code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import torch
from transformers import CamembertForMaskedLM, CamembertTokenizer
def __lowerCamelCase (UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int]=5 ):
assert masked_input.count("<mask>" ) == 1
SCREAMING_SNAKE_CASE = torch.tensor(tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) ).unsqueeze(0 ) # Batch size 1
SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ )[0] # The last hidden-state is the first element of the output tuple
SCREAMING_SNAKE_CASE = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item()
SCREAMING_SNAKE_CASE = logits[0, masked_index, :]
SCREAMING_SNAKE_CASE = logits.softmax(dim=0 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = prob.topk(k=UpperCAmelCase__ , dim=0 )
SCREAMING_SNAKE_CASE = " ".join(
[tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(UpperCAmelCase__ ) )] )
SCREAMING_SNAKE_CASE = tokenizer.mask_token
SCREAMING_SNAKE_CASE = []
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ):
SCREAMING_SNAKE_CASE = predicted_token_bpe.replace("\u2581" , " " )
if " {0}".format(UpperCAmelCase__ ) in masked_input:
topk_filled_outputs.append(
(
masked_input.replace(" {0}".format(UpperCAmelCase__ ) , UpperCAmelCase__ ),
values[index].item(),
predicted_token,
) )
else:
topk_filled_outputs.append(
(
masked_input.replace(UpperCAmelCase__ , UpperCAmelCase__ ),
values[index].item(),
predicted_token,
) )
return topk_filled_outputs
_lowerCamelCase : Optional[Any] = CamembertTokenizer.from_pretrained('''camembert-base''')
_lowerCamelCase : str = CamembertForMaskedLM.from_pretrained('''camembert-base''')
model.eval()
_lowerCamelCase : str = 'Le camembert est <mask> :)'
print(fill_mask(masked_input, model, tokenizer, topk=3))
| 403 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
_snake_case : Tuple = logging.get_logger(__name__)
_snake_case : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
_snake_case : List[Any] = {
'vocab_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'
),
'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt',
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli': (
'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'
),
},
}
_snake_case : Union[str, Any] = {
'squeezebert/squeezebert-uncased': 512,
'squeezebert/squeezebert-mnli': 512,
'squeezebert/squeezebert-mnli-headless': 512,
}
_snake_case : Tuple = {
'squeezebert/squeezebert-uncased': {'do_lower_case': True},
'squeezebert/squeezebert-mnli': {'do_lower_case': True},
'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True},
}
class A ( _a ):
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_INIT_CONFIGURATION
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = SqueezeBertTokenizer
def __init__( self : str , lowerCAmelCase_ : str=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[str]="[UNK]" , lowerCAmelCase_ : Union[str, Any]="[SEP]" , lowerCAmelCase_ : Optional[Any]="[PAD]" , lowerCAmelCase_ : Any="[CLS]" , lowerCAmelCase_ : List[str]="[MASK]" , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : Optional[int] , ) -> int:
"""simple docstring"""
super().__init__(
lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , )
_a = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , lowerCAmelCase_ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , lowerCAmelCase_ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase_ ) != tokenize_chinese_chars
):
_a = getattr(lowerCAmelCase_ , normalizer_state.pop('''type''' ) )
_a = do_lower_case
_a = strip_accents
_a = tokenize_chinese_chars
_a = normalizer_class(**lowerCAmelCase_ )
_a = do_lower_case
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]=None ) -> List[str]:
"""simple docstring"""
_a = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
_a = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ )
return tuple(lowerCAmelCase_ )
| 22 | 0 |
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
A_ : str = ['small', 'medium', 'large']
A_ : Any = 'lm_head.decoder.weight'
A_ : int = 'lm_head.weight'
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict:
UpperCamelCase_: List[Any] = torch.load(UpperCAmelCase__ )
UpperCamelCase_: Union[str, Any] = d.pop(UpperCAmelCase__ )
os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ )
torch.save(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) )
if __name__ == "__main__":
A_ : Any = argparse.ArgumentParser()
parser.add_argument('--dialogpt_path', default='.', type=str)
A_ : Tuple = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
A_ : Optional[Any] = os.path.join(args.dialogpt_path, F'''{MODEL}_ft.pkl''')
A_ : Any = F'''./DialoGPT-{MODEL}'''
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
) | 57 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_snake_case : Dict = logging.get_logger(__name__)
class A ( _a ):
lowercase_ = ['pixel_values']
def __init__( self : List[Any] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : int , ) -> None:
"""simple docstring"""
super().__init__(**lowerCAmelCase_ )
_a = size if size is not None else {'''height''': 2_24, '''width''': 2_24}
_a = get_size_dict(lowerCAmelCase_ )
_a = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24}
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ , param_name='''crop_size''' )
_a = do_resize
_a = do_rescale
_a = do_normalize
_a = do_center_crop
_a = crop_size
_a = size
_a = resample
_a = rescale_factor
_a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
_a = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ )
if "shortest_edge" in size:
_a = get_resize_output_image_size(lowerCAmelCase_ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase_ )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
_a = (size['''height'''], size['''width'''])
else:
raise ValueError(F'Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}' )
return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Dict , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(lowerCAmelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] ) -> np.ndarray:
"""simple docstring"""
return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] , ) -> np.ndarray:
"""simple docstring"""
return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : List[str] , ) -> BatchFeature:
"""simple docstring"""
_a = do_resize if do_resize is not None else self.do_resize
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' , default_to_square=lowerCAmelCase_ )
_a = resample if resample is not None else self.resample
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = size if size is not None else self.size
_a = get_size_dict(lowerCAmelCase_ )
if not is_batched(lowerCAmelCase_ ):
_a = [images]
if not valid_images(lowerCAmelCase_ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
# All transformations expect numpy arrays.
_a = [to_numpy_array(lowerCAmelCase_ ) for image in images]
if do_resize:
_a = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images]
if do_rescale:
_a = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images]
if do_normalize:
_a = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images]
_a = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
| 22 | 0 |
"""simple docstring"""
from typing import Dict
import numpy as np
import torch
from . import residue_constants as rc
from .tensor_utils import tensor_tree_map, tree_map
def __A (_SCREAMING_SNAKE_CASE ) ->List[Any]:
"""simple docstring"""
lowerCAmelCase__ :str = []
lowerCAmelCase__ :str = []
lowerCAmelCase__ :str = []
for rt in rc.restypes:
lowerCAmelCase__ :Optional[int] = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]]
restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] )
lowerCAmelCase__ :List[str] = {name: i for i, name in enumerate(_SCREAMING_SNAKE_CASE )}
restype_atomaa_to_atomaa_list.append(
[(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] )
restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] )
# Add dummy mapping for restype 'UNK'
restype_atomaa_to_atomaa_list.append([0] * 14 )
restype_atomaa_to_atomaa_list.append([0] * 37 )
restype_atomaa_mask_list.append([0.0] * 14 )
lowerCAmelCase__ :int = torch.tensor(
_SCREAMING_SNAKE_CASE , dtype=torch.intaa , device=protein['aatype'].device , )
lowerCAmelCase__ :List[Any] = torch.tensor(
_SCREAMING_SNAKE_CASE , dtype=torch.intaa , device=protein['aatype'].device , )
lowerCAmelCase__ :List[str] = torch.tensor(
_SCREAMING_SNAKE_CASE , dtype=torch.floataa , device=protein['aatype'].device , )
lowerCAmelCase__ :Dict = protein['aatype'].to(torch.long )
# create the mapping for (residx, atom14) --> atom37, i.e. an array
# with shape (num_res, 14) containing the atom37 indices for this protein
lowerCAmelCase__ :Tuple = restype_atomaa_to_atomaa[protein_aatype]
lowerCAmelCase__ :Optional[Any] = restype_atomaa_mask[protein_aatype]
lowerCAmelCase__ :List[str] = residx_atomaa_mask
lowerCAmelCase__ :Tuple = residx_atomaa_to_atomaa.long()
# create the gather indices for mapping back
lowerCAmelCase__ :int = restype_atomaa_to_atomaa[protein_aatype]
lowerCAmelCase__ :Union[str, Any] = residx_atomaa_to_atomaa.long()
# create the corresponding mask
lowerCAmelCase__ :Dict = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['aatype'].device )
for restype, restype_letter in enumerate(rc.restypes ):
lowerCAmelCase__ :Optional[Any] = rc.restype_atoa[restype_letter]
lowerCAmelCase__ :Union[str, Any] = rc.residue_atoms[restype_name]
for atom_name in atom_names:
lowerCAmelCase__ :Tuple = rc.atom_order[atom_name]
lowerCAmelCase__ :Union[str, Any] = 1
lowerCAmelCase__ :Optional[int] = restype_atomaa_mask[protein_aatype]
lowerCAmelCase__ :Optional[Any] = residx_atomaa_mask
return protein
def __A (_SCREAMING_SNAKE_CASE ) ->Dict:
"""simple docstring"""
lowerCAmelCase__ :Tuple = tree_map(lambda _SCREAMING_SNAKE_CASE : torch.tensor(_SCREAMING_SNAKE_CASE , device=batch['aatype'].device ) , _SCREAMING_SNAKE_CASE , np.ndarray )
lowerCAmelCase__ :List[Any] = tensor_tree_map(lambda _SCREAMING_SNAKE_CASE : np.array(_SCREAMING_SNAKE_CASE ) , make_atomaa_masks(_SCREAMING_SNAKE_CASE ) )
return out
| 93 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_snake_case : str = {
'configuration_layoutlmv3': [
'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP',
'LayoutLMv3Config',
'LayoutLMv3OnnxConfig',
],
'processing_layoutlmv3': ['LayoutLMv3Processor'],
'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : List[str] = ['LayoutLMv3TokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Optional[int] = [
'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv3ForQuestionAnswering',
'LayoutLMv3ForSequenceClassification',
'LayoutLMv3ForTokenClassification',
'LayoutLMv3Model',
'LayoutLMv3PreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Tuple = [
'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLayoutLMv3ForQuestionAnswering',
'TFLayoutLMv3ForSequenceClassification',
'TFLayoutLMv3ForTokenClassification',
'TFLayoutLMv3Model',
'TFLayoutLMv3PreTrainedModel',
]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : List[Any] = ['LayoutLMv3FeatureExtractor']
_snake_case : Tuple = ['LayoutLMv3ImageProcessor']
if TYPE_CHECKING:
from .configuration_layoutlmva import (
LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP,
LayoutLMvaConfig,
LayoutLMvaOnnxConfig,
)
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_layoutlmva import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
TFLayoutLMvaPreTrainedModel,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
else:
import sys
_snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 22 | 0 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class _SCREAMING_SNAKE_CASE ( _a ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = 42
class _SCREAMING_SNAKE_CASE ( nn.Module ):
"""simple docstring"""
def __init__( self , _snake_case=3 , _snake_case=3 , _snake_case=("DownEncoderBlock2D",) , _snake_case=(64,) , _snake_case=2 , _snake_case=32 , _snake_case="silu" , _snake_case=True , ):
"""simple docstring"""
super().__init__()
__lowerCamelCase = layers_per_block
__lowerCamelCase = torch.nn.Convad(
lowerCAmelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
__lowerCamelCase = None
__lowerCamelCase = nn.ModuleList([] )
# down
__lowerCamelCase = block_out_channels[0]
for i, down_block_type in enumerate(lowerCAmelCase_ ):
__lowerCamelCase = output_channel
__lowerCamelCase = block_out_channels[i]
__lowerCamelCase = i == len(lowerCAmelCase_ ) - 1
__lowerCamelCase = get_down_block(
lowerCAmelCase_ , num_layers=self.layers_per_block , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=lowerCAmelCase_ , resnet_groups=lowerCAmelCase_ , attention_head_dim=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , )
self.down_blocks.append(lowerCAmelCase_ )
# mid
__lowerCamelCase = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase_ , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , )
# out
__lowerCamelCase = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCAmelCase_ , eps=1E-6 )
__lowerCamelCase = nn.SiLU()
__lowerCamelCase = 2 * out_channels if double_z else out_channels
__lowerCamelCase = nn.Convad(block_out_channels[-1] , lowerCAmelCase_ , 3 , padding=1 )
__lowerCamelCase = False
def _lowerCamelCase ( self , _snake_case ):
"""simple docstring"""
__lowerCamelCase = x
__lowerCamelCase = self.conv_in(lowerCAmelCase_ )
if self.training and self.gradient_checkpointing:
def create_custom_forward(_snake_case ):
def custom_forward(*_snake_case ):
return module(*lowerCAmelCase_ )
return custom_forward
# down
if is_torch_version('''>=''' , '''1.11.0''' ):
for down_block in self.down_blocks:
__lowerCamelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ )
# middle
__lowerCamelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ )
else:
for down_block in self.down_blocks:
__lowerCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ )
# middle
__lowerCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCAmelCase_ )
else:
# down
for down_block in self.down_blocks:
__lowerCamelCase = down_block(lowerCAmelCase_ )
# middle
__lowerCamelCase = self.mid_block(lowerCAmelCase_ )
# post-process
__lowerCamelCase = self.conv_norm_out(lowerCAmelCase_ )
__lowerCamelCase = self.conv_act(lowerCAmelCase_ )
__lowerCamelCase = self.conv_out(lowerCAmelCase_ )
return sample
class _SCREAMING_SNAKE_CASE ( nn.Module ):
"""simple docstring"""
def __init__( self , _snake_case=3 , _snake_case=3 , _snake_case=("UpDecoderBlock2D",) , _snake_case=(64,) , _snake_case=2 , _snake_case=32 , _snake_case="silu" , _snake_case="group" , ):
"""simple docstring"""
super().__init__()
__lowerCamelCase = layers_per_block
__lowerCamelCase = nn.Convad(
lowerCAmelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
__lowerCamelCase = None
__lowerCamelCase = nn.ModuleList([] )
__lowerCamelCase = in_channels if norm_type == '''spatial''' else None
# mid
__lowerCamelCase = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase_ , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , )
# up
__lowerCamelCase = list(reversed(lowerCAmelCase_ ) )
__lowerCamelCase = reversed_block_out_channels[0]
for i, up_block_type in enumerate(lowerCAmelCase_ ):
__lowerCamelCase = output_channel
__lowerCamelCase = reversed_block_out_channels[i]
__lowerCamelCase = i == len(lowerCAmelCase_ ) - 1
__lowerCamelCase = get_up_block(
lowerCAmelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , prev_output_channel=lowerCAmelCase_ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase_ , resnet_groups=lowerCAmelCase_ , attention_head_dim=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , resnet_time_scale_shift=lowerCAmelCase_ , )
self.up_blocks.append(lowerCAmelCase_ )
__lowerCamelCase = output_channel
# out
if norm_type == "spatial":
__lowerCamelCase = SpatialNorm(block_out_channels[0] , lowerCAmelCase_ )
else:
__lowerCamelCase = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCAmelCase_ , eps=1E-6 )
__lowerCamelCase = nn.SiLU()
__lowerCamelCase = nn.Convad(block_out_channels[0] , lowerCAmelCase_ , 3 , padding=1 )
__lowerCamelCase = False
def _lowerCamelCase ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
__lowerCamelCase = z
__lowerCamelCase = self.conv_in(lowerCAmelCase_ )
__lowerCamelCase = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(_snake_case ):
def custom_forward(*_snake_case ):
return module(*lowerCAmelCase_ )
return custom_forward
if is_torch_version('''>=''' , '''1.11.0''' ):
# middle
__lowerCamelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowerCAmelCase_ , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ )
__lowerCamelCase = sample.to(lowerCAmelCase_ )
# up
for up_block in self.up_blocks:
__lowerCamelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ )
else:
# middle
__lowerCamelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowerCAmelCase_ , lowerCAmelCase_ )
__lowerCamelCase = sample.to(lowerCAmelCase_ )
# up
for up_block in self.up_blocks:
__lowerCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ , lowerCAmelCase_ )
else:
# middle
__lowerCamelCase = self.mid_block(lowerCAmelCase_ , lowerCAmelCase_ )
__lowerCamelCase = sample.to(lowerCAmelCase_ )
# up
for up_block in self.up_blocks:
__lowerCamelCase = up_block(lowerCAmelCase_ , lowerCAmelCase_ )
# post-process
if latent_embeds is None:
__lowerCamelCase = self.conv_norm_out(lowerCAmelCase_ )
else:
__lowerCamelCase = self.conv_norm_out(lowerCAmelCase_ , lowerCAmelCase_ )
__lowerCamelCase = self.conv_act(lowerCAmelCase_ )
__lowerCamelCase = self.conv_out(lowerCAmelCase_ )
return sample
class _SCREAMING_SNAKE_CASE ( nn.Module ):
"""simple docstring"""
def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case=None , _snake_case="random" , _snake_case=False , _snake_case=True ):
"""simple docstring"""
super().__init__()
__lowerCamelCase = n_e
__lowerCamelCase = vq_embed_dim
__lowerCamelCase = beta
__lowerCamelCase = legacy
__lowerCamelCase = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
__lowerCamelCase = remap
if self.remap is not None:
self.register_buffer('''used''' , torch.tensor(np.load(self.remap ) ) )
__lowerCamelCase = self.used.shape[0]
__lowerCamelCase = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
__lowerCamelCase = self.re_embed
__lowerCamelCase = self.re_embed + 1
print(
F'''Remapping {self.n_e} indices to {self.re_embed} indices. '''
F'''Using {self.unknown_index} for unknown indices.''' )
else:
__lowerCamelCase = n_e
__lowerCamelCase = sane_index_shape
def _lowerCamelCase ( self , _snake_case ):
"""simple docstring"""
__lowerCamelCase = inds.shape
assert len(lowerCAmelCase_ ) > 1
__lowerCamelCase = inds.reshape(ishape[0] , -1 )
__lowerCamelCase = self.used.to(lowerCAmelCase_ )
__lowerCamelCase = (inds[:, :, None] == used[None, None, ...]).long()
__lowerCamelCase = match.argmax(-1 )
__lowerCamelCase = match.sum(2 ) < 1
if self.unknown_index == "random":
__lowerCamelCase = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
__lowerCamelCase = self.unknown_index
return new.reshape(lowerCAmelCase_ )
def _lowerCamelCase ( self , _snake_case ):
"""simple docstring"""
__lowerCamelCase = inds.shape
assert len(lowerCAmelCase_ ) > 1
__lowerCamelCase = inds.reshape(ishape[0] , -1 )
__lowerCamelCase = self.used.to(lowerCAmelCase_ )
if self.re_embed > self.used.shape[0]: # extra token
__lowerCamelCase = 0 # simply set to zero
__lowerCamelCase = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCAmelCase_ )
return back.reshape(lowerCAmelCase_ )
def _lowerCamelCase ( self , _snake_case ):
"""simple docstring"""
__lowerCamelCase = z.permute(0 , 2 , 3 , 1 ).contiguous()
__lowerCamelCase = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
__lowerCamelCase = torch.argmin(torch.cdist(lowerCAmelCase_ , self.embedding.weight ) , dim=1 )
__lowerCamelCase = self.embedding(lowerCAmelCase_ ).view(z.shape )
__lowerCamelCase = None
__lowerCamelCase = None
# compute loss for embedding
if not self.legacy:
__lowerCamelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
__lowerCamelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
__lowerCamelCase = z + (z_q - z).detach()
# reshape back to match original input shape
__lowerCamelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
__lowerCamelCase = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
__lowerCamelCase = self.remap_to_used(lowerCAmelCase_ )
__lowerCamelCase = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
__lowerCamelCase = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def _lowerCamelCase ( self , _snake_case , _snake_case ):
"""simple docstring"""
if self.remap is not None:
__lowerCamelCase = indices.reshape(shape[0] , -1 ) # add batch axis
__lowerCamelCase = self.unmap_to_all(lowerCAmelCase_ )
__lowerCamelCase = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
__lowerCamelCase = self.embedding(lowerCAmelCase_ )
if shape is not None:
__lowerCamelCase = z_q.view(lowerCAmelCase_ )
# reshape back to match original input shape
__lowerCamelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class _SCREAMING_SNAKE_CASE ( _a ):
"""simple docstring"""
def __init__( self , _snake_case , _snake_case=False ):
"""simple docstring"""
__lowerCamelCase = parameters
__lowerCamelCase , __lowerCamelCase = torch.chunk(lowerCAmelCase_ , 2 , dim=1 )
__lowerCamelCase = torch.clamp(self.logvar , -30.0 , 20.0 )
__lowerCamelCase = deterministic
__lowerCamelCase = torch.exp(0.5 * self.logvar )
__lowerCamelCase = torch.exp(self.logvar )
if self.deterministic:
__lowerCamelCase = __lowerCamelCase = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def _lowerCamelCase ( self , _snake_case = None ):
"""simple docstring"""
__lowerCamelCase = randn_tensor(
self.mean.shape , generator=lowerCAmelCase_ , device=self.parameters.device , dtype=self.parameters.dtype )
__lowerCamelCase = self.mean + self.std * sample
return x
def _lowerCamelCase ( self , _snake_case=None ):
"""simple docstring"""
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def _lowerCamelCase ( self , _snake_case , _snake_case=[1, 2, 3] ):
"""simple docstring"""
if self.deterministic:
return torch.Tensor([0.0] )
__lowerCamelCase = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCAmelCase_ )
def _lowerCamelCase ( self ):
"""simple docstring"""
return self.mean
| 316 |
'''simple docstring'''
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class A ( _a ):
lowercase_ = (DDPMParallelScheduler,)
def __lowerCAmelCase ( self : Optional[Any] , **lowerCAmelCase_ : Optional[int] ) -> List[Any]:
"""simple docstring"""
_a = {
'''num_train_timesteps''': 10_00,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**lowerCAmelCase_ )
return config
def __lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowerCAmelCase_ )
def __lowerCAmelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any ) -> List[Any]:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
self.check_over_configs(thresholding=lowerCAmelCase_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , )
def __lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase_ )
def __lowerCAmelCase ( self : str ) -> List[str]:
"""simple docstring"""
for t in [0, 5_00, 9_99]:
self.check_over_forward(time_step=lowerCAmelCase_ )
def __lowerCAmelCase ( self : str ) -> Optional[int]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_0_9_7_9 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.0_2 ) ) < 1e-5
def __lowerCAmelCase ( self : Dict ) -> str:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = len(lowerCAmelCase_ )
_a = self.dummy_model()
_a = self.dummy_sample_deter
_a = self.dummy_sample_deter + 0.1
_a = self.dummy_sample_deter - 0.1
_a = samplea.shape[0]
_a = torch.stack([samplea, samplea, samplea] , dim=0 )
_a = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ )
_a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
_a = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) )
_a = torch.sum(torch.abs(lowerCAmelCase_ ) )
_a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1e-2
assert abs(result_mean.item() - 0.5_0_0_5 ) < 1e-3
def __lowerCAmelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = len(lowerCAmelCase_ )
_a = self.dummy_model()
_a = self.dummy_sample_deter
_a = torch.manual_seed(0 )
for t in reversed(range(lowerCAmelCase_ ) ):
# 1. predict noise residual
_a = model(lowerCAmelCase_ , lowerCAmelCase_ )
# 2. predict previous mean of sample x_t-1
_a = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample
_a = pred_prev_sample
_a = torch.sum(torch.abs(lowerCAmelCase_ ) )
_a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2
assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config(prediction_type='''v_prediction''' )
_a = scheduler_class(**lowerCAmelCase_ )
_a = len(lowerCAmelCase_ )
_a = self.dummy_model()
_a = self.dummy_sample_deter
_a = torch.manual_seed(0 )
for t in reversed(range(lowerCAmelCase_ ) ):
# 1. predict noise residual
_a = model(lowerCAmelCase_ , lowerCAmelCase_ )
# 2. predict previous mean of sample x_t-1
_a = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample
_a = pred_prev_sample
_a = torch.sum(torch.abs(lowerCAmelCase_ ) )
_a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2
assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3
def __lowerCAmelCase ( self : int ) -> Dict:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [1_00, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
_a = scheduler.timesteps
for i, timestep in enumerate(lowerCAmelCase_ ):
if i == len(lowerCAmelCase_ ) - 1:
_a = -1
else:
_a = timesteps[i + 1]
_a = scheduler.previous_timestep(lowerCAmelCase_ )
_a = prev_t.item()
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [1_00, 87, 50, 51, 0]
with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [1_00, 87, 50, 1, 0]
_a = len(lowerCAmelCase_ )
with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [scheduler.config.num_train_timesteps]
with self.assertRaises(
lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
| 22 | 0 |
import argparse
import io
import requests
import torch
from omegaconf import OmegaConf
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
assign_to_checkpoint,
conv_attn_to_linear,
create_vae_diffusers_config,
renew_vae_attention_paths,
renew_vae_resnet_paths,
)
def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple ) -> Any:
'''simple docstring'''
A = checkpoint
A = {}
A = vae_state_dict['encoder.conv_in.weight']
A = vae_state_dict['encoder.conv_in.bias']
A = vae_state_dict['encoder.conv_out.weight']
A = vae_state_dict['encoder.conv_out.bias']
A = vae_state_dict['encoder.norm_out.weight']
A = vae_state_dict['encoder.norm_out.bias']
A = vae_state_dict['decoder.conv_in.weight']
A = vae_state_dict['decoder.conv_in.bias']
A = vae_state_dict['decoder.conv_out.weight']
A = vae_state_dict['decoder.conv_out.bias']
A = vae_state_dict['decoder.norm_out.weight']
A = vae_state_dict['decoder.norm_out.bias']
A = vae_state_dict['quant_conv.weight']
A = vae_state_dict['quant_conv.bias']
A = vae_state_dict['post_quant_conv.weight']
A = vae_state_dict['post_quant_conv.bias']
# Retrieves the keys for the encoder down blocks only
A = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'encoder.down' in layer} )
A = {
layer_id: [key for key in vae_state_dict if F'''down.{layer_id}''' in key] for layer_id in range(lowerCAmelCase__ )
}
# Retrieves the keys for the decoder up blocks only
A = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'decoder.up' in layer} )
A = {
layer_id: [key for key in vae_state_dict if F'''up.{layer_id}''' in key] for layer_id in range(lowerCAmelCase__ )
}
for i in range(lowerCAmelCase__ ):
A = [key for key in down_blocks[i] if F'''down.{i}''' in key and F'''down.{i}.downsample''' not in key]
if F'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict:
A = vae_state_dict.pop(
F'''encoder.down.{i}.downsample.conv.weight''' )
A = vae_state_dict.pop(
F'''encoder.down.{i}.downsample.conv.bias''' )
A = renew_vae_resnet_paths(lowerCAmelCase__ )
A = {'old': F'''down.{i}.block''', 'new': F'''down_blocks.{i}.resnets'''}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
A = [key for key in vae_state_dict if 'encoder.mid.block' in key]
A = 2
for i in range(1 , num_mid_res_blocks + 1 ):
A = [key for key in mid_resnets if F'''encoder.mid.block_{i}''' in key]
A = renew_vae_resnet_paths(lowerCAmelCase__ )
A = {'old': F'''mid.block_{i}''', 'new': F'''mid_block.resnets.{i - 1}'''}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
A = [key for key in vae_state_dict if 'encoder.mid.attn' in key]
A = renew_vae_attention_paths(lowerCAmelCase__ )
A = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
conv_attn_to_linear(lowerCAmelCase__ )
for i in range(lowerCAmelCase__ ):
A = num_up_blocks - 1 - i
A = [
key for key in up_blocks[block_id] if F'''up.{block_id}''' in key and F'''up.{block_id}.upsample''' not in key
]
if F'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict:
A = vae_state_dict[
F'''decoder.up.{block_id}.upsample.conv.weight'''
]
A = vae_state_dict[
F'''decoder.up.{block_id}.upsample.conv.bias'''
]
A = renew_vae_resnet_paths(lowerCAmelCase__ )
A = {'old': F'''up.{block_id}.block''', 'new': F'''up_blocks.{i}.resnets'''}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
A = [key for key in vae_state_dict if 'decoder.mid.block' in key]
A = 2
for i in range(1 , num_mid_res_blocks + 1 ):
A = [key for key in mid_resnets if F'''decoder.mid.block_{i}''' in key]
A = renew_vae_resnet_paths(lowerCAmelCase__ )
A = {'old': F'''mid.block_{i}''', 'new': F'''mid_block.resnets.{i - 1}'''}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
A = [key for key in vae_state_dict if 'decoder.mid.attn' in key]
A = renew_vae_attention_paths(lowerCAmelCase__ )
A = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
conv_attn_to_linear(lowerCAmelCase__ )
return new_checkpoint
def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , ) -> Union[str, Any]:
'''simple docstring'''
A = requests.get(
' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' )
A = io.BytesIO(r.content )
A = OmegaConf.load(lowerCAmelCase__ )
A = 512
A = 'cuda' if torch.cuda.is_available() else 'cpu'
if checkpoint_path.endswith('safetensors' ):
from safetensors import safe_open
A = {}
with safe_open(lowerCAmelCase__ , framework='pt' , device='cpu' ) as f:
for key in f.keys():
A = f.get_tensor(lowerCAmelCase__ )
else:
A = torch.load(lowerCAmelCase__ , map_location=lowerCAmelCase__ )['state_dict']
# Convert the VAE model.
A = create_vae_diffusers_config(lowerCAmelCase__ , image_size=lowerCAmelCase__ )
A = custom_convert_ldm_vae_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ )
A = AutoencoderKL(**lowerCAmelCase__ )
vae.load_state_dict(lowerCAmelCase__ )
vae.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
__snake_case :Any =argparse.ArgumentParser()
parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.')
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.')
