCAmelCase_ = RegressionModel() UpperCAmelCase_ = deepcopy(snake_case_ ) UpperCAmelCase_ = RegressionDataset(length=80 ) UpperCAmelCase_ = DataLoader(snake_case_ , batch_size=16 ) model.to(accelerator.device ) if sched: UpperCAmelCase_ = AdamW(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ = AdamW(params=ddp_model.parameters() , lr=1E-3 ) UpperCAmelCase_ = LambdaLR(snake_case_ , lr_lambda=lambda snake_case_ : epoch**0.65 ) UpperCAmelCase_ = LambdaLR(snake_case_ , lr_lambda=lambda snake_case_ : epoch**0.65 ) # Make a copy of `model` if sched: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(snake_case_ , snake_case_ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowerCAmelCase_ ( snake_case_ : Any ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ ) # Use a single batch UpperCAmelCase_ , UpperCAmelCase_ = next(iter(snake_case_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: # Sync grads step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase_ = ddp_input[torch.randperm(len(snake_case_ ) )] def lowerCAmelCase_ ( snake_case_ : Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ ) # Use a single batch UpperCAmelCase_ , UpperCAmelCase_ = next(iter(snake_case_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: # Sync grads step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase_ = ddp_input[torch.randperm(len(snake_case_ ) )] def lowerCAmelCase_ ( snake_case_ : Optional[int]=False , snake_case_ : str=False ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = Accelerator( split_batches=snake_case_ , dispatch_batches=snake_case_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ ) for iteration, batch in enumerate(snake_case_ ): UpperCAmelCase_ , UpperCAmelCase_ = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(snake_case_ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase_ = ddp_input[torch.randperm(len(snake_case_ ) )] GradientState._reset_state() def lowerCAmelCase_ ( snake_case_ : Optional[Any]=False , snake_case_ : Tuple=False ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = Accelerator( split_batches=snake_case_ , dispatch_batches=snake_case_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ , snake_case_ ) for iteration, batch in enumerate(snake_case_ ): UpperCAmelCase_ , UpperCAmelCase_ = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(snake_case_ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n""" UpperCAmelCase_ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(snake_case_ )) if accelerator.num_processes > 1: check_model_parameters(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = Accelerator() UpperCAmelCase_ = RegressionDataset(length=80 ) UpperCAmelCase_ = DataLoader(snake_case_ , batch_size=16 ) UpperCAmelCase_ = RegressionDataset(length=96 ) UpperCAmelCase_ = DataLoader(snake_case_ , batch_size=16 ) UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(snake_case_ , snake_case_ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(snake_case_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case_ ) if iteration < len(snake_case_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(snake_case_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case_ ) if batch_num < len(snake_case_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = Accelerator() UpperCAmelCase_ = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(snake_case_ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(snake_case_ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(snake_case_ , snake_case_ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Dict ) -> int: '''simple docstring''' main() if __name__ == "__main__": main()
1
0
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """spiece.model"""} lowerCamelCase__ = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase__ = { """t5-small""": 512, """t5-base""": 512, """t5-large""": 512, """t5-3b""": 512, """t5-11b""": 512, } lowerCamelCase__ = """▁""" class A__ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self : Any , a : List[Any] , a : Dict="</s>" , a : Tuple="<unk>" , a : Optional[int]="<pad>" , a : Any=100 , a : List[Any]=None , a : Optional[Dict[str, Any]] = None , a : Optional[int]=True , **a : Union[str, Any] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowerCAmelCase__ : str = [f'''<extra_id_{i}>''' for i in range(a )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowerCAmelCase__ : Optional[int] = len(set(filter(lambda a : bool('extra_id' in str(a ) ) , a ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) lowerCAmelCase__ : Optional[Any] = legacy lowerCAmelCase__ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=a , unk_token=a , pad_token=a , extra_ids=a , additional_special_tokens=a , sp_model_kwargs=self.sp_model_kwargs , legacy=a , **a , ) lowerCAmelCase__ : Tuple = vocab_file lowerCAmelCase__ : Dict = extra_ids lowerCAmelCase__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) @staticmethod def _lowerCamelCase ( a : Optional[Any] , a : str , a : List[Any] ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: lowerCAmelCase__ : Optional[int] = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , a , ) return max_model_length @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return self.sp_model.get_piece_size() + self._extra_ids def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCamelCase ( self : Dict , a : List[int] , a : Optional[List[int]] = None , a : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(a )) + [1] return ([0] * len(a )) + [1] + ([0] * len(a )) + [1] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return list( set(filter(lambda a : bool(re.search(R'<extra_id_\d+>' , a ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return [self._convert_token_to_id(a ) for token in self.get_sentinel_tokens()] def _lowerCamelCase ( self : Optional[Any] , a : List[int] ): '''simple docstring''' if len(a ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def _lowerCamelCase ( self : str , a : List[int] , a : Optional[List[int]] = None ): '''simple docstring''' lowerCAmelCase__ : List[str] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Any , a : List[int] , a : Optional[List[int]] = None ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self._add_eos_if_not_present(a ) if token_ids_a is None: return token_ids_a else: lowerCAmelCase__ : int = self._add_eos_if_not_present(a ) return token_ids_a + token_ids_a def __getstate__( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.__dict__.copy() lowerCAmelCase__ : Union[str, Any] = None return state def __setstate__( self : str , a : Tuple ): '''simple docstring''' lowerCAmelCase__ : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase__ : Union[str, Any] = {} lowerCAmelCase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self : List[str] , a : "TextInput" , **a : int ): '''simple docstring''' if not self.legacy: lowerCAmelCase__ : Any = SPIECE_UNDERLINE + text.replace(a , ' ' ) return super().tokenize(a , **a ) def _lowerCamelCase ( self : Union[str, Any] , a : Optional[Any] , **a : Tuple ): '''simple docstring''' if not self.legacy: lowerCAmelCase__ : Dict = text.startswith(a ) if is_first: lowerCAmelCase__ : Union[str, Any] = text[1:] lowerCAmelCase__ : Tuple = self.sp_model.encode(a , out_type=a ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(a ): lowerCAmelCase__ : Union[str, Any] = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def _lowerCamelCase ( self : List[Any] , a : List[str] ): '''simple docstring''' if token.startswith('<extra_id_' ): lowerCAmelCase__ : Any = re.match(R'<extra_id_(\d+)>' , a ) lowerCAmelCase__ : Optional[Any] = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(a ) def _lowerCamelCase ( self : List[str] , a : int ): '''simple docstring''' if index < self.sp_model.get_piece_size(): lowerCAmelCase__ : int = self.sp_model.IdToPiece(a ) else: lowerCAmelCase__ : Optional[int] = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def _lowerCamelCase ( self : str , a : str ): '''simple docstring''' lowerCAmelCase__ : Any = [] lowerCAmelCase__ : str = '' lowerCAmelCase__ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a ) + token lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : List[str] = [] else: current_sub_tokens.append(a ) lowerCAmelCase__ : Tuple = False out_string += self.sp_model.decode(a ) return out_string.strip() def _lowerCamelCase ( self : Union[str, Any] , a : str , a : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase__ : Optional[Any] = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , 'wb' ) as fi: lowerCAmelCase__ : str = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,)
363
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = UnCLIPImageVariationPipeline lowercase = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowercase = IMAGE_VARIATION_BATCH_PARAMS lowercase = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowercase = False @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self.time_input_dim @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return 100 @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(a ) @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(a ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } lowerCAmelCase__ : Optional[Any] = UnCLIPTextProjModel(**a ) return model @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : str = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } lowerCAmelCase__ : str = UNetaDConditionModel(**a ) return model @property def _lowerCamelCase ( self : str ): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _lowerCamelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _lowerCamelCase ( self : int ): '''simple docstring''' torch.manual_seed(1 ) lowerCAmelCase__ : List[str] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.dummy_decoder lowerCAmelCase__ : Optional[int] = self.dummy_text_proj lowerCAmelCase__ : Any = self.dummy_text_encoder lowerCAmelCase__ : Any = self.dummy_tokenizer lowerCAmelCase__ : Any = self.dummy_super_res_first lowerCAmelCase__ : Optional[int] = self.dummy_super_res_last lowerCAmelCase__ : Dict = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = CLIPImageProcessor(crop_size=32 , size=32 ) lowerCAmelCase__ : Optional[int] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _lowerCamelCase ( self : Any , a : Dict , a : List[str]=0 , a : List[str]=True ): '''simple docstring''' lowerCAmelCase__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) if str(a ).startswith('mps' ): lowerCAmelCase__ : Optional[int] = torch.manual_seed(a ) else: lowerCAmelCase__ : str = torch.Generator(device=a ).manual_seed(a ) if pil_image: lowerCAmelCase__ : Optional[int] = input_image * 0.5 + 0.5 lowerCAmelCase__ : Dict = input_image.clamp(0 , 1 ) lowerCAmelCase__ : List[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase__ : Union[str, Any] = DiffusionPipeline.numpy_to_pil(a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = 'cpu' lowerCAmelCase__ : Any = self.get_dummy_components() lowerCAmelCase__ : List[str] = self.pipeline_class(**a ) lowerCAmelCase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : str = pipe(**a ) lowerCAmelCase__ : Optional[Any] = output.images lowerCAmelCase__ : str = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : List[str] = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = 'cpu' lowerCAmelCase__ : Dict = self.get_dummy_components() lowerCAmelCase__ : Optional[int] = self.pipeline_class(**a ) lowerCAmelCase__ : int = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = pipe(**a ) lowerCAmelCase__ : Union[str, Any] = output.images lowerCAmelCase__ : int = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : int = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : str = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Tuple = self.pipeline_class(**a ) lowerCAmelCase__ : Union[str, Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = [ pipeline_inputs['image'], pipeline_inputs['image'], ] lowerCAmelCase__ : Optional[int] = pipe(**a ) lowerCAmelCase__ : Tuple = output.images lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Union[str, Any] = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] lowerCAmelCase__ : str = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowerCAmelCase__ : Union[str, Any] = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch.device('cpu' ) class A__ : lowercase = 1 lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : Dict = self.pipeline_class(**a ) lowerCAmelCase__ : Optional[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.Generator(device=a ).manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe.decoder.dtype lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : str = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCAmelCase__ : List[Any] = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[str] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCAmelCase__ : Any = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , decoder_latents=a , super_res_latents=a ).images lowerCAmelCase__ : Optional[Any] = self.get_dummy_inputs(a , pil_image=a ) # Don't pass image, instead pass embedding lowerCAmelCase__ : Union[str, Any] = pipeline_inputs.pop('image' ) lowerCAmelCase__ : Union[str, Any] = pipe.image_encoder(a ).image_embeds lowerCAmelCase__ : List[Any] = pipe( **a , decoder_latents=a , super_res_latents=a , image_embeddings=a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCAmelCase__ : int = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=a , expected_max_diff=a ) @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = torch_device == 'cpu' lowerCAmelCase__ : Any = True lowerCAmelCase__ : Optional[Any] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , additional_params_copy_to_batched_inputs=a , ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCAmelCase__ : List[str] = [2, 3] self._test_inference_batch_consistent( batch_sizes=a , additional_params_copy_to_batched_inputs=a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=a ) @skip_mps def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) lowerCAmelCase__ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) lowerCAmelCase__ : Tuple = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Union[str, Any] = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : List[str] = pipeline( a , generator=a , output_type='np' , ) lowerCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(a , a , 15 )
307
0
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=[0, 1, 2, 3] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=[1, 384, 24, 24] , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , ) -> int: UpperCamelCase :List[Any] = parent UpperCamelCase :List[str] = batch_size UpperCamelCase :Optional[Any] = image_size UpperCamelCase :Optional[Any] = patch_size UpperCamelCase :Optional[Any] = num_channels UpperCamelCase :Union[str, Any] = is_training UpperCamelCase :Dict = use_labels UpperCamelCase :List[Any] = hidden_size UpperCamelCase :Optional[int] = num_hidden_layers UpperCamelCase :Any = backbone_out_indices UpperCamelCase :int = num_attention_heads UpperCamelCase :Union[str, Any] = intermediate_size UpperCamelCase :List[str] = hidden_act UpperCamelCase :Optional[int] = hidden_dropout_prob UpperCamelCase :int = attention_probs_dropout_prob UpperCamelCase :Optional[Any] = initializer_range UpperCamelCase :List[Any] = num_labels UpperCamelCase :Any = backbone_featmap_shape UpperCamelCase :Optional[int] = scope UpperCamelCase :Optional[int] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase :Tuple = (image_size // patch_size) ** 2 UpperCamelCase :int = num_patches + 1 def UpperCAmelCase ( self ) -> str: UpperCamelCase :Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase :int = None if self.use_labels: UpperCamelCase :str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase :Any = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :Tuple = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=SCREAMING_SNAKE_CASE_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase :Optional[int] = DPTModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase :Optional[int] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: UpperCamelCase :Tuple = self.num_labels UpperCamelCase :Any = DPTForDepthEstimation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase :Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase :int = self.num_labels UpperCamelCase :str = DPTForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase :List[str] = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :List[Any] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase :Optional[Any] = config_and_inputs UpperCamelCase :List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( lowercase, lowercase, unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Tuple =(DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () UpperCamelCase_ : Optional[Any] =( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase_ : List[Any] =False UpperCamelCase_ : Optional[int] =False UpperCamelCase_ : Union[str, Any] =False def UpperCAmelCase ( self ) -> int: UpperCamelCase :Optional[Any] = DPTModelTester(self ) UpperCamelCase :List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def UpperCAmelCase ( self ) -> int: pass def UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase , UpperCamelCase :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase :Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase :Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def UpperCAmelCase ( self ) -> int: UpperCamelCase , UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase :Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase :Tuple = [*signature.parameters.keys()] UpperCamelCase :Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase , UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :int = True if model_class in get_values(SCREAMING_SNAKE_CASE_ ): continue UpperCamelCase :Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCamelCase :Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def UpperCAmelCase ( self ) -> Optional[int]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase , UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :Union[str, Any] = False UpperCamelCase :Dict = True if model_class in get_values(SCREAMING_SNAKE_CASE_ ) or not model_class.supports_gradient_checkpointing: continue UpperCamelCase :Tuple = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.gradient_checkpointing_enable() model.train() UpperCamelCase :List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[str] = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def UpperCAmelCase ( self ) -> Dict: UpperCamelCase , UpperCamelCase :int = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :Dict = _config_zero_init(SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: UpperCamelCase :Tuple = model_class(config=SCREAMING_SNAKE_CASE_ ) # Skip the check for the backbone UpperCamelCase :List[str] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCamelCase :Tuple = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase ( self ) -> Tuple: pass @slow def UpperCAmelCase ( self ) -> Any: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCamelCase :int = DPTModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> List[Any]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type UpperCamelCase , UpperCamelCase :int = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :Optional[Any] = '''add''' with self.assertRaises(SCREAMING_SNAKE_CASE_ ): UpperCamelCase :int = DPTForDepthEstimation(SCREAMING_SNAKE_CASE_ ) def _A ( ): UpperCamelCase :List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> str: UpperCamelCase :Any = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) UpperCamelCase :int = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = prepare_img() UpperCamelCase :Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase :Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = outputs.predicted_depth # verify the predicted depth UpperCamelCase :List[str] = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
259
import sys def _A ( SCREAMING_SNAKE_CASE__ : List[str] ): UpperCamelCase :Any = len(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Any = [[0 for x in range(SCREAMING_SNAKE_CASE__ )] for x in range(SCREAMING_SNAKE_CASE__ )] UpperCamelCase :List[Any] = [[0 for x in range(SCREAMING_SNAKE_CASE__ )] for x in range(SCREAMING_SNAKE_CASE__ )] for chain_length in range(2 , SCREAMING_SNAKE_CASE__ ): for a in range(1 , n - chain_length + 1 ): UpperCamelCase :Optional[Any] = a + chain_length - 1 UpperCamelCase :int = sys.maxsize for c in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Any = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCamelCase :int = cost UpperCamelCase :List[str] = c return matrix, sol def _A ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): if i == j: print('''A''' + str(SCREAMING_SNAKE_CASE__ ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , optimal_solution[i][j] ) print_optiomal_solution(SCREAMING_SNAKE_CASE__ , optimal_solution[i][j] + 1 , SCREAMING_SNAKE_CASE__ ) print(''')''' , end=''' ''' ) def _A ( ): UpperCamelCase :Optional[int] = [30, 35, 15, 5, 10, 20, 25] UpperCamelCase :Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCamelCase , UpperCamelCase :Dict = matrix_chain_order(SCREAMING_SNAKE_CASE__ ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(SCREAMING_SNAKE_CASE__ , 1 , n - 1 ) if __name__ == "__main__": main()
259
1
"""simple docstring""" import string from math import logaa def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : int = document.translate( str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' ) lowercase__ : Tuple = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : str = corpus.lower().translate( str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with '' lowercase__ : List[str] = corpus_without_punctuation.split('''\n''' ) lowercase__ : List[str] = term.lower() return (len([doc for doc in docs if term in doc] ), len(__a )) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Any: if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) , 3 ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: return round(tf * idf , 3 )
350
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,) lowerCAmelCase : int = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) lowercase__ : str = import_module('''tasks''' ) try: lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels ) lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) ) lowercase__ : Optional[int] = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , ) lowercase__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ : str = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]: lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 ) lowercase__ , lowercase__ : Tuple = preds.shape lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )] lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__lowerCamelCase ) -> Dict: lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ), "precision": precision_score(__lowerCamelCase , __lowerCamelCase ), "recall": recall_score(__lowerCamelCase , __lowerCamelCase ), "f1": fa_score(__lowerCamelCase , __lowerCamelCase ), } # Data collator lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ : str = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ : Optional[int] = trainer.evaluate() lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__lowerCamelCase ) # Predict if training_args.do_predict: lowercase__ : Optional[int] = TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase ) lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return results def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
302
0