__snake_case :Tuple =parser.parse_args()
vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path) | 106 |
'''simple docstring'''
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def snake_case_ (UpperCamelCase : dict ):
'''simple docstring'''
return (data["data"], data["target"])
def snake_case_ (UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray ):
'''simple docstring'''
_a = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(UpperCamelCase , UpperCamelCase )
# Predict target for test data
_a = xgb.predict(UpperCamelCase )
_a = predictions.reshape(len(UpperCamelCase ) , 1 )
return predictions
def snake_case_ ():
'''simple docstring'''
_a = fetch_california_housing()
_a , _a = data_handling(UpperCamelCase )
_a , _a , _a , _a = train_test_split(
UpperCamelCase , UpperCamelCase , test_size=0.25 , random_state=1 )
_a = xgboost(UpperCamelCase , UpperCamelCase , UpperCamelCase )
# Error printing
print(f'Mean Absolute Error : {mean_absolute_error(UpperCamelCase , UpperCamelCase )}' )
print(f'Mean Square Error : {mean_squared_error(UpperCamelCase , UpperCamelCase )}' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 22 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json',
}
class _lowerCamelCase ( _a ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] ="mra"
def __init__( self , UpperCAmelCase=50265 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=1 , UpperCAmelCase=0.02 , UpperCAmelCase=1E-5 , UpperCAmelCase="absolute" , UpperCAmelCase=4 , UpperCAmelCase="full" , UpperCAmelCase=0 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , **UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
__snake_case : Tuple = vocab_size
__snake_case : Any = max_position_embeddings
__snake_case : Optional[int] = hidden_size
__snake_case : Optional[int] = num_hidden_layers
__snake_case : str = num_attention_heads
__snake_case : str = intermediate_size
__snake_case : Union[str, Any] = hidden_act
__snake_case : List[Any] = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : Dict = initializer_range
__snake_case : Any = type_vocab_size
__snake_case : Optional[Any] = layer_norm_eps
__snake_case : int = position_embedding_type
__snake_case : Tuple = block_per_row
__snake_case : Union[str, Any] = approx_mode
__snake_case : Dict = initial_prior_first_n_blocks
__snake_case : List[Any] = initial_prior_diagonal_n_blocks
| 243 |
'''simple docstring'''
import qiskit
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
_a = qiskit.Aer.get_backend('''aer_simulator''' )
_a = qiskit.QuantumCircuit(4 , 2 )
# encode inputs in qubits 0 and 1
if bita == 1:
qc_ha.x(0 )
if bita == 1:
qc_ha.x(1 )
qc_ha.barrier()
# use cnots to write XOR of the inputs on qubit2
qc_ha.cx(0 , 2 )
qc_ha.cx(1 , 2 )
# use ccx / toffoli gate to write AND of the inputs on qubit3
qc_ha.ccx(0 , 1 , 3 )
qc_ha.barrier()
# extract outputs
qc_ha.measure(2 , 0 ) # extract XOR value
qc_ha.measure(3 , 1 ) # extract AND value
# Execute the circuit on the qasm simulator
_a = qiskit.execute(UpperCamelCase , UpperCamelCase , shots=1000 )
# Return the histogram data of the results of the experiment
return job.result().get_counts(UpperCamelCase )
if __name__ == "__main__":
_snake_case : Tuple = half_adder(1, 1)
print(F'''Half Adder Output Qubit Counts: {counts}''')
| 22 | 0 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def UpperCAmelCase_ ( lowerCamelCase_ ):
"""simple docstring"""
if len(lowerCamelCase_ ) != 3_2:
raise ValueError("Input must be of length 32" )
lowerCAmelCase__ : Optional[Any] = B""
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def UpperCAmelCase_ ( lowerCamelCase_ ):
"""simple docstring"""
if i < 0:
raise ValueError("Input must be non-negative" )
lowerCAmelCase__ : List[str] = format(lowerCamelCase_ , "08x" )[-8:]
lowerCAmelCase__ : Dict = B""
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" )
return little_endian_hex
def UpperCAmelCase_ ( lowerCamelCase_ ):
"""simple docstring"""
lowerCAmelCase__ : Optional[Any] = B""
for char in message:
bit_string += format(lowerCamelCase_ , "08b" ).encode("utf-8" )
lowerCAmelCase__ : List[Any] = format(len(lowerCamelCase_ ) , "064b" ).encode("utf-8" )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(lowerCamelCase_ ) % 5_1_2 != 4_4_8:
bit_string += b"0"
bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] )
return bit_string
def UpperCAmelCase_ ( lowerCamelCase_ ):
"""simple docstring"""
if len(lowerCamelCase_ ) % 5_1_2 != 0:
raise ValueError("Input must have length that\'s a multiple of 512" )
for pos in range(0 , len(lowerCamelCase_ ) , 5_1_2 ):
lowerCAmelCase__ : Dict = bit_string[pos : pos + 5_1_2]
lowerCAmelCase__ : Optional[int] = []
for i in range(0 , 5_1_2 , 3_2 ):
block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) )
yield block_words
def UpperCAmelCase_ ( lowerCamelCase_ ):
"""simple docstring"""
if i < 0:
raise ValueError("Input must be non-negative" )
lowerCAmelCase__ : Union[str, Any] = format(lowerCamelCase_ , "032b" )
lowerCAmelCase__ : Any = ""
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(lowerCamelCase_ , 2 )
def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return (a + b) % 2**3_2
def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
if i < 0:
raise ValueError("Input must be non-negative" )
if shift < 0:
raise ValueError("Shift must be non-negative" )
return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2
def UpperCAmelCase_ ( lowerCamelCase_ ):
"""simple docstring"""
lowerCAmelCase__ : Tuple = preprocess(lowerCamelCase_ )
lowerCAmelCase__ : str = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )]
# Starting states
lowerCAmelCase__ : List[str] = 0x67_45_23_01
lowerCAmelCase__ : List[str] = 0xef_cd_ab_89
lowerCAmelCase__ : Optional[Any] = 0x98_ba_dc_fe
lowerCAmelCase__ : Union[str, Any] = 0x10_32_54_76
lowerCAmelCase__ : int = [
7,
1_2,
1_7,
2_2,
7,
1_2,
1_7,
2_2,
7,
1_2,
1_7,
2_2,
7,
1_2,
1_7,
2_2,
5,
9,
1_4,
2_0,
5,
9,
1_4,
2_0,
5,
9,
1_4,
2_0,
5,
9,
1_4,
2_0,
4,
1_1,
1_6,
2_3,
4,
1_1,
1_6,
2_3,
4,
1_1,
1_6,
2_3,
4,
1_1,
1_6,
2_3,
6,
1_0,
1_5,
2_1,
6,
1_0,
1_5,
2_1,
6,
1_0,
1_5,
2_1,
6,
1_0,
1_5,
2_1,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(lowerCamelCase_ ):
lowerCAmelCase__ : Dict = aa
lowerCAmelCase__ : str = ba
lowerCAmelCase__ : int = ca
lowerCAmelCase__ : Tuple = da
# Hash current chunk
for i in range(6_4 ):
if i <= 1_5:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
lowerCAmelCase__ : Union[str, Any] = d ^ (b & (c ^ d))
lowerCAmelCase__ : Dict = i
elif i <= 3_1:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
lowerCAmelCase__ : List[Any] = c ^ (d & (b ^ c))
lowerCAmelCase__ : int = (5 * i + 1) % 1_6
elif i <= 4_7:
lowerCAmelCase__ : List[Any] = b ^ c ^ d
lowerCAmelCase__ : Optional[int] = (3 * i + 5) % 1_6
else:
lowerCAmelCase__ : Tuple = c ^ (b | not_aa(lowerCamelCase_ ))
lowerCAmelCase__ : Union[str, Any] = (7 * i) % 1_6
lowerCAmelCase__ : Optional[Any] = (f + a + added_consts[i] + block_words[g]) % 2**3_2
lowerCAmelCase__ : List[str] = d
lowerCAmelCase__ : List[str] = c
lowerCAmelCase__ : Any = b
lowerCAmelCase__ : Optional[int] = sum_aa(lowerCamelCase_ , left_rotate_aa(lowerCamelCase_ , shift_amounts[i] ) )
# Add hashed chunk to running total
lowerCAmelCase__ : Tuple = sum_aa(lowerCamelCase_ , lowerCamelCase_ )
lowerCAmelCase__ : int = sum_aa(lowerCamelCase_ , lowerCamelCase_ )
lowerCAmelCase__ : Dict = sum_aa(lowerCamelCase_ , lowerCamelCase_ )
lowerCAmelCase__ : Dict = sum_aa(lowerCamelCase_ , lowerCamelCase_ )
lowerCAmelCase__ : Union[str, Any] = reformat_hex(lowerCamelCase_ ) + reformat_hex(lowerCamelCase_ ) + reformat_hex(lowerCamelCase_ ) + reformat_hex(lowerCamelCase_ )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 378 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
if len(UpperCamelCase ) != 32:
raise ValueError('''Input must be of length 32''' )
_a = B''''''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
_a = format(UpperCamelCase , '''08x''' )[-8:]
_a = B''''''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' )
return little_endian_hex
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
_a = B''''''
for char in message:
bit_string += format(UpperCamelCase , '''08b''' ).encode('''utf-8''' )
_a = format(len(UpperCamelCase ) , '''064b''' ).encode('''utf-8''' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(UpperCamelCase ) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
if len(UpperCamelCase ) % 512 != 0:
raise ValueError('''Input must have length that\'s a multiple of 512''' )
for pos in range(0 , len(UpperCamelCase ) , 512 ):
_a = bit_string[pos : pos + 512]
_a = []
for i in range(0 , 512 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
_a = format(UpperCamelCase , '''032b''' )
_a = ''''''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(UpperCamelCase , 2 )
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
return (a + b) % 2**32
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
if shift < 0:
raise ValueError('''Shift must be non-negative''' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
_a = preprocess(UpperCamelCase )
_a = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
_a = 0X67452301
_a = 0Xefcdab89
_a = 0X98badcfe
_a = 0X10325476
_a = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(UpperCamelCase ):
_a = aa
_a = ba
_a = ca
_a = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
_a = d ^ (b & (c ^ d))
_a = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
_a = c ^ (d & (b ^ c))
_a = (5 * i + 1) % 16
elif i <= 47:
_a = b ^ c ^ d
_a = (3 * i + 5) % 16
else:
_a = c ^ (b | not_aa(UpperCamelCase ))
_a = (7 * i) % 16
_a = (f + a + added_consts[i] + block_words[g]) % 2**32
_a = d
_a = c
_a = b
_a = sum_aa(UpperCamelCase , left_rotate_aa(UpperCamelCase , shift_amounts[i] ) )
# Add hashed chunk to running total
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 22 | 0 |
"""simple docstring"""
def lowercase (_snake_case ,_snake_case ) -> Any:
'''simple docstring'''
__UpperCamelCase = (boundary[1] - boundary[0]) / steps
__UpperCamelCase = boundary[0]
__UpperCamelCase = boundary[1]
__UpperCamelCase = make_points(_snake_case ,_snake_case ,_snake_case )
__UpperCamelCase = 0.0
y += (h / 2.0) * f(_snake_case )
for i in x_i:
# print(i)
y += h * f(_snake_case )
y += (h / 2.0) * f(_snake_case )
return y
def lowercase (_snake_case ,_snake_case ,_snake_case ) -> List[str]:
'''simple docstring'''
__UpperCamelCase = a + h
while x < (b - h):
yield x
__UpperCamelCase = x + h
def lowercase (_snake_case ) -> Optional[Any]: # enter your function here
'''simple docstring'''
__UpperCamelCase = (x - 0) * (x - 0)
return y
def lowercase () -> Dict:
'''simple docstring'''
__UpperCamelCase = 0.0 # Lower bound of integration
__UpperCamelCase = 1.0 # Upper bound of integration
__UpperCamelCase = 1_0.0 # define number of steps or resolution
__UpperCamelCase = [a, b] # define boundary of integration
__UpperCamelCase = method_a(_snake_case ,_snake_case )
print(f"""y = {y}""" )
if __name__ == "__main__":
main() | 505 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class A ( unittest.TestCase ):
def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]=7 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=18 , lowerCAmelCase_ : Any=30 , lowerCAmelCase_ : Optional[int]=4_00 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=True , ) -> Optional[Any]:
"""simple docstring"""
_a = size if size is not None else {'''height''': 18, '''width''': 18}
_a = parent
_a = batch_size
_a = num_channels
_a = image_size
_a = min_resolution
_a = max_resolution
_a = do_resize
_a = size
_a = do_normalize
def __lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4],
[-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class A ( _a ,unittest.TestCase ):
lowercase_ = ImageGPTImageProcessor if is_vision_available() else None
def __lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
_a = ImageGPTImageProcessingTester(self )
@property
def __lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def __lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase_ , '''clusters''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''size''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''do_normalize''' ) )
def __lowerCAmelCase ( self : List[Any] ) -> List[str]:
"""simple docstring"""
_a = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} )
_a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
def __lowerCAmelCase ( self : str ) -> str:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
_a = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_a = os.path.join(lowerCAmelCase_ , '''image_processor.json''' )
image_processor_first.to_json_file(lowerCAmelCase_ )
_a = self.image_processing_class.from_json_file(lowerCAmelCase_ ).to_dict()
_a = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any ) -> List[Any]:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(lowerCAmelCase_ )
_a = self.image_processing_class.from_pretrained(lowerCAmelCase_ ).to_dict()
_a = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowerCAmelCase_ )
@unittest.skip('''ImageGPT requires clusters at initialization''' )
def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
pass
def snake_case_ ():
'''simple docstring'''
_a = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' )
_a = Image.open(dataset[4]['''file'''] )
_a = Image.open(dataset[5]['''file'''] )
_a = [imagea, imagea]
return images
@require_vision
@require_torch
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_a = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' )
_a = prepare_images()
# test non-batched
_a = image_processing(images[0] , return_tensors='''pt''' )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 10_24) )
_a = [3_06, 1_91, 1_91]
self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCAmelCase_ )
# test batched
_a = image_processing(lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 10_24) )
_a = [3_03, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCAmelCase_ )
| 22 | 0 |
from argparse import ArgumentParser
from .env import EnvironmentCommand
def UpperCamelCase_( ) -> Any:
UpperCAmelCase__ = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' )
UpperCAmelCase__ = parser.add_subparsers(help='diffusers-cli command helpers' )
# Register commands
EnvironmentCommand.register_subcommand(snake_case__ )
# Let's go
UpperCAmelCase__ = parser.parse_args()
if not hasattr(snake_case__ , 'func' ):
parser.print_help()
exit(1 )
# Run
UpperCAmelCase__ = args.func(snake_case__ )
service.run()
if __name__ == "__main__":
main()
| 146 |
'''simple docstring'''
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
_a = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
_a = AutoTokenizer.from_pretrained('''google/mt5-small''' )
_a = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
_a = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
_a = shift_tokens_right(lowerCAmelCase_ , model.config.pad_token_id , model.config.decoder_start_token_id )
_a = model(lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_ ).logits
_a = optax.softmax_cross_entropy(lowerCAmelCase_ , onehot(lowerCAmelCase_ , logits.shape[-1] ) ).mean()
_a = -(labels.shape[-1] * loss.item())
_a = -8_4.9_1_2_7
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 22 | 0 |
from __future__ import annotations
from collections.abc import Callable
def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase = 100, ) ->Union[str, Any]:
"""simple docstring"""
lowercase : Tuple = x_start
lowercase : Tuple = fnc(_UpperCamelCase )
lowercase : Tuple = 0.0
for _ in range(_UpperCamelCase ):
# Approximates small segments of curve as linear and solve
# for trapezoidal area
lowercase : Optional[Any] = (x_end - x_start) / steps + xa
lowercase : Any = fnc(_UpperCamelCase )
area += abs(fxa + fxa ) * (xa - xa) / 2
# Increment step
lowercase : Optional[int] = xa
lowercase : Optional[int] = fxa
return area
if __name__ == "__main__":
def __lowercase ( _UpperCamelCase ) ->Dict:
"""simple docstring"""
return x**3 + x**2
print('''f(x) = x^3 + x^2''')
print('''The area between the curve, x = -5, x = 5 and the x axis is:''')
__a = 10
while i <= 10_00_00:
print(F'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''')
i *= 10
| 319 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
_snake_case : Optional[Any] = 8
def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Dict=BITS ):
'''simple docstring'''
_a = x.device
_a = (x * 255).int().clamp(0 , 255 )
_a = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase )
_a = rearrange(UpperCamelCase , '''d -> d 1 1''' )
_a = rearrange(UpperCamelCase , '''b c h w -> b c 1 h w''' )
_a = ((x & mask) != 0).float()
_a = rearrange(UpperCamelCase , '''b c d h w -> b (c d) h w''' )
_a = bits * 2 - 1
return bits
def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Any=BITS ):
'''simple docstring'''
_a = x.device
_a = (x > 0).int()
_a = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase , dtype=torch.intaa )
_a = rearrange(UpperCamelCase , '''d -> d 1 1''' )
_a = rearrange(UpperCamelCase , '''b (c d) h w -> b c d h w''' , d=8 )
_a = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' )
return (dec / 255).clamp(0.0 , 1.0 )
def snake_case_ (self : Union[str, Any] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : float = 0.0 , UpperCamelCase : bool = True , UpperCamelCase : Any=None , UpperCamelCase : bool = True , ):
'''simple docstring'''
if self.num_inference_steps is None:
raise ValueError(
'''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
_a = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
_a = self.alphas_cumprod[timestep]
_a = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
_a = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
_a = self.bit_scale
if self.config.clip_sample:
_a = torch.clamp(UpperCamelCase , -scale , UpperCamelCase )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
_a = self._get_variance(UpperCamelCase , UpperCamelCase )
_a = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
_a = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
_a = model_output.device if torch.is_tensor(UpperCamelCase ) else '''cpu'''
_a = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase ).to(UpperCamelCase )
_a = self._get_variance(UpperCamelCase , UpperCamelCase ) ** 0.5 * eta * noise
_a = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase )
def snake_case_ (self : Any , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : str="epsilon" , UpperCamelCase : Dict=None , UpperCamelCase : bool = True , ):
'''simple docstring'''
_a = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
_a , _a = torch.split(UpperCamelCase , sample.shape[1] , dim=1 )
else:
_a = None
# 1. compute alphas, betas
_a = self.alphas_cumprod[t]
_a = self.alphas_cumprod[t - 1] if t > 0 else self.one
_a = 1 - alpha_prod_t
_a = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
_a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
_a = model_output
else:
raise ValueError(f'Unsupported prediction_type {prediction_type}.' )
# 3. Clip "predicted x_0"
_a = self.bit_scale
if self.config.clip_sample:
_a = torch.clamp(UpperCamelCase , -scale , UpperCamelCase )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_a = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
_a = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_a = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_a = 0
if t > 0:
_a = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCamelCase ).to(model_output.device )
_a = (self._get_variance(UpperCamelCase , predicted_variance=UpperCamelCase ) ** 0.5) * noise
_a = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase )
class A ( _a ):
def __init__( self : Any , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[DDIMScheduler, DDPMScheduler] , lowerCAmelCase_ : Optional[float] = 1.0 , ) -> int:
"""simple docstring"""
super().__init__()
_a = bit_scale
_a = (
ddim_bit_scheduler_step if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ )
@torch.no_grad()
def __call__( self : List[Any] , lowerCAmelCase_ : Optional[int] = 2_56 , lowerCAmelCase_ : Optional[int] = 2_56 , lowerCAmelCase_ : Optional[int] = 50 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : Any , ) -> Union[Tuple, ImagePipelineOutput]:
"""simple docstring"""
_a = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=lowerCAmelCase_ , )
_a = decimal_to_bits(lowerCAmelCase_ ) * self.bit_scale
_a = latents.to(self.device )
self.scheduler.set_timesteps(lowerCAmelCase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
_a = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample
# compute the previous noisy sample x_t -> x_t-1
_a = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample
_a = bits_to_decimal(lowerCAmelCase_ )
if output_type == "pil":
_a = self.numpy_to_pil(lowerCAmelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowerCAmelCase_ )
| 22 | 0 |
import warnings
from contextlib import contextmanager
from ....processing_utils import ProcessorMixin
class __lowerCAmelCase ( _a ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE = 'MCTCTFeatureExtractor'
_SCREAMING_SNAKE_CASE = 'AutoTokenizer'
def __init__( self : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ) -> str:
"""simple docstring"""
super().__init__(lowerCAmelCase_ , lowerCAmelCase_ )
snake_case_ = self.feature_extractor
snake_case_ = False
def __call__( self : Dict , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Optional[int] ) -> Optional[int]:
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor(*lowerCAmelCase_ , **lowerCAmelCase_ )
if "raw_speech" in kwargs:
warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." )
snake_case_ = kwargs.pop("raw_speech" )
else:
snake_case_ = kwargs.pop("audio" , lowerCAmelCase_ )
snake_case_ = kwargs.pop("sampling_rate" , lowerCAmelCase_ )
snake_case_ = kwargs.pop("text" , lowerCAmelCase_ )
if len(lowerCAmelCase_ ) > 0:
snake_case_ = args[0]
snake_case_ = args[1:]
if audio is None and text is None:
raise ValueError("You need to specify either an `audio` or `text` input to process." )
if audio is not None:
snake_case_ = self.feature_extractor(lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_ )
if text is not None:
snake_case_ = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_ )
if text is None:
return inputs
elif audio is None:
return encodings
else:
snake_case_ = encodings["input_ids"]
return inputs
def lowerCAmelCase__ ( self : str , *_lowerCAmelCase : Any , **_lowerCAmelCase : Dict ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ )
def lowerCAmelCase__ ( self : Tuple , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor.pad(*lowerCAmelCase_ , **lowerCAmelCase_ )
snake_case_ = kwargs.pop("input_features" , lowerCAmelCase_ )
snake_case_ = kwargs.pop("labels" , lowerCAmelCase_ )
if len(lowerCAmelCase_ ) > 0:
snake_case_ = args[0]
snake_case_ = args[1:]
if input_features is not None:
snake_case_ = self.feature_extractor.pad(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ )
if labels is not None:
snake_case_ = self.tokenizer.pad(lowerCAmelCase_ , **lowerCAmelCase_ )
if labels is None:
return input_features
elif input_features is None:
return labels
else:
snake_case_ = labels["input_ids"]
return input_features
def lowerCAmelCase__ ( self : str , *_lowerCAmelCase : Dict , **_lowerCAmelCase : List[Any] ) -> Tuple:
"""simple docstring"""
return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ )
@contextmanager
def lowerCAmelCase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
warnings.warn(
"`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
"labels by using the argument `text` of the regular `__call__` method (either in the same call as "
"your audio inputs, or in a separate call." )
snake_case_ = True
snake_case_ = self.tokenizer
yield
snake_case_ = self.feature_extractor
snake_case_ = False
| 283 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_snake_case : Optional[int] = logging.get_logger(__name__)
_snake_case : Any = {
'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json',
'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json',
'junnyu/roformer_chinese_char_small': (
'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json'
),
'junnyu/roformer_chinese_char_base': (
'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json'
),
'junnyu/roformer_small_discriminator': (
'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json'
),
'junnyu/roformer_small_generator': (
'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json'
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class A ( _a ):
lowercase_ = 'roformer'
def __init__( self : str , lowerCAmelCase_ : int=5_00_00 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : int=7_68 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : List[str]=30_72 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : int=15_36 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : int=0.0_2 , lowerCAmelCase_ : Dict=1e-12 , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Tuple=True , **lowerCAmelCase_ : Optional[int] , ) -> str:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
_a = vocab_size
_a = hidden_size if embedding_size is None else embedding_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = hidden_act
_a = intermediate_size
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = initializer_range
_a = layer_norm_eps
_a = rotary_value
_a = use_cache
class A ( _a ):
@property
def __lowerCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
_a = {0: '''batch''', 1: '''sequence'''}
_a = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 22 | 0 |
import requests
from bsa import BeautifulSoup
def __lowerCamelCase (UpperCAmelCase__ : str = "AAPL" ):
SCREAMING_SNAKE_CASE = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"
SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(UpperCAmelCase__ ).text , "html.parser" )
SCREAMING_SNAKE_CASE = "My(6px) Pos(r) smartphone_Mt(6px)"
return soup.find("div" , class_=class_ ).find("span" ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
| 403 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class A :
lowercase_ = 42
lowercase_ = 42
class A :
def __init__( self : Optional[Any] , lowerCAmelCase_ : int ) -> str:
"""simple docstring"""
_a = [[] for _ in range(lowerCAmelCase_ )]
_a = size
def __getitem__( self : Any , lowerCAmelCase_ : int ) -> Iterator[Edge]:
"""simple docstring"""
return iter(self._graph[vertex] )
@property
def __lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
return self._size
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> Dict:
"""simple docstring"""
if weight not in (0, 1):
raise ValueError('''Edge weight must be either 0 or 1.''' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('''Vertex indexes must be in [0; size).''' )
self._graph[from_vertex].append(Edge(lowerCAmelCase_ , lowerCAmelCase_ ) )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> int | None:
"""simple docstring"""
_a = deque([start_vertex] )
_a = [None] * self.size
_a = 0
while queue:
_a = queue.popleft()
_a = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
_a = current_distance + edge.weight
_a = distances[edge.destination_vertex]
if (
isinstance(lowerCAmelCase_ , lowerCAmelCase_ )
and new_distance >= dest_vertex_distance
):
continue
_a = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('''No path from start_vertex to finish_vertex.''' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 22 | 0 |
import inspect
import tempfile
from collections import OrderedDict, UserDict
from collections.abc import MutableMapping
from contextlib import ExitStack, contextmanager
from dataclasses import fields
from enum import Enum
from typing import Any, ContextManager, List, Tuple
import numpy as np
from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy
if is_flax_available():
import jax.numpy as jnp
class _lowerCAmelCase( _a ):
"""simple docstring"""
def __get__( self , _lowerCamelCase , _lowerCamelCase=None ):
if obj is None:
return self
if self.fget is None:
raise AttributeError('unreadable attribute' )
UpperCamelCase_: str = '__cached_' + self.fget.__name__
UpperCamelCase_: List[str] = getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
if cached is None:
UpperCamelCase_: Dict = self.fget(lowerCAmelCase_ )
setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
return cached
def snake_case (UpperCAmelCase__ ) -> int:
UpperCamelCase_: Optional[int] = val.lower()
if val in {"y", "yes", "t", "true", "on", "1"}:
return 1
if val in {"n", "no", "f", "false", "off", "0"}:
return 0
raise ValueError(F'''invalid truth value {val!r}''' )
def snake_case (UpperCAmelCase__ ) -> int:
if is_torch_fx_proxy(UpperCAmelCase__ ):
return True
if is_torch_available():
import torch
if isinstance(UpperCAmelCase__ , torch.Tensor ):
return True
if is_tf_available():
import tensorflow as tf
if isinstance(UpperCAmelCase__ , tf.Tensor ):
return True
if is_flax_available():
import jax.numpy as jnp
from jax.core import Tracer
if isinstance(UpperCAmelCase__ , (jnp.ndarray, Tracer) ):
return True
return isinstance(UpperCAmelCase__ , np.ndarray )
def snake_case (UpperCAmelCase__ ) -> Any:
return isinstance(UpperCAmelCase__ , np.ndarray )
def snake_case (UpperCAmelCase__ ) -> Optional[int]:
return _is_numpy(UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ ) -> Tuple:
import torch
return isinstance(UpperCAmelCase__ , torch.Tensor )
def snake_case (UpperCAmelCase__ ) -> List[str]:
return False if not is_torch_available() else _is_torch(UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ ) -> Optional[Any]:
import torch
return isinstance(UpperCAmelCase__ , torch.device )
def snake_case (UpperCAmelCase__ ) -> List[Any]:
return False if not is_torch_available() else _is_torch_device(UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ ) -> Optional[Any]:
import torch
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
if hasattr(UpperCAmelCase__ , UpperCAmelCase__ ):
UpperCamelCase_: int = getattr(UpperCAmelCase__ , UpperCAmelCase__ )
else:
return False
return isinstance(UpperCAmelCase__ , torch.dtype )
def snake_case (UpperCAmelCase__ ) -> Tuple:
return False if not is_torch_available() else _is_torch_dtype(UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ ) -> Union[str, Any]:
import tensorflow as tf
return isinstance(UpperCAmelCase__ , tf.Tensor )
def snake_case (UpperCAmelCase__ ) -> Any:
return False if not is_tf_available() else _is_tensorflow(UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ ) -> Tuple:
import tensorflow as tf
# the `is_symbolic_tensor` predicate is only available starting with TF 2.14
if hasattr(UpperCAmelCase__ , 'is_symbolic_tensor' ):
return tf.is_symbolic_tensor(UpperCAmelCase__ )
return type(UpperCAmelCase__ ) == tf.Tensor
def snake_case (UpperCAmelCase__ ) -> int:
return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ ) -> List[str]:
import jax.numpy as jnp # noqa: F811
return isinstance(UpperCAmelCase__ , jnp.ndarray )
def snake_case (UpperCAmelCase__ ) -> Union[str, Any]:
return False if not is_flax_available() else _is_jax(UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ ) -> Any:
if isinstance(UpperCAmelCase__ , (dict, UserDict) ):
return {k: to_py_obj(UpperCAmelCase__ ) for k, v in obj.items()}
elif isinstance(UpperCAmelCase__ , (list, tuple) ):
return [to_py_obj(UpperCAmelCase__ ) for o in obj]
elif is_tf_tensor(UpperCAmelCase__ ):
return obj.numpy().tolist()
elif is_torch_tensor(UpperCAmelCase__ ):
return obj.detach().cpu().tolist()
elif is_jax_tensor(UpperCAmelCase__ ):
return np.asarray(UpperCAmelCase__ ).tolist()
elif isinstance(UpperCAmelCase__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays
return obj.tolist()
else:
return obj
def snake_case (UpperCAmelCase__ ) -> List[Any]:
if isinstance(UpperCAmelCase__ , (dict, UserDict) ):
return {k: to_numpy(UpperCAmelCase__ ) for k, v in obj.items()}
elif isinstance(UpperCAmelCase__ , (list, tuple) ):
return np.array(UpperCAmelCase__ )
elif is_tf_tensor(UpperCAmelCase__ ):