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : def __init__( self : List[Any] , a : int , a : Tuple=13 , a : int=32 , a : List[Any]=3 , a : Dict=4 , a : List[str]=[10, 20, 30, 40] , a : Any=[2, 2, 3, 2] , a : List[str]=True , a : Any=True , a : Optional[Any]=37 , a : Dict="gelu" , a : Tuple=10 , a : Dict=0.0_2 , a : Optional[Any]=["stage2", "stage3", "stage4"] , a : Optional[int]=[2, 3, 4] , a : int=None , ): '''simple docstring''' lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : str = batch_size lowerCAmelCase__ : List[str] = image_size lowerCAmelCase__ : int = num_channels lowerCAmelCase__ : Optional[int] = num_stages lowerCAmelCase__ : str = hidden_sizes lowerCAmelCase__ : Dict = depths lowerCAmelCase__ : List[str] = is_training lowerCAmelCase__ : Optional[Any] = use_labels lowerCAmelCase__ : Optional[Any] = intermediate_size lowerCAmelCase__ : Tuple = hidden_act lowerCAmelCase__ : List[Any] = num_labels lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : List[str] = out_features lowerCAmelCase__ : str = out_indices lowerCAmelCase__ : Optional[Any] = scope def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Optional[int] = None if self.use_labels: lowerCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowerCamelCase ( self : int , a : Tuple , a : Dict , a : List[str] ): '''simple docstring''' lowerCAmelCase__ : str = ConvNextVaModel(config=__a ) model.to(__a ) model.eval() lowerCAmelCase__ : Union[str, Any] = model(__a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self : Any , a : Tuple , a : Any , a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = ConvNextVaForImageClassification(__a ) model.to(__a ) model.eval() lowerCAmelCase__ : Union[str, Any] = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : int , a : str , a : Any , a : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = ConvNextVaBackbone(config=__a ) model.to(__a ) model.eval() lowerCAmelCase__ : Dict = model(__a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : str = ConvNextVaBackbone(config=__a ) model.to(__a ) model.eval() lowerCAmelCase__ : Optional[Any] = model(__a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Any = self.prepare_config_and_inputs() lowerCAmelCase__ : Optional[int] = config_and_inputs lowerCAmelCase__ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.prepare_config_and_inputs() lowerCAmelCase__ : Optional[Any] = config_and_inputs lowerCAmelCase__ : int = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class A__ ( __a , __a , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = ConvNextVaModelTester(self ) lowerCAmelCase__ : Optional[int] = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def _lowerCamelCase ( self : int ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self : int ): '''simple docstring''' return @unittest.skip(reason='ConvNextV2 does not use inputs_embeds' ) def _lowerCamelCase ( self : int ): '''simple docstring''' pass @unittest.skip(reason='ConvNextV2 does not support input and output embeddings' ) def _lowerCamelCase ( self : Any ): '''simple docstring''' pass @unittest.skip(reason='ConvNextV2 does not use feedforward chunking' ) def _lowerCamelCase ( self : Any ): '''simple docstring''' pass def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_with_labels() lowerCAmelCase__ : str = True if model_class.__name__ in [ *get_values(__a ), *get_values(__a ), ]: continue lowerCAmelCase__ : Union[str, Any] = model_class(__a ) model.to(__a ) model.train() lowerCAmelCase__ : Tuple = self._prepare_for_class(__a , __a , return_labels=__a ) lowerCAmelCase__ : Dict = model(**__a ).loss loss.backward() def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() lowerCAmelCase__ : Dict = False lowerCAmelCase__ : Optional[Any] = True if ( model_class.__name__ in [*get_values(__a ), *get_values(__a )] or not model_class.supports_gradient_checkpointing ): continue lowerCAmelCase__ : List[Any] = model_class(__a ) model.to(__a ) model.gradient_checkpointing_enable() model.train() lowerCAmelCase__ : List[str] = self._prepare_for_class(__a , __a , return_labels=__a ) lowerCAmelCase__ : int = model(**__a ).loss loss.backward() def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : int = model_class(__a ) lowerCAmelCase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : str = [*signature.parameters.keys()] lowerCAmelCase__ : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' def check_hidden_states_output(a : Any , a : Tuple , a : Tuple ): lowerCAmelCase__ : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): lowerCAmelCase__ : int = model(**self._prepare_for_class(__a , __a ) ) lowerCAmelCase__ : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ : Any = self.model_tester.num_stages self.assertEqual(len(__a ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : int = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : Optional[Any] = True check_hidden_states_output(__a , __a , __a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def _lowerCamelCase ( self : Dict ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Optional[int] = ConvNextVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self : Any ): '''simple docstring''' return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None @slow def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(__a ) lowerCAmelCase__ : Dict = self.default_image_processor lowerCAmelCase__ : Any = prepare_img() lowerCAmelCase__ : int = preprocessor(images=__a , return_tensors='pt' ).to(__a ) # forward pass with torch.no_grad(): lowerCAmelCase__ : int = model(**__a ) # verify the logits lowerCAmelCase__ : List[str] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __a ) lowerCAmelCase__ : Tuple = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
212
from math import pi def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
233
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : Optional[int] = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" from __future__ import annotations __UpperCamelCase : Any = 1.6021e-19 # units = C def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
74
0
lowerCAmelCase_ = ''' # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCAmelCase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCAmelCase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
279
from __future__ import annotations def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> tuple[float, list[float]]: """simple docstring""" snake_case_ : Dict = list(range(len(_UpperCamelCase ) ) ) snake_case_ : Dict = [v / w for v, w in zip(_UpperCamelCase , _UpperCamelCase )] index.sort(key=lambda _UpperCamelCase : ratio[i] , reverse=_UpperCamelCase ) snake_case_ : float = 0 snake_case_ : list[float] = [0] * len(_UpperCamelCase ) for i in index: if weight[i] <= capacity: snake_case_ : Dict = 1 max_value += value[i] capacity -= weight[i] else: snake_case_ : Union[str, Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
279
1
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCAmelCase: str = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCamelCase ( datasets.BuilderConfig ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[datasets.Features] = None def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , ): import pyspark def generate_fn(): _lowercase : List[Any] = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: _lowercase : Optional[int] = df_with_partition_id.select("""*""" ).where(F"""part_id = {partition_id}""" ).drop("""part_id""" ) _lowercase : int = partition_df.collect() _lowercase : Dict = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class UpperCamelCase ( _BaseExamplesIterable ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ,): _lowercase : Union[str, Any] = df _lowercase : List[str] = partition_order or range(self.df.rdd.getNumPartitions() ) _lowercase : Tuple = _generate_iterable_examples(self.df ,self.partition_order ) def __iter__( self ): yield from self.generate_examples_fn() def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCAmelCase_ ) return SparkExamplesIterable(self.df ,partition_order=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = self.split_shard_indices_by_worker(UpperCAmelCase_ ,UpperCAmelCase_ ) return SparkExamplesIterable(self.df ,partition_order=UpperCAmelCase_ ) @property def lowerCamelCase__ ( self ): return len(self.partition_order ) class UpperCamelCase ( datasets.DatasetBuilder ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = SparkConfig def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): import pyspark _lowercase : List[Any] = pyspark.sql.SparkSession.builder.getOrCreate() _lowercase : List[Any] = df _lowercase : int = working_dir super().__init__( cache_dir=UpperCAmelCase_ ,config_name=str(self.df.semanticHash() ) ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): # Returns the path of the created file. def create_cache_and_write_probe(UpperCAmelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir ,exist_ok=UpperCAmelCase_ ) _lowercase : Union[str, Any] = os.path.join(self._cache_dir ,"""fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCAmelCase_ ,"""a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" ,"""""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _lowercase : List[str] = ( self._spark.sparkContext.parallelize(range(1 ) ,1 ).mapPartitions(UpperCAmelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def lowerCamelCase__ ( self ): return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): import pyspark def get_arrow_batch_size(UpperCAmelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) _lowercase : List[str] = self.df.count() _lowercase : List[str] = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _lowercase : Union[str, Any] = ( self.df.limit(UpperCAmelCase_ ) .repartition(1 ) .mapInArrow(UpperCAmelCase_ ,"""batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) _lowercase : List[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _lowercase : int = min(UpperCAmelCase_ ,int(approx_total_size / max_shard_size ) ) _lowercase : List[Any] = self.df.repartition(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): import pyspark _lowercase : Union[str, Any] = ParquetWriter if file_format == """parquet""" else ArrowWriter _lowercase : List[Any] = os.path.join(self._working_dir ,os.path.basename(UpperCAmelCase_ ) ) if self._working_dir else fpath _lowercase : Any = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _lowercase : Union[str, Any] = self.config.features _lowercase : Optional[int] = self._writer_batch_size _lowercase : Optional[Any] = self._fs.storage_options def write_arrow(UpperCAmelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _lowercase : Any = pyspark.TaskContext().taskAttemptId() _lowercase : List[str] = next(UpperCAmelCase_ ,UpperCAmelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) _lowercase : List[Any] = 0 _lowercase : int = writer_class( features=UpperCAmelCase_ ,path=working_fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,writer_batch_size=UpperCAmelCase_ ,storage_options=UpperCAmelCase_ ,embed_local_files=UpperCAmelCase_ ,) _lowercase : Optional[int] = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCAmelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _lowercase , _lowercase : Optional[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) shard_id += 1 _lowercase : Union[str, Any] = writer_class( features=writer._features ,path=working_fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,writer_batch_size=UpperCAmelCase_ ,storage_options=UpperCAmelCase_ ,embed_local_files=UpperCAmelCase_ ,) _lowercase : Dict = pa.Table.from_batches([batch] ) writer.write_table(UpperCAmelCase_ ) if writer._num_bytes > 0: _lowercase , _lowercase : Dict = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCAmelCase_ ) ): _lowercase : Dict = os.path.join(os.path.dirname(UpperCAmelCase_ ) ,os.path.basename(UpperCAmelCase_ ) ) shutil.move(UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : List[str] = ( self.df.mapInArrow(UpperCAmelCase_ ,"""task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) ,pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) ,pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) ,pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) ,) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = "arrow" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): self._validate_cache_dir() _lowercase : Tuple = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCAmelCase_ ) _lowercase : Optional[int] = not is_remote_filesystem(self._fs ) _lowercase : Dict = os.path.join if is_local else posixpath.join _lowercase : int = """-TTTTT-SSSSS-of-NNNNN""" _lowercase : Optional[Any] = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" _lowercase : Dict = path_join(self._output_dir ,UpperCAmelCase_ ) _lowercase : List[Any] = 0 _lowercase : Optional[Any] = 0 _lowercase : int = 0 _lowercase : Any = [] _lowercase : Any = [] for task_id, content in self._prepare_split_single(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Tuple = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCAmelCase_ ) _lowercase : Optional[int] = total_num_examples _lowercase : List[Any] = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: _lowercase : List[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _lowercase : Union[str, Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): rename( UpperCAmelCase_ ,fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,fpath.replace("""TTTTT-SSSSS""" ,f"""{global_shard_id:05d}""" ).replace("""NNNNN""" ,f"""{total_shards:05d}""" ) ,) _lowercase : Optional[Any] = [] _lowercase : List[str] = 0 for i in range(len(UpperCAmelCase_ ) ): _lowercase , _lowercase : List[str] = task_id_and_num_shards[i] for shard_id in range(UpperCAmelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCAmelCase_ ,len(UpperCAmelCase_ ) ).map(lambda UpperCAmelCase_ : _rename_shard(*UpperCAmelCase_ ) ).collect() else: # don't use any pattern _lowercase : Tuple = 0 _lowercase : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,fpath.replace(UpperCAmelCase_ ,"""""" ) ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,): return SparkExamplesIterable(self.df )