return obj.numpy()
elif is_torch_tensor(UpperCAmelCase__ ):
return obj.detach().cpu().numpy()
elif is_jax_tensor(UpperCAmelCase__ ):
return np.asarray(UpperCAmelCase__ )
else:
return obj
class _lowerCAmelCase( _a ):
"""simple docstring"""
def _a ( self ):
UpperCamelCase_: Any = fields(self )
# Safety and consistency checks
if not len(lowerCAmelCase_ ):
raise ValueError(f'''{self.__class__.__name__} has no fields.''' )
if not all(field.default is None for field in class_fields[1:] ):
raise ValueError(f'''{self.__class__.__name__} should not have more than one required field.''' )
UpperCamelCase_: Tuple = getattr(self , class_fields[0].name )
UpperCamelCase_: Optional[int] = all(getattr(self , field.name ) is None for field in class_fields[1:] )
if other_fields_are_none and not is_tensor(lowerCAmelCase_ ):
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
UpperCamelCase_: List[Any] = first_field.items()
UpperCamelCase_: Dict = True
else:
try:
UpperCamelCase_: List[Any] = iter(lowerCAmelCase_ )
UpperCamelCase_: Tuple = True
except TypeError:
UpperCamelCase_: int = False
# if we provided an iterator as first field and the iterator is a (key, value) iterator
# set the associated fields
if first_field_iterator:
for idx, element in enumerate(lowerCAmelCase_ ):
if (
not isinstance(lowerCAmelCase_ , (list, tuple) )
or not len(lowerCAmelCase_ ) == 2
or not isinstance(element[0] , lowerCAmelCase_ )
):
if idx == 0:
# If we do not have an iterator of key/values, set it as attribute
UpperCamelCase_: Any = first_field
else:
# If we have a mixed iterator, raise an error
raise ValueError(
f'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' )
break
setattr(self , element[0] , element[1] )
if element[1] is not None:
UpperCamelCase_: Optional[int] = element[1]
elif first_field is not None:
UpperCamelCase_: Optional[Any] = first_field
else:
for field in class_fields:
UpperCamelCase_: Any = getattr(self , field.name )
if v is not None:
UpperCamelCase_: Any = v
def __delitem__( self , *_lowerCamelCase , **_lowerCamelCase ):
raise Exception(f'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' )
def _a ( self , *_lowerCamelCase , **_lowerCamelCase ):
raise Exception(f'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' )
def _a ( self , *_lowerCamelCase , **_lowerCamelCase ):
raise Exception(f'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' )
def _a ( self , *_lowerCamelCase , **_lowerCamelCase ):
raise Exception(f'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' )
def __getitem__( self , _lowerCamelCase ):
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
UpperCamelCase_: Optional[Any] = dict(self.items() )
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__( self , _lowerCamelCase , _lowerCamelCase ):
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(lowerCAmelCase_ , lowerCAmelCase_ )
super().__setattr__(lowerCAmelCase_ , lowerCAmelCase_ )
def __setitem__( self , _lowerCamelCase , _lowerCamelCase ):
super().__setitem__(lowerCAmelCase_ , lowerCAmelCase_ )
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(lowerCAmelCase_ , lowerCAmelCase_ )
def _a ( self ):
return tuple(self[k] for k in self.keys() )
class _lowerCAmelCase( _a , _a ):
"""simple docstring"""
@classmethod
def _a ( cls , _lowerCamelCase ):
raise ValueError(
f'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' )
class _lowerCAmelCase( _a ):
"""simple docstring"""
a : Tuple ='''longest'''
a : Optional[Any] ='''max_length'''
a : Union[str, Any] ='''do_not_pad'''
class _lowerCAmelCase( _a ):
"""simple docstring"""
a : Any ='''pt'''
a : Dict ='''tf'''
a : Optional[int] ='''np'''
a : Dict ='''jax'''
class _lowerCAmelCase:
"""simple docstring"""
def __init__( self , _lowerCamelCase ):
UpperCamelCase_: Optional[int] = context_managers
UpperCamelCase_: Optional[Any] = ExitStack()
def __enter__( self ):
for context_manager in self.context_managers:
self.stack.enter_context(lowerCAmelCase_ )
def __exit__( self , *_lowerCamelCase , **_lowerCamelCase ):
self.stack.__exit__(*lowerCAmelCase_ , **lowerCAmelCase_ )
def snake_case (UpperCAmelCase__ ) -> Union[str, Any]:
UpperCamelCase_: str = infer_framework(UpperCAmelCase__ )
if framework == "tf":
UpperCamelCase_: Union[str, Any] = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
UpperCamelCase_: int = inspect.signature(model_class.forward ) # PyTorch models
else:
UpperCamelCase_: int = inspect.signature(model_class.__call__ ) # Flax models
for p in signature.parameters:
if p == "return_loss" and signature.parameters[p].default is True:
return True
return False
def snake_case (UpperCAmelCase__ ) -> Optional[int]:
UpperCamelCase_: Optional[int] = model_class.__name__
UpperCamelCase_: Any = infer_framework(UpperCAmelCase__ )
if framework == "tf":
UpperCamelCase_: List[str] = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
UpperCamelCase_: Optional[Any] = inspect.signature(model_class.forward ) # PyTorch models
else:
UpperCamelCase_: Optional[Any] = inspect.signature(model_class.__call__ ) # Flax models
if "QuestionAnswering" in model_name:
return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")]
else:
return [p for p in signature.parameters if "label" in p]
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ = "" , UpperCAmelCase__ = "." ) -> Optional[Any]:
def _flatten_dict(UpperCAmelCase__ , UpperCAmelCase__="" , UpperCAmelCase__="." ):
for k, v in d.items():
UpperCamelCase_: Dict = str(UpperCAmelCase__ ) + delimiter + str(UpperCAmelCase__ ) if parent_key else k
if v and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
yield from flatten_dict(UpperCAmelCase__ , UpperCAmelCase__ , delimiter=UpperCAmelCase__ ).items()
else:
yield key, v
return dict(_flatten_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) )
@contextmanager
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ = False ) -> Union[str, Any]:
if use_temp_dir:
with tempfile.TemporaryDirectory() as tmp_dir:
yield tmp_dir
else:
yield working_dir
def snake_case (UpperCAmelCase__ , UpperCAmelCase__=None ) -> List[str]:
if is_numpy_array(UpperCAmelCase__ ):
return np.transpose(UpperCAmelCase__ , axes=UpperCAmelCase__ )
elif is_torch_tensor(UpperCAmelCase__ ):
return array.T if axes is None else array.permute(*UpperCAmelCase__ )
elif is_tf_tensor(UpperCAmelCase__ ):
import tensorflow as tf
return tf.transpose(UpperCAmelCase__ , perm=UpperCAmelCase__ )
elif is_jax_tensor(UpperCAmelCase__ ):
return jnp.transpose(UpperCAmelCase__ , axes=UpperCAmelCase__ )
else:
raise ValueError(F'''Type not supported for transpose: {type(UpperCAmelCase__ )}.''' )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]:
if is_numpy_array(UpperCAmelCase__ ):
return np.reshape(UpperCAmelCase__ , UpperCAmelCase__ )
elif is_torch_tensor(UpperCAmelCase__ ):
return array.reshape(*UpperCAmelCase__ )
elif is_tf_tensor(UpperCAmelCase__ ):
import tensorflow as tf
return tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ )
elif is_jax_tensor(UpperCAmelCase__ ):
return jnp.reshape(UpperCAmelCase__ , UpperCAmelCase__ )
else:
raise ValueError(F'''Type not supported for reshape: {type(UpperCAmelCase__ )}.''' )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__=None ) -> Any:
if is_numpy_array(UpperCAmelCase__ ):
return np.squeeze(UpperCAmelCase__ , axis=UpperCAmelCase__ )
elif is_torch_tensor(UpperCAmelCase__ ):
return array.squeeze() if axis is None else array.squeeze(dim=UpperCAmelCase__ )
elif is_tf_tensor(UpperCAmelCase__ ):
import tensorflow as tf
return tf.squeeze(UpperCAmelCase__ , axis=UpperCAmelCase__ )
elif is_jax_tensor(UpperCAmelCase__ ):
return jnp.squeeze(UpperCAmelCase__ , axis=UpperCAmelCase__ )
else:
raise ValueError(F'''Type not supported for squeeze: {type(UpperCAmelCase__ )}.''' )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]:
if is_numpy_array(UpperCAmelCase__ ):
return np.expand_dims(UpperCAmelCase__ , UpperCAmelCase__ )
elif is_torch_tensor(UpperCAmelCase__ ):
return array.unsqueeze(dim=UpperCAmelCase__ )
elif is_tf_tensor(UpperCAmelCase__ ):
import tensorflow as tf
return tf.expand_dims(UpperCAmelCase__ , axis=UpperCAmelCase__ )
elif is_jax_tensor(UpperCAmelCase__ ):
return jnp.expand_dims(UpperCAmelCase__ , axis=UpperCAmelCase__ )
else:
raise ValueError(F'''Type not supported for expand_dims: {type(UpperCAmelCase__ )}.''' )
def snake_case (UpperCAmelCase__ ) -> Dict:
if is_numpy_array(UpperCAmelCase__ ):
return np.size(UpperCAmelCase__ )
elif is_torch_tensor(UpperCAmelCase__ ):
return array.numel()
elif is_tf_tensor(UpperCAmelCase__ ):
import tensorflow as tf
return tf.size(UpperCAmelCase__ )
elif is_jax_tensor(UpperCAmelCase__ ):
return array.size
else:
raise ValueError(F'''Type not supported for expand_dims: {type(UpperCAmelCase__ )}.''' )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[int]:
for key, value in auto_map.items():
if isinstance(UpperCAmelCase__ , (tuple, list) ):
UpperCamelCase_: Optional[int] = [F'''{repo_id}--{v}''' if (v is not None and '--' not in v) else v for v in value]
elif value is not None and "--" not in value:
UpperCamelCase_: Tuple = F'''{repo_id}--{value}'''
return auto_map
def snake_case (UpperCAmelCase__ ) -> str:
for base_class in inspect.getmro(UpperCAmelCase__ ):
UpperCamelCase_: str = base_class.__module__
UpperCamelCase_: List[str] = base_class.__name__
if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel":
return "tf"
elif module.startswith('torch' ) or name == "PreTrainedModel":
return "pt"
elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel":
return "flax"
else:
raise TypeError(F'''Could not infer framework from class {model_class}.''' ) | 57 |
'''simple docstring'''
from math import pi, sqrt
def snake_case_ (UpperCamelCase : float ):
'''simple docstring'''
if num <= 0:
raise ValueError('''math domain error''' )
if num > 171.5:
raise OverflowError('''math range error''' )
elif num - int(UpperCamelCase ) not in (0, 0.5):
raise NotImplementedError('''num must be an integer or a half-integer''' )
elif num == 0.5:
return sqrt(UpperCamelCase )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def snake_case_ ():
'''simple docstring'''
assert gamma(0.5 ) == sqrt(UpperCamelCase )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
_snake_case : Optional[Any] = 1.0
while num:
_snake_case : Dict = float(input('Gamma of: '))
print(F'''gamma({num}) = {gamma(num)}''')
print('\nEnter 0 to exit...')
| 22 | 0 |
"""simple docstring"""
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
__A = {
'E': 12.70,
'T': 9.06,
'A': 8.17,
'O': 7.51,
'I': 6.97,
'N': 6.75,
'S': 6.33,
'H': 6.09,
'R': 5.99,
'D': 4.25,
'L': 4.03,
'C': 2.78,
'U': 2.76,
'M': 2.41,
'W': 2.36,
'F': 2.23,
'G': 2.02,
'Y': 1.97,
'P': 1.93,
'B': 1.29,
'V': 0.98,
'K': 0.77,
'J': 0.15,
'X': 0.15,
'Q': 0.10,
'Z': 0.07,
}
__A = 'ETAOINSHRDLCUMWFGYPBVKJXQZ'
__A = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
def __A (_SCREAMING_SNAKE_CASE ) ->int:
"""simple docstring"""
lowerCAmelCase__ :Tuple = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def __A (_SCREAMING_SNAKE_CASE ) ->Any:
"""simple docstring"""
return x[0]
def __A (_SCREAMING_SNAKE_CASE ) ->Optional[int]:
"""simple docstring"""
lowerCAmelCase__ :List[str] = get_letter_count(_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :Tuple = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :int = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :Optional[Any] = ''.join(freq_to_letter[freq] )
lowerCAmelCase__ :str = list(freq_to_letter_str.items() )
freq_pairs.sort(key=_SCREAMING_SNAKE_CASE , reverse=_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :Optional[Any] = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(_SCREAMING_SNAKE_CASE )
def __A (_SCREAMING_SNAKE_CASE ) ->Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ :List[Any] = get_frequency_order(_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :Union[str, Any] = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod()
| 93 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : List[Any] ) -> int:
"""simple docstring"""
_a = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' )
_a = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
sd_pipe.set_scheduler('''sample_euler''' )
_a = '''A painting of a squirrel eating a burger'''
_a = torch.manual_seed(0 )
_a = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
_a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
_a = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
sd_pipe.set_scheduler('''sample_euler''' )
_a = '''A painting of a squirrel eating a burger'''
_a = torch.manual_seed(0 )
_a = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1
def __lowerCAmelCase ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
_a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
_a = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
sd_pipe.set_scheduler('''sample_dpmpp_2m''' )
_a = '''A painting of a squirrel eating a burger'''
_a = torch.manual_seed(0 )
_a = sd_pipe(
[prompt] , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=lowerCAmelCase_ , )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array(
[0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 22 | 0 |
'''simple docstring'''
from math import atan, cos, radians, sin, tan
from .haversine_distance import haversine_distance
_UpperCamelCase : Tuple =6_37_81_37.0
_UpperCamelCase : Optional[int] =6_35_67_52.31_42_45
_UpperCamelCase : int =6_37_81_37
def lowerCamelCase_ ( A_ , A_ , A_ , A_ ):
__lowerCamelCase = (AXIS_A - AXIS_B) / AXIS_A
# Parametric latitudes
# https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude
__lowerCamelCase = atan((1 - flattening) * tan(radians(A_ ) ) )
__lowerCamelCase = atan((1 - flattening) * tan(radians(A_ ) ) )
# Compute central angle between two points
# using haversine theta. sigma = haversine_distance / equatorial radius
__lowerCamelCase = haversine_distance(A_ , A_ , A_ , A_ ) / EQUATORIAL_RADIUS
# Intermediate P and Q values
__lowerCamelCase = (b_lata + b_lata) / 2
__lowerCamelCase = (b_lata - b_lata) / 2
# Intermediate X value
# X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2)
__lowerCamelCase = (sin(A_ ) ** 2) * (cos(A_ ) ** 2)
__lowerCamelCase = cos(sigma / 2 ) ** 2
__lowerCamelCase = (sigma - sin(A_ )) * (x_numerator / x_demonimator)
# Intermediate Y value
# Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2)
__lowerCamelCase = (cos(A_ ) ** 2) * (sin(A_ ) ** 2)
__lowerCamelCase = sin(sigma / 2 ) ** 2
__lowerCamelCase = (sigma + sin(A_ )) * (y_numerator / y_denominator)
return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 316 |
'''simple docstring'''
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
_snake_case : Any = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
_snake_case : Any = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n'
_snake_case : List[Any] = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n'
def snake_case_ (UpperCamelCase : Tuple ):
'''simple docstring'''
def remove_articles(UpperCamelCase : Optional[int] ):
_a = re.compile(R'''\b(a|an|the)\b''' , re.UNICODE )
return re.sub(UpperCamelCase , ''' ''' , UpperCamelCase )
def white_space_fix(UpperCamelCase : Union[str, Any] ):
return " ".join(text.split() )
def remove_punc(UpperCamelCase : str ):
_a = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(UpperCamelCase : Tuple ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase ) ) ) )
def snake_case_ (UpperCamelCase : int , UpperCamelCase : Dict ):
'''simple docstring'''
return int(normalize_answer(UpperCamelCase ) == normalize_answer(UpperCamelCase ) )
def snake_case_ (UpperCamelCase : List[str] , UpperCamelCase : List[str] ):
'''simple docstring'''
_a = [any(compute_exact(UpperCamelCase , UpperCamelCase ) for ref in refs ) for pred, refs in zip(UpperCamelCase , UpperCamelCase )]
return (sum(UpperCamelCase ) / len(UpperCamelCase )) * 100
def snake_case_ (UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
_a = [rgram for rgrams in rgramslist for rgram in rgrams]
_a = Counter(UpperCamelCase )
_a = Counter(UpperCamelCase )
_a = Counter()
for sgram, scount in sgramcounter.items():
_a = scount * numref
_a = Counter(UpperCamelCase )
_a = Counter()
for cgram, ccount in cgramcounter.items():
_a = ccount * numref
# KEEP
_a = sgramcounter_rep & cgramcounter_rep
_a = keepgramcounter_rep & rgramcounter
_a = sgramcounter_rep & rgramcounter
_a = 0
_a = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(UpperCamelCase ) > 0:
_a = keeptmpscorea / len(UpperCamelCase )
if len(UpperCamelCase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_a = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_a = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_a = sgramcounter_rep - cgramcounter_rep
_a = delgramcounter_rep - rgramcounter
_a = sgramcounter_rep - rgramcounter
_a = 0
_a = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
if len(UpperCamelCase ) > 0:
_a = deltmpscorea / len(UpperCamelCase )
# ADDITION
_a = set(UpperCamelCase ) - set(UpperCamelCase )
_a = set(UpperCamelCase ) & set(UpperCamelCase )
_a = set(UpperCamelCase ) - set(UpperCamelCase )
_a = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(UpperCamelCase ) > 0:
_a = addtmpscore / len(UpperCamelCase )
if len(UpperCamelCase ) > 0:
_a = addtmpscore / len(UpperCamelCase )
_a = 0
if addscore_precision > 0 or addscore_recall > 0:
_a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def snake_case_ (UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] ):
'''simple docstring'''
_a = len(UpperCamelCase )
_a = ssent.split(''' ''' )
_a = csent.split(''' ''' )
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
for rsent in rsents:
_a = rsent.split(''' ''' )
_a = []
_a = []
_a = []
ragramslist.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
_a = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
_a = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
_a = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
_a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_a = sum([delascore, delascore, delascore, delascore] ) / 4
_a = sum([addascore, addascore, addascore, addascore] ) / 4
_a = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def snake_case_ (UpperCamelCase : str , UpperCamelCase : bool = True , UpperCamelCase : str = "13a" , UpperCamelCase : bool = True ):
'''simple docstring'''
if lowercase:
_a = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_a = sacrebleu.metrics.bleu._get_tokenizer(UpperCamelCase )()(UpperCamelCase )
else:
_a = sacrebleu.TOKENIZERS[tokenizer]()(UpperCamelCase )
elif tokenizer == "moses":
_a = sacremoses.MosesTokenizer().tokenize(UpperCamelCase , return_str=UpperCamelCase , escape=UpperCamelCase )
elif tokenizer == "penn":
_a = sacremoses.MosesTokenizer().penn_tokenize(UpperCamelCase , return_str=UpperCamelCase )
else:
_a = sentence
if not return_str:
_a = normalized_sent.split()
return normalized_sent
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : Dict ):
'''simple docstring'''
if not (len(UpperCamelCase ) == len(UpperCamelCase ) == len(UpperCamelCase )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
_a = 0
for src, pred, refs in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ):
sari_score += SARIsent(normalize(UpperCamelCase ) , normalize(UpperCamelCase ) , [normalize(UpperCamelCase ) for sent in refs] )
_a = sari_score / len(UpperCamelCase )
return 100 * sari_score
def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : List[str]="exp" , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[int]=False , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=False , ):
'''simple docstring'''
_a = len(references[0] )
if any(len(UpperCamelCase ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_a = [[refs[i] for refs in references] for i in range(UpperCamelCase )]
_a = sacrebleu.corpus_bleu(
UpperCamelCase , UpperCamelCase , smooth_method=UpperCamelCase , smooth_value=UpperCamelCase , force=UpperCamelCase , lowercase=UpperCamelCase , use_effective_order=UpperCamelCase , )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
def __lowerCAmelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any ) -> Dict:
"""simple docstring"""
_a = {}
result.update({'''sari''': compute_sari(sources=lowerCAmelCase_ , predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} )
result.update({'''exact''': compute_em(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} )
return result
| 22 | 0 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
__snake_case :Dict =logging.get_logger(__name__)
__snake_case :int ={
'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json',
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class lowerCAmelCase__ ( _a ):
A_ : Any = 'dpt'
def __init__( self : List[Any] , __UpperCamelCase : int=768 , __UpperCamelCase : str=12 , __UpperCamelCase : Any=12 , __UpperCamelCase : List[Any]=3_072 , __UpperCamelCase : Any="gelu" , __UpperCamelCase : Any=0.0 , __UpperCamelCase : Union[str, Any]=0.0 , __UpperCamelCase : List[str]=0.0_2 , __UpperCamelCase : Any=1e-12 , __UpperCamelCase : List[Any]=384 , __UpperCamelCase : Optional[Any]=16 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : int=False , __UpperCamelCase : str=True , __UpperCamelCase : Dict=[2, 5, 8, 11] , __UpperCamelCase : Optional[Any]="project" , __UpperCamelCase : int=[4, 2, 1, 0.5] , __UpperCamelCase : Optional[Any]=[96, 192, 384, 768] , __UpperCamelCase : List[Any]=256 , __UpperCamelCase : Optional[int]=-1 , __UpperCamelCase : int=False , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Any=0.4 , __UpperCamelCase : List[str]=255 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : Tuple=[1, 1_024, 24, 24] , __UpperCamelCase : Optional[int]=[0, 1] , __UpperCamelCase : int=None , **__UpperCamelCase : Dict , ) -> Union[str, Any]:
super().__init__(**lowerCAmelCase_ )
A = hidden_size
A = is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info('Initializing the config with a `BiT` backbone.' )
A = {
'global_padding': 'same',
'layer_type': 'bottleneck',
'depths': [3, 4, 9],
'out_features': ['stage1', 'stage2', 'stage3'],
'embedding_dynamic_padding': True,
}
A = BitConfig(**lowerCAmelCase_ )
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
logger.info('Initializing the config with a `BiT` backbone.' )
A = BitConfig(**lowerCAmelCase_ )
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
A = backbone_config
else:
raise ValueError(
f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' )
A = backbone_featmap_shape
A = neck_ignore_stages
if readout_type != "project":
raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' )
else:
A = None
A = None
A = []
A = num_hidden_layers
A = num_attention_heads
A = intermediate_size
A = hidden_act
A = hidden_dropout_prob
A = attention_probs_dropout_prob
A = initializer_range
A = layer_norm_eps
A = image_size
A = patch_size
A = num_channels
A = qkv_bias
A = backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' )
A = readout_type
A = reassemble_factors
A = neck_hidden_sizes
A = fusion_hidden_size
A = head_in_index
A = use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
A = use_auxiliary_head
A = auxiliary_loss_weight
A = semantic_loss_ignore_index
A = semantic_classifier_dropout
def __UpperCamelCase ( self : Tuple ) -> List[str]:
A = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
A = self.backbone_config.to_dict()
A = self.__class__.model_type
return output | 106 |
'''simple docstring'''
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'):
_snake_case : Tuple = {
'linear': PIL.Image.Resampling.BILINEAR,
'bilinear': PIL.Image.Resampling.BILINEAR,
'bicubic': PIL.Image.Resampling.BICUBIC,
'lanczos': PIL.Image.Resampling.LANCZOS,
'nearest': PIL.Image.Resampling.NEAREST,
}
else:
_snake_case : Any = {
'linear': PIL.Image.LINEAR,
'bilinear': PIL.Image.BILINEAR,
'bicubic': PIL.Image.BICUBIC,
'lanczos': PIL.Image.LANCZOS,
'nearest': PIL.Image.NEAREST,
}
def snake_case_ (UpperCamelCase : Optional[int] ):
'''simple docstring'''
_a = (images / 2 + 0.5).clamp(0 , 1 )
_a = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
_a = numpy_to_pil(UpperCamelCase )
return images
def snake_case_ (UpperCamelCase : str ):
'''simple docstring'''
if images.ndim == 3:
_a = images[None, ...]
_a = (images * 255).round().astype('''uint8''' )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
_a = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images]
else:
_a = [Image.fromarray(UpperCamelCase ) for image in images]
return pil_images
| 22 | 0 |
import json
import os
import unittest
from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast
from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _lowerCamelCase ( _a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : int =GPTaTokenizer
UpperCAmelCase_ : Optional[int] =GPTaTokenizerFast
UpperCAmelCase_ : Dict =True
UpperCAmelCase_ : Optional[int] ={"add_prefix_space": True}
UpperCAmelCase_ : List[str] =False
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__snake_case : str = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
"<|endoftext|>",
]
__snake_case : List[Any] = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) )
__snake_case : int = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
__snake_case : Optional[Any] = {"unk_token": "<unk>"}
__snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
__snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(lowerCAmelCase_ ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(lowerCAmelCase_ ) )
def UpperCAmelCase ( self , **UpperCAmelCase ) -> List[str]:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return GPTaTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ )
def UpperCAmelCase ( self , **UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase_ )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__snake_case : List[Any] = "lower newer"
__snake_case : Optional[Any] = "lower newer"
return input_text, output_text
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : Optional[Any] = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
__snake_case : Optional[Any] = "lower newer"
__snake_case : Dict = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"]
__snake_case : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ )
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
__snake_case : List[str] = tokens + [tokenizer.unk_token]
__snake_case : Optional[int] = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ )
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
__snake_case : List[str] = self.get_tokenizer()
__snake_case : List[str] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase_ )
__snake_case : Optional[int] = "lower newer"
# Testing tokenization
__snake_case : Dict = tokenizer.tokenize(lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ )
__snake_case : Dict = rust_tokenizer.tokenize(lowerCAmelCase_ )
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
# Testing conversion to ids without special tokens
__snake_case : Optional[Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ )
__snake_case : Dict = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ )
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
# Testing conversion to ids with special tokens
__snake_case : Tuple = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase_ )
__snake_case : Any = tokenizer.encode(lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ )
__snake_case : Dict = rust_tokenizer.encode(lowerCAmelCase_ )
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
# Testing the unknown token
__snake_case : Optional[Any] = tokens + [rust_tokenizer.unk_token]
__snake_case : Any = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
pass
def UpperCAmelCase ( self , UpperCAmelCase=15 ) -> Any:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__snake_case : Dict = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
# Simple input
__snake_case : Union[str, Any] = "This is a simple input"
__snake_case : Dict = ["This is a simple input 1", "This is a simple input 2"]
__snake_case : Tuple = ("This is a simple input", "This is a pair")
__snake_case : Any = [
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
]
# Simple input tests
self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="max_length" )
# Simple input
self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="max_length" )
# Simple input
self.assertRaises(
lowerCAmelCase_ , tokenizer_r.batch_encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="max_length" , )
# Pair input
self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="max_length" )
# Pair input
self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="max_length" )
# Pair input
self.assertRaises(
lowerCAmelCase_ , tokenizer_r.batch_encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="max_length" , )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
__snake_case : str = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" )
# Simple input
__snake_case : Optional[Any] = "This is a simple input"
__snake_case : List[Any] = ["This is a simple input looooooooong", "This is a simple input"]
__snake_case : Union[str, Any] = ("This is a simple input", "This is a pair")
__snake_case : Union[str, Any] = [
("This is a simple input loooooong", "This is a simple input"),
("This is a simple pair loooooong", "This is a simple pair"),
]
__snake_case : int = tokenizer.pad_token_id
__snake_case : Optional[Any] = tokenizer(lowerCAmelCase_ , padding="max_length" , max_length=30 , return_tensors="np" )
__snake_case : Dict = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , truncate=lowerCAmelCase_ , return_tensors="np" )
__snake_case : Optional[Any] = tokenizer(*lowerCAmelCase_ , padding="max_length" , max_length=60 , return_tensors="np" )
__snake_case : Any = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , truncate=lowerCAmelCase_ , return_tensors="np" )
# s
# test single string max_length padding
self.assertEqual(out_s["input_ids"].shape[-1] , 30 )
self.assertTrue(pad_token_id in out_s["input_ids"] )
self.assertTrue(0 in out_s["attention_mask"] )
# s2
# test automatic padding
self.assertEqual(out_sa["input_ids"].shape[-1] , 33 )
# long slice doesn't have padding
self.assertFalse(pad_token_id in out_sa["input_ids"][0] )
self.assertFalse(0 in out_sa["attention_mask"][0] )
# short slice does have padding
self.assertTrue(pad_token_id in out_sa["input_ids"][1] )
self.assertTrue(0 in out_sa["attention_mask"][1] )
# p
# test single pair max_length padding
self.assertEqual(out_p["input_ids"].shape[-1] , 60 )
self.assertTrue(pad_token_id in out_p["input_ids"] )
self.assertTrue(0 in out_p["attention_mask"] )
# p2
# test automatic padding pair
self.assertEqual(out_pa["input_ids"].shape[-1] , 52 )
# long slice pair doesn't have padding
self.assertFalse(pad_token_id in out_pa["input_ids"][0] )
self.assertFalse(0 in out_pa["attention_mask"][0] )
# short slice pair does have padding
self.assertTrue(pad_token_id in out_pa["input_ids"][1] )
self.assertTrue(0 in out_pa["attention_mask"][1] )
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : Tuple = "$$$"
__snake_case : str = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=lowerCAmelCase_ , add_bos_token=lowerCAmelCase_ )
__snake_case : str = "This is a simple input"
__snake_case : str = ["This is a simple input 1", "This is a simple input 2"]
__snake_case : Union[str, Any] = tokenizer.bos_token_id
__snake_case : Tuple = tokenizer(lowerCAmelCase_ )
__snake_case : List[Any] = tokenizer(lowerCAmelCase_ )
self.assertEqual(out_s.input_ids[0] , lowerCAmelCase_ )
self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) )
__snake_case : List[str] = tokenizer.decode(out_s.input_ids )
__snake_case : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids )
self.assertEqual(decode_s.split()[0] , lowerCAmelCase_ )
self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) )
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
pass
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : int = [self.get_tokenizer(do_lower_case=lowerCAmelCase_ , add_bos_token=lowerCAmelCase_ )]