336
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = LEDTokenizer SCREAMING_SNAKE_CASE_ : List[str] = LEDTokenizerFast SCREAMING_SNAKE_CASE_ : List[str] = True def lowerCamelCase__ ( self ): super().setUp() _lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowercase : List[Any] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowercase : Dict = {"""unk_token""": """<unk>"""} _lowercase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self ): return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self ): return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowercase : Any = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(UpperCAmelCase_ ,max_length=len(UpperCAmelCase_ ) ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _lowercase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIn("""input_ids""" ,UpperCAmelCase_ ) self.assertIn("""attention_mask""" ,UpperCAmelCase_ ) self.assertNotIn("""labels""" ,UpperCAmelCase_ ) self.assertNotIn("""decoder_attention_mask""" ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Dict = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(text_target=UpperCAmelCase_ ,max_length=32 ,padding="""max_length""" ,return_tensors="""pt""" ) self.assertEqual(32 ,targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : List[Any] = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""] ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual(batch.input_ids.shape ,(2, 51_22) ) @require_torch def lowerCamelCase__ ( self ): _lowercase : List[Any] = ["""A long paragraph for summarization."""] _lowercase : Dict = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : List[str] = tokenizer(text_target=UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : Union[str, Any] = inputs["""input_ids"""] _lowercase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : str = ["""Summary of the text.""", """Another summary."""] _lowercase : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowercase : Any = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ) _lowercase : str = [[0] * len(UpperCAmelCase_ ) for x in encoded_output["""input_ids"""]] _lowercase : Optional[int] = tokenizer.pad(UpperCAmelCase_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : int = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Optional[int] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Dict = """A, <mask> AllenNLP sentence.""" _lowercase : List[Any] = tokenizer_r.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) _lowercase : Any = tokenizer_p.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) _lowercase : str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
336
1
def lowerCamelCase_ ( _a : Any = 100 ): '''simple docstring''' UpperCAmelCase_ : Dict = set() UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : Optional[int] = n + 1 # maximum limit for a in range(2 , _lowerCAmelCase ): for b in range(2 , _lowerCAmelCase ): UpperCAmelCase_ : Any = a**b # calculates the current power collect_powers.add(_lowerCAmelCase ) # adds the result to the set return len(_lowerCAmelCase ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
345
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if (ksize % 2) == 0: __lowercase =ksize + 1 __lowercase =np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCAmelCase ): for x in range(_lowerCAmelCase ): # distance from center __lowercase =x - ksize // 2 __lowercase =y - ksize // 2 # degree to radiant __lowercase =theta / 180 * np.pi __lowercase =np.cos(_theta ) __lowercase =np.sin(_theta ) # get kernel x __lowercase =cos_theta * px + sin_theta * py # get kernel y __lowercase =-sin_theta * px + cos_theta * py # fill kernel __lowercase =np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image lowerCamelCase = imread("""../image_data/lena.jpg""") # turn image in gray scale value lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges lowerCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: lowerCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) lowerCamelCase = out / out.max() * 255 lowerCamelCase = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
166
0
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging a__: Optional[int] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = ['''pixel_values'''] def __init__( self,__lowerCamelCase = True,__lowerCamelCase = 1 / 255,__lowerCamelCase = True,__lowerCamelCase = 8,**__lowerCamelCase,): super().__init__(**__lowerCamelCase ) A__ = do_rescale A__ = rescale_factor A__ = do_pad A__ = pad_size def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase = None,**__lowerCamelCase ): return rescale(__lowerCamelCase,scale=__lowerCamelCase,data_format=__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase = None ): A__ , A__ = get_image_size(__lowerCamelCase ) A__ = (old_height // size + 1) * size - old_height A__ = (old_width // size + 1) * size - old_width return pad(__lowerCamelCase,((0, pad_height), (0, pad_width)),mode='''symmetric''',data_format=__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = ChannelDimension.FIRST,**__lowerCamelCase,): A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_pad if do_pad is not None else self.do_pad A__ = pad_size if pad_size is not None else self.pad_size A__ = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. A__ = [to_numpy_array(__lowerCamelCase ) for image in images] if do_rescale: A__ = [self.rescale(image=__lowerCamelCase,scale=__lowerCamelCase ) for image in images] if do_pad: A__ = [self.pad(__lowerCamelCase,size=__lowerCamelCase ) for image in images] A__ = [to_channel_dimension_format(__lowerCamelCase,__lowerCamelCase ) for image in images] A__ = {'''pixel_values''': images} return BatchFeature(data=__lowerCamelCase,tensor_type=__lowerCamelCase )
39
import os import sys a__: int = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) a__: Union[str, Any] = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase__( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Union[str, Any] )->Any: return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase__( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Any )->Dict: return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase__( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Optional[Any] )->int: return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase__( *UpperCamelCase__ : int , **UpperCamelCase__ : Union[str, Any] )->Any: return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase__( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Union[str, Any] )->int: return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase__( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Any )->Optional[Any]: return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase__( *UpperCamelCase__ : Any , **UpperCamelCase__ : Union[str, Any] )->Tuple: return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
39
1
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : Tuple ="ssube/stable-diffusion-x4-upscaler-onnx" def lowercase__ ( self , snake_case__=0 ): """simple docstring""" lowerCAmelCase : Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(snake_case__ ) ) lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_dummy_inputs() lowerCAmelCase : Optional[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) lowerCAmelCase : Tuple = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCAmelCase : List[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_dummy_inputs() lowerCAmelCase : Any = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase : str = np.array( [0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCAmelCase : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_dummy_inputs() lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase : Tuple = np.array( [0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCAmelCase : int = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[int] = self.get_dummy_inputs() lowerCAmelCase : List[str] = pipe(**snake_case__ ).images lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase : Union[str, Any] = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCAmelCase : List[str] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs() lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase : int = np.array( [0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @property def lowercase__ ( self ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = ort.SessionOptions() lowerCAmelCase : Tuple = False return options def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowerCAmelCase : Optional[int] = init_image.resize((128, 128) ) # using the PNDM scheduler by default lowerCAmelCase : str = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : List[str] = "A fantasy landscape, trending on artstation" lowerCAmelCase : str = torch.manual_seed(0 ) lowerCAmelCase : Any = pipe( prompt=snake_case__ , image=snake_case__ , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case__ , output_type="np" , ) lowerCAmelCase : Tuple = output.images lowerCAmelCase : Any = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) lowerCAmelCase : str = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowerCAmelCase : Tuple = init_image.resize((128, 128) ) lowerCAmelCase : Dict = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , subfolder="scheduler" ) lowerCAmelCase : str = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , scheduler=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = "A fantasy landscape, trending on artstation" lowerCAmelCase : int = torch.manual_seed(0 ) lowerCAmelCase : Union[str, Any] = pipe( prompt=snake_case__ , image=snake_case__ , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case__ , output_type="np" , ) lowerCAmelCase : Any = output.images lowerCAmelCase : Union[str, Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) lowerCAmelCase : List[str] = np.array( [0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
108
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = '''▁''' lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : str =BigBirdTokenizer a : Union[str, Any] =BigBirdTokenizerFast a : Tuple =True a : Any =True def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase : str = self.tokenizer_class(snake_case__ , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = "<s>" lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "[MASK]" ) self.assertEqual(len(snake_case__ ) , 1_004 ) def lowercase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def lowercase__ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return lowerCAmelCase : Tuple = self.get_tokenizer() lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() lowerCAmelCase : Tuple = "I was born in 92000, and this is falsé." lowerCAmelCase : Optional[int] = tokenizer.tokenize(snake_case__ ) lowerCAmelCase : int = rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) lowerCAmelCase : int = rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = self.get_rust_tokenizer() lowerCAmelCase : Tuple = tokenizer.encode(snake_case__ ) lowerCAmelCase : List[Any] = rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = BigBirdTokenizer(snake_case__ , keep_accents=snake_case__ ) lowerCAmelCase : Union[str, Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [285, 46, 10, 170, 382] , ) lowerCAmelCase : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCAmelCase : str = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def lowercase__ ( self ): """simple docstring""" return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = "Hello World!" lowerCAmelCase : Any = [65, 18_536, 2_260, 101, 66] self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off lowerCAmelCase : List[str] = [65, 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, 66] # noqa: E231 # fmt: on self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence lowerCAmelCase : Dict = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCAmelCase : int = " ".join(snake_case__ ) lowerCAmelCase : Dict = self.big_tokenizer.encode_plus(snake_case__ , return_tensors="pt" , return_token_type_ids=snake_case__ ) lowerCAmelCase : Any = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=snake_case__ ) lowerCAmelCase : str = BigBirdConfig(attention_type="original_full" ) lowerCAmelCase : Any = BigBirdModel(snake_case__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**snake_case__ ) model(**snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) lowerCAmelCase : Union[str, Any] = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids ) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = {"input_ids": [[65, 39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114, 66], [65, 448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
108
1
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) _snake_case : Dict = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class A ( unittest.TestCase ): def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : bool , lowerCAmelCase_ : str = None , lowerCAmelCase_ : list = None ) -> Union[str, Any]: """simple docstring""" _a = None _a = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) _a = os.path.abspath('''examples''' ) for item in os.listdir(lowerCAmelCase_ ): if item not in EXCLUDE_EXAMPLES: _a = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) if os.path.isfile(lowerCAmelCase_ ) and ".py" in item_path: with self.subTest( tested_script=lowerCAmelCase_ , feature_script=lowerCAmelCase_ , tested_section='''main()''' if parser_only else '''training_function()''' , ): _a = compare_against_test( os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _a = '''\n'''.join(lowerCAmelCase_ ) if special_strings is not None: for string in special_strings: _a = diff.replace(lowerCAmelCase_ , '''''' ) self.assertEqual(lowerCAmelCase_ , '''''' ) def __lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.one_complete_example('''complete_nlp_example.py''' , lowerCAmelCase_ ) self.one_complete_example('''complete_nlp_example.py''' , lowerCAmelCase_ ) def __lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" _a = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) _a = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) self.one_complete_example('''complete_cv_example.py''' , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @mock.patch.dict(os.environ ,{'TESTING_MOCKED_DATALOADERS': '1'} ) class A ( _a ): lowercase_ = False @classmethod def __lowerCAmelCase ( cls : Dict ) -> Any: """simple docstring""" super().setUpClass() _a = tempfile.mkdtemp() _a = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) _a = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def __lowerCAmelCase ( cls : List[Any] ) -> Dict: """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _a = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def __lowerCAmelCase ( self : int ) -> str: """simple docstring""" _a = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() _a = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _a = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() _a = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase_ ) self.assertNotIn('''epoch 0:''' , lowerCAmelCase_ ) self.assertIn('''epoch 1:''' , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() _a = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase_ ) if torch.cuda.is_available(): _a = torch.cuda.device_count() else: _a = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , lowerCAmelCase_ ) self.assertIn('''epoch 1:''' , lowerCAmelCase_ ) else: self.assertIn('''epoch 0:''' , lowerCAmelCase_ ) self.assertIn('''epoch 1:''' , lowerCAmelCase_ ) @slow def __lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" _a = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): _a = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase_ ) _a = re.findall('''({.+})''' , lowerCAmelCase_ ) _a = [r for r in results if '''accuracy''' in r][-1] _a = ast.literal_eval(lowerCAmelCase_ ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: _a = F'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , '''tracking''' ) ) ) def __lowerCAmelCase ( self : str ) -> Any: """simple docstring""" _a = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def __lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _a = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
368
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def snake_case_ (UpperCamelCase : Dict ): '''simple docstring''' _a = {} _a = job['''started_at'''] _a = job['''completed_at'''] _a = date_parser.parse(UpperCamelCase ) _a = date_parser.parse(UpperCamelCase ) _a = round((end_datetime - start_datetime).total_seconds() / 60.0 ) _a = start _a = end _a = duration_in_min return job_info def snake_case_ (UpperCamelCase : int , UpperCamelCase : int=None ): '''simple docstring''' _a = None if token is not None: _a = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'Bearer {token}'} _a = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' _a = requests.get(UpperCamelCase , headers=UpperCamelCase ).json() _a = {} try: job_time.update({job['''name''']: extract_time_from_single_job(UpperCamelCase ) for job in result['''jobs''']} ) _a = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(UpperCamelCase ): _a = requests.get(url + f'&page={i + 2}' , headers=UpperCamelCase ).json() job_time.update({job['''name''']: extract_time_from_single_job(UpperCamelCase ) for job in result['''jobs''']} ) return job_time except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} if __name__ == "__main__": _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') _snake_case : Tuple = parser.parse_args() _snake_case : int = get_job_time(args.workflow_run_id) _snake_case : int = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v['duration']}''')
179
0
"""simple docstring""" import os def _snake_case ( ): _lowerCamelCase : Dict = os.path.dirname(os.path.realpath(lowercase__ ) ) _lowerCamelCase : int = os.path.join(lowercase__ , 'triangle.txt' ) with open(lowercase__ ) as f: _lowerCamelCase : str = f.readlines() _lowerCamelCase : Optional[Any] = [] for line in triangle: _lowerCamelCase : Optional[int] = [] for number in line.strip().split(' ' ): numbers_from_line.append(int(lowercase__ ) ) a.append(lowercase__ ) for i in range(1 , len(lowercase__ ) ): for j in range(len(a[i] ) ): _lowerCamelCase : str = a[i - 1][j] if j != len(a[i - 1] ) else 0 _lowerCamelCase : Any = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowercase__ , lowercase__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
96
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , lowercase , lowercase=768 ): super().__init__(lowercase ) _lowerCamelCase : Any = proj_size _lowerCamelCase : Dict = CLIPVisionModel(lowercase ) _lowerCamelCase : List[str] = PaintByExampleMapper(lowercase ) _lowerCamelCase : Optional[Any] = nn.LayerNorm(config.hidden_size ) _lowerCamelCase : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling _lowerCamelCase : str = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def A_ ( self , lowercase , lowercase=False ): _lowerCamelCase : Union[str, Any] = self.model(pixel_values=lowercase ) _lowerCamelCase : int = clip_output.pooler_output _lowerCamelCase : str = self.mapper(latent_states[:, None] ) _lowerCamelCase : List[Any] = self.final_layer_norm(lowercase ) _lowerCamelCase : Dict = self.proj_out(lowercase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self , lowercase ): super().__init__() _lowerCamelCase : Tuple = (config.num_hidden_layers + 1) // 5 _lowerCamelCase : int = config.hidden_size _lowerCamelCase : Optional[Any] = 1 _lowerCamelCase : str = nn.ModuleList( [ BasicTransformerBlock(lowercase , lowercase , lowercase , activation_fn='gelu' , attention_bias=lowercase ) for _ in range(lowercase ) ] ) def A_ ( self , lowercase ): for block in self.blocks: _lowerCamelCase : Tuple = block(lowercase ) return hidden_states
96
1
SCREAMING_SNAKE_CASE_ = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) SCREAMING_SNAKE_CASE_ = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 1_2, """Pm""": 1_5, """Em""": 1_8, """Zm""": 2_1, """Ym""": 2_4, } def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' SCREAMING_SNAKE_CASE = from_type.lower().strip("""s""" ) SCREAMING_SNAKE_CASE = to_type.lower().strip("""s""" ) SCREAMING_SNAKE_CASE = UNIT_SYMBOL.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = UNIT_SYMBOL.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if from_sanitized not in METRIC_CONVERSION: SCREAMING_SNAKE_CASE = ( F"""Invalid 'from_type' value: {from_type!r}.\n""" F"""Conversion abbreviations are: {', '.join(_SCREAMING_SNAKE_CASE )}""" ) raise ValueError(_SCREAMING_SNAKE_CASE ) if to_sanitized not in METRIC_CONVERSION: SCREAMING_SNAKE_CASE = ( F"""Invalid 'to_type' value: {to_type!r}.\n""" F"""Conversion abbreviations are: {', '.join(_SCREAMING_SNAKE_CASE )}""" ) raise ValueError(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = METRIC_CONVERSION[from_sanitized] SCREAMING_SNAKE_CASE = METRIC_CONVERSION[to_sanitized] SCREAMING_SNAKE_CASE = 1 if from_exponent > to_exponent: SCREAMING_SNAKE_CASE = from_exponent - to_exponent else: SCREAMING_SNAKE_CASE = -(to_exponent - from_exponent) return value * pow(10 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": from doctest import testmod testmod()
193
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) class UpperCamelCase__ : '''simple docstring''' def __init__( self : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : int ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Tuple ) -> Optional[Any]: '''simple docstring''' if not self.initialized: SCREAMING_SNAKE_CASE = RagRetriever( lowerCamelCase__ ,question_encoder_tokenizer=lowerCamelCase__ ,generator_tokenizer=lowerCamelCase__ ,index=lowerCamelCase__ ,init_retrieval=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = True def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Any: '''simple docstring''' self.retriever.index.init_index() def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.retriever._main_retrieve(lowerCamelCase__ ,lowerCamelCase__ ) return doc_ids, retrieved_doc_embeds class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : int ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Dict=None ) -> Any: '''simple docstring''' if index is not None and index.is_initialized() and len(lowerCamelCase__ ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( lowerCamelCase__ ,question_encoder_tokenizer=lowerCamelCase__ ,generator_tokenizer=lowerCamelCase__ ,index=lowerCamelCase__ ,init_retrieval=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) for worker in self.retrieval_workers ] ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : Any ,lowerCamelCase__ : int ) -> Dict: '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. SCREAMING_SNAKE_CASE = self.retrieval_workers[random.randint(0 ,len(self.retrieval_workers ) - 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = ray.get(random_worker.retrieve.remote(lowerCamelCase__ ,lowerCamelCase__ ) ) else: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self._main_retrieve(lowerCamelCase__ ,lowerCamelCase__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCamelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Union[str, Any]=None ,**lowerCamelCase__ : Optional[Any] ) -> Any: '''simple docstring''' return super(lowerCamelCase__ ,cls ).get_tokenizers(lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : List[Any]=None ,**lowerCamelCase__ : Any ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = kwargs.pop("""config""" ,lowerCamelCase__ ) or RagConfig.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = RagTokenizer.from_pretrained(lowerCamelCase__ ,config=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rag_tokenizer.question_encoder SCREAMING_SNAKE_CASE = rag_tokenizer.generator if indexed_dataset is not None: SCREAMING_SNAKE_CASE = """custom""" SCREAMING_SNAKE_CASE = CustomHFIndex(config.retrieval_vector_size ,lowerCamelCase__ ) else: SCREAMING_SNAKE_CASE = cls._build_index(lowerCamelCase__ ) return cls( lowerCamelCase__ ,question_encoder_tokenizer=lowerCamelCase__ ,generator_tokenizer=lowerCamelCase__ ,retrieval_workers=lowerCamelCase__ ,index=lowerCamelCase__ ,)
193