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
__snake_case : Union[str, Any] = "Encode this."
__snake_case : Tuple = "This one too please."
__snake_case : str = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ )
encoded_sequence += tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ )
__snake_case : str = tokenizer.encode_plus(
lowerCAmelCase_ , lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , )
__snake_case : Any = encoded_sequence_dict["input_ids"]
__snake_case : Optional[Any] = encoded_sequence_dict["special_tokens_mask"]
self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) )
__snake_case : List[Any] = [
(x if not special_tokens_mask[i] else None) for i, x in enumerate(lowerCAmelCase_ )
]
__snake_case : Any = [x for x in filtered_sequence if x is not None]
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
@require_tokenizers
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
__snake_case : Tuple = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=lowerCAmelCase_ )
__snake_case : Any = "A photo of a cat"
__snake_case : Optional[Any] = tokenizer.encode(
lowerCAmelCase_ , )
self.assertEqual(lowerCAmelCase_ , [2, 250, 1345, 9, 10, 4758] )
tokenizer.save_pretrained("test_opt" )
__snake_case : str = AutoTokenizer.from_pretrained("./test_opt" )
__snake_case : Tuple = tokenizer.encode(
lowerCAmelCase_ , )
self.assertEqual(lowerCAmelCase_ , [2, 250, 1345, 9, 10, 4758] )
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : Dict = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=lowerCAmelCase_ )
__snake_case : int = "A photo of a cat"
__snake_case : Union[str, Any] = tokenizer.encode(
lowerCAmelCase_ , )
# Same as above
self.assertEqual(lowerCAmelCase_ , [2, 250, 1345, 9, 10, 4758] )
@unittest.skip("This test is failing because of a bug in the fast tokenizer" )
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : Any = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=lowerCAmelCase_ )
__snake_case : Optional[Any] = "bos"
__snake_case : List[Any] = tokenizer.get_vocab()["bos"]
__snake_case : Any = "A photo of a cat"
__snake_case : Optional[Any] = tokenizer.encode(
lowerCAmelCase_ , )
# We changed the bos token
self.assertEqual(lowerCAmelCase_ , [31957, 250, 1345, 9, 10, 4758] )
tokenizer.save_pretrained("./tok" )
__snake_case : List[str] = AutoTokenizer.from_pretrained("./tok" )
self.assertTrue(tokenizer.is_fast )
__snake_case : Optional[Any] = tokenizer.encode(
lowerCAmelCase_ , )
self.assertEqual(lowerCAmelCase_ , [31957, 250, 1345, 9, 10, 4758] )
| 243 |
'''simple docstring'''
import requests
def snake_case_ (UpperCamelCase : str , UpperCamelCase : str ):
'''simple docstring'''
_a = {'''Content-Type''': '''application/json'''}
_a = requests.post(UpperCamelCase , json={'''text''': message_body} , headers=UpperCamelCase )
if response.status_code != 200:
_a = (
'''Request to slack returned an error '''
f'{response.status_code}, the response is:\n{response.text}'
)
raise ValueError(UpperCamelCase )
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
| 22 | 0 |
'''simple docstring'''
import numpy
# List of input, output pairs
snake_case = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
snake_case = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50))
snake_case = [2, 4, 1, 5]
snake_case = len(train_data)
snake_case = 0.009
def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_="train" ):
"""simple docstring"""
return calculate_hypothesis_value(lowerCamelCase_ , lowerCamelCase_ ) - output(
lowerCamelCase_ , lowerCamelCase_ )
def UpperCAmelCase_ ( lowerCamelCase_ ):
"""simple docstring"""
lowerCAmelCase__ : List[Any] = 0
for i in range(len(lowerCamelCase_ ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_=m ):
"""simple docstring"""
lowerCAmelCase__ : str = 0
for i in range(lowerCamelCase_ ):
if index == -1:
summation_value += _error(lowerCamelCase_ )
else:
summation_value += _error(lowerCamelCase_ ) * train_data[i][0][index]
return summation_value
def UpperCAmelCase_ ( lowerCamelCase_ ):
"""simple docstring"""
lowerCAmelCase__ : List[str] = summation_of_cost_derivative(lowerCamelCase_ , lowerCamelCase_ ) / m
return cost_derivative_value
def UpperCAmelCase_ ( ):
"""simple docstring"""
global parameter_vector
# Tune these values to set a tolerance value for predicted output
lowerCAmelCase__ : str = 0.00_0002
lowerCAmelCase__ : List[Any] = 0
lowerCAmelCase__ : Tuple = 0
while True:
j += 1
lowerCAmelCase__ : Tuple = [0, 0, 0, 0]
for i in range(0 , len(lowerCamelCase_ ) ):
lowerCAmelCase__ : Optional[int] = get_cost_derivative(i - 1 )
lowerCAmelCase__ : Dict = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
lowerCamelCase_ , lowerCamelCase_ , atol=lowerCamelCase_ , rtol=lowerCamelCase_ , ):
break
lowerCAmelCase__ : Optional[int] = temp_parameter_vector
print(("Number of iterations:", j) )
def UpperCAmelCase_ ( ):
"""simple docstring"""
for i in range(len(lowerCamelCase_ ) ):
print(("Actual output value:", output(lowerCamelCase_ , "test" )) )
print(("Hypothesis output:", calculate_hypothesis_value(lowerCamelCase_ , "test" )) )
if __name__ == "__main__":
run_gradient_descent()
print("""\nTesting gradient descent for a linear hypothesis function.\n""")
test_gradient_descent()
| 378 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
_snake_case : Tuple = logging.get_logger(__name__)
class A ( _a ):
lowercase_ = ['pixel_values']
def __init__( self : str , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : Any , ) -> None:
"""simple docstring"""
super().__init__(**lowerCAmelCase_ )
_a = size if size is not None else {'''shortest_edge''': 2_56}
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
_a = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24}
_a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' )
_a = do_resize
_a = size
_a = resample
_a = do_center_crop
_a = crop_size
_a = do_rescale
_a = rescale_factor
_a = do_normalize
_a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_a = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_a = get_resize_output_image_size(lowerCAmelCase_ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase_ )
return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' )
return center_crop(lowerCAmelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Tuple ) -> np.ndarray:
"""simple docstring"""
return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray:
"""simple docstring"""
return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : Union[str, Any] , ) -> Union[str, Any]:
"""simple docstring"""
_a = do_resize if do_resize is not None else self.do_resize
_a = size if size is not None else self.size
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
_a = resample if resample is not None else self.resample
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' )
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = make_list_of_images(lowerCAmelCase_ )
if not valid_images(lowerCAmelCase_ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_a = [to_numpy_array(lowerCAmelCase_ ) for image in images]
if do_resize:
_a = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images]
if do_rescale:
_a = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images]
if do_normalize:
_a = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images]
_a = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Tuple] = None ) -> Any:
"""simple docstring"""
_a = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowerCAmelCase_ ):
_a = target_sizes.numpy()
_a = []
for idx in range(len(lowerCAmelCase_ ) ):
_a = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase_ )
_a = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowerCAmelCase_ )
else:
_a = logits.argmax(dim=1 )
_a = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 22 | 0 |
"""simple docstring"""
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse("3.8"):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def lowercase (_snake_case ,_snake_case=False ) -> List[Any]:
'''simple docstring'''
try:
__UpperCamelCase = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
__UpperCamelCase = default
else:
# KEY is set, convert it to True or False.
try:
__UpperCamelCase = strtobool(_snake_case )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f"""If set, {key} must be yes or no.""" )
return _value
_A = parse_flag_from_env("RUN_SLOW", default=False)
_A = parse_flag_from_env("RUN_REMOTE", default=False)
_A = parse_flag_from_env("RUN_LOCAL", default=True)
_A = parse_flag_from_env("RUN_PACKAGED", default=True)
# Compression
_A = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4")
_A = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr")
_A = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard")
# Audio
_A = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec("soundfile") is None or version.parse(importlib_metadata.version("soundfile")) < version.parse("0.12.0"),
reason="test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ",
)
# Beam
_A = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"),
reason="test requires apache-beam and a compatible dill version",
)
# Dill-cloudpickle compatibility
_A = pytest.mark.skipif(
config.DILL_VERSION <= version.parse("0.3.2"),
reason="test requires dill>0.3.2 for cloudpickle compatibility",
)
# Windows
_A = pytest.mark.skipif(
sys.platform == "win32",
reason="test should not be run on Windows",
)
def lowercase (_snake_case ) -> Tuple:
'''simple docstring'''
try:
import faiss # noqa
except ImportError:
__UpperCamelCase = unittest.skip("test requires faiss" )(_snake_case )
return test_case
def lowercase (_snake_case ) -> Union[str, Any]:
'''simple docstring'''
try:
import regex # noqa
except ImportError:
__UpperCamelCase = unittest.skip("test requires regex" )(_snake_case )
return test_case
def lowercase (_snake_case ) -> Optional[Any]:
'''simple docstring'''
try:
import elasticsearch # noqa
except ImportError:
__UpperCamelCase = unittest.skip("test requires elasticsearch" )(_snake_case )
return test_case
def lowercase (_snake_case ) -> Optional[Any]:
'''simple docstring'''
try:
import sqlalchemy # noqa
except ImportError:
__UpperCamelCase = unittest.skip("test requires sqlalchemy" )(_snake_case )
return test_case
def lowercase (_snake_case ) -> Dict:
'''simple docstring'''
if not config.TORCH_AVAILABLE:
__UpperCamelCase = unittest.skip("test requires PyTorch" )(_snake_case )
return test_case
def lowercase (_snake_case ) -> Optional[Any]:
'''simple docstring'''
if not config.TF_AVAILABLE:
__UpperCamelCase = unittest.skip("test requires TensorFlow" )(_snake_case )
return test_case
def lowercase (_snake_case ) -> Optional[Any]:
'''simple docstring'''
if not config.JAX_AVAILABLE:
__UpperCamelCase = unittest.skip("test requires JAX" )(_snake_case )
return test_case
def lowercase (_snake_case ) -> int:
'''simple docstring'''
if not config.PIL_AVAILABLE:
__UpperCamelCase = unittest.skip("test requires Pillow" )(_snake_case )
return test_case
def lowercase (_snake_case ) -> Any:
'''simple docstring'''
try:
import transformers # noqa F401
except ImportError:
return unittest.skip("test requires transformers" )(_snake_case )
else:
return test_case
def lowercase (_snake_case ) -> int:
'''simple docstring'''
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip("test requires tiktoken" )(_snake_case )
else:
return test_case
def lowercase (_snake_case ) -> Union[str, Any]:
'''simple docstring'''
try:
import spacy # noqa F401
except ImportError:
return unittest.skip("test requires spacy" )(_snake_case )
else:
return test_case
def lowercase (_snake_case ) -> Tuple:
'''simple docstring'''
def _require_spacy_model(_snake_case ):
try:
import spacy # noqa F401
spacy.load(_snake_case )
except ImportError:
return unittest.skip("test requires spacy" )(_snake_case )
except OSError:
return unittest.skip("test requires spacy model \'{}\'".format(_snake_case ) )(_snake_case )
else:
return test_case
return _require_spacy_model
def lowercase (_snake_case ) -> Dict:
'''simple docstring'''
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip("test requires pyspark" )(_snake_case )
else:
return test_case
def lowercase (_snake_case ) -> List[str]:
'''simple docstring'''
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip("test requires joblibspark" )(_snake_case )
else:
return test_case
def lowercase (_snake_case ) -> List[str]:
'''simple docstring'''
if not _run_slow_tests or _run_slow_tests == 0:
__UpperCamelCase = unittest.skip("test is slow" )(_snake_case )
return test_case
def lowercase (_snake_case ) -> int:
'''simple docstring'''
if not _run_local_tests or _run_local_tests == 0:
__UpperCamelCase = unittest.skip("test is local" )(_snake_case )
return test_case
def lowercase (_snake_case ) -> Union[str, Any]:
'''simple docstring'''
if not _run_packaged_tests or _run_packaged_tests == 0:
__UpperCamelCase = unittest.skip("test is packaged" )(_snake_case )
return test_case
def lowercase (_snake_case ) -> Optional[int]:
'''simple docstring'''
if not _run_remote_tests or _run_remote_tests == 0:
__UpperCamelCase = unittest.skip("test requires remote" )(_snake_case )
return test_case
def lowercase (*_snake_case ) -> str:
'''simple docstring'''
def decorate(cls ):
for name, fn in cls.__dict__.items():
if callable(_snake_case ) and name.startswith("test" ):
for decorator in decorators:
__UpperCamelCase = decorator(_snake_case )
setattr(cls ,_snake_case ,_snake_case )
return cls
return decorate
class __UpperCAmelCase ( _a ):
"""simple docstring"""
pass
class __UpperCAmelCase ( _a ):
"""simple docstring"""
_snake_case : str = 0
_snake_case : str = 1
_snake_case : Optional[int] = 2
@contextmanager
def lowercase (_snake_case=OfflineSimulationMode.CONNECTION_FAILS ,_snake_case=1e-16 ) -> Dict:
'''simple docstring'''
__UpperCamelCase = requests.Session().request
def timeout_request(_snake_case ,_snake_case ,_snake_case ,**_snake_case ):
# Change the url to an invalid url so that the connection hangs
__UpperCamelCase = "https://10.255.255.1"
if kwargs.get("timeout" ) is None:
raise RequestWouldHangIndefinitelyError(
f"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" )
__UpperCamelCase = timeout
try:
return online_request(_snake_case ,_snake_case ,**_snake_case )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
__UpperCamelCase = url
__UpperCamelCase = e.args[0]
__UpperCamelCase = (max_retry_error.args[0].replace("10.255.255.1" ,f"""OfflineMock[{url}]""" ),)
__UpperCamelCase = (max_retry_error,)
raise
def raise_connection_error(_snake_case ,_snake_case ,**_snake_case ):
raise requests.ConnectionError("Offline mode is enabled." ,request=_snake_case )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch("requests.Session.send" ,_snake_case ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch("requests.Session.request" ,_snake_case ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch("datasets.config.HF_DATASETS_OFFLINE" ,_snake_case ):
yield
else:
raise ValueError("Please use a value from the OfflineSimulationMode enum." )
@contextmanager
def lowercase (*_snake_case ,**_snake_case ) -> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = str(Path().resolve() )
with tempfile.TemporaryDirectory(*_snake_case ,**_snake_case ) as tmp_dir:
try:
os.chdir(_snake_case )
yield
finally:
os.chdir(_snake_case )
@contextmanager
def lowercase () -> List[str]:
'''simple docstring'''
import gc
gc.collect()
__UpperCamelCase = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def lowercase () -> Optional[Any]:
'''simple docstring'''
import gc
gc.collect()
__UpperCamelCase = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def lowercase (_snake_case ,_snake_case ) -> Tuple:
'''simple docstring'''
return deepcopy(_snake_case ).integers(0 ,100 ,10 ).tolist() == deepcopy(_snake_case ).integers(0 ,100 ,10 ).tolist()
def lowercase (_snake_case ) -> Optional[int]:
'''simple docstring'''
import decorator
from requests.exceptions import HTTPError
def _wrapper(_snake_case ,*_snake_case ,**_snake_case ):
try:
return func(*_snake_case ,**_snake_case )
except HTTPError as err:
if str(_snake_case ).startswith("500" ) or str(_snake_case ).startswith("502" ):
pytest.xfail(str(_snake_case ) )
raise err
return decorator.decorator(_wrapper ,_snake_case )
class __UpperCAmelCase :
"""simple docstring"""
def __init__( self : Tuple , A_ : str , A_ : Union[str, Any] , A_ : List[Any] )-> Dict:
__UpperCamelCase = returncode
__UpperCamelCase = stdout
__UpperCamelCase = stderr
async def lowercase (_snake_case ,_snake_case ) -> List[str]:
'''simple docstring'''
while True:
__UpperCamelCase = await stream.readline()
if line:
callback(_snake_case )
else:
break
async def lowercase (_snake_case ,_snake_case=None ,_snake_case=None ,_snake_case=None ,_snake_case=False ,_snake_case=False ) -> str:
'''simple docstring'''
if echo:
print("\nRunning: " ," ".join(_snake_case ) )
__UpperCamelCase = await asyncio.create_subprocess_exec(
cmd[0] ,*cmd[1:] ,stdin=_snake_case ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=_snake_case ,)
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
__UpperCamelCase = []
__UpperCamelCase = []
def tee(_snake_case ,_snake_case ,_snake_case ,_snake_case="" ):
__UpperCamelCase = line.decode("utf-8" ).rstrip()
sink.append(_snake_case )
if not quiet:
print(_snake_case ,_snake_case ,file=_snake_case )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout ,lambda _snake_case : tee(_snake_case ,_snake_case ,sys.stdout ,label="stdout:" ) ),
_read_stream(p.stderr ,lambda _snake_case : tee(_snake_case ,_snake_case ,sys.stderr ,label="stderr:" ) ),
] ,timeout=_snake_case ,)
return _RunOutput(await p.wait() ,_snake_case ,_snake_case )
def lowercase (_snake_case ,_snake_case=None ,_snake_case=None ,_snake_case=180 ,_snake_case=False ,_snake_case=True ) -> List[str]:
'''simple docstring'''
__UpperCamelCase = asyncio.get_event_loop()
__UpperCamelCase = loop.run_until_complete(
_stream_subprocess(_snake_case ,env=_snake_case ,stdin=_snake_case ,timeout=_snake_case ,quiet=_snake_case ,echo=_snake_case ) )
__UpperCamelCase = " ".join(_snake_case )
if result.returncode > 0:
__UpperCamelCase = "\n".join(result.stderr )
raise RuntimeError(
f"""\'{cmd_str}\' failed with returncode {result.returncode}\n\n"""
f"""The combined stderr from workers follows:\n{stderr}""" )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(f"""\'{cmd_str}\' produced no output.""" )
return result
def lowercase () -> List[str]:
'''simple docstring'''
__UpperCamelCase = os.environ.get("PYTEST_XDIST_WORKER" ,"gw0" )
__UpperCamelCase = re.sub(r"^gw" ,"" ,_snake_case ,0 ,re.M )
return int(_snake_case )
def lowercase () -> Any:
'''simple docstring'''
__UpperCamelCase = 29500
__UpperCamelCase = pytest_xdist_worker_id()
return port + uniq_delta | 505 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def snake_case_ (UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : int , UpperCamelCase : Optional[int] = None , ):
'''simple docstring'''
_a = {}
if train_file is not None:
_a = [train_file]
if eval_file is not None:
_a = [eval_file]
if test_file is not None:
_a = [test_file]
_a = datasets.load_dataset('''csv''' , data_files=UpperCamelCase )
_a = list(ds[list(files.keys() )[0]].features.keys() )
_a = features_name.pop(UpperCamelCase )
_a = list(set(ds[list(files.keys() )[0]][label_name] ) )
_a = {label: i for i, label in enumerate(UpperCamelCase )}
_a = tokenizer.model_input_names
_a = {}
if len(UpperCamelCase ) == 1:
for k in files.keys():
_a = ds[k].map(
lambda UpperCamelCase : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' ) , batched=UpperCamelCase , )
elif len(UpperCamelCase ) == 2:
for k in files.keys():
_a = ds[k].map(
lambda UpperCamelCase : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' , ) , batched=UpperCamelCase , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
_a = {k: v for k, v in ex.items() if k in input_names}
_a = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
_a = {k: v for k, v in ex.items() if k in input_names}
_a = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
_a = {k: v for k, v in ex.items() if k in input_names}
_a = labelaid[ex[label_name]]
yield (d, label)
_a = (
tf.data.Dataset.from_generator(
UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
_a = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
_a = (
tf.data.Dataset.from_generator(
UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
_a = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
_a = (
tf.data.Dataset.from_generator(
UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
_a = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
_snake_case : str = logging.getLogger(__name__)
@dataclass
class A :
lowercase_ = field(metadata={'help': 'Which column contains the label'} )
lowercase_ = field(default=_a ,metadata={'help': 'The path of the training file'} )
lowercase_ = field(default=_a ,metadata={'help': 'The path of the development file'} )
lowercase_ = field(default=_a ,metadata={'help': 'The path of the test file'} )
lowercase_ = field(
default=128 ,metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} ,)
lowercase_ = field(
default=_a ,metadata={'help': 'Overwrite the cached training and evaluation sets'} )
@dataclass
class A :
lowercase_ = field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
lowercase_ = field(
default=_a ,metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
lowercase_ = field(
default=_a ,metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
lowercase_ = field(default=_a ,metadata={'help': 'Set this flag to use fast tokenization.'} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
lowercase_ = field(
default=_a ,metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} ,)
def snake_case_ ():
'''simple docstring'''
_a = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
_a , _a , _a = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'Output directory ({training_args.output_dir}) already exists and is not empty. Use'
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(
f'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, '
f'16-bits training: {training_args.fpaa}' )
logger.info(f'Training/evaluation parameters {training_args}' )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_a = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_a , _a , _a , _a = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
_a = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase ) , labelaid=UpperCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
_a = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase , cache_dir=model_args.cache_dir , )
def compute_metrics(UpperCamelCase : EvalPrediction ) -> Dict:
_a = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
_a = TFTrainer(
model=UpperCamelCase , args=UpperCamelCase , train_dataset=UpperCamelCase , eval_dataset=UpperCamelCase , compute_metrics=UpperCamelCase , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_a = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
_a = trainer.evaluate()
_a = os.path.join(training_args.output_dir , '''eval_results.txt''' )
with open(UpperCamelCase , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(f' {key} = {value}' )
writer.write(f'{key} = {value}\n' )
results.update(UpperCamelCase )
return results
if __name__ == "__main__":
main()
| 22 | 0 |
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def UpperCamelCase_( snake_case__: List[Any] , snake_case__: str ) -> int:
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
UpperCAmelCase__ = flax_key_tuple[:-1] + ('weight',)
UpperCAmelCase__ = torch.permute(snake_case__ , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ):
# linear layer
UpperCAmelCase__ = flax_key_tuple[:-1] + ('weight',)
UpperCAmelCase__ = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
UpperCAmelCase__ = flax_key_tuple[:-1] + ('weight',)
return flax_key_tuple, flax_tensor
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Optional[int] , snake_case__: List[Any] ) -> Tuple:
if "metadata" in layer:
UpperCAmelCase__ = layer.split('metadata' )
UpperCAmelCase__ = ''.join(split_layer[0] )[:-1]
UpperCAmelCase__ = [tuple(('metadata' + split_layer[1]).split('/' ) )]
elif "kvstore" in layer:
UpperCAmelCase__ = layer.split('kvstore' )
UpperCAmelCase__ = ''.join(split_layer[0] )[:-1]
UpperCAmelCase__ = [tuple(('kvstore' + split_layer[1]).split('/' ) )]
else:
UpperCAmelCase__ = layer.split('/' )
UpperCAmelCase__ = '/'.join(split_layer[:-1] )
UpperCAmelCase__ = (split_layer[-1],)
if "kvstore/path" in layer:
UpperCAmelCase__ = f"{switch_checkpoint_path}/{checkpoint_info[layer]}"
elif "kvstore/driver" in layer:
UpperCAmelCase__ = 'file'
else:
UpperCAmelCase__ = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def UpperCamelCase_( snake_case__: Dict , snake_case__: Optional[Any] ) -> int:
UpperCAmelCase__ = rename_keys(snake_case__ )
UpperCAmelCase__ = {}
for k, v in current_block.items():
UpperCAmelCase__ = v
UpperCAmelCase__ = new_current_block
torch.save(snake_case__ , snake_case__ )
def UpperCamelCase_( snake_case__: Dict , snake_case__: Any , snake_case__: List[str] , snake_case__: Tuple , snake_case__: str = WEIGHTS_NAME ) -> Optional[Any]:
UpperCAmelCase__ = convert_file_size_to_int(snake_case__ )
UpperCAmelCase__ = []
UpperCAmelCase__ = {}
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
os.makedirs(snake_case__ , exist_ok=snake_case__ )
with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp:
UpperCAmelCase__ = serialization.msgpack_restore(fp.read() )['optimizer']['target']
UpperCAmelCase__ = flatten_dict(snake_case__ , sep='/' )
UpperCAmelCase__ = {}
for layer in checkpoint_info.keys():
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = get_key_and_tensorstore_dict(
snake_case__ , snake_case__ , snake_case__ )
if curr_real_layer_name in all_layers:
UpperCAmelCase__ = content
else:
UpperCAmelCase__ = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
UpperCAmelCase__ = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
UpperCAmelCase__ = torch.tensor(snake_case__ )
UpperCAmelCase__ = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
UpperCAmelCase__ , UpperCAmelCase__ = rename_base_flax_keys(tuple(key.split('/' ) ) , snake_case__ )
UpperCAmelCase__ = '/'.join(snake_case__ )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
UpperCAmelCase__ = os.path.join(
snake_case__ , weights_name.replace('.bin' , f"-{len(snake_case__ )+1:05d}-of-???.bin" ) )
rename_and_save_block(snake_case__ , snake_case__ )
sharded_state_dicts.append(current_block.keys() )
del current_block
UpperCAmelCase__ = {}
UpperCAmelCase__ = 0
UpperCAmelCase__ = raw_weights.to(getattr(snake_case__ , snake_case__ ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
UpperCAmelCase__ = os.path.join(snake_case__ , weights_name.replace('.bin' , f"-{len(snake_case__ )+1:05d}-of-???.bin" ) )
rename_and_save_block(snake_case__ , snake_case__ )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(snake_case__ ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
for idx, shard in enumerate(snake_case__ ):
UpperCAmelCase__ = weights_name.replace(
'.bin' , f"-{idx+1:05d}-of-{len(snake_case__ ):05d}.bin" ) # len(sharded_state_dicts):05d}
UpperCAmelCase__ = os.path.join(snake_case__ , weights_name.replace('.bin' , f"-{idx+1:05d}-of-???.bin" ) )
os.rename(snake_case__ , os.path.join(snake_case__ , snake_case__ ) )
UpperCAmelCase__ = shard
for key in shard:
UpperCAmelCase__ = shard_file
# Add the metadata
UpperCAmelCase__ = {'total_size': total_size}
UpperCAmelCase__ = {'metadata': metadata, 'weight_map': weight_map}
with open(os.path.join(snake_case__ , snake_case__ ) , 'w' , encoding='utf-8' ) as f:
UpperCAmelCase__ = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + '\n'
f.write(snake_case__ )
return metadata, index
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--switch_t5x_checkpoint_path''',
default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''',
type=str,
required=False,
help='''Path to a directory containing a folder per layer. Follows the original Google format.''',
)
parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''')
parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''')
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''',
type=str,
required=False,
help='''Path to the output pytorch model.''',
)
_UpperCamelCase = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def UpperCamelCase_( ) -> str:
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
UpperCAmelCase__ = SwitchTransformersConfig.from_pretrained('google/switch-base-8' )
config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' )
UpperCAmelCase__ = SwitchTransformersForConditionalGeneration.from_pretrained(
'/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' )
UpperCAmelCase__ = TaTokenizer.from_pretrained('t5-small' )
UpperCAmelCase__ = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.'
UpperCAmelCase__ = tokenizer(snake_case__ , return_tensors='pt' ).input_ids
UpperCAmelCase__ = model.generate(snake_case__ , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 146 |
'''simple docstring'''
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A ( _a ,unittest.TestCase ):
lowercase_ = LEDTokenizer
lowercase_ = LEDTokenizerFast
lowercase_ = True
def __lowerCAmelCase ( self : int ) -> List[Any]:
"""simple docstring"""
super().setUp()
_a = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
_a = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) )
_a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
_a = {'''unk_token''': '''<unk>'''}
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(lowerCAmelCase_ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(lowerCAmelCase_ ) )
def __lowerCAmelCase ( self : Union[str, Any] , **lowerCAmelCase_ : int ) -> Optional[int]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] , **lowerCAmelCase_ : Any ) -> int:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> List[str]:
"""simple docstring"""
return "lower newer", "lower newer"
@cached_property
def __lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' )
@cached_property
def __lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' )
@require_torch
def __lowerCAmelCase ( self : int ) -> Tuple:
"""simple docstring"""
_a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
_a = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
_a = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
@require_torch
def __lowerCAmelCase ( self : Tuple ) -> List[Any]:
"""simple docstring"""
_a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIn('''input_ids''' , lowerCAmelCase_ )
self.assertIn('''attention_mask''' , lowerCAmelCase_ )
self.assertNotIn('''labels''' , lowerCAmelCase_ )
self.assertNotIn('''decoder_attention_mask''' , lowerCAmelCase_ )
@require_torch
def __lowerCAmelCase ( self : List[str] ) -> str:
"""simple docstring"""
_a = [
'''Summary of the text.''',
'''Another summary.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding='''max_length''' , return_tensors='''pt''' )
self.assertEqual(32 , targets['''input_ids'''].shape[1] )
@require_torch
def __lowerCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(
['''I am a small frog''' * 10_24, '''I am a small frog'''] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertEqual(batch.input_ids.shape , (2, 51_22) )
@require_torch
def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
_a = ['''A long paragraph for summarization.''']