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase__ ( a__: int ) -> List[str]: '''simple docstring''' def is_in_circle(a__: float , a__: float ) -> bool: _UpperCAmelCase = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(a__ ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase = proportion * 4 print(F'''The estimated value of pi is {pi_estimate}''' ) print(F'''The numpy value of pi is {pi}''' ) print(F'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase__ ( a__: int , a__: Callable[[float], float] , a__: float = 0.0 , a__: float = 1.0 , ) -> float: '''simple docstring''' return mean( function_to_integrate(uniform(a__ , a__ ) ) for _ in range(a__ ) ) * (max_value - min_value) def lowerCAmelCase__ ( a__: int , a__: float = 0.0 , a__: float = 1.0 ) -> None: '''simple docstring''' def identity_function(a__: float ) -> float: return x _UpperCAmelCase = area_under_curve_estimator( a__ , a__ , a__ , a__ ) _UpperCAmelCase = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {expected_value}''' ) print(F'''Total error is {abs(estimated_value - expected_value )}''' ) print('******************' ) def lowerCAmelCase__ ( a__: int ) -> None: '''simple docstring''' def function_to_integrate(a__: float ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase = area_under_curve_estimator( a__ , a__ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {pi}''' ) print(F'''Total error is {abs(estimated_value - pi )}''' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
329
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=0.9 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _UpperCAmelCase = size if size is not None else {'shortest_edge': 30} _UpperCAmelCase = crop_size if crop_size is not None else {'height': 30, 'width': 30} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize_and_center_crop _UpperCAmelCase = size _UpperCAmelCase = crop_pct _UpperCAmelCase = crop_size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def UpperCAmelCase__ ( self ) -> int: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : Optional[Any] = PoolFormerImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = PoolFormerImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'crop_pct' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
329
1
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCAmelCase__ = get_tests_dir('''fixtures/dummy-config.json''') class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : str ): self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('''transformers.models.auto''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = AutoConfig.from_pretrained('''bert-base-uncased''' ) self.assertIsInstance(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = AutoConfig.from_pretrained(lowercase__ ) self.assertIsInstance(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = AutoConfig.from_pretrained(lowercase__ ) self.assertIsInstance(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = AutoConfig.for_model('''roberta''' ) self.assertIsInstance(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. __lowercase = os.path.join(lowercase__ ,'''fake-roberta''' ) os.makedirs(lowercase__ ,exist_ok=lowercase__ ) with open(os.path.join(lowercase__ ,'''config.json''' ) ,'''w''' ) as f: f.write(json.dumps({} ) ) __lowercase = AutoConfig.from_pretrained(lowercase__ ) self.assertEqual(type(lowercase__ ) ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): try: AutoConfig.register('''custom''' ,lowercase__ ) # Wrong model type will raise an error with self.assertRaises(lowercase__ ): AutoConfig.register('''model''' ,lowercase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase__ ): AutoConfig.register('''bert''' ,lowercase__ ) # Now that the config is registered, it can be used as any other config with the auto-API __lowercase = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase__ ) __lowercase = AutoConfig.from_pretrained(lowercase__ ) self.assertIsInstance(lowercase__ ,lowercase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): with self.assertRaisesRegex( lowercase__ ,'''bert-base is not a local folder and is not a valid model identifier''' ): __lowercase = AutoConfig.from_pretrained('''bert-base''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): with self.assertRaisesRegex( lowercase__ ,r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __lowercase = AutoConfig.from_pretrained(lowercase__ ,revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): with self.assertRaisesRegex( lowercase__ ,'''hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.''' ,): __lowercase = AutoConfig.from_pretrained('''hf-internal-testing/no-config-test-repo''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase__ ): __lowercase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase__ ): __lowercase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ,trust_remote_code=lowercase__ ) __lowercase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ,trust_remote_code=lowercase__ ) self.assertEqual(config.__class__.__name__ ,'''NewModelConfig''' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase__ ) __lowercase = AutoConfig.from_pretrained(lowercase__ ,trust_remote_code=lowercase__ ) self.assertEqual(reloaded_config.__class__.__name__ ,'''NewModelConfig''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 'new-model' try: AutoConfig.register('''new-model''' ,lowercase__ ) # If remote code is not set, the default is to use local __lowercase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) self.assertEqual(config.__class__.__name__ ,'''NewModelConfigLocal''' ) # If remote code is disabled, we load the local one. __lowercase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ,trust_remote_code=lowercase__ ) self.assertEqual(config.__class__.__name__ ,'''NewModelConfigLocal''' ) # If remote is enabled, we load from the Hub __lowercase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ,trust_remote_code=lowercase__ ) self.assertEqual(config.__class__.__name__ ,'''NewModelConfig''' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
52
'''simple docstring''' # Function to print upper half of diamond (pyramid) def _A ( A__ ): """simple docstring""" for i in range(0 , A__ ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def _A ( A__ ): """simple docstring""" for i in range(A__ , 0 , -1 ): for _ in range(A__ , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def _A ( A__ ): """simple docstring""" if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(A__ ) # upper half reverse_floyd(A__ ) # lower half if __name__ == "__main__": print(R'''| /\ | |- | |- |--| |\ /| |-''') print(R'''|/ \| |- |_ |_ |__| | \/ | |_''') lowerCAmelCase__ = 1 while K: lowerCAmelCase__ = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) lowerCAmelCase__ = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
52
1
'''simple docstring''' def a__ ( a__ = 1_00 ): """simple docstring""" __SCREAMING_SNAKE_CASE = n * (n + 1) * (2 * n + 1) / 6 __SCREAMING_SNAKE_CASE = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
267
'''simple docstring''' import math def _lowerCAmelCase ( __snake_case : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( __snake_case : float = 0.1 ) -> int: __A : Tuple = 3 __A : Optional[int] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__snake_case ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
190
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase : Dict = logging.get_logger(__name__) lowercase : Optional[Any] = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : Optional[int] = 'deformable_detr' lowercase : Dict = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=3 , __UpperCamelCase=3_00 , __UpperCamelCase=10_24 , __UpperCamelCase=6 , __UpperCamelCase=10_24 , __UpperCamelCase=8 , __UpperCamelCase=6 , __UpperCamelCase=10_24 , __UpperCamelCase=8 , __UpperCamelCase=0.0 , __UpperCamelCase=True , __UpperCamelCase="relu" , __UpperCamelCase=2_56 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.02 , __UpperCamelCase=1.0 , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase="sine" , __UpperCamelCase="resnet50" , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=4 , __UpperCamelCase=4 , __UpperCamelCase=4 , __UpperCamelCase=False , __UpperCamelCase=3_00 , __UpperCamelCase=False , __UpperCamelCase=1 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=1 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=0.1 , __UpperCamelCase=0.25 , __UpperCamelCase=False , **__UpperCamelCase , ) -> Union[str, Any]: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCamelCase : Any = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): __UpperCamelCase : Optional[int] = backbone_config.get("model_type" ) __UpperCamelCase : Any = CONFIG_MAPPING[backbone_model_type] __UpperCamelCase : List[str] = config_class.from_dict(__UpperCamelCase ) __UpperCamelCase : int = use_timm_backbone __UpperCamelCase : Optional[Any] = backbone_config __UpperCamelCase : Dict = num_channels __UpperCamelCase : Optional[int] = num_queries __UpperCamelCase : str = max_position_embeddings __UpperCamelCase : Optional[Any] = d_model __UpperCamelCase : Dict = encoder_ffn_dim __UpperCamelCase : Tuple = encoder_layers __UpperCamelCase : Any = encoder_attention_heads __UpperCamelCase : Any = decoder_ffn_dim __UpperCamelCase : List[Any] = decoder_layers __UpperCamelCase : Union[str, Any] = decoder_attention_heads __UpperCamelCase : List[str] = dropout __UpperCamelCase : Optional[Any] = attention_dropout __UpperCamelCase : Optional[int] = activation_dropout __UpperCamelCase : Tuple = activation_function __UpperCamelCase : Optional[Any] = init_std __UpperCamelCase : Union[str, Any] = init_xavier_std __UpperCamelCase : Any = encoder_layerdrop __UpperCamelCase : Tuple = auxiliary_loss __UpperCamelCase : Dict = position_embedding_type __UpperCamelCase : Union[str, Any] = backbone __UpperCamelCase : List[str] = use_pretrained_backbone __UpperCamelCase : int = dilation # deformable attributes __UpperCamelCase : Union[str, Any] = num_feature_levels __UpperCamelCase : Union[str, Any] = encoder_n_points __UpperCamelCase : int = decoder_n_points __UpperCamelCase : List[Any] = two_stage __UpperCamelCase : Dict = two_stage_num_proposals __UpperCamelCase : List[str] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher __UpperCamelCase : Union[str, Any] = class_cost __UpperCamelCase : Tuple = bbox_cost __UpperCamelCase : Any = giou_cost # Loss coefficients __UpperCamelCase : Dict = mask_loss_coefficient __UpperCamelCase : int = dice_loss_coefficient __UpperCamelCase : List[Any] = bbox_loss_coefficient __UpperCamelCase : Optional[int] = giou_loss_coefficient __UpperCamelCase : Any = eos_coefficient __UpperCamelCase : int = focal_alpha __UpperCamelCase : Union[str, Any] = disable_custom_kernels super().__init__(is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase ) @property def __lowerCamelCase ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def __lowerCamelCase ( self ) -> int: '''simple docstring''' return self.d_model def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : str = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __UpperCamelCase : Optional[Any] = self.backbone_config.to_dict() __UpperCamelCase : List[str] = self.__class__.model_type return output
171
from typing import TYPE_CHECKING from ..utils import _LazyModule lowercase : Union[str, Any] = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
171