_a = [
'''Summary of the text.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(lowerCAmelCase_ , return_tensors='''pt''' )
_a = tokenizer(text_target=lowerCAmelCase_ , return_tensors='''pt''' )
_a = inputs['''input_ids''']
_a = targets['''input_ids''']
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def __lowerCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = ['''Summary of the text.''', '''Another summary.''']
_a = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
_a = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ )
_a = [[0] * len(lowerCAmelCase_ ) for x in encoded_output['''input_ids''']]
_a = tokenizer.pad(lowerCAmelCase_ )
self.assertSequenceEqual(outputs['''global_attention_mask'''] , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any ) -> Dict:
"""simple docstring"""
pass
def __lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
_a = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
_a = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
_a = '''A, <mask> AllenNLP sentence.'''
_a = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ )
_a = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ )
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
_a = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
_a = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(
lowerCAmelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
lowerCAmelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
| 22 | 0 |
import requests
snake_case__ : Optional[Any] = """YOUR API KEY"""
def _snake_case (__lowercase , __lowercase = giphy_api_key):
UpperCamelCase_ = '+'.join(query.split())
UpperCamelCase_ = f"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}"""
UpperCamelCase_ = requests.get(__lowercase).json()['data']
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print("""\n""".join(get_gifs("""space ship""")))
| 23 |
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def _snake_case (__lowercase , __lowercase , __lowercase):
# Initialise PyTorch model
UpperCamelCase_ = MobileBertConfig.from_json_file(__lowercase)
print(f"""Building PyTorch model from configuration: {config}""")
UpperCamelCase_ = MobileBertForPreTraining(__lowercase)
# Load weights from tf checkpoint
UpperCamelCase_ = load_tf_weights_in_mobilebert(__lowercase , __lowercase , __lowercase)
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""")
torch.save(model.state_dict() , __lowercase)
if __name__ == "__main__":
snake_case__ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--mobilebert_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained MobileBERT model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
snake_case__ : Optional[Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 23 | 1 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
A_ = StableDiffusionSAGPipeline
A_ = TEXT_TO_IMAGE_PARAMS
A_ = TEXT_TO_IMAGE_BATCH_PARAMS
A_ = TEXT_TO_IMAGE_IMAGE_PARAMS
A_ = TEXT_TO_IMAGE_IMAGE_PARAMS
A_ = False
def _UpperCAmelCase ( self ) -> Optional[Any]:
torch.manual_seed(0 )
UpperCamelCase_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
UpperCamelCase_ = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , )
torch.manual_seed(0 )
UpperCamelCase_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCamelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
UpperCamelCase_ = CLIPTextModel(_UpperCAmelCase )
UpperCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
UpperCamelCase_ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ) -> List[Any]:
if str(_UpperCAmelCase ).startswith('mps' ):
UpperCamelCase_ = torch.manual_seed(_UpperCAmelCase )
else:
UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
UpperCamelCase_ = {
'prompt': '.',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 1.0,
'sag_scale': 1.0,
'output_type': 'numpy',
}
return inputs
def _UpperCAmelCase ( self ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class _a ( unittest.TestCase ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' )
UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase )
sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCamelCase_ = '.'
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = sag_pipe(
[prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' )
UpperCamelCase_ = output.images
UpperCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase_ = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' )
UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase )
sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCamelCase_ = '.'
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = sag_pipe(
[prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' )
UpperCamelCase_ = output.images
UpperCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase_ = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' )
UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase )
sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCamelCase_ = '.'
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = sag_pipe(
[prompt] , width=768 , height=512 , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , )
UpperCamelCase_ = output.images
assert image.shape == (1, 512, 768, 3)
| 23 |
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class _a ( unittest.TestCase ):
"""simple docstring"""
A_ = MODEL_FOR_MASKED_LM_MAPPING
A_ = TF_MODEL_FOR_MASKED_LM_MAPPING
def _UpperCAmelCase ( self ) -> List[str]:
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' )
UpperCamelCase_ = unmasker('My name is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{'sequence': 'My name is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped'},
{'sequence': 'My name is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser'},
] , )
UpperCamelCase_ = unmasker('The largest city in France is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{
'sequence': 'The largest city in France is grouped',
'score': 2.1e-05,
'token': 38015,
'token_str': ' grouped',
},
{
'sequence': 'The largest city in France is accuser',
'score': 2.1e-05,
'token': 25506,
'token_str': ' accuser',
},
] , )
UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'},
{'sequence': 'My name is Patrick', 'score': 2e-05, 'token': 3499, 'token_str': ' Patrick'},
{'sequence': 'My name is Te', 'score': 1.9e-05, 'token': 2941, 'token_str': ' Te'},
] , )
@require_torch
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' )
UpperCamelCase_ = unmasker('My name is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{'sequence': 'My name is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul'},
{'sequence': 'My name isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'},
] , )
UpperCamelCase_ = unmasker('The largest city in France is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{
'sequence': 'The largest city in France is Maul',
'score': 2.2e-05,
'token': 35676,
'token_str': ' Maul',
},
{'sequence': 'The largest city in France isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'},
] , )
UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{'sequence': 'My name is Patrick', 'score': 2.1e-05, 'token': 3499, 'token_str': ' Patrick'},
{'sequence': 'My name is Te', 'score': 2e-05, 'token': 2941, 'token_str': ' Te'},
{'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'},
] , )
UpperCamelCase_ = unmasker('My name is <mask> <mask>' , top_k=2 )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
[
{
'score': 2.2e-05,
'token': 35676,
'token_str': ' Maul',
'sequence': '<s>My name is Maul<mask></s>',
},
{'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'},
],
[
{
'score': 2.2e-05,
'token': 35676,
'token_str': ' Maul',
'sequence': '<s>My name is<mask> Maul</s>',
},
{'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'},
],
] , )
@require_torch_gpu
def _UpperCAmelCase ( self ) -> Optional[Any]:
UpperCamelCase_ = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' )
# convert model to fp16
pipe.model.half()
UpperCamelCase_ = pipe('Paris is the [MASK] of France.' )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
@slow
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' )
self.run_large_test(_UpperCAmelCase )
@slow
@require_tf
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' )
self.run_large_test(_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple:
UpperCamelCase_ = unmasker('My name is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [
{'sequence': 'My name is John', 'score': 0.0_0_8, 'token': 610, 'token_str': ' John'},
{'sequence': 'My name is Chris', 'score': 0.0_0_7, 'token': 1573, 'token_str': ' Chris'},
] , )
UpperCamelCase_ = unmasker('The largest city in France is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [
{
'sequence': 'The largest city in France is Paris',
'score': 0.2_5_1,
'token': 2201,
'token_str': ' Paris',
},
{
'sequence': 'The largest city in France is Lyon',
'score': 0.2_1_4,
'token': 12790,
'token_str': ' Lyon',
},
] , )
UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [
{'sequence': 'My name is Patrick', 'score': 0.0_0_5, 'token': 3499, 'token_str': ' Patrick'},
{'sequence': 'My name is Clara', 'score': 0.0_0_0, 'token': 13606, 'token_str': ' Clara'},
{'sequence': 'My name is Te', 'score': 0.0_0_0, 'token': 2941, 'token_str': ' Te'},
] , )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' )
UpperCamelCase_ = None
UpperCamelCase_ = None
self.run_pipeline_test(_UpperCAmelCase , [] )
@require_tf
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' )
UpperCamelCase_ = None
UpperCamelCase_ = None
self.run_pipeline_test(_UpperCAmelCase , [] )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]:
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' )
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = [
f"""This is another {tokenizer.mask_token} test""",
]
return fill_masker, examples
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]:
UpperCamelCase_ = fill_masker.tokenizer
UpperCamelCase_ = fill_masker.model
UpperCamelCase_ = fill_masker(
f"""This is a {tokenizer.mask_token}""" , )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}"""] )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] )
self.assertEqual(
_UpperCAmelCase , [
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
] , )
with self.assertRaises(_UpperCAmelCase ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(_UpperCAmelCase ):
fill_masker('This is' )
self.run_test_top_k(_UpperCAmelCase , _UpperCAmelCase )
self.run_test_targets(_UpperCAmelCase , _UpperCAmelCase )
self.run_test_top_k_targets(_UpperCAmelCase , _UpperCAmelCase )
self.fill_mask_with_duplicate_targets_and_top_k(_UpperCAmelCase , _UpperCAmelCase )
self.fill_mask_with_multiple_masks(_UpperCAmelCase , _UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]:
UpperCamelCase_ = tokenizer.get_vocab()
UpperCamelCase_ = sorted(vocab.keys() )[:2]
# Pipeline argument
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , targets=_UpperCAmelCase )
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = {vocab[el] for el in targets}
self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase )
UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) )
# Call argument
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = {vocab[el] for el in targets}
self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase )
UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) )
# Score equivalence
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase )
UpperCamelCase_ = [top_mask['token_str'] for top_mask in outputs]
UpperCamelCase_ = [top_mask['score'] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(_UpperCAmelCase ) == set(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase )
UpperCamelCase_ = [top_mask['score'] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) )
# Raises with invalid
with self.assertRaises(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[''] )
with self.assertRaises(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets='' )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple:
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , top_k=2 )
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]:
UpperCamelCase_ = tokenizer.get_vocab()
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
# top_k=2, ntargets=3
UpperCamelCase_ = sorted(vocab.keys() )[:3]
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=_UpperCAmelCase )
# If we use the most probably targets, and filter differently, we should still
# have the same results
UpperCamelCase_ = [el['token_str'] for el in sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(_UpperCAmelCase ).issubset(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=_UpperCAmelCase )
# They should yield exactly the same result
self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]:
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = tokenizer.get_vocab()
# String duplicates + id duplicates
UpperCamelCase_ = sorted(vocab.keys() )[:3]
UpperCamelCase_ = [targets[0], targets[1], targets[0], targets[2], targets[1]]
UpperCamelCase_ = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=_UpperCAmelCase , top_k=10 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(_UpperCAmelCase ) , 3 )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]:
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = fill_masker(
f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 )
self.assertEqual(
_UpperCAmelCase , [
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
] , )
| 23 | 1 |
from __future__ import annotations
def _snake_case (__lowercase):
if not nums:
return 0
UpperCamelCase_ = nums[0]
UpperCamelCase_ = 0
for num in nums[1:]:
UpperCamelCase_ , UpperCamelCase_ = (
max_excluding + num,
max(__lowercase , __lowercase),
)
return max(__lowercase , __lowercase)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
A_ = StableDiffusionSAGPipeline
A_ = TEXT_TO_IMAGE_PARAMS
A_ = TEXT_TO_IMAGE_BATCH_PARAMS
A_ = TEXT_TO_IMAGE_IMAGE_PARAMS
A_ = TEXT_TO_IMAGE_IMAGE_PARAMS
A_ = False
def _UpperCAmelCase ( self ) -> Optional[Any]:
torch.manual_seed(0 )
UpperCamelCase_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
UpperCamelCase_ = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , )
torch.manual_seed(0 )
UpperCamelCase_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCamelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
UpperCamelCase_ = CLIPTextModel(_UpperCAmelCase )
UpperCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
UpperCamelCase_ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ) -> List[Any]:
if str(_UpperCAmelCase ).startswith('mps' ):
UpperCamelCase_ = torch.manual_seed(_UpperCAmelCase )
else:
UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
UpperCamelCase_ = {
'prompt': '.',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 1.0,
'sag_scale': 1.0,
'output_type': 'numpy',
}
return inputs
def _UpperCAmelCase ( self ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class _a ( unittest.TestCase ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' )
UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase )
sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCamelCase_ = '.'
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = sag_pipe(
[prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' )
UpperCamelCase_ = output.images
UpperCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase_ = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' )
UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase )
sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCamelCase_ = '.'
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = sag_pipe(
[prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' )
UpperCamelCase_ = output.images
UpperCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase_ = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' )
UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase )
sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCamelCase_ = '.'
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = sag_pipe(
[prompt] , width=768 , height=512 , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , )
UpperCamelCase_ = output.images
assert image.shape == (1, 512, 768, 3)
| 23 | 1 |
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict:
with open(_UpperCAmelCase , encoding='utf-8' ) as input_file:
UpperCamelCase_ = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' )
UpperCamelCase_ = input_file.read()
UpperCamelCase_ = regexp.search(_UpperCAmelCase )
return match
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict:
with open(_UpperCAmelCase , encoding='utf-8' ) as input_file:
UpperCamelCase_ = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL )
UpperCamelCase_ = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
UpperCamelCase_ = regexp.finditer(_UpperCAmelCase )
UpperCamelCase_ = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def _UpperCAmelCase ( self ) -> List[str]:
UpperCamelCase_ = Path('./datasets' )
UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(_UpperCAmelCase ) ):
raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" )
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ = Path('./datasets' )
UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) )
for dataset in dataset_files:
if self._no_print_statements(str(_UpperCAmelCase ) ):
raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
| 23 |
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
snake_case__ : List[str] = TypeVar("""T""")
def _snake_case (__lowercase):
return (position - 1) // 2
def _snake_case (__lowercase):
return (2 * position) + 1
def _snake_case (__lowercase):
return (2 * position) + 2
class _a ( Generic[T] ):
"""simple docstring"""
def __init__( self ) -> None:
UpperCamelCase_ = []
UpperCamelCase_ = {}
UpperCamelCase_ = 0
def __len__( self ) -> int:
return self.elements
def __repr__( self ) -> str:
return str(self.heap )
def _UpperCAmelCase ( self ) -> bool:
# Check if the priority queue is empty
return self.elements == 0
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None:
# Add an element with given priority to the queue
self.heap.append((elem, weight) )
UpperCamelCase_ = self.elements
self.elements += 1
self._bubble_up(_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> T:
# Remove and return the element with lowest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
UpperCamelCase_ , UpperCamelCase_ = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
UpperCamelCase_ , UpperCamelCase_ = self.heap[0]
self._bubble_down(_UpperCAmelCase )
return elem
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None:
# Update the weight of the given key
UpperCamelCase_ = self.position_map[elem]
UpperCamelCase_ = (elem, weight)
if position > 0:
UpperCamelCase_ = get_parent_position(_UpperCAmelCase )
UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(_UpperCAmelCase )
else:
self._bubble_down(_UpperCAmelCase )
else:
self._bubble_down(_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None:
# Place a node at the proper position (upward movement) [to be used internally
# only]
UpperCamelCase_ = self.position_map[elem]
if curr_pos == 0:
return None
UpperCamelCase_ = get_parent_position(_UpperCAmelCase )
UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos]
UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase )
return self._bubble_up(_UpperCAmelCase )
return None
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None:
# Place a node at the proper position (downward movement) [to be used
# internally only]
UpperCamelCase_ = self.position_map[elem]
UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos]
UpperCamelCase_ = get_child_left_position(_UpperCAmelCase )
UpperCamelCase_ = get_child_right_position(_UpperCAmelCase )
if child_left_position < self.elements and child_right_position < self.elements:
UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position]
UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase )
return self._bubble_down(_UpperCAmelCase )
if child_left_position < self.elements:
UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase )
return self._bubble_down(_UpperCAmelCase )
else:
return None
if child_right_position < self.elements:
UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase )
return self._bubble_down(_UpperCAmelCase )
return None
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None:
# Swap the nodes at the given positions
UpperCamelCase_ = self.heap[nodea_pos][0]
UpperCamelCase_ = self.heap[nodea_pos][0]
UpperCamelCase_ , UpperCamelCase_ = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
UpperCamelCase_ = nodea_pos
UpperCamelCase_ = nodea_pos
class _a ( Generic[T] ):
"""simple docstring"""
def __init__( self ) -> None:
UpperCamelCase_ = {}
UpperCamelCase_ = 0
def __repr__( self ) -> str:
return str(self.connections )
def __len__( self ) -> int:
return self.nodes
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None:
# Add a node in the graph if it is not in the graph
if node not in self.connections:
UpperCamelCase_ = {}
self.nodes += 1
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None:
# Add an edge between 2 nodes in the graph
self.add_node(_UpperCAmelCase )
self.add_node(_UpperCAmelCase )
UpperCamelCase_ = weight
UpperCamelCase_ = weight
def _snake_case (__lowercase , ):
UpperCamelCase_ = {node: maxsize for node in graph.connections}
UpperCamelCase_ = {node: None for node in graph.connections}
UpperCamelCase_ = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(__lowercase , __lowercase)
if priority_queue.is_empty():
return dist, parent
# initialization
UpperCamelCase_ = priority_queue.extract_min()
UpperCamelCase_ = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
UpperCamelCase_ = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(__lowercase , dist[neighbour])
UpperCamelCase_ = node
# running prim's algorithm
while not priority_queue.is_empty():
UpperCamelCase_ = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
UpperCamelCase_ = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(__lowercase , dist[neighbour])
UpperCamelCase_ = node
return dist, parent
| 23 | 1 |
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def _snake_case (__lowercase , __lowercase , __lowercase):
# Initialise PyTorch model
UpperCamelCase_ = MobileBertConfig.from_json_file(__lowercase)
print(f"""Building PyTorch model from configuration: {config}""")
UpperCamelCase_ = MobileBertForPreTraining(__lowercase)
# Load weights from tf checkpoint
UpperCamelCase_ = load_tf_weights_in_mobilebert(__lowercase , __lowercase , __lowercase)
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""")
torch.save(model.state_dict() , __lowercase)
if __name__ == "__main__":
snake_case__ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--mobilebert_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained MobileBERT model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
snake_case__ : Optional[Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 23 |
from __future__ import annotations
import sys
from collections import deque
from typing import Generic, TypeVar
snake_case__ : Dict = TypeVar("""T""")
class _a ( Generic[T] ):
"""simple docstring"""
A_ = 42 # Cache store of keys
A_ = 42 # References of the keys in cache
A_ = 10 # Maximum capacity of cache
def __init__( self , _UpperCAmelCase ) -> None:
UpperCamelCase_ = deque()
UpperCamelCase_ = set()
if not n:
UpperCamelCase_ = sys.maxsize
elif n < 0:
raise ValueError('n should be an integer greater than 0.' )
else:
UpperCamelCase_ = n
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None:
if x not in self.key_reference:
if len(self.dq_store ) == LRUCache._MAX_CAPACITY:
UpperCamelCase_ = self.dq_store.pop()
self.key_reference.remove(_UpperCAmelCase )
else:
self.dq_store.remove(_UpperCAmelCase )
self.dq_store.appendleft(_UpperCAmelCase )
self.key_reference.add(_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> None:
for k in self.dq_store:
print(_UpperCAmelCase )
def __repr__( self ) -> str:
return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}"""
if __name__ == "__main__":
import doctest
doctest.testmod()
snake_case__ : LRUCache[str | int] = LRUCache(4)
lru_cache.refer("""A""")
lru_cache.refer(2)
lru_cache.refer(3)
lru_cache.refer("""A""")
lru_cache.refer(4)
lru_cache.refer(5)
lru_cache.display()
print(lru_cache)
assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
| 23 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case__ : List[str] = logging.get_logger(__name__)
snake_case__ : Optional[Any] = {
"""microsoft/trocr-base-handwritten""": (
"""https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"""
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = """trocr"""
A_ = ["""past_key_values"""]
A_ = {
"""num_attention_heads""": """decoder_attention_heads""",
"""hidden_size""": """d_model""",
"""num_hidden_layers""": """decoder_layers""",
}
def __init__( self , _UpperCAmelCase=50265 , _UpperCAmelCase=1024 , _UpperCAmelCase=12 , _UpperCAmelCase=16 , _UpperCAmelCase=4096 , _UpperCAmelCase="gelu" , _UpperCAmelCase=512 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , **_UpperCAmelCase , ) -> str:
UpperCamelCase_ = vocab_size
UpperCamelCase_ = d_model
UpperCamelCase_ = decoder_layers
UpperCamelCase_ = decoder_attention_heads
UpperCamelCase_ = decoder_ffn_dim
UpperCamelCase_ = activation_function
UpperCamelCase_ = max_position_embeddings
UpperCamelCase_ = dropout
UpperCamelCase_ = attention_dropout
UpperCamelCase_ = activation_dropout
UpperCamelCase_ = init_std
UpperCamelCase_ = decoder_layerdrop
UpperCamelCase_ = use_cache
UpperCamelCase_ = scale_embedding
UpperCamelCase_ = use_learned_position_embeddings
UpperCamelCase_ = layernorm_embedding
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
| 23 |
import numpy as np
def _snake_case (__lowercase):
return 1 / (1 + np.exp(-vector))
def _snake_case (__lowercase):
return vector * sigmoid(__lowercase)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 | 1 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = 42
class _a ( UpperCAmelCase__ , UpperCAmelCase__ ):
"""simple docstring"""
@register_to_config
def __init__( self , _UpperCAmelCase = 32 , _UpperCAmelCase = 64 , _UpperCAmelCase = 20 , _UpperCAmelCase = 768 , _UpperCAmelCase=77 , _UpperCAmelCase=4 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = "silu" , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = "linear" , _UpperCAmelCase = "prd" , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ) -> Any:
super().__init__()
UpperCamelCase_ = num_attention_heads
UpperCamelCase_ = attention_head_dim
UpperCamelCase_ = num_attention_heads * attention_head_dim
UpperCamelCase_ = additional_embeddings
UpperCamelCase_ = time_embed_dim or inner_dim
UpperCamelCase_ = embedding_proj_dim or embedding_dim
UpperCamelCase_ = clip_embed_dim or embedding_dim
UpperCamelCase_ = Timesteps(_UpperCAmelCase , _UpperCAmelCase , 0 )
UpperCamelCase_ = TimestepEmbedding(_UpperCAmelCase , _UpperCAmelCase , out_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase )
UpperCamelCase_ = nn.Linear(_UpperCAmelCase , _UpperCAmelCase )
if embedding_proj_norm_type is None:
UpperCamelCase_ = None
elif embedding_proj_norm_type == "layer":
UpperCamelCase_ = nn.LayerNorm(_UpperCAmelCase )
else:
raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" )
UpperCamelCase_ = nn.Linear(_UpperCAmelCase , _UpperCAmelCase )
if encoder_hid_proj_type is None:
UpperCamelCase_ = None
elif encoder_hid_proj_type == "linear":
UpperCamelCase_ = nn.Linear(_UpperCAmelCase , _UpperCAmelCase )
else:
raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" )
UpperCamelCase_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _UpperCAmelCase ) )
if added_emb_type == "prd":
UpperCamelCase_ = nn.Parameter(torch.zeros(1 , 1 , _UpperCAmelCase ) )
elif added_emb_type is None:
UpperCamelCase_ = None
else:
raise ValueError(
f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" )
UpperCamelCase_ = nn.ModuleList(
[
BasicTransformerBlock(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , dropout=_UpperCAmelCase , activation_fn='gelu' , attention_bias=_UpperCAmelCase , )
for d in range(_UpperCAmelCase )
] )
if norm_in_type == "layer":
UpperCamelCase_ = nn.LayerNorm(_UpperCAmelCase )
elif norm_in_type is None:
UpperCamelCase_ = None
else:
raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" )
UpperCamelCase_ = nn.LayerNorm(_UpperCAmelCase )
UpperCamelCase_ = nn.Linear(_UpperCAmelCase , _UpperCAmelCase )
UpperCamelCase_ = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0_0_0_0.0 )
causal_attention_mask.triu_(1 )
UpperCamelCase_ = causal_attention_mask[None, ...]
self.register_buffer('causal_attention_mask' , _UpperCAmelCase , persistent=_UpperCAmelCase )
UpperCamelCase_ = nn.Parameter(torch.zeros(1 , _UpperCAmelCase ) )
UpperCamelCase_ = nn.Parameter(torch.zeros(1 , _UpperCAmelCase ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def _UpperCAmelCase ( self ) -> Dict[str, AttentionProcessor]:
UpperCamelCase_ = {}
def fn_recursive_add_processors(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
if hasattr(_UpperCAmelCase , 'set_processor' ):
UpperCamelCase_ = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"""{name}.{sub_name}""" , _UpperCAmelCase , _UpperCAmelCase )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return processors
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[Any]:
UpperCamelCase_ = len(self.attn_processors.keys() )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != count:
raise ValueError(
f"""A dict of processors was passed, but the number of processors {len(_UpperCAmelCase )} does not match the"""
f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" )
def fn_recursive_attn_processor(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
if hasattr(_UpperCAmelCase , 'set_processor' ):
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
module.set_processor(_UpperCAmelCase )
else:
module.set_processor(processor.pop(f"""{name}.processor""" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"""{name}.{sub_name}""" , _UpperCAmelCase , _UpperCAmelCase )
for name, module in self.named_children():
fn_recursive_attn_processor(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Dict:
self.set_attn_processor(AttnProcessor() )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[str, Any]:
UpperCamelCase_ = hidden_states.shape[0]
UpperCamelCase_ = timestep
if not torch.is_tensor(_UpperCAmelCase ):
UpperCamelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(_UpperCAmelCase ) and len(timesteps.shape ) == 0:
UpperCamelCase_ = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
UpperCamelCase_ = timesteps * torch.ones(_UpperCAmelCase , dtype=timesteps.dtype , device=timesteps.device )
UpperCamelCase_ = self.time_proj(_UpperCAmelCase )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
UpperCamelCase_ = timesteps_projected.to(dtype=self.dtype )
UpperCamelCase_ = self.time_embedding(_UpperCAmelCase )
if self.embedding_proj_norm is not None:
UpperCamelCase_ = self.embedding_proj_norm(_UpperCAmelCase )
UpperCamelCase_ = self.embedding_proj(_UpperCAmelCase )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
UpperCamelCase_ = self.encoder_hidden_states_proj(_UpperCAmelCase )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' )
UpperCamelCase_ = self.proj_in(_UpperCAmelCase )
UpperCamelCase_ = self.positional_embedding.to(hidden_states.dtype )
UpperCamelCase_ = []
UpperCamelCase_ = 0
if encoder_hidden_states is not None:
additional_embeds.append(_UpperCAmelCase )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
UpperCamelCase_ = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
UpperCamelCase_ = hidden_states[:, None, :]
UpperCamelCase_ = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
UpperCamelCase_ = self.prd_embedding.to(hidden_states.dtype ).expand(_UpperCAmelCase , -1 , -1 )
additional_embeds.append(_UpperCAmelCase )
UpperCamelCase_ = torch.cat(
_UpperCAmelCase , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
UpperCamelCase_ = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
UpperCamelCase_ = F.pad(
_UpperCAmelCase , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
UpperCamelCase_ = hidden_states + positional_embeddings
if attention_mask is not None:
UpperCamelCase_ = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0
UpperCamelCase_ = F.pad(_UpperCAmelCase , (0, self.additional_embeddings) , value=0.0 )
UpperCamelCase_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
UpperCamelCase_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
UpperCamelCase_ = self.norm_in(_UpperCAmelCase )
for block in self.transformer_blocks:
UpperCamelCase_ = block(_UpperCAmelCase , attention_mask=_UpperCAmelCase )
UpperCamelCase_ = self.norm_out(_UpperCAmelCase )
if self.prd_embedding is not None:
UpperCamelCase_ = hidden_states[:, -1]
else:
UpperCamelCase_ = hidden_states[:, additional_embeddings_len:]
UpperCamelCase_ = self.proj_to_clip_embeddings(_UpperCAmelCase )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple:
UpperCamelCase_ = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 23 |
import math
from datetime import datetime, timedelta
def _snake_case (__lowercase):
UpperCamelCase_ = year % 19
UpperCamelCase_ = year % 4
UpperCamelCase_ = year % 7
UpperCamelCase_ = math.floor(year / 100)
UpperCamelCase_ = math.floor((13 + 8 * leap_day_inhibits) / 25)
UpperCamelCase_ = leap_day_inhibits / 4
UpperCamelCase_ = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
UpperCamelCase_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
UpperCamelCase_ = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
UpperCamelCase_ = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(__lowercase , 4 , 19)
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(__lowercase , 4 , 18)
else:
return datetime(__lowercase , 3 , 22) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday))
if __name__ == "__main__":
for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3):
snake_case__ : Dict = """will be""" if year > datetime.now().year else """was"""
print(f'Easter in {year} {tense} {gauss_easter(year)}')
| 23 | 1 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class _a ( unittest.TestCase ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = inspect.getfile(accelerate.test_utils )
UpperCamelCase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] )
UpperCamelCase_ = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] )
UpperCamelCase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] )
@require_multi_gpu
def _UpperCAmelCase ( self ) -> Dict:
print(f"""Found {torch.cuda.device_count()} devices.""" )
UpperCamelCase_ = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() )
@require_multi_gpu
def _UpperCAmelCase ( self ) -> Optional[Any]:
print(f"""Found {torch.cuda.device_count()} devices.""" )
UpperCamelCase_ = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path]
print(f"""Command: {cmd}""" )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() )
@require_multi_gpu
def _UpperCAmelCase ( self ) -> Any:
UpperCamelCase_ = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() )
@require_multi_gpu
def _UpperCAmelCase ( self ) -> List[str]:
print(f"""Found {torch.cuda.device_count()} devices, using 2 devices only""" )
UpperCamelCase_ = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ):
execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() )
if __name__ == "__main__":
snake_case__ : Dict = Accelerator()
snake_case__ : str = (accelerator.state.process_index + 2, 1_0)
snake_case__ : int = torch.randint(0, 1_0, shape).to(accelerator.device)
snake_case__ : List[Any] = """"""
snake_case__ : Any = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
snake_case__ : Optional[int] = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
snake_case__ : Optional[Any] = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 23 |
import requests
def _snake_case (__lowercase , __lowercase):
UpperCamelCase_ = {'Content-Type': 'application/json'}
UpperCamelCase_ = requests.post(__lowercase , json={'text': message_body} , headers=__lowercase)
if response.status_code != 200:
UpperCamelCase_ = (
'Request to slack returned an error '
f"""{response.status_code}, the response is:\n{response.text}"""
)
raise ValueError(__lowercase)
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
| 23 | 1 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
snake_case__ : Dict = logging.get_logger(__name__)
snake_case__ : List[str] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
snake_case__ : List[Any] = {
"""tokenizer_file""": {
"""EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""",
},
}
snake_case__ : Dict = {
"""gpt-neox-20b""": 2_0_4_8,
}
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = VOCAB_FILES_NAMES
A_ = PRETRAINED_VOCAB_FILES_MAP
A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ = ["""input_ids""", """attention_mask"""]
def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<|endoftext|>" , _UpperCAmelCase="<|endoftext|>" , _UpperCAmelCase="<|endoftext|>" , _UpperCAmelCase=False , **_UpperCAmelCase , ) -> Tuple:
super().__init__(
_UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , unk_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , )
UpperCamelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , _UpperCAmelCase ) != add_prefix_space:
UpperCamelCase_ = getattr(_UpperCAmelCase , pre_tok_state.pop('type' ) )
UpperCamelCase_ = add_prefix_space
UpperCamelCase_ = pre_tok_class(**_UpperCAmelCase )
UpperCamelCase_ = add_prefix_space
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> Tuple[str]:
UpperCamelCase_ = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase )
return tuple(_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[int]:
UpperCamelCase_ = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) + [self.eos_token_id] )
if len(_UpperCAmelCase ) > self.model_max_length:
UpperCamelCase_ = input_ids[-self.model_max_length :]
return input_ids
| 23 |
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict:
with open(_UpperCAmelCase , encoding='utf-8' ) as input_file:
UpperCamelCase_ = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' )
UpperCamelCase_ = input_file.read()
UpperCamelCase_ = regexp.search(_UpperCAmelCase )
return match
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict:
with open(_UpperCAmelCase , encoding='utf-8' ) as input_file:
UpperCamelCase_ = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL )
UpperCamelCase_ = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
UpperCamelCase_ = regexp.finditer(_UpperCAmelCase )
UpperCamelCase_ = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def _UpperCAmelCase ( self ) -> List[str]:
UpperCamelCase_ = Path('./datasets' )
UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(_UpperCAmelCase ) ):
raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" )
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ = Path('./datasets' )
UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) )
for dataset in dataset_files:
if self._no_print_statements(str(_UpperCAmelCase ) ):
raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
| 23 | 1 |
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
snake_case__ : List[Any] = getLogger(__name__)
snake_case__ : Optional[Any] = """cuda""" if torch.cuda.is_available() else """cpu"""
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase = 8 , __lowercase = DEFAULT_DEVICE , __lowercase=False , __lowercase="summarization" , __lowercase=None , **__lowercase , ):
UpperCamelCase_ = Path(__lowercase).open('w' , encoding='utf-8')
UpperCamelCase_ = str(__lowercase)
UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained(__lowercase).to(__lowercase)
if fpaa:
UpperCamelCase_ = model.half()
UpperCamelCase_ = AutoTokenizer.from_pretrained(__lowercase)
logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""") # if this is wrong, check config.model_type.
UpperCamelCase_ = time.time()
# update config with task specific params
use_task_specific_params(__lowercase , __lowercase)
if prefix is None:
UpperCamelCase_ = prefix or getattr(model.config , 'prefix' , '') or ''
for examples_chunk in tqdm(list(chunks(__lowercase , __lowercase))):
UpperCamelCase_ = [prefix + text for text in examples_chunk]
UpperCamelCase_ = tokenizer(__lowercase , return_tensors='pt' , truncation=__lowercase , padding='longest').to(__lowercase)
UpperCamelCase_ = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **__lowercase , )
UpperCamelCase_ = tokenizer.batch_decode(__lowercase , skip_special_tokens=__lowercase , clean_up_tokenization_spaces=__lowercase)
for hypothesis in dec:
fout.write(hypothesis + '\n')
fout.flush()
fout.close()
UpperCamelCase_ = int(time.time() - start_time) # seconds
UpperCamelCase_ = len(__lowercase)
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4)}
def _snake_case ():
return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
def _snake_case (__lowercase=True):
UpperCamelCase_ = argparse.ArgumentParser()
parser.add_argument('model_name' , type=__lowercase , help='like facebook/bart-large-cnn,t5-base, etc.')
parser.add_argument('input_path' , type=__lowercase , help='like cnn_dm/test.source')
parser.add_argument('save_path' , type=__lowercase , help='where to save summaries')
parser.add_argument('--reference_path' , type=__lowercase , required=__lowercase , help='like cnn_dm/test.target')
parser.add_argument('--score_path' , type=__lowercase , required=__lowercase , default='metrics.json' , help='where to save metrics')
parser.add_argument('--device' , type=__lowercase , required=__lowercase , default=__lowercase , help='cuda, cuda:1, cpu etc.')
parser.add_argument(
'--prefix' , type=__lowercase , required=__lowercase , default=__lowercase , help='will be added to the begininng of src examples')
parser.add_argument('--task' , type=__lowercase , default='summarization' , help='used for task_specific_params + metrics')
parser.add_argument('--bs' , type=__lowercase , default=8 , required=__lowercase , help='batch size')
parser.add_argument(
'--n_obs' , type=__lowercase , default=-1 , required=__lowercase , help='How many observations. Defaults to all.')
parser.add_argument('--fp16' , action='store_true')
parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results')
parser.add_argument(
'--info' , nargs='?' , type=__lowercase , const=datetime_now() , help=(
'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.'
' lang=en-ru. If no value is passed, the current datetime string will be used.'
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
UpperCamelCase_ , UpperCamelCase_ = parser.parse_known_args()
UpperCamelCase_ = parse_numeric_n_bool_cl_kwargs(__lowercase)
if parsed_args and verbose:
print(f"""parsed the following generate kwargs: {parsed_args}""")
UpperCamelCase_ = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path).readlines()]
if args.n_obs > 0:
UpperCamelCase_ = examples[: args.n_obs]
Path(args.save_path).parent.mkdir(exist_ok=__lowercase)
if args.reference_path is None and Path(args.score_path).exists():
warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""")
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError('Can\'t mix --fp16 and --device cpu')
UpperCamelCase_ = generate_summaries_or_translations(
__lowercase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **__lowercase , )
if args.reference_path is None:
return {}
# Compute scores
UpperCamelCase_ = calculate_bleu if 'translation' in args.task else calculate_rouge
UpperCamelCase_ = [x.rstrip() for x in open(args.save_path).readlines()]
UpperCamelCase_ = [x.rstrip() for x in open(args.reference_path).readlines()][: len(__lowercase)]
UpperCamelCase_ = score_fn(__lowercase , __lowercase)
scores.update(__lowercase)
if args.dump_args:
scores.update(__lowercase)
if args.info:
UpperCamelCase_ = args.info
if verbose:
print(__lowercase)
if args.score_path is not None:
json.dump(__lowercase , open(args.score_path , 'w'))
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 23 |
import argparse
import random
import joblib
import numpy as np
import torch
from igf.igf import (
SecondaryLearner,
collect_objective_set,
compute_perplexity,
generate_datasets,
load_gpta,
recopy_gpta,
set_seed,
train_secondary_learner,
)
from torch.utils.data import DataLoader, RandomSampler
from transformers import GPTaLMHeadModel
def _snake_case (__lowercase=32 , __lowercase=10 , __lowercase=100 , __lowercase=1026 , __lowercase=True , __lowercase="data/tokenized_stories_train_wikitext103.jbl" , __lowercase="igf_context_pairs.jbl" , ):
set_seed(3)
# generate train_data and objective_set
UpperCamelCase_ , UpperCamelCase_ = generate_datasets(
__lowercase , __lowercase , number=__lowercase , min_len=1026 , trim=__lowercase)
# keeps model same across runs
set_seed(4)
# model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights
# can we train on GPU?
UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# load pretrained model
UpperCamelCase_ = load_gpta('gpt2').to(__lowercase)
print('computing perplexity on objective set')
UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase).item()
print('perplexity on objective set:' , __lowercase)
# collect igf pairs and save to file demo.jbl
collect_objective_set(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase)
# clean up, delete model and data we don't need anymore
del model, train_data, objective_set
torch.cuda.empty_cache()
def _snake_case (__lowercase , __lowercase=15 , __lowercase=128 , __lowercase=100 , __lowercase="igf_model.pt" , ):
set_seed(42)
# Load pre-trained model
UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2')
# Initialize secondary learner to use embedding weights of model
UpperCamelCase_ = SecondaryLearner(__lowercase)
# Train secondary learner
UpperCamelCase_ = train_secondary_learner(
__lowercase , __lowercase , max_epochs=__lowercase , batch_size=__lowercase , eval_freq=100 , igf_model_path=__lowercase , )
del model, secondary_learner_train_data
torch.cuda.empty_cache()
return secondary_learner
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=32 , __lowercase=1000 , __lowercase=16 , __lowercase=1.0 , __lowercase=recopy_gpta , __lowercase=None , __lowercase=10 , __lowercase="gpt2_finetuned.pt" , ):
UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
UpperCamelCase_ = RandomSampler(__lowercase)
UpperCamelCase_ = DataLoader(__lowercase , sampler=__lowercase)
UpperCamelCase_ = max_steps // (len(__lowercase)) + 1
UpperCamelCase_ = 0
UpperCamelCase_ = torch.zeros((1, context_len) , dtype=torch.long , device=__lowercase)
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = recopy_model(__lowercase , __lowercase , __lowercase)
model.train()
if secondary_learner is not None:
secondary_learner.to(__lowercase)
secondary_learner.eval()
UpperCamelCase_ = []
UpperCamelCase_ = 0
UpperCamelCase_ = []
UpperCamelCase_ = []
# Compute the performance of the transformer model at the beginning
UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase)
test_perps.append(__lowercase)
print('Test perplexity, step' , __lowercase , ':' , __lowercase)
for epoch in range(int(__lowercase)):
for step, example in enumerate(__lowercase):
torch.cuda.empty_cache()
UpperCamelCase_ = random.randint(0 , example.size(2) - context_len - 1)
UpperCamelCase_ = example[0, 0, start : start + context_len]
lm_optimizer.zero_grad()
UpperCamelCase_ = model(__lowercase , labels=__lowercase)
UpperCamelCase_ = True
if secondary_learner is not None:
UpperCamelCase_ = secondary_learner.forward(
torch.tensor(__lowercase , dtype=torch.long , device=__lowercase).unsqueeze(0))[0].item()
observed_qs.append(float(__lowercase))
# Here we implement the simple non-constant threshold for the predicted IG(X) value
# We will decay the selectivity of our secondary learner filter from
# 1 standard deviation above average to 1 below average after 10 batches.
if global_step == 10:
UpperCamelCase_ = -1
if predicted_q < threshold:
UpperCamelCase_ = False
# If we passed the filter, add the context to the batch!
if do_backprop:
contexts.append(np.array(context.cpu()))
UpperCamelCase_ = outputs[0]
lm_loss.backward()
examples += 1
del outputs
# Once the batch is filled with enough contexts, backprop on the batch.
if examples == batch_size:
torch.cuda.empty_cache()
UpperCamelCase_ = 0
# Do LM backprop
torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0)
lm_optimizer.step()
lm_scheduler.step() # Update learning rate schedule
global_step += 1
# Compute the performance of the transformer model at this batch
if global_step % eval_interval == 0:
UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase)
test_perps.append(__lowercase)
print('Test perplexity, step' , __lowercase , ':' , __lowercase)
# Break out of the loop after 60 batches
if max_steps > 0 and global_step > 60:
break
if max_steps > 0 and global_step > 60:
break
# save finetuned transformer model
torch.save(model.state_dict() , __lowercase)
torch.cuda.empty_cache()
# Do some cleaning up so we can reinitialize for the next run of this function
del lm_optimizer
del lm_scheduler
return model
def _snake_case ():
UpperCamelCase_ = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task')
# Required parameters
parser.add_argument(
'--data_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The input data dir. Should contain data files for WikiText.' , )
parser.add_argument(
'--model_name_or_path' , default=__lowercase , type=__lowercase , required=__lowercase , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--data_file' , type=__lowercase , default=__lowercase , help=(
'A jbl file containing tokenized data which can be split as objective dataset, '
'train_dataset and test_dataset.'
) , )
parser.add_argument(
'--igf_data_file' , type=__lowercase , default=__lowercase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , )
parser.add_argument(
'--output_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The output directory where the final fine-tuned model is stored.' , )
parser.add_argument(
'--tokenizer_name' , default=__lowercase , type=__lowercase , help='Pretrained tokenizer name or path if not the same as model_name' , )
parser.add_argument('--seed' , type=__lowercase , default=__lowercase , help='A seed for reproducible training.')
parser.add_argument(
'--context_len' , default=32 , type=__lowercase , help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
) , )
parser.add_argument(
'--size_objective_set' , default=100 , type=__lowercase , help='number of articles that are long enough to be used as our objective set' , )
parser.add_argument(
'--eval_freq' , default=100 , type=__lowercase , help='secondary model evaluation is triggered at eval_freq')
parser.add_argument('--max_steps' , default=1000 , type=__lowercase , help='To calculate training epochs')
parser.add_argument(
'--secondary_learner_batch_size' , default=128 , type=__lowercase , help='batch size of training data for secondary learner' , )
parser.add_argument(
'--batch_size' , default=16 , type=__lowercase , help='batch size of training data of language model(gpt2) ')
parser.add_argument(
'--eval_interval' , default=10 , type=__lowercase , help=(
'decay the selectivity of our secondary learner filter from'
'1 standard deviation above average to 1 below average after 10 batches'
) , )
parser.add_argument(
'--number' , default=100 , type=__lowercase , help='The number of examples split to be used as objective_set/test_data')
parser.add_argument(
'--min_len' , default=1026 , type=__lowercase , help='The minimum length of the article to be used as objective set')
parser.add_argument(
'--secondary_learner_max_epochs' , default=15 , type=__lowercase , help='number of epochs to train secondary learner')
parser.add_argument('--trim' , default=__lowercase , type=__lowercase , help='truncate the example if it exceeds context length')
parser.add_argument(
'--threshold' , default=1.0 , type=__lowercase , help=(
'The threshold value used by secondary learner to filter the train_data and allow only'
' informative data as input to the model'
) , )
parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=__lowercase , help='finetuned_model_name')
parser.add_argument(
'--recopy_model' , default=__lowercase , type=__lowercase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , )
# function calls
# Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner
generate_n_pairs(
context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=__lowercase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , )
# Load train data for secondary learner
UpperCamelCase_ = joblib.load('data/IGF_values.jbl')
# Train secondary learner
UpperCamelCase_ = training_secondary_learner(
__lowercase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , )
# load pretrained gpt2 model
UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2')
set_seed(42)
# Generate train and test data to train and evaluate gpt2 model
UpperCamelCase_ , UpperCamelCase_ = generate_datasets(
context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=__lowercase)
# fine-tuning of the gpt2 model using igf (Information Gain Filtration)
finetune(
__lowercase , __lowercase , __lowercase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=__lowercase , secondary_learner=__lowercase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , )
if __name__ == "__main__":
main()
| 23 | 1 |
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
snake_case__ : str = """CompVis/stable-diffusion-v1-1"""
snake_case__ : Optional[Any] = """CompVis/stable-diffusion-v1-2"""
snake_case__ : List[Any] = """CompVis/stable-diffusion-v1-3"""
snake_case__ : int = """CompVis/stable-diffusion-v1-4"""
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ) -> List[str]:
super()._init_()
UpperCamelCase_ = StableDiffusionPipeline.from_pretrained(_UpperCAmelCase )
UpperCamelCase_ = StableDiffusionPipeline.from_pretrained(_UpperCAmelCase )
UpperCamelCase_ = StableDiffusionPipeline.from_pretrained(_UpperCAmelCase )
UpperCamelCase_ = StableDiffusionPipeline(
vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , requires_safety_checker=_UpperCAmelCase , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def _UpperCAmelCase ( self ) -> Dict[str, Any]:
return {k: getattr(self , _UpperCAmelCase ) for k in self.config.keys() if not k.startswith('_' )}
def _UpperCAmelCase ( self , _UpperCAmelCase = "auto" ) -> List[str]:
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
UpperCamelCase_ = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> int:
self.enable_attention_slicing(_UpperCAmelCase )
@torch.no_grad()
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = 512 , _UpperCAmelCase = 512 , _UpperCAmelCase = 50 , _UpperCAmelCase = 7.5 , _UpperCAmelCase = None , _UpperCAmelCase = 1 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = "pil" , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = 1 , **_UpperCAmelCase , ) -> Any:
return self.pipea(
prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , )
@torch.no_grad()
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = 512 , _UpperCAmelCase = 512 , _UpperCAmelCase = 50 , _UpperCAmelCase = 7.5 , _UpperCAmelCase = None , _UpperCAmelCase = 1 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = "pil" , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = 1 , **_UpperCAmelCase , ) -> List[Any]:
return self.pipea(
prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , )
@torch.no_grad()
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = 512 , _UpperCAmelCase = 512 , _UpperCAmelCase = 50 , _UpperCAmelCase = 7.5 , _UpperCAmelCase = None , _UpperCAmelCase = 1 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = "pil" , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = 1 , **_UpperCAmelCase , ) -> Optional[int]:
return self.pipea(
prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , )
@torch.no_grad()
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = 512 , _UpperCAmelCase = 512 , _UpperCAmelCase = 50 , _UpperCAmelCase = 7.5 , _UpperCAmelCase = None , _UpperCAmelCase = 1 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = "pil" , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = 1 , **_UpperCAmelCase , ) -> Tuple:
return self.pipea(
prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , )
@torch.no_grad()
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = 512 , _UpperCAmelCase = 512 , _UpperCAmelCase = 50 , _UpperCAmelCase = 7.5 , _UpperCAmelCase = None , _UpperCAmelCase = 1 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = "pil" , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = 1 , **_UpperCAmelCase , ) -> List[Any]:
UpperCamelCase_ = 'cuda' if torch.cuda.is_available() else 'cpu'
self.to(_UpperCAmelCase )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
UpperCamelCase_ = self.textaimg_sda_a(
prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , )
# Get first result from Stable Diffusion Checkpoint v1.2
UpperCamelCase_ = self.textaimg_sda_a(
prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , )
# Get first result from Stable Diffusion Checkpoint v1.3
UpperCamelCase_ = self.textaimg_sda_a(
prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , )
# Get first result from Stable Diffusion Checkpoint v1.4
UpperCamelCase_ = self.textaimg_sda_a(
prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 23 |
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class _a :
"""simple docstring"""
A_ = MBartConfig
A_ = {}
A_ = """gelu"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ) -> Union[str, Any]:
UpperCamelCase_ = parent
UpperCamelCase_ = batch_size
UpperCamelCase_ = seq_length
UpperCamelCase_ = is_training
UpperCamelCase_ = use_labels
UpperCamelCase_ = vocab_size
UpperCamelCase_ = hidden_size
UpperCamelCase_ = num_hidden_layers
UpperCamelCase_ = num_attention_heads
UpperCamelCase_ = intermediate_size
UpperCamelCase_ = hidden_dropout_prob
UpperCamelCase_ = attention_probs_dropout_prob
UpperCamelCase_ = max_position_embeddings
UpperCamelCase_ = eos_token_id
UpperCamelCase_ = pad_token_id
UpperCamelCase_ = bos_token_id
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase_ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCamelCase_ = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return config, inputs_dict
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]:
UpperCamelCase_ = TFMBartModel(config=_UpperCAmelCase ).get_decoder()
UpperCamelCase_ = inputs_dict['input_ids']
UpperCamelCase_ = input_ids[:1, :]
UpperCamelCase_ = inputs_dict['attention_mask'][:1, :]
UpperCamelCase_ = inputs_dict['head_mask']
UpperCamelCase_ = 1
# first forward pass
UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase )
UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple()
UpperCamelCase_ = past_key_values[1]
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ):
if attention_mask is None:
UpperCamelCase_ = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id) , tf.inta)
if decoder_attention_mask is None:
UpperCamelCase_ = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta),
] , axis=-1 , )
if head_mask is None:
UpperCamelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads))
if decoder_head_mask is None:
UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads))
if cross_attn_head_mask is None:
UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads))
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
A_ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
A_ = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
A_ = (
{
"""conversational""": TFMBartForConditionalGeneration,
"""feature-extraction""": TFMBartModel,
"""summarization""": TFMBartForConditionalGeneration,
"""text2text-generation""": TFMBartForConditionalGeneration,
"""translation""": TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
A_ = True
A_ = False
A_ = False
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple:
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ = TFMBartModelTester(self )
UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase )
@require_sentencepiece
@require_tokenizers
@require_tf
class _a ( unittest.TestCase ):
"""simple docstring"""
A_ = [
""" UN Chief Says There Is No Military Solution in Syria""",
]
A_ = [
"""Şeful ONU declară că nu există o soluţie militară în Siria""",
]
A_ = """facebook/mbart-large-en-ro"""
@cached_property
def _UpperCAmelCase ( self ) -> Any:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _UpperCAmelCase ( self ) -> List[str]:
UpperCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> int:
UpperCamelCase_ = self.translate_src_text(**_UpperCAmelCase )
self.assertListEqual(self.expected_text , _UpperCAmelCase )
def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> List[str]:
UpperCamelCase_ = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='tf' )
UpperCamelCase_ = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
UpperCamelCase_ = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
return generated_words
@slow
def _UpperCAmelCase ( self ) -> List[Any]:
self._assert_generated_batch_equal_expected()
| 23 | 1 |
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase):
if index == number_of_items:
return 0
UpperCamelCase_ = 0
UpperCamelCase_ = 0
UpperCamelCase_ = knapsack(__lowercase , __lowercase , __lowercase , __lowercase , index + 1)
if weights[index] <= max_weight:
UpperCamelCase_ = values[index] + knapsack(
__lowercase , __lowercase , __lowercase , max_weight - weights[index] , index + 1)
return max(__lowercase , __lowercase)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 |
def _snake_case (__lowercase):
UpperCamelCase_ = 1
for i in range(1 , num + 1):
fact *= i
return fact
def _snake_case (__lowercase):
UpperCamelCase_ = 0
while number > 0:
UpperCamelCase_ = number % 10
sum_of_digits += last_digit
UpperCamelCase_ = number // 10 # Removing the last_digit from the given number
return sum_of_digits
def _snake_case (__lowercase = 100):
UpperCamelCase_ = factorial(__lowercase)
UpperCamelCase_ = split_and_add(__lowercase)
return result
if __name__ == "__main__":
print(solution(int(input("""Enter the Number: """).strip())))
| 23 | 1 |
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
from .timesteps import (
fastaa_timesteps,
smartaa_timesteps,
smartaa_timesteps,
smartaaa_timesteps,
smartaaa_timesteps,
superaa_timesteps,
superaa_timesteps,
superaaa_timesteps,
)
@dataclass
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = 42
A_ = 42
A_ = 42
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_if import IFPipeline
from .pipeline_if_imgaimg import IFImgaImgPipeline
from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline
from .pipeline_if_inpainting import IFInpaintingPipeline
from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline
from .pipeline_if_superresolution import IFSuperResolutionPipeline
from .safety_checker import IFSafetyChecker
from .watermark import IFWatermarker
| 23 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
snake_case__ : str = logging.get_logger(__name__)
def _snake_case (__lowercase):
if isinstance(__lowercase , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]):
return videos
elif isinstance(__lowercase , (list, tuple)) and is_valid_image(videos[0]):
return [videos]
elif is_valid_image(__lowercase):
return [[videos]]
raise ValueError(f"""Could not make batched video from {videos}""")
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = ["""pixel_values"""]
def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> None:
super().__init__(**_UpperCAmelCase )
UpperCamelCase_ = size if size is not None else {'shortest_edge': 224}
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224}
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' )
UpperCamelCase_ = do_resize
UpperCamelCase_ = size
UpperCamelCase_ = do_center_crop
UpperCamelCase_ = crop_size
UpperCamelCase_ = resample
UpperCamelCase_ = do_rescale
UpperCamelCase_ = rescale_factor
UpperCamelCase_ = do_normalize
UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray:
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "shortest_edge" in size:
UpperCamelCase_ = get_resize_output_image_size(_UpperCAmelCase , size['shortest_edge'] , default_to_square=_UpperCAmelCase )
elif "height" in size and "width" in size:
UpperCamelCase_ = (size['height'], size['width'])
else:
raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" )
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray:
UpperCamelCase_ = get_size_dict(_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" )
return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> int:
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray:
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray:
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
UpperCamelCase_ = to_numpy_array(_UpperCAmelCase )
if do_resize:
UpperCamelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase )
if do_center_crop:
UpperCamelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase )
if do_rescale:
UpperCamelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase )
if do_normalize:
UpperCamelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase )
UpperCamelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase )
return image
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ) -> PIL.Image.Image:
UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCamelCase_ = resample if resample is not None else self.resample
UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCamelCase_ = image_std if image_std is not None else self.image_std
UpperCamelCase_ = size if size is not None else self.size
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
UpperCamelCase_ = make_batched(_UpperCAmelCase )
UpperCamelCase_ = [
[
self._preprocess_image(
image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , )
for img in video
]
for video in videos
]
UpperCamelCase_ = {'pixel_values': videos}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 23 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
snake_case__ : Dict = {
"""configuration_efficientformer""": [
"""EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""EfficientFormerConfig""",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : List[Any] = ["""EfficientFormerImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Optional[int] = [
"""EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""EfficientFormerForImageClassification""",
"""EfficientFormerForImageClassificationWithTeacher""",
"""EfficientFormerModel""",
"""EfficientFormerPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Dict = [
"""TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFEfficientFormerForImageClassification""",
"""TFEfficientFormerForImageClassificationWithTeacher""",
"""TFEfficientFormerModel""",
"""TFEfficientFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientformer import EfficientFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientformer import (
EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientFormerForImageClassification,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerModel,
EfficientFormerPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
TFEfficientFormerPreTrainedModel,
)
else:
import sys
snake_case__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 23 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin, SchedulerOutput
@dataclass
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = 42
A_ = 42
class _a ( UpperCAmelCase__ , UpperCAmelCase__ ):
"""simple docstring"""
A_ = 1
@register_to_config
def __init__( self , _UpperCAmelCase = 2000 , _UpperCAmelCase = 0.1_5 , _UpperCAmelCase = 0.0_1 , _UpperCAmelCase = 1_3_4_8.0 , _UpperCAmelCase = 1e-5 , _UpperCAmelCase = 1 , ) -> Tuple:
# standard deviation of the initial noise distribution
UpperCamelCase_ = sigma_max
# setable values
UpperCamelCase_ = None
self.set_sigmas(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> torch.FloatTensor:
return sample
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> str:
UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps
UpperCamelCase_ = torch.linspace(1 , _UpperCAmelCase , _UpperCAmelCase , device=_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> Any:
UpperCamelCase_ = sigma_min if sigma_min is not None else self.config.sigma_min
UpperCamelCase_ = sigma_max if sigma_max is not None else self.config.sigma_max
UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps
if self.timesteps is None:
self.set_timesteps(_UpperCAmelCase , _UpperCAmelCase )
UpperCamelCase_ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
UpperCamelCase_ = torch.exp(torch.linspace(math.log(_UpperCAmelCase ) , math.log(_UpperCAmelCase ) , _UpperCAmelCase ) )
UpperCamelCase_ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]:
return torch.where(
timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SdeVeOutput, Tuple]:
if self.timesteps is None:
raise ValueError(
'`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' )
UpperCamelCase_ = timestep * torch.ones(
sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0])
UpperCamelCase_ = (timestep * (len(self.timesteps ) - 1)).long()
# mps requires indices to be in the same device, so we use cpu as is the default with cuda
UpperCamelCase_ = timesteps.to(self.discrete_sigmas.device )
UpperCamelCase_ = self.discrete_sigmas[timesteps].to(sample.device )
UpperCamelCase_ = self.get_adjacent_sigma(_UpperCAmelCase , _UpperCAmelCase ).to(sample.device )
UpperCamelCase_ = torch.zeros_like(_UpperCAmelCase )
UpperCamelCase_ = (sigma**2 - adjacent_sigma**2) ** 0.5
# equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
# also equation 47 shows the analog from SDE models to ancestral sampling methods
UpperCamelCase_ = diffusion.flatten()
while len(diffusion.shape ) < len(sample.shape ):
UpperCamelCase_ = diffusion.unsqueeze(-1 )
UpperCamelCase_ = drift - diffusion**2 * model_output
# equation 6: sample noise for the diffusion term of
UpperCamelCase_ = randn_tensor(
sample.shape , layout=sample.layout , generator=_UpperCAmelCase , device=sample.device , dtype=sample.dtype )
UpperCamelCase_ = sample - drift # subtract because `dt` is a small negative timestep