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : str = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase__ : Union[str, Any] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCAmelCase__ : int = 4 lowerCAmelCase__ : List[str] = 48 lowerCAmelCase__ : List[Any] = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase__ : List[Any] = [6, 6, 6, 6] lowerCAmelCase__ : List[str] = 60 lowerCAmelCase__ : Tuple = [6, 6, 6, 6] lowerCAmelCase__ : Optional[Any] = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase__ : List[Any] = 4 lowerCAmelCase__ : int = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCAmelCase__ : List[Any] = 1 lowerCAmelCase__ : int = 1 lowerCAmelCase__ : Optional[Any] = 126 lowerCAmelCase__ : str = 7 lowerCAmelCase__ : Union[str, Any] = 255.0 lowerCAmelCase__ : Optional[int] = """""" return config def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" if "patch_embed.proj" in name and "layers" not in name: lowerCAmelCase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCAmelCase__ : List[Any] = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: lowerCAmelCase__ : Dict = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: lowerCAmelCase__ : List[Any] = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: lowerCAmelCase__ : Any = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCAmelCase__ : Union[str, Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCAmelCase__ : Any = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCAmelCase__ : List[str] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCAmelCase__ : str = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCAmelCase__ : Any = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: lowerCAmelCase__ : int = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: lowerCAmelCase__ : Any = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: lowerCAmelCase__ : List[str] = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: lowerCAmelCase__ : Optional[Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: lowerCAmelCase__ : Optional[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": lowerCAmelCase__ : Any = """layernorm.weight""" if name == "norm.bias": lowerCAmelCase__ : Optional[Any] = """layernorm.bias""" if "conv_first" in name: lowerCAmelCase__ : Tuple = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCAmelCase__ : Any = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCAmelCase__ : Union[str, Any] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: lowerCAmelCase__ : Optional[int] = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: lowerCAmelCase__ : Optional[int] = name.replace("""upsample.2""" , """upsample.convolution_1""" ) lowerCAmelCase__ : int = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": lowerCAmelCase__ : str = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) lowerCAmelCase__ : List[str] = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: lowerCAmelCase__ : Any = """swin2sr.""" + name return name def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCAmelCase__ : Optional[Any] = orig_state_dict.pop(UpperCamelCase ) if "qkv" in key: lowerCAmelCase__ : Dict = key.split(""".""" ) lowerCAmelCase__ : Any = int(key_split[1] ) lowerCAmelCase__ : Dict = int(key_split[4] ) lowerCAmelCase__ : List[str] = config.embed_dim if "weight" in key: lowerCAmelCase__ : List[str] = val[:dim, :] lowerCAmelCase__ : int = val[dim : dim * 2, :] lowerCAmelCase__ : Dict = val[-dim:, :] else: lowerCAmelCase__ : Union[str, Any] = val[:dim] lowerCAmelCase__ : Optional[Any] = val[dim : dim * 2] lowerCAmelCase__ : List[Any] = val[-dim:] pass else: lowerCAmelCase__ : Optional[int] = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[Any] = get_config(UpperCamelCase ) lowerCAmelCase__ : Any = SwinaSRForImageSuperResolution(UpperCamelCase ) model.eval() lowerCAmelCase__ : Tuple = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="""cpu""" ) lowerCAmelCase__ : Optional[Any] = convert_state_dict(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Dict = model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) if len(UpperCamelCase ) > 0: raise ValueError("""Missing keys when converting: {}""".format(UpperCamelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"""Unexpected key {key} in state_dict""" ) # verify values lowerCAmelCase__ : Union[str, Any] = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" lowerCAmelCase__ : Dict = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ).convert("""RGB""" ) lowerCAmelCase__ : int = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCAmelCase__ : str = 126 if """Jpeg""" in checkpoint_url else 256 lowerCAmelCase__ : List[Any] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCAmelCase__ : Optional[int] = transforms(UpperCamelCase ).unsqueeze(0 ) if config.num_channels == 1: lowerCAmelCase__ : int = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCAmelCase__ : Optional[Any] = model(UpperCamelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCAmelCase__ : Tuple = torch.Size([1, 3, 512, 512] ) lowerCAmelCase__ : Optional[Any] = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase__ : Union[str, Any] = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase__ : str = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCAmelCase__ : str = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase__ : Dict = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase__ : Tuple = torch.Size([1, 3, 512, 512] ) lowerCAmelCase__ : Dict = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase__ : Tuple = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase__ : int = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , UpperCamelCase , atol=1e-3 ) print("""Looks ok!""" ) lowerCAmelCase__ : Optional[Any] = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } lowerCAmelCase__ : Optional[int] = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase ) if push_to_hub: model.push_to_hub(f"""caidas/{model_name}""" ) processor.push_to_hub(f"""caidas/{model_name}""" ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') _lowerCAmelCase = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
37
"""simple docstring""" import argparse import struct import unittest class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Tuple ,A_ : bytes ) -> None: A = data # Initialize hash values A = [ 0X6_A_0_9_E_6_6_7, 0XB_B_6_7_A_E_8_5, 0X3_C_6_E_F_3_7_2, 0XA_5_4_F_F_5_3_A, 0X5_1_0_E_5_2_7_F, 0X9_B_0_5_6_8_8_C, 0X1_F_8_3_D_9_A_B, 0X5_B_E_0_C_D_1_9, ] # Initialize round constants A = [ 0X4_2_8_A_2_F_9_8, 0X7_1_3_7_4_4_9_1, 0XB_5_C_0_F_B_C_F, 0XE_9_B_5_D_B_A_5, 0X3_9_5_6_C_2_5_B, 0X5_9_F_1_1_1_F_1, 0X9_2_3_F_8_2_A_4, 0XA_B_1_C_5_E_D_5, 0XD_8_0_7_A_A_9_8, 0X1_2_8_3_5_B_0_1, 0X2_4_3_1_8_5_B_E, 0X5_5_0_C_7_D_C_3, 0X7_2_B_E_5_D_7_4, 0X8_0_D_E_B_1_F_E, 0X9_B_D_C_0_6_A_7, 0XC_1_9_B_F_1_7_4, 0XE_4_9_B_6_9_C_1, 0XE_F_B_E_4_7_8_6, 0X0_F_C_1_9_D_C_6, 0X2_4_0_C_A_1_C_C, 0X2_D_E_9_2_C_6_F, 0X4_A_7_4_8_4_A_A, 0X5_C_B_0_A_9_D_C, 0X7_6_F_9_8_8_D_A, 0X9_8_3_E_5_1_5_2, 0XA_8_3_1_C_6_6_D, 0XB_0_0_3_2_7_C_8, 0XB_F_5_9_7_F_C_7, 0XC_6_E_0_0_B_F_3, 0XD_5_A_7_9_1_4_7, 0X0_6_C_A_6_3_5_1, 0X1_4_2_9_2_9_6_7, 0X2_7_B_7_0_A_8_5, 0X2_E_1_B_2_1_3_8, 0X4_D_2_C_6_D_F_C, 0X5_3_3_8_0_D_1_3, 0X6_5_0_A_7_3_5_4, 0X7_6_6_A_0_A_B_B, 0X8_1_C_2_C_9_2_E, 0X9_2_7_2_2_C_8_5, 0XA_2_B_F_E_8_A_1, 0XA_8_1_A_6_6_4_B, 0XC_2_4_B_8_B_7_0, 0XC_7_6_C_5_1_A_3, 0XD_1_9_2_E_8_1_9, 0XD_6_9_9_0_6_2_4, 0XF_4_0_E_3_5_8_5, 0X1_0_6_A_A_0_7_0, 0X1_9_A_4_C_1_1_6, 0X1_E_3_7_6_C_0_8, 0X2_7_4_8_7_7_4_C, 0X3_4_B_0_B_C_B_5, 0X3_9_1_C_0_C_B_3, 0X4_E_D_8_A_A_4_A, 0X5_B_9_C_C_A_4_F, 0X6_8_2_E_6_F_F_3, 0X7_4_8_F_8_2_E_E, 0X7_8_A_5_6_3_6_F, 0X8_4_C_8_7_8_1_4, 0X8_C_C_7_0_2_0_8, 0X9_0_B_E_F_F_F_A, 0XA_4_5_0_6_C_E_B, 0XB_E_F_9_A_3_F_7, 0XC_6_7_1_7_8_F_2, ] A = self.preprocessing(self.data ) self.final_hash() @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : bytes ) -> bytes: A = B'\x80' + (B'\x00' * (63 - (len(A_ ) + 8) % 64)) A = struct.pack('>Q' ,(len(A_ ) * 8) ) return data + padding + big_endian_integer def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None: # Convert into blocks of 64 bytes A = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A = list(struct.unpack('>16L' ,A_ ) ) # add 48 0-ed integers words += [0] * 48 A , A , A , A , A , A , A , A = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array A = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) A = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) A = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0_0_0_0_0_0_0_0 # Compression A = self.ror(A_ ,6 ) ^ self.ror(A_ ,11 ) ^ self.ror(A_ ,25 ) A = (e & f) ^ ((~e & 0XF_F_F_F_F_F_F_F) & g) A = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0_0_0_0_0_0_0_0 A = self.ror(A_ ,2 ) ^ self.ror(A_ ,13 ) ^ self.ror(A_ ,22 ) A = (a & b) ^ (a & c) ^ (b & c) A = (sa + maj) % 0X1_0_0_0_0_0_0_0_0 A , A , A , A , A , A , A , A = ( g, f, e, ((d + tempa) % 0X1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0), ) A = [a, b, c, d, e, f, g, h] # Modify final values A = [ ((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] A = ''.join([hex(A_ )[2:].zfill(8 ) for value in self.hashes] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : int ) -> int: return 0XF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> None: import hashlib A = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(A_ ).hash ,hashlib.shaaaa(A_ ).hexdigest() ) def _snake_case ( ): import doctest doctest.testmod() A = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) A = parser.parse_args() A = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: A = f.read() else: A = bytes(snake_case__ , 'utf-8' ) print(SHAaaa(snake_case__ ).hash ) if __name__ == "__main__": main()
74
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class _a ( metaclass=_lowerCAmelCase ): UpperCamelCase = ["""speech"""] def __init__( self : int, *lowerCAmelCase__ : List[str], **lowerCAmelCase__ : List[Any] ) -> List[Any]: '''simple docstring''' requires_backends(self, ['''speech'''] ) class _a ( metaclass=_lowerCAmelCase ): UpperCamelCase = ["""speech"""] def __init__( self : Dict, *lowerCAmelCase__ : Tuple, **lowerCAmelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' requires_backends(self, ['''speech'''] )
357
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCamelCase_ ="""bart""" UpperCamelCase_ =True @st.cache(allow_output_mutation=_lowercase ) def a_ ( ): if LOAD_DENSE_INDEX: _UpperCamelCase : Dict = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _UpperCamelCase : Optional[Any] = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _UpperCamelCase : Union[str, Any] = qar_model.eval() else: _UpperCamelCase , _UpperCamelCase : str = (None, None) if MODEL_TYPE == "bart": _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _UpperCamelCase : List[str] = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _UpperCamelCase : List[Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _UpperCamelCase : Dict = sas_model.eval() else: _UpperCamelCase , _UpperCamelCase : List[Any] = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowercase ) def a_ ( ): if LOAD_DENSE_INDEX: _UpperCamelCase : List[Any] = faiss.StandardGpuResources() _UpperCamelCase : List[str] = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] _UpperCamelCase : Tuple = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) _UpperCamelCase : Optional[int] = faiss.IndexFlatIP(128 ) _UpperCamelCase : Tuple = faiss.index_cpu_to_gpu(_lowercase , 1 , _lowercase ) wikiaab_gpu_index_flat.add(_lowercase ) # TODO fix for larger GPU else: _UpperCamelCase , _UpperCamelCase : Tuple = (None, None) _UpperCamelCase : List[Any] = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowercase ) def a_ ( ): _UpperCamelCase : Optional[Any] = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) _UpperCamelCase : Any = elia['''train_eli5'''] _UpperCamelCase : Union[str, Any] = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) _UpperCamelCase : str = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowercase ) return (elia_train, eli5_train_q_index) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ =load_indexes() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ =load_models() UpperCamelCase_ , UpperCamelCase_ =load_train_data() def a_ ( _lowercase , _lowercase=10 ): _UpperCamelCase : Any = embed_questions_for_retrieval([question] , _lowercase , _lowercase ) _UpperCamelCase , _UpperCamelCase : List[Any] = eli5_train_q_index.search(_lowercase , _lowercase ) _UpperCamelCase : Tuple = [elia_train[int(_lowercase )] for i in I[0]] return nn_examples def a_ ( _lowercase , _lowercase="wiki40b" , _lowercase="dense" , _lowercase=10 ): if source == "none": _UpperCamelCase , _UpperCamelCase : List[str] = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _UpperCamelCase , _UpperCamelCase : Dict = query_qa_dense_index( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) else: _UpperCamelCase , _UpperCamelCase : List[str] = query_es_index( _lowercase , _lowercase , index_name='''english_wiki40b_snippets_100w''' , n_results=_lowercase , ) _UpperCamelCase : Any = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _UpperCamelCase : List[Any] = '''question: {} context: {}'''.format(_lowercase , _lowercase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowercase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowercase : None), } ) def a_ ( _lowercase , _lowercase , _lowercase , _lowercase=64 , _lowercase=256 , _lowercase=False , _lowercase=2 , _lowercase=0.95 , _lowercase=0.8 ): with torch.no_grad(): _UpperCamelCase : List[Any] = qa_sas_generate( _lowercase , _lowercase , _lowercase , num_answers=1 , num_beams=_lowercase , min_len=_lowercase , max_len=_lowercase , do_sample=_lowercase , temp=_lowercase , top_p=_lowercase , top_k=_lowercase , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar UpperCamelCase_ ="""<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" UpperCamelCase_ =""" <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCamelCase_ =""" This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) UpperCamelCase_ =[ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] UpperCamelCase_ =st.sidebar.checkbox("""Demo options""") if demo_options: UpperCamelCase_ =st.sidebar.selectbox( """""", action_list, index=3, ) UpperCamelCase_ =action_list.index(action_st) UpperCamelCase_ =st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) UpperCamelCase_ =show_type == """Show full text of passages""" else: UpperCamelCase_ =3 UpperCamelCase_ =True UpperCamelCase_ =st.sidebar.checkbox("""Retrieval options""") if retrieval_options: UpperCamelCase_ =""" ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) UpperCamelCase_ =st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) UpperCamelCase_ =st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: UpperCamelCase_ ="""wiki40b""" UpperCamelCase_ ="""dense""" UpperCamelCase_ ="""beam""" UpperCamelCase_ =2 UpperCamelCase_ =64 UpperCamelCase_ =256 UpperCamelCase_ =None UpperCamelCase_ =None UpperCamelCase_ =st.sidebar.checkbox("""Generation options""") if generate_options: UpperCamelCase_ =""" ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) UpperCamelCase_ =st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) UpperCamelCase_ =st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCamelCase_ =st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCamelCase_ =st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCamelCase_ =st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCamelCase_ =st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCamelCase_ =None # start main text UpperCamelCase_ =[ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] UpperCamelCase_ =st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCamelCase_ =st.text_input("""Enter your question here:""", """""") else: UpperCamelCase_ =question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": UpperCamelCase_ , UpperCamelCase_ =make_support(question, source=wiki_source, method="""dense""", n_results=10) UpperCamelCase_ , UpperCamelCase_ =make_support(question, source=wiki_source, method="""sparse""", n_results=10) UpperCamelCase_ =[] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCamelCase_ =support_list[:10] UpperCamelCase_ ="""<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: UpperCamelCase_ , UpperCamelCase_ =make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCamelCase_ , UpperCamelCase_ =answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): UpperCamelCase_ ="""https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) UpperCamelCase_ =res[1].strip() if sec_titles == "": UpperCamelCase_ ="""[{}]({})""".format(res[0], wiki_url) else: UpperCamelCase_ =sec_titles.split(""" & """) UpperCamelCase_ =""" & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: UpperCamelCase_ =find_nearest_training(question) UpperCamelCase_ =nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) UpperCamelCase_ =[ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) UpperCamelCase_ =""" --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
128
0
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int]="attention" ): __a : Union[str, Any] = params[f"{prefix}/layers_{i}/{layer_name}/key/kernel"] __a : Optional[int] = params[f"{prefix}/layers_{i}/{layer_name}/out/kernel"] __a : Optional[Any] = params[f"{prefix}/layers_{i}/{layer_name}/query/kernel"] __a : str = params[f"{prefix}/layers_{i}/{layer_name}/value/kernel"] return k, o, q, v def __UpperCamelCase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : str=False ): if split_mlp_wi: __a : Optional[int] = params[f"{prefix}/layers_{i}/mlp/wi_0/kernel"] __a : str = params[f"{prefix}/layers_{i}/mlp/wi_1/kernel"] __a : Any = (wi_a, wi_a) else: __a : List[Any] = params[f"{prefix}/layers_{i}/mlp/wi/kernel"] __a : Union[str, Any] = params[f"{prefix}/layers_{i}/mlp/wo/kernel"] return wi, wo def __UpperCamelCase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] ): return params[f"{prefix}/layers_{i}/{layer_name}/scale"] def __UpperCamelCase ( lowerCAmelCase__ : dict , *, lowerCAmelCase__ : int , lowerCAmelCase__ : bool ): __a : Any = traverse_util.flatten_dict(variables['''target'''] ) __a : Any = {'''/'''.join(lowerCAmelCase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __a : str = '''encoder/layers_0/mlp/wi_0/kernel''' in old print('''Split MLP:''' , lowerCAmelCase__ ) __a : Union[str, Any] = collections.OrderedDict() # Shared embeddings. __a : Any = old['''token_embedder/embedding'''] # Encoder. for i in range(lowerCAmelCase__ ): # Block i, layer 0 (Self Attention). __a : Union[str, Any] = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , '''encoder''' , '''pre_attention_layer_norm''' ) __a , __a , __a , __a : Any = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , '''encoder''' , '''attention''' ) __a : Tuple = layer_norm __a : Optional[Any] = k.T __a : List[str] = o.T __a : Optional[Any] = q.T __a : Optional[int] = v.T # Block i, layer 1 (MLP). __a : int = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , '''encoder''' , '''pre_mlp_layer_norm''' ) __a , __a : List[Any] = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , '''encoder''' , lowerCAmelCase__ ) __a : List[str] = layer_norm if split_mlp_wi: __a : List[str] = wi[0].T __a : str = wi[1].T else: __a : str = wi.T __a : str = wo.T __a : Optional[int] = old[ '''encoder/relpos_bias/rel_embedding''' ].T __a : Tuple = old['''encoder/encoder_norm/scale'''] if not is_encoder_only: # Decoder. for i in range(lowerCAmelCase__ ): # Block i, layer 0 (Self Attention). __a : List[Any] = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , '''decoder''' , '''pre_self_attention_layer_norm''' ) __a , __a , __a , __a : Tuple = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , '''decoder''' , '''self_attention''' ) __a : List[Any] = layer_norm __a : Union[str, Any] = k.T __a : Tuple = o.T __a : Union[str, Any] = q.T __a : Dict = v.T # Block i, layer 1 (Cross Attention). __a : List[str] = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , '''decoder''' , '''pre_cross_attention_layer_norm''' ) __a , __a , __a , __a : Tuple = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , '''decoder''' , '''encoder_decoder_attention''' ) __a : List[str] = layer_norm __a : Optional[int] = k.T __a : Optional[Any] = o.T __a : str = q.T __a : Optional[int] = v.T # Block i, layer 2 (MLP). __a : Union[str, Any] = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , '''decoder''' , '''pre_mlp_layer_norm''' ) __a , __a : str = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , '''decoder''' , lowerCAmelCase__ ) __a : List[Any] = layer_norm if split_mlp_wi: __a : List[str] = wi[0].T __a : int = wi[1].T else: __a : Optional[Any] = wi.T __a : Tuple = wo.T __a : List[str] = old['''decoder/decoder_norm/scale'''] __a : int = old[ '''decoder/relpos_bias/rel_embedding''' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __a : Tuple = old['''decoder/logits_dense/kernel'''].T return new def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : bool ): __a : int = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __a : List[str] = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __a : List[str] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) __a : Any = state_dict['''shared.weight'''] return state_dict def __UpperCamelCase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ): __a : List[str] = checkpoints.load_tax_checkpoint(lowerCAmelCase__ ) __a : str = convert_tax_to_pytorch(lowerCAmelCase__ , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase__ ) __a : int = make_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : bool = False ): __a : int = TaConfig.from_json_file(lowerCAmelCase__ ) print(f"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __a : Dict = TaEncoderModel(lowerCAmelCase__ ) else: __a : Union[str, Any] = TaForConditionalGeneration(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(lowerCAmelCase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCAmelCase__ ) print('''Done''' ) if __name__ == "__main__": lowercase__ =argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) lowercase__ =parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
216
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer lowercase__ =logging.get_logger(__name__) lowercase__ ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowercase__ ={ 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } lowercase__ ={ 'junnyu/roformer_chinese_small': 1536, 'junnyu/roformer_chinese_base': 1536, 'junnyu/roformer_chinese_char_small': 512, 'junnyu/roformer_chinese_char_base': 512, 'junnyu/roformer_small_discriminator': 128, 'junnyu/roformer_small_generator': 128, } lowercase__ ={ 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Optional[int] = RoFormerTokenizer def __init__(self : List[str] , snake_case_ : Optional[int]=None , snake_case_ : str=None , snake_case_ : Optional[Any]=True , snake_case_ : str="[UNK]" , snake_case_ : Dict="[SEP]" , snake_case_ : Any="[PAD]" , snake_case_ : str="[CLS]" , snake_case_ : List[Any]="[MASK]" , snake_case_ : Any=True , snake_case_ : List[str]=None , **snake_case_ : Optional[int] , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) __a : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , snake_case_ ) != do_lower_case or pre_tok_state.get('''strip_accents''' , snake_case_ ) != strip_accents ): __a : List[str] = getattr(snake_case_ , pre_tok_state.pop('''type''' ) ) __a : Optional[Any] = do_lower_case __a : Optional[int] = strip_accents __a : List[str] = pre_tok_class(**snake_case_ ) __a : Optional[Any] = do_lower_case def __getstate__(self : Union[str, Any] ): __a : Any = self.__dict__.copy() __a : Union[str, Any] = BertPreTokenizer() return state def __setstate__(self : Tuple , snake_case_ : Optional[Any] ): __a : Dict = d __a : str = self.__dict__['''_tokenizer'''].get_vocab() __a : Optional[Any] = PreTokenizer.custom(JiebaPreTokenizer(snake_case_ ) ) def lowerCAmelCase (self : Optional[int] , snake_case_ : List[Any] , snake_case_ : Optional[Any]=None ): __a : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase (self : Optional[int] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): __a : int = [self.sep_token_id] __a : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase (self : int , snake_case_ : str , snake_case_ : Optional[str] = None ): __a : Optional[Any] = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def lowerCAmelCase (self : Dict , snake_case_ : Dict , snake_case_ : Tuple=None , snake_case_ : Optional[Any]=None , snake_case_ : Union[str, Any]=False , **snake_case_ : Tuple , ): __a : List[str] = BertPreTokenizer() return super().save_pretrained(snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ )
216
1
from math import ceil def _UpperCamelCase ( snake_case__, snake_case__ ) -> str: __UpperCAmelCase : Optional[Any] = list(range(0, snake_case__ ) ) __UpperCAmelCase : Optional[Any] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __UpperCAmelCase : str = [] for i in device_map_blocks: if device_map_blocks.count(snake_case__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(snake_case__ ) # Missing blocks __UpperCAmelCase : int = [i for i in blocks if i not in device_map_blocks] __UpperCAmelCase : Union[str, Any] = [i for i in device_map_blocks if i not in blocks] if len(snake_case__ ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(snake_case__ ) ) if len(snake_case__ ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(snake_case__ ) ) if len(snake_case__ ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(snake_case__ ) ) def _UpperCamelCase ( snake_case__, snake_case__ ) -> Optional[int]: __UpperCAmelCase : Dict = list(range(snake_case__ ) ) __UpperCAmelCase : str = int(ceil(n_layers / len(snake_case__ ) ) ) __UpperCAmelCase : Any = [layers[i : i + n_blocks] for i in range(0, snake_case__, snake_case__ )] return dict(zip(snake_case__, snake_case__ ) )
342
from __future__ import annotations from math import pi def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
342
1