# TODO is the variable diffusion the correct scaling term for the noise?
UpperCamelCase_ = prev_sample_mean + diffusion * noise # add impact of diffusion field g
if not return_dict:
return (prev_sample, prev_sample_mean)
return SdeVeOutput(prev_sample=_UpperCAmelCase , prev_sample_mean=_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]:
if self.timesteps is None:
raise ValueError(
'`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' )
# For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
# sample noise for correction
UpperCamelCase_ = randn_tensor(sample.shape , layout=sample.layout , generator=_UpperCAmelCase ).to(sample.device )
# compute step size from the model_output, the noise, and the snr
UpperCamelCase_ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean()
UpperCamelCase_ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean()
UpperCamelCase_ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
UpperCamelCase_ = step_size * torch.ones(sample.shape[0] ).to(sample.device )
# self.repeat_scalar(step_size, sample.shape[0])
# compute corrected sample: model_output term and noise term
UpperCamelCase_ = step_size.flatten()
while len(step_size.shape ) < len(sample.shape ):
UpperCamelCase_ = step_size.unsqueeze(-1 )
UpperCamelCase_ = sample + step_size * model_output
UpperCamelCase_ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
UpperCamelCase_ = timesteps.to(original_samples.device )
UpperCamelCase_ = self.discrete_sigmas.to(original_samples.device )[timesteps]
UpperCamelCase_ = (
noise * sigmas[:, None, None, None]
if noise is not None
else torch.randn_like(_UpperCAmelCase ) * sigmas[:, None, None, None]
)
UpperCamelCase_ = noise + original_samples
return noisy_samples
def __len__( self ) -> Optional[int]:
return self.config.num_train_timesteps
| 23 | 1 |
from __future__ import annotations
class _a :
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]:
UpperCamelCase_ , UpperCamelCase_ = text, pattern
UpperCamelCase_ , UpperCamelCase_ = len(_UpperCAmelCase ), len(_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> int:
for i in range(self.patLen - 1 , -1 , -1 ):
if char == self.pattern[i]:
return i
return -1
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> int:
for i in range(self.patLen - 1 , -1 , -1 ):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def _UpperCAmelCase ( self ) -> list[int]:
# searches pattern in text and returns index positions
UpperCamelCase_ = []
for i in range(self.textLen - self.patLen + 1 ):
UpperCamelCase_ = self.mismatch_in_text(_UpperCAmelCase )
if mismatch_index == -1:
positions.append(_UpperCAmelCase )
else:
UpperCamelCase_ = self.match_in_pattern(self.text[mismatch_index] )
UpperCamelCase_ = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
snake_case__ : List[str] = """ABAABA"""
snake_case__ : Tuple = """AB"""
snake_case__ : Tuple = BoyerMooreSearch(text, pattern)
snake_case__ : Union[str, Any] = bms.bad_character_heuristic()
if len(positions) == 0:
print("""No match found""")
else:
print("""Pattern found in following positions: """)
print(positions)
| 23 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case__ : Optional[int] = {
"""configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Dict = [
"""PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PegasusXForConditionalGeneration""",
"""PegasusXModel""",
"""PegasusXPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
snake_case__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 23 | 1 |
def _snake_case (__lowercase):
UpperCamelCase_ = abs(__lowercase)
UpperCamelCase_ = 0
while n > 0:
res += n % 10
n //= 10
return res
def _snake_case (__lowercase):
UpperCamelCase_ = abs(__lowercase)
return n if n < 10 else n % 10 + sum_of_digits(n // 10)
def _snake_case (__lowercase):
return sum(int(__lowercase) for c in str(abs(__lowercase)))
def _snake_case ():
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(__lowercase , __lowercase) -> None:
UpperCamelCase_ = f"""{func.__name__}({value})"""
UpperCamelCase_ = timeit(f"""__main__.{call}""" , setup='import __main__')
print(f"""{call:56} = {func(__lowercase)} -- {timing:.4f} seconds""")
for value in (262144, 1125899906842624, 1267650600228229401496703205376):
for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
benchmark_a_function(__lowercase , __lowercase)
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 23 |
import datasets
from .evaluate import evaluate
snake_case__ : int = """\
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={arXiv preprint arXiv:2103.06268},
year={2021}
}
"""
snake_case__ : Union[str, Any] = """
This metric wrap the official scoring script for version 1 of the Contract
Understanding Atticus Dataset (CUAD).
Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510
commercial legal contracts that have been manually labeled to identify 41 categories of important
clauses that lawyers look for when reviewing contracts in connection with corporate transactions.
"""
snake_case__ : Any = """
Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair as given in the references (see below)
- 'prediction_text': list of possible texts for the answer, as a list of strings
depending on a threshold on the confidence probability of each prediction.
references: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair (see above),
- 'answers': a Dict in the CUAD dataset format
{
'text': list of possible texts for the answer, as a list of strings
'answer_start': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
'exact_match': Exact match (the normalized answer exactly match the gold answer)
'f1': The F-score of predicted tokens versus the gold answer
'aupr': Area Under the Precision-Recall curve
'prec_at_80_recall': Precision at 80% recall
'prec_at_90_recall': Precision at 90% recall
Examples:
>>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> cuad_metric = datasets.load_metric(\"cuad\")
>>> results = cuad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _a ( datasets.Metric ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> Optional[int]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': {
'id': datasets.Value('string' ),
'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ),
},
'references': {
'id': datasets.Value('string' ),
'answers': datasets.features.Sequence(
{
'text': datasets.Value('string' ),
'answer_start': datasets.Value('int32' ),
} ),
},
} ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict:
UpperCamelCase_ = {prediction['id']: prediction['prediction_text'] for prediction in predictions}
UpperCamelCase_ = [
{
'paragraphs': [
{
'qas': [
{
'answers': [{'text': answer_text} for answer_text in ref['answers']['text']],
'id': ref['id'],
}
for ref in references
]
}
]
}
]
UpperCamelCase_ = evaluate(dataset=_UpperCAmelCase , predictions=_UpperCAmelCase )
return score
| 23 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case__ : Dict = {
"""configuration_megatron_bert""": ["""MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegatronBertConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : str = [
"""MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MegatronBertForCausalLM""",
"""MegatronBertForMaskedLM""",
"""MegatronBertForMultipleChoice""",
"""MegatronBertForNextSentencePrediction""",
"""MegatronBertForPreTraining""",
"""MegatronBertForQuestionAnswering""",
"""MegatronBertForSequenceClassification""",
"""MegatronBertForTokenClassification""",
"""MegatronBertModel""",
"""MegatronBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
snake_case__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 23 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import datasets
import datasets.config
from .utils import require_beam
class _a ( datasets.BeamBasedBuilder ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> List[str]:
return datasets.DatasetInfo(
features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=_UpperCAmelCase , )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]:
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )]
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple:
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase )
class _a ( datasets.BeamBasedBuilder ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> Any:
return datasets.DatasetInfo(
features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=_UpperCAmelCase , )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple:
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} )
]
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]:
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase )
def _snake_case ():
return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'])]
def _snake_case ():
return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'])]
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
@require_beam
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) )
UpperCamelCase_ = builder.as_dataset()
self.assertEqual(dset['train'].num_rows , _UpperCAmelCase )
self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase )
self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] )
self.assertDictEqual(
dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) )
del dset
@require_beam
def _UpperCAmelCase ( self ) -> List[str]:
import apache_beam as beam
UpperCamelCase_ = beam.io.parquetio.WriteToParquet
UpperCamelCase_ = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' )
with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock:
UpperCamelCase_ = partial(_UpperCAmelCase , num_shards=2 )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(
_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) )
self.assertTrue(
os.path.exists(
os.path.join(
_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) )
UpperCamelCase_ = builder.as_dataset()
self.assertEqual(dset['train'].num_rows , _UpperCAmelCase )
self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase )
# Order is not preserved when sharding, so we just check that all the elements are there
self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) )
self.assertTrue(
os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) )
del dset
@require_beam
def _UpperCAmelCase ( self ) -> Any:
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase )
self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare )
@require_beam
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = len(get_test_nested_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCamelCase_ = NestedBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) )
self.assertDictEqual(
builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) )
UpperCamelCase_ = builder.as_dataset()
self.assertEqual(dset['train'].num_rows , _UpperCAmelCase )
self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase )
self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] )
self.assertDictEqual(
dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) )
del dset
| 23 | 1 |
import requests
def _snake_case (__lowercase , __lowercase):
UpperCamelCase_ = {'Content-Type': 'application/json'}
UpperCamelCase_ = requests.post(__lowercase , json={'text': message_body} , headers=__lowercase)
if response.status_code != 200:
UpperCamelCase_ = (
'Request to slack returned an error '
f"""{response.status_code}, the response is:\n{response.text}"""
)
raise ValueError(__lowercase)
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
| 23 |
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def _snake_case (__lowercase , __lowercase , __lowercase):
# Initialise PyTorch model
UpperCamelCase_ = AlbertConfig.from_json_file(__lowercase)
print(f"""Building PyTorch model from configuration: {config}""")
UpperCamelCase_ = AlbertForPreTraining(__lowercase)
# Load weights from tf checkpoint
load_tf_weights_in_albert(__lowercase , __lowercase , __lowercase)
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""")
torch.save(model.state_dict() , __lowercase)
if __name__ == "__main__":
snake_case__ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--albert_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained ALBERT model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
snake_case__ : str = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 23 | 1 |
import warnings
from pathlib import Path
from typing import List, Tuple, Union
import fire
from torch import nn
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel
from transformers.utils import logging
snake_case__ : Optional[int] = logging.get_logger(__name__)
def _snake_case (__lowercase , __lowercase , __lowercase):
UpperCamelCase_ = nn.ModuleList([src_layers[i] for i in layers_to_copy])
assert len(__lowercase) == len(__lowercase), f"""{len(__lowercase)} != {len(__lowercase)}"""
dest_layers.load_state_dict(layers_to_copy.state_dict())
snake_case__ : Tuple = {
# maps num layers in teacher -> num_layers in student -> which teacher layers to copy.
# 12: bart, 16: pegasus, 6: marian/Helsinki-NLP
1_2: {
1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher
2: [0, 6],
3: [0, 6, 1_1],
4: [0, 4, 8, 1_1],
6: [0, 2, 4, 7, 9, 1_1],
9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1],
1_2: list(range(1_2)),
},
1_6: { # maps num layers in student -> which teacher layers to copy
1: [0],
2: [0, 1_5],
3: [0, 8, 1_5],
4: [0, 5, 1_0, 1_5],
6: [0, 3, 6, 9, 1_2, 1_5],
8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5],
9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5],
1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5],
1_6: list(range(1_6)),
},
6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))},
}
snake_case__ : Any = {
# maps num layers in student -> which teacher layers to copy.
6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]},
1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]},
1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]},
}
def _snake_case (__lowercase , __lowercase):
try:
UpperCamelCase_ = LAYERS_TO_COPY[n_teacher][n_student]
return val
except KeyError:
if n_student != n_teacher:
warnings.warn(
f"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first"""
f""" {n_student}""")
return list(range(__lowercase))
def _snake_case (__lowercase , __lowercase):
if n_student > n_teacher:
raise ValueError(f"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""")
elif n_teacher == n_student:
return list(range(__lowercase))
elif n_student == 1:
return [n_teacher - 1]
else:
return LAYERS_TO_SUPERVISE[n_teacher][n_student]
def _snake_case (__lowercase , __lowercase = "student" , __lowercase = None , __lowercase = None , __lowercase=False , __lowercase=None , __lowercase=None , **__lowercase , ):
UpperCamelCase_ = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.'
assert (e is not None) or (d is not None), _msg
if isinstance(__lowercase , __lowercase):
AutoTokenizer.from_pretrained(__lowercase).save_pretrained(__lowercase) # purely for convenience
UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained(__lowercase).eval()
else:
assert isinstance(__lowercase , __lowercase), f"""teacher must be a model or string got type {type(__lowercase)}"""
UpperCamelCase_ = teacher.config.to_diff_dict()
try:
UpperCamelCase_ , UpperCamelCase_ = teacher.config.encoder_layers, teacher.config.decoder_layers
if e is None:
UpperCamelCase_ = teacher_e
if d is None:
UpperCamelCase_ = teacher_d
init_kwargs.update({'encoder_layers': e, 'decoder_layers': d})
except AttributeError: # T5
if hasattr(teacher.config , 'num_encoder_layers'):
UpperCamelCase_ , UpperCamelCase_ = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers
else:
UpperCamelCase_ , UpperCamelCase_ = teacher.config.num_layers, teacher.config.num_decoder_layers
if e is None:
UpperCamelCase_ = teacher_e
if d is None:
UpperCamelCase_ = teacher_d
if hasattr(teacher.config , 'num_encoder_layers'):
init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d})
else:
init_kwargs.update({'num_layers': e, 'num_decoder_layers': d})
# Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs
init_kwargs.update(__lowercase)
# Copy weights
UpperCamelCase_ = teacher.config_class(**__lowercase)
UpperCamelCase_ = AutoModelForSeqaSeqLM.from_config(__lowercase)
# Start by copying the full teacher state dict this will copy the first N teacher layers to the student.
UpperCamelCase_ = student.load_state_dict(teacher.state_dict() , strict=__lowercase)
assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys.
if copy_first_teacher_layers: # Our copying is done. We just log and save
UpperCamelCase_ , UpperCamelCase_ = list(range(__lowercase)), list(range(__lowercase))
logger.info(
f"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to"""
f""" {save_path}""")
student.save_pretrained(__lowercase)
return student, e_layers_to_copy, d_layers_to_copy
# Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer.
if e_layers_to_copy is None:
UpperCamelCase_ = pick_layers_to_copy(__lowercase , __lowercase)
if d_layers_to_copy is None:
UpperCamelCase_ = pick_layers_to_copy(__lowercase , __lowercase)
try:
if hasattr(
__lowercase , 'prophetnet'): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers
copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , __lowercase)
copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , __lowercase)
else:
copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , __lowercase)
copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , __lowercase)
except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block
copy_layers(teacher.encoder.block , student.encoder.block , __lowercase)
copy_layers(teacher.decoder.block , student.decoder.block , __lowercase)
logger.info(
f"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""")
UpperCamelCase_ = {
'teacher_type': teacher.config.model_type,
'copied_encoder_layers': e_layers_to_copy,
'copied_decoder_layers': d_layers_to_copy,
}
student.save_pretrained(__lowercase)
# Save information about copying for easier reproducibility
return student, e_layers_to_copy, d_layers_to_copy
if __name__ == "__main__":
fire.Fire(create_student_by_copying_alternating_layers)
| 23 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
@slow
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' )
UpperCamelCase_ = BertTokenizer.from_pretrained('bert-base-uncased' )
UpperCamelCase_ = bertabert.config.encoder.vocab_size
UpperCamelCase_ = tokenizer.sep_token_id
UpperCamelCase_ = tokenizer.cls_token_id
UpperCamelCase_ = 128
UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' )
UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' )
UpperCamelCase_ = train_dataset.select(range(32 ) )
UpperCamelCase_ = val_dataset.select(range(16 ) )
UpperCamelCase_ = 4
def _map_to_encoder_decoder_inputs(_UpperCAmelCase ):
# Tokenizer will automatically set [BOS] <text> [EOS]
UpperCamelCase_ = tokenizer(batch['article'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=512 )
UpperCamelCase_ = tokenizer(batch['highlights'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=128 )
UpperCamelCase_ = inputs.input_ids
UpperCamelCase_ = inputs.attention_mask
UpperCamelCase_ = outputs.input_ids
UpperCamelCase_ = outputs.input_ids.copy()
UpperCamelCase_ = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels']
]
UpperCamelCase_ = outputs.attention_mask
assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids )
assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(_UpperCAmelCase ):
UpperCamelCase_ = pred.label_ids
UpperCamelCase_ = pred.predictions
# all unnecessary tokens are removed
UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
UpperCamelCase_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase )
return {"accuracy": accuracy}
# map train dataset
UpperCamelCase_ = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , )
train_dataset.set_format(
type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , )
# same for validation dataset
UpperCamelCase_ = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , )
val_dataset.set_format(
type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , )
UpperCamelCase_ = self.get_auto_remove_tmp_dir()
UpperCamelCase_ = SeqaSeqTrainingArguments(
output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy='steps' , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
UpperCamelCase_ = SeqaSeqTrainer(
model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , )
# start training
trainer.train()
| 23 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
snake_case__ : List[str] = logging.get_logger(__name__)
if is_vision_available():
import PIL
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = ["""pixel_values"""]
def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , **_UpperCAmelCase , ) -> None:
super().__init__(**_UpperCAmelCase )
UpperCamelCase_ = size if size is not None else {'shortest_edge': 224}
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224}
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase , param_name='crop_size' )
UpperCamelCase_ = do_resize
UpperCamelCase_ = size
UpperCamelCase_ = resample
UpperCamelCase_ = do_center_crop
UpperCamelCase_ = crop_size
UpperCamelCase_ = do_rescale
UpperCamelCase_ = rescale_factor
UpperCamelCase_ = do_normalize
UpperCamelCase_ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
UpperCamelCase_ = image_std if image_std is not None else OPENAI_CLIP_STD
UpperCamelCase_ = do_convert_rgb
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray:
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
UpperCamelCase_ = get_resize_output_image_size(_UpperCAmelCase , size=size['shortest_edge'] , default_to_square=_UpperCAmelCase )
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray:
UpperCamelCase_ = get_size_dict(_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" )
return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> str:
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray:
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ) -> PIL.Image.Image:
UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCamelCase_ = size if size is not None else self.size
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='size' , default_to_square=_UpperCAmelCase )
UpperCamelCase_ = resample if resample is not None else self.resample
UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' , default_to_square=_UpperCAmelCase )
UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCamelCase_ = image_std if image_std is not None else self.image_std
UpperCamelCase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
UpperCamelCase_ = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
UpperCamelCase_ = [convert_to_rgb(_UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
UpperCamelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
UpperCamelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_center_crop:
UpperCamelCase_ = [self.center_crop(image=_UpperCAmelCase , size=_UpperCAmelCase ) for image in images]
if do_rescale:
UpperCamelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
UpperCamelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
UpperCamelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
UpperCamelCase_ = {'pixel_values': images}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 23 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
# and perform gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
snake_case__ : Dict = 1_6
snake_case__ : List[str] = 3_2
def _snake_case (__lowercase , __lowercase = 16):
UpperCamelCase_ = AutoTokenizer.from_pretrained('bert-base-cased')
UpperCamelCase_ = load_dataset('glue' , 'mrpc')
def tokenize_function(__lowercase):
# max_length=None => use the model max length (it's actually the default)
UpperCamelCase_ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__lowercase , max_length=__lowercase)
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
UpperCamelCase_ = datasets.map(
__lowercase , batched=__lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCamelCase_ = tokenized_datasets.rename_column('label' , 'labels')
def collate_fn(__lowercase):
# On TPU it's best to pad everything to the same length or training will be very slow.
UpperCamelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
UpperCamelCase_ = 16
elif accelerator.mixed_precision != "no":
UpperCamelCase_ = 8
else:
UpperCamelCase_ = None
return tokenizer.pad(
__lowercase , padding='longest' , max_length=__lowercase , pad_to_multiple_of=__lowercase , return_tensors='pt' , )
# Instantiate dataloaders.
UpperCamelCase_ = DataLoader(
tokenized_datasets['train'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase)
UpperCamelCase_ = DataLoader(
tokenized_datasets['validation'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase)
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
snake_case__ : List[str] = mocked_dataloaders # noqa: F811
def _snake_case (__lowercase , __lowercase):
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS' , __lowercase) == "1":
UpperCamelCase_ = 2
# New Code #
UpperCamelCase_ = int(args.gradient_accumulation_steps)
# Initialize accelerator
UpperCamelCase_ = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowercase)
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
raise NotImplementedError(
'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`')
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCamelCase_ = config['lr']
UpperCamelCase_ = int(config['num_epochs'])
UpperCamelCase_ = int(config['seed'])
UpperCamelCase_ = int(config['batch_size'])
UpperCamelCase_ = evaluate.load('glue' , 'mrpc')
set_seed(__lowercase)
UpperCamelCase_ , UpperCamelCase_ = get_dataloaders(__lowercase , __lowercase)
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCamelCase_ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__lowercase)
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCamelCase_ = model.to(accelerator.device)
# Instantiate optimizer
UpperCamelCase_ = AdamW(params=model.parameters() , lr=__lowercase)
# Instantiate scheduler
UpperCamelCase_ = get_linear_schedule_with_warmup(
optimizer=__lowercase , num_warmup_steps=100 , num_training_steps=(len(__lowercase) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare(
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase)
# Now we train the model
for epoch in range(__lowercase):
model.train()
for step, batch in enumerate(__lowercase):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(__lowercase):
UpperCamelCase_ = model(**__lowercase)
UpperCamelCase_ = output.loss
accelerator.backward(__lowercase)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__lowercase):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
with torch.no_grad():
UpperCamelCase_ = model(**__lowercase)
UpperCamelCase_ = outputs.logits.argmax(dim=-1)
UpperCamelCase_ , UpperCamelCase_ = accelerator.gather_for_metrics((predictions, batch['labels']))
metric.add_batch(
predictions=__lowercase , references=__lowercase , )
UpperCamelCase_ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""" , __lowercase)
def _snake_case ():
UpperCamelCase_ = argparse.ArgumentParser(description='Simple example of training script.')
parser.add_argument(
'--mixed_precision' , type=__lowercase , default=__lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.' , )
# New Code #
parser.add_argument(
'--gradient_accumulation_steps' , type=__lowercase , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , )
parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.')
UpperCamelCase_ = parser.parse_args()
UpperCamelCase_ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16}
training_function(__lowercase , __lowercase)
if __name__ == "__main__":
main()
| 23 | 1 |
from __future__ import annotations
def _snake_case (__lowercase , __lowercase , __lowercase):
if (voltage, current, resistance).count(0) != 1:
raise ValueError('One and only one argument must be 0')
if resistance < 0:
raise ValueError('Resistance cannot be negative')
if voltage == 0:
return {"voltage": float(current * resistance)}
elif current == 0:
return {"current": voltage / resistance}
elif resistance == 0:
return {"resistance": voltage / current}
else:
raise ValueError('Exactly one argument must be 0')
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 |
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class _a :
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=10 , _UpperCAmelCase=3 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=4 , _UpperCAmelCase=64 , ) -> List[Any]:
UpperCamelCase_ = parent
UpperCamelCase_ = batch_size
UpperCamelCase_ = is_training
UpperCamelCase_ = use_auxiliary_loss
UpperCamelCase_ = num_queries
UpperCamelCase_ = num_channels
UpperCamelCase_ = min_size
UpperCamelCase_ = max_size
UpperCamelCase_ = num_labels
UpperCamelCase_ = hidden_dim
UpperCamelCase_ = hidden_dim
def _UpperCAmelCase ( self ) -> List[str]:
UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
_UpperCAmelCase )
UpperCamelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_UpperCAmelCase )
UpperCamelCase_ = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_UpperCAmelCase ) > 0.5
).float()
UpperCamelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=_UpperCAmelCase ) > 0.5).long()
UpperCamelCase_ = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ = MaskaFormerConfig(
hidden_size=self.hidden_dim , )
UpperCamelCase_ = self.num_queries
UpperCamelCase_ = self.num_labels
UpperCamelCase_ = [1, 1, 1, 1]
UpperCamelCase_ = self.num_channels
UpperCamelCase_ = 64
UpperCamelCase_ = 128
UpperCamelCase_ = self.hidden_dim
UpperCamelCase_ = self.hidden_dim
UpperCamelCase_ = self.hidden_dim
return config
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs()
UpperCamelCase_ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask}
return config, inputs_dict
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]:
UpperCamelCase_ = output.encoder_hidden_states
UpperCamelCase_ = output.pixel_decoder_hidden_states
UpperCamelCase_ = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(_UpperCAmelCase ) , config.decoder_layers )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Any:
with torch.no_grad():
UpperCamelCase_ = MaskaFormerModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase )
UpperCamelCase_ = model(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(_UpperCAmelCase , _UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]:
UpperCamelCase_ = MaskaFormerForUniversalSegmentation(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
def comm_check_on_output(_UpperCAmelCase ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase )
UpperCamelCase_ = model(_UpperCAmelCase )
comm_check_on_output(_UpperCAmelCase )
UpperCamelCase_ = model(
pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase )
comm_check_on_output(_UpperCAmelCase )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
A_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
A_ = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {}
A_ = False
A_ = False
A_ = False
A_ = False
def _UpperCAmelCase ( self ) -> Optional[Any]:
UpperCamelCase_ = MaskaFormerModelTester(self )
UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_UpperCAmelCase )
@unittest.skip(reason='Mask2Former does not use inputs_embeds' )
def _UpperCAmelCase ( self ) -> Any:
pass
@unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' )
def _UpperCAmelCase ( self ) -> Optional[int]:
pass
@unittest.skip(reason='Mask2Former is not a generative model' )
def _UpperCAmelCase ( self ) -> Any:
pass
@unittest.skip(reason='Mask2Former does not use token embeddings' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
pass
@require_torch_multi_gpu
@unittest.skip(
reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def _UpperCAmelCase ( self ) -> int:
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _UpperCAmelCase ( self ) -> str:
pass
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase_ = model_class(_UpperCAmelCase )
UpperCamelCase_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase_ = [*signature.parameters.keys()]
UpperCamelCase_ = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
@slow
def _UpperCAmelCase ( self ) -> Tuple:
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
UpperCamelCase_ = MaskaFormerModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ = (self.model_tester.min_size,) * 2
UpperCamelCase_ = {
'pixel_values': torch.randn((2, 3, *size) , device=_UpperCAmelCase ),
'mask_labels': torch.randn((2, 10, *size) , device=_UpperCAmelCase ),
'class_labels': torch.zeros(2 , 10 , device=_UpperCAmelCase ).long(),
}
UpperCamelCase_ = self.model_tester.get_config()
UpperCamelCase_ = MaskaFormerForUniversalSegmentation(_UpperCAmelCase ).to(_UpperCAmelCase )
UpperCamelCase_ = model(**_UpperCAmelCase )
self.assertTrue(outputs.loss is not None )
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase )
UpperCamelCase_ = model(**_UpperCAmelCase , output_attentions=_UpperCAmelCase )
self.assertTrue(outputs.attentions is not None )
def _UpperCAmelCase ( self ) -> List[Any]:
if not self.model_tester.is_training:
return
UpperCamelCase_ = self.all_model_classes[1]
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs()
UpperCamelCase_ = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.train()
UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ).loss
loss.backward()
def _UpperCAmelCase ( self ) -> int:
UpperCamelCase_ = self.all_model_classes[1]
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs()
UpperCamelCase_ = True
UpperCamelCase_ = True
UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase )
model.train()
UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase )
UpperCamelCase_ = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
UpperCamelCase_ = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
UpperCamelCase_ = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
UpperCamelCase_ = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=_UpperCAmelCase )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
snake_case__ : List[Any] = 1E-4
def _snake_case ():
UpperCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
return image
@require_vision
@slow
class _a ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _UpperCAmelCase ( self ) -> Optional[int]:
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def _UpperCAmelCase ( self ) -> List[str]:
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase )
UpperCamelCase_ = self.default_image_processor
UpperCamelCase_ = prepare_img()
UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
UpperCamelCase_ = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) )
with torch.no_grad():
UpperCamelCase_ = model(**_UpperCAmelCase )
UpperCamelCase_ = torch.tensor(
[[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) )
UpperCamelCase_ = torch.tensor(
[[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) )
UpperCamelCase_ = torch.tensor(
[[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) )
def _UpperCAmelCase ( self ) -> Optional[Any]:
UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval()
UpperCamelCase_ = self.default_image_processor
UpperCamelCase_ = prepare_img()
UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
UpperCamelCase_ = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) )
with torch.no_grad():
UpperCamelCase_ = model(**_UpperCAmelCase )
# masks_queries_logits
UpperCamelCase_ = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
UpperCamelCase_ = [
[-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1],
[-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1],
[-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5],
]
UpperCamelCase_ = torch.tensor(_UpperCAmelCase ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) )
# class_queries_logits
UpperCamelCase_ = outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) )
UpperCamelCase_ = torch.tensor(
[
[1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2],
[0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3],
[0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5],
] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) )
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval()
UpperCamelCase_ = self.default_image_processor
UpperCamelCase_ = image_processor(
[np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , )
UpperCamelCase_ = inputs['pixel_values'].to(_UpperCAmelCase )
UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['mask_labels']]
UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['class_labels']]
with torch.no_grad():
UpperCamelCase_ = model(**_UpperCAmelCase )
self.assertTrue(outputs.loss is not None )
| 23 | 1 |
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def _snake_case (__lowercase):
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class _a ( nn.Module ):
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]:
super().__init__()
UpperCamelCase_ = module
UpperCamelCase_ = nn.Sequential(
nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , )
UpperCamelCase_ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def _UpperCAmelCase ( self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) -> Optional[int]:
return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class _a ( unittest.TestCase ):
"""simple docstring"""
A_ = """bigscience/bloom-1b7"""
# Constant values
A_ = 2.109_659_552_692_574
A_ = """Hello my name is"""
A_ = set()
EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" )
EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" )
EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" )
A_ = 10
def _UpperCAmelCase ( self ) -> List[Any]:
# Models and tokenizer
UpperCamelCase_ = AutoTokenizer.from_pretrained(self.model_name )
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> List[Any]:
super().setUp()
# Models and tokenizer
UpperCamelCase_ = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='auto' )
UpperCamelCase_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
def _UpperCAmelCase ( self ) -> Dict:
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def _UpperCAmelCase ( self ) -> Tuple:
UpperCamelCase_ = self.model_abit.config
self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) )
UpperCamelCase_ = config.to_dict()
UpperCamelCase_ = config.to_diff_dict()
UpperCamelCase_ = config.to_json_string()
def _UpperCAmelCase ( self ) -> int:
from bitsandbytes.nn import Paramsabit
UpperCamelCase_ = self.model_fpaa.get_memory_footprint()
UpperCamelCase_ = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
UpperCamelCase_ = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def _UpperCAmelCase ( self ) -> Any:
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(_UpperCAmelCase , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ = self.tokenizer(self.input_text , return_tensors='pt' )
UpperCamelCase_ = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
def _UpperCAmelCase ( self ) -> Tuple:
UpperCamelCase_ = BitsAndBytesConfig()
UpperCamelCase_ = True
UpperCamelCase_ = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' )
UpperCamelCase_ = self.tokenizer(self.input_text , return_tensors='pt' )
UpperCamelCase_ = model_abit_from_config.generate(
input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
def _UpperCAmelCase ( self ) -> int:
with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = BitsAndBytesConfig()
with self.assertRaises(_UpperCAmelCase ):
UpperCamelCase_ = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , )
def _UpperCAmelCase ( self ) -> Optional[Any]:
with self.assertRaises(_UpperCAmelCase ):
# Tries with `str`
self.model_abit.to('cpu' )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.to(torch.device('cuda:0' ) )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
UpperCamelCase_ = self.tokenizer(self.input_text , return_tensors='pt' )
UpperCamelCase_ = self.model_fpaa.to(torch.floataa )
UpperCamelCase_ = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
# Check this does not throw an error
UpperCamelCase_ = self.model_fpaa.to('cpu' )
# Check this does not throw an error
UpperCamelCase_ = self.model_fpaa.half()
# Check this does not throw an error
UpperCamelCase_ = self.model_fpaa.float()
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class _a ( unittest.TestCase ):
"""simple docstring"""
@classmethod
def _UpperCAmelCase ( cls ) -> Tuple:
UpperCamelCase_ = 't5-small'
UpperCamelCase_ = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense
UpperCamelCase_ = AutoTokenizer.from_pretrained(cls.model_name )
UpperCamelCase_ = 'Translate in German: Hello, my dog is cute'
def _UpperCAmelCase ( self ) -> List[Any]:
gc.collect()
torch.cuda.empty_cache()
def _UpperCAmelCase ( self ) -> Any:
from transformers import TaForConditionalGeneration
UpperCamelCase_ = TaForConditionalGeneration._keep_in_fpaa_modules
UpperCamelCase_ = None
# test with `t5-small`
UpperCamelCase_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
UpperCamelCase_ = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
UpperCamelCase_ = model.generate(**_UpperCAmelCase )
# test with `flan-t5-small`
UpperCamelCase_ = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
UpperCamelCase_ = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
UpperCamelCase_ = model.generate(**_UpperCAmelCase )
UpperCamelCase_ = modules
def _UpperCAmelCase ( self ) -> str:
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
UpperCamelCase_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
UpperCamelCase_ = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
UpperCamelCase_ = model.generate(**_UpperCAmelCase )
# test with `flan-t5-small`
UpperCamelCase_ = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
UpperCamelCase_ = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
UpperCamelCase_ = model.generate(**_UpperCAmelCase )
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> Union[str, Any]:
super().setUp()
# model_name
UpperCamelCase_ = 'bigscience/bloom-560m'
UpperCamelCase_ = 't5-small'
# Different types of model
UpperCamelCase_ = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# Sequence classification model
UpperCamelCase_ = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# CausalLM model
UpperCamelCase_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# Seq2seq model
UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def _UpperCAmelCase ( self ) -> Union[str, Any]:
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> Any:
super().setUp()
def _UpperCAmelCase ( self ) -> Optional[Any]:
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def _UpperCAmelCase ( self ) -> Any:
UpperCamelCase_ = pipeline(
'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
UpperCamelCase_ = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> Dict:
super().setUp()
def _UpperCAmelCase ( self ) -> int:
UpperCamelCase_ = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
UpperCamelCase_ = self.tokenizer(self.input_text , return_tensors='pt' )
# Second real batch
UpperCamelCase_ = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = 'facebook/opt-350m'
super().setUp()
def _UpperCAmelCase ( self ) -> Optional[Any]:
if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ):
return
# Step 1: freeze all parameters
UpperCamelCase_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
UpperCamelCase_ = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
UpperCamelCase_ = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(_UpperCAmelCase ) ):
UpperCamelCase_ = LoRALayer(module.q_proj , rank=16 )
UpperCamelCase_ = LoRALayer(module.k_proj , rank=16 )
UpperCamelCase_ = LoRALayer(module.v_proj , rank=16 )
# Step 3: dummy batch
UpperCamelCase_ = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
UpperCamelCase_ = model.forward(**_UpperCAmelCase )
out.logits.norm().backward()
for module in model.modules():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(_UpperCAmelCase , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = """gpt2-xl"""
A_ = 3.3_191_854_854_152_187
| 23 |
import copy
from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
if TYPE_CHECKING:
from ... import PreTrainedTokenizerBase, TensorType
snake_case__ : List[str] = logging.get_logger(__name__)
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = """vision-encoder-decoder"""
A_ = True
def __init__( self , **_UpperCAmelCase ) -> Dict:
super().__init__(**_UpperCAmelCase )
if "encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError(
f"""A configuraton of type {self.model_type} cannot be instantiated because """
f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" )
UpperCamelCase_ = kwargs.pop('encoder' )
UpperCamelCase_ = encoder_config.pop('model_type' )
UpperCamelCase_ = kwargs.pop('decoder' )
UpperCamelCase_ = decoder_config.pop('model_type' )
UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase )
UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase )
UpperCamelCase_ = True
@classmethod
def _UpperCAmelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> PretrainedConfig:
logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' )
UpperCamelCase_ = True
UpperCamelCase_ = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> int:
UpperCamelCase_ = copy.deepcopy(self.__dict__ )
UpperCamelCase_ = self.encoder.to_dict()
UpperCamelCase_ = self.decoder.to_dict()
UpperCamelCase_ = self.__class__.model_type
return output
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = version.parse("""1.11""" )
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def _UpperCAmelCase ( self ) -> float:
return 1e-4
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} )
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
UpperCamelCase_ = OrderedDict()
UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
UpperCamelCase_ = {0: 'batch', 1: 'encoder_sequence'}
return common_inputs
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ) -> Mapping[str, Any]:
import torch
UpperCamelCase_ = OrderedDict()
UpperCamelCase_ = super().generate_dummy_inputs(
_UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase )
UpperCamelCase_ , UpperCamelCase_ = dummy_input['input_ids'].shape
UpperCamelCase_ = (batch, encoder_sequence, self._config.encoder_hidden_size)
UpperCamelCase_ = dummy_input.pop('input_ids' )
UpperCamelCase_ = dummy_input.pop('attention_mask' )
UpperCamelCase_ = torch.zeros(_UpperCAmelCase )
return common_inputs
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
@property
def _UpperCAmelCase ( self ) -> None:
pass
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> OnnxConfig:
return VisionEncoderDecoderEncoderOnnxConfig(_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = "default" ) -> OnnxConfig:
UpperCamelCase_ = encoder_config.hidden_size
return VisionEncoderDecoderDecoderOnnxConfig(_UpperCAmelCase , _UpperCAmelCase )
| 23 | 1 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""")
class _a :
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , _UpperCAmelCase = False ) -> str:
UpperCamelCase_ = scheduler
UpperCamelCase_ = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers]
UpperCamelCase_ = split_batches
UpperCamelCase_ = step_with_optimizer
UpperCamelCase_ = GradientState()
def _UpperCAmelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> List[Any]:
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
UpperCamelCase_ = AcceleratorState().num_processes
for _ in range(_UpperCAmelCase ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , 'total_steps' ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
else:
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
return self.scheduler.get_last_lr()
def _UpperCAmelCase ( self ) -> Union[str, Any]:
return self.scheduler.state_dict()
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[str]:
self.scheduler.load_state_dict(_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
return self.scheduler.get_lr()
def _UpperCAmelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Optional[Any]:
return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
| 23 |
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def _snake_case (__lowercase , __lowercase , __lowercase):
# Initialise PyTorch model
UpperCamelCase_ = MobileBertConfig.from_json_file(__lowercase)
print(f"""Building PyTorch model from configuration: {config}""")
UpperCamelCase_ = MobileBertForPreTraining(__lowercase)
# Load weights from tf checkpoint
UpperCamelCase_ = load_tf_weights_in_mobilebert(__lowercase , __lowercase , __lowercase)
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""")
torch.save(model.state_dict() , __lowercase)
if __name__ == "__main__":
snake_case__ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--mobilebert_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained MobileBERT model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
snake_case__ : Optional[Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 23 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case__ : Any = logging.get_logger(__name__)
snake_case__ : Optional[Any] = {
"""microsoft/cvt-13""": """https://huggingface.co/microsoft/cvt-13/resolve/main/config.json""",
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = """cvt"""
def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=[7, 3, 3] , _UpperCAmelCase=[4, 2, 2] , _UpperCAmelCase=[2, 1, 1] , _UpperCAmelCase=[64, 192, 384] , _UpperCAmelCase=[1, 3, 6] , _UpperCAmelCase=[1, 2, 10] , _UpperCAmelCase=[4.0, 4.0, 4.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.1] , _UpperCAmelCase=[True, True, True] , _UpperCAmelCase=[False, False, True] , _UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , _UpperCAmelCase=[3, 3, 3] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-12 , **_UpperCAmelCase , ) -> Optional[int]:
super().__init__(**_UpperCAmelCase )
UpperCamelCase_ = num_channels
UpperCamelCase_ = patch_sizes
UpperCamelCase_ = patch_stride
UpperCamelCase_ = patch_padding
UpperCamelCase_ = embed_dim
UpperCamelCase_ = num_heads
UpperCamelCase_ = depth
UpperCamelCase_ = mlp_ratio
UpperCamelCase_ = attention_drop_rate
UpperCamelCase_ = drop_rate
UpperCamelCase_ = drop_path_rate
UpperCamelCase_ = qkv_bias
UpperCamelCase_ = cls_token
UpperCamelCase_ = qkv_projection_method
UpperCamelCase_ = kernel_qkv
UpperCamelCase_ = padding_kv
UpperCamelCase_ = stride_kv
UpperCamelCase_ = padding_q
UpperCamelCase_ = stride_q
UpperCamelCase_ = initializer_range
UpperCamelCase_ = layer_norm_eps
| 23 |
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class _a ( unittest.TestCase ):
"""simple docstring"""
A_ = MODEL_FOR_MASKED_LM_MAPPING
A_ = TF_MODEL_FOR_MASKED_LM_MAPPING
def _UpperCAmelCase ( self ) -> List[str]:
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' )
UpperCamelCase_ = unmasker('My name is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{'sequence': 'My name is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped'},
{'sequence': 'My name is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser'},
] , )
UpperCamelCase_ = unmasker('The largest city in France is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{
'sequence': 'The largest city in France is grouped',
'score': 2.1e-05,
'token': 38015,
'token_str': ' grouped',
},
{
'sequence': 'The largest city in France is accuser',
'score': 2.1e-05,
'token': 25506,
'token_str': ' accuser',
},
] , )
UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'},
{'sequence': 'My name is Patrick', 'score': 2e-05, 'token': 3499, 'token_str': ' Patrick'},
{'sequence': 'My name is Te', 'score': 1.9e-05, 'token': 2941, 'token_str': ' Te'},
] , )
@require_torch
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' )
UpperCamelCase_ = unmasker('My name is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{'sequence': 'My name is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul'},
{'sequence': 'My name isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'},
] , )
UpperCamelCase_ = unmasker('The largest city in France is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{
'sequence': 'The largest city in France is Maul',
'score': 2.2e-05,
'token': 35676,
'token_str': ' Maul',
},
{'sequence': 'The largest city in France isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'},
] , )
UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{'sequence': 'My name is Patrick', 'score': 2.1e-05, 'token': 3499, 'token_str': ' Patrick'},
{'sequence': 'My name is Te', 'score': 2e-05, 'token': 2941, 'token_str': ' Te'},
{'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'},
] , )
UpperCamelCase_ = unmasker('My name is <mask> <mask>' , top_k=2 )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
[
{
'score': 2.2e-05,
'token': 35676,
'token_str': ' Maul',
'sequence': '<s>My name is Maul<mask></s>',
},
{'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'},
],
[
{
'score': 2.2e-05,
'token': 35676,
'token_str': ' Maul',
'sequence': '<s>My name is<mask> Maul</s>',
},
{'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'},
],
] , )
@require_torch_gpu
def _UpperCAmelCase ( self ) -> Optional[Any]:
UpperCamelCase_ = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' )
# convert model to fp16
pipe.model.half()
UpperCamelCase_ = pipe('Paris is the [MASK] of France.' )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
@slow
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' )
self.run_large_test(_UpperCAmelCase )
@slow
@require_tf
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' )
self.run_large_test(_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple:
UpperCamelCase_ = unmasker('My name is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [
{'sequence': 'My name is John', 'score': 0.0_0_8, 'token': 610, 'token_str': ' John'},
{'sequence': 'My name is Chris', 'score': 0.0_0_7, 'token': 1573, 'token_str': ' Chris'},
] , )
UpperCamelCase_ = unmasker('The largest city in France is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [
{
'sequence': 'The largest city in France is Paris',
'score': 0.2_5_1,
'token': 2201,
'token_str': ' Paris',
},
{
'sequence': 'The largest city in France is Lyon',
'score': 0.2_1_4,
'token': 12790,
'token_str': ' Lyon',
},
] , )
UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [
{'sequence': 'My name is Patrick', 'score': 0.0_0_5, 'token': 3499, 'token_str': ' Patrick'},
{'sequence': 'My name is Clara', 'score': 0.0_0_0, 'token': 13606, 'token_str': ' Clara'},
{'sequence': 'My name is Te', 'score': 0.0_0_0, 'token': 2941, 'token_str': ' Te'},
] , )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' )
UpperCamelCase_ = None
UpperCamelCase_ = None
self.run_pipeline_test(_UpperCAmelCase , [] )
@require_tf
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' )
UpperCamelCase_ = None
UpperCamelCase_ = None
self.run_pipeline_test(_UpperCAmelCase , [] )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]:
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' )
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = [
f"""This is another {tokenizer.mask_token} test""",
]
return fill_masker, examples
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]:
UpperCamelCase_ = fill_masker.tokenizer
UpperCamelCase_ = fill_masker.model
UpperCamelCase_ = fill_masker(
f"""This is a {tokenizer.mask_token}""" , )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}"""] )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] )
self.assertEqual(
_UpperCAmelCase , [
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
] , )
with self.assertRaises(_UpperCAmelCase ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(_UpperCAmelCase ):
fill_masker('This is' )
self.run_test_top_k(_UpperCAmelCase , _UpperCAmelCase )
self.run_test_targets(_UpperCAmelCase , _UpperCAmelCase )
self.run_test_top_k_targets(_UpperCAmelCase , _UpperCAmelCase )
self.fill_mask_with_duplicate_targets_and_top_k(_UpperCAmelCase , _UpperCAmelCase )
self.fill_mask_with_multiple_masks(_UpperCAmelCase , _UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]:
UpperCamelCase_ = tokenizer.get_vocab()
UpperCamelCase_ = sorted(vocab.keys() )[:2]
# Pipeline argument
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , targets=_UpperCAmelCase )
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = {vocab[el] for el in targets}
self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase )
UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) )
# Call argument
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = {vocab[el] for el in targets}
self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase )
UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) )
# Score equivalence
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase )
UpperCamelCase_ = [top_mask['token_str'] for top_mask in outputs]
UpperCamelCase_ = [top_mask['score'] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(_UpperCAmelCase ) == set(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase )
UpperCamelCase_ = [top_mask['score'] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) )
# Raises with invalid
with self.assertRaises(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[''] )
with self.assertRaises(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets='' )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple:
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , top_k=2 )
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]:
UpperCamelCase_ = tokenizer.get_vocab()
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
# top_k=2, ntargets=3
UpperCamelCase_ = sorted(vocab.keys() )[:3]
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=_UpperCAmelCase )
# If we use the most probably targets, and filter differently, we should still
# have the same results
UpperCamelCase_ = [el['token_str'] for el in sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(_UpperCAmelCase ).issubset(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=_UpperCAmelCase )
# They should yield exactly the same result
self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]:
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = tokenizer.get_vocab()
# String duplicates + id duplicates
UpperCamelCase_ = sorted(vocab.keys() )[:3]
UpperCamelCase_ = [targets[0], targets[1], targets[0], targets[2], targets[1]]
UpperCamelCase_ = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=_UpperCAmelCase , top_k=10 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(_UpperCAmelCase ) , 3 )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]:
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = fill_masker(
f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 )
self.assertEqual(
_UpperCAmelCase , [
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
] , )
| 23 | 1 |
from typing import Optional, Tuple
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from transformers import CLIPConfig, FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
def _snake_case (__lowercase , __lowercase , __lowercase=1e-12):
UpperCamelCase_ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__lowercase , axis=1) , a_min=__lowercase)).T
UpperCamelCase_ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__lowercase , axis=1) , a_min=__lowercase)).T
return jnp.matmul(__lowercase , norm_emb_a.T)
class _a ( nn.Module ):
"""simple docstring"""
A_ = 42
A_ = jnp.floataa
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ = FlaxCLIPVisionModule(self.config.vision_config )
UpperCamelCase_ = nn.Dense(self.config.projection_dim , use_bias=_UpperCAmelCase , dtype=self.dtype )
UpperCamelCase_ = self.param('concept_embeds' , jax.nn.initializers.ones , (17, self.config.projection_dim) )
UpperCamelCase_ = self.param(
'special_care_embeds' , jax.nn.initializers.ones , (3, self.config.projection_dim) )
UpperCamelCase_ = self.param('concept_embeds_weights' , jax.nn.initializers.ones , (17,) )
UpperCamelCase_ = self.param('special_care_embeds_weights' , jax.nn.initializers.ones , (3,) )
def __call__( self , _UpperCAmelCase ) -> List[str]:
UpperCamelCase_ = self.vision_model(_UpperCAmelCase )[1]
UpperCamelCase_ = self.visual_projection(_UpperCAmelCase )
UpperCamelCase_ = jax_cosine_distance(_UpperCAmelCase , self.special_care_embeds )
UpperCamelCase_ = jax_cosine_distance(_UpperCAmelCase , self.concept_embeds )
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
UpperCamelCase_ = 0.0
UpperCamelCase_ = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment
UpperCamelCase_ = jnp.round(_UpperCAmelCase , 3 )
UpperCamelCase_ = jnp.any(special_scores > 0 , axis=1 , keepdims=_UpperCAmelCase )
# Use a lower threshold if an image has any special care concept
UpperCamelCase_ = is_special_care * 0.0_1
UpperCamelCase_ = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment
UpperCamelCase_ = jnp.round(_UpperCAmelCase , 3 )
UpperCamelCase_ = jnp.any(concept_scores > 0 , axis=1 )
return has_nsfw_concepts
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = CLIPConfig
A_ = """clip_input"""
A_ = FlaxStableDiffusionSafetyCheckerModule
def __init__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = 0 , _UpperCAmelCase = jnp.floataa , _UpperCAmelCase = True , **_UpperCAmelCase , ) -> Union[str, Any]:
if input_shape is None:
UpperCamelCase_ = (1, 224, 224, 3)
UpperCamelCase_ = self.module_class(config=_UpperCAmelCase , dtype=_UpperCAmelCase , **_UpperCAmelCase )
super().__init__(_UpperCAmelCase , _UpperCAmelCase , input_shape=_UpperCAmelCase , seed=_UpperCAmelCase , dtype=_UpperCAmelCase , _do_init=_do_init )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None ) -> FrozenDict:
# init input tensor
UpperCamelCase_ = jax.random.normal(_UpperCAmelCase , _UpperCAmelCase )
UpperCamelCase_ , UpperCamelCase_ = jax.random.split(_UpperCAmelCase )
UpperCamelCase_ = {'params': params_rng, 'dropout': dropout_rng}
UpperCamelCase_ = self.module.init(_UpperCAmelCase , _UpperCAmelCase )['params']
return random_params
def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , ) -> Optional[int]:
UpperCamelCase_ = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) )
return self.module.apply(
{'params': params or self.params} , jnp.array(_UpperCAmelCase , dtype=jnp.floataa ) , rngs={} , )
| 23 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
A_ = StableDiffusionSAGPipeline
A_ = TEXT_TO_IMAGE_PARAMS
A_ = TEXT_TO_IMAGE_BATCH_PARAMS
A_ = TEXT_TO_IMAGE_IMAGE_PARAMS
A_ = TEXT_TO_IMAGE_IMAGE_PARAMS
A_ = False
def _UpperCAmelCase ( self ) -> Optional[Any]:
torch.manual_seed(0 )
UpperCamelCase_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
UpperCamelCase_ = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , )
torch.manual_seed(0 )
UpperCamelCase_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCamelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
UpperCamelCase_ = CLIPTextModel(_UpperCAmelCase )
UpperCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
UpperCamelCase_ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ) -> List[Any]:
if str(_UpperCAmelCase ).startswith('mps' ):
UpperCamelCase_ = torch.manual_seed(_UpperCAmelCase )
else:
UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
UpperCamelCase_ = {
'prompt': '.',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 1.0,
'sag_scale': 1.0,
'output_type': 'numpy',
}
return inputs
def _UpperCAmelCase ( self ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class _a ( unittest.TestCase ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' )
UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase )
sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCamelCase_ = '.'
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = sag_pipe(
[prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' )
UpperCamelCase_ = output.images
UpperCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase_ = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' )
UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase )
sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCamelCase_ = '.'
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = sag_pipe(
[prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' )
UpperCamelCase_ = output.images
UpperCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase_ = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' )
UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase )
sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCamelCase_ = '.'
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = sag_pipe(
[prompt] , width=768 , height=512 , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , )
UpperCamelCase_ = output.images
assert image.shape == (1, 512, 768, 3)
| 23 | 1 |
import unittest
from transformers import CamembertTokenizer, CamembertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
snake_case__ : Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""")
snake_case__ : Dict = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""")
snake_case__ : Tuple = """pt""" if is_torch_available() else """tf"""
@require_sentencepiece
@require_tokenizers
class _a ( UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
A_ = CamembertTokenizer
A_ = CamembertTokenizerFast
A_ = True
A_ = True
def _UpperCAmelCase ( self ) -> Dict:
super().setUp()
# We have a SentencePiece fixture for testing
UpperCamelCase_ = CamembertTokenizer(_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ = '<pad>'
UpperCamelCase_ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def _UpperCAmelCase ( self ) -> List[str]:
UpperCamelCase_ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>NOTUSED' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(_UpperCAmelCase ) , 1004 )
def _UpperCAmelCase ( self ) -> List[str]:
self.assertEqual(self.get_tokenizer().vocab_size , 1005 )
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ = CamembertTokenizer(_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
UpperCamelCase_ = CamembertTokenizerFast.from_pretrained(self.tmpdirname )
UpperCamelCase_ = 'I was born in 92000, and this is falsé.'
UpperCamelCase_ = tokenizer.encode(_UpperCAmelCase )
UpperCamelCase_ = rust_tokenizer.encode(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
UpperCamelCase_ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
UpperCamelCase_ = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
# <unk> tokens are not the same for `rust` than for `slow`.
# Because spm gives back raw token instead of `unk` in EncodeAsPieces
# tokens = tokenizer.tokenize(sequence)
UpperCamelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
UpperCamelCase_ = rust_tokenizer.tokenize(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Any:
if not self.test_rust_tokenizer:
return
UpperCamelCase_ = self.get_tokenizer()
UpperCamelCase_ = self.get_rust_tokenizer()
UpperCamelCase_ = 'I was born in 92000, and this is falsé.'
UpperCamelCase_ = tokenizer.tokenize(_UpperCAmelCase )
UpperCamelCase_ = rust_tokenizer.tokenize(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
UpperCamelCase_ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
UpperCamelCase_ = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
UpperCamelCase_ = self.get_rust_tokenizer()
UpperCamelCase_ = tokenizer.encode(_UpperCAmelCase )
UpperCamelCase_ = rust_tokenizer.encode(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
# fmt: off
UpperCamelCase_ = {'input_ids': [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# camembert is a french model. So we also use french texts.
UpperCamelCase_ = [
'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, '
'utilisé principalement dans le domaine du traitement automatique des langues (TAL).',
'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus '
'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches '
'telles que la traduction et la synthèse de texte.',
]
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='camembert-base' , revision='3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf' , sequences=_UpperCAmelCase , )
| 23 |
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
snake_case__ : List[str] = TypeVar("""T""")
def _snake_case (__lowercase):
return (position - 1) // 2
def _snake_case (__lowercase):
return (2 * position) + 1
def _snake_case (__lowercase):
return (2 * position) + 2
class _a ( Generic[T] ):
"""simple docstring"""
def __init__( self ) -> None:
UpperCamelCase_ = []
UpperCamelCase_ = {}
UpperCamelCase_ = 0
def __len__( self ) -> int:
return self.elements
def __repr__( self ) -> str:
return str(self.heap )
def _UpperCAmelCase ( self ) -> bool:
# Check if the priority queue is empty
return self.elements == 0
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None:
# Add an element with given priority to the queue
self.heap.append((elem, weight) )
UpperCamelCase_ = self.elements
self.elements += 1
self._bubble_up(_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> T:
# Remove and return the element with lowest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
UpperCamelCase_ , UpperCamelCase_ = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
UpperCamelCase_ , UpperCamelCase_ = self.heap[0]
self._bubble_down(_UpperCAmelCase )
return elem
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None:
# Update the weight of the given key
UpperCamelCase_ = self.position_map[elem]
UpperCamelCase_ = (elem, weight)
if position > 0:
UpperCamelCase_ = get_parent_position(_UpperCAmelCase )
UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(_UpperCAmelCase )
else:
self._bubble_down(_UpperCAmelCase )
else:
self._bubble_down(_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None:
# Place a node at the proper position (upward movement) [to be used internally
# only]
UpperCamelCase_ = self.position_map[elem]
if curr_pos == 0:
return None
UpperCamelCase_ = get_parent_position(_UpperCAmelCase )
UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos]
UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase )
return self._bubble_up(_UpperCAmelCase )
return None
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None:
# Place a node at the proper position (downward movement) [to be used
# internally only]
UpperCamelCase_ = self.position_map[elem]
UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos]
UpperCamelCase_ = get_child_left_position(_UpperCAmelCase )
UpperCamelCase_ = get_child_right_position(_UpperCAmelCase )
if child_left_position < self.elements and child_right_position < self.elements:
UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position]
UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase )
return self._bubble_down(_UpperCAmelCase )
if child_left_position < self.elements:
UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase )
return self._bubble_down(_UpperCAmelCase )
else:
return None
if child_right_position < self.elements:
UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase )
return self._bubble_down(_UpperCAmelCase )
return None
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None:
# Swap the nodes at the given positions
UpperCamelCase_ = self.heap[nodea_pos][0]
UpperCamelCase_ = self.heap[nodea_pos][0]
UpperCamelCase_ , UpperCamelCase_ = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
UpperCamelCase_ = nodea_pos
UpperCamelCase_ = nodea_pos
class _a ( Generic[T] ):
"""simple docstring"""
def __init__( self ) -> None:
UpperCamelCase_ = {}
UpperCamelCase_ = 0
def __repr__( self ) -> str:
return str(self.connections )
def __len__( self ) -> int:
return self.nodes
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None:
# Add a node in the graph if it is not in the graph
if node not in self.connections:
UpperCamelCase_ = {}
self.nodes += 1
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None:
# Add an edge between 2 nodes in the graph
self.add_node(_UpperCAmelCase )
self.add_node(_UpperCAmelCase )
UpperCamelCase_ = weight
UpperCamelCase_ = weight
def _snake_case (__lowercase , ):
UpperCamelCase_ = {node: maxsize for node in graph.connections}
UpperCamelCase_ = {node: None for node in graph.connections}
UpperCamelCase_ = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(__lowercase , __lowercase)
if priority_queue.is_empty():
return dist, parent
# initialization
UpperCamelCase_ = priority_queue.extract_min()
UpperCamelCase_ = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
UpperCamelCase_ = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(__lowercase , dist[neighbour])
UpperCamelCase_ = node
# running prim's algorithm
while not priority_queue.is_empty():
UpperCamelCase_ = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
UpperCamelCase_ = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(__lowercase , dist[neighbour])
UpperCamelCase_ = node
return dist, parent
| 23 | 1 |
from math import factorial, pi
def _snake_case (__lowercase , __lowercase = 30):
if not isinstance(__lowercase , (int, float)):
raise ValueError('maclaurin_sin() requires either an int or float for theta')
if not isinstance(__lowercase , __lowercase) or accuracy <= 0:
raise ValueError('maclaurin_sin() requires a positive int for accuracy')
UpperCamelCase_ = float(__lowercase)
UpperCamelCase_ = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(__lowercase))
def _snake_case (__lowercase , __lowercase = 30):
if not isinstance(__lowercase , (int, float)):
raise ValueError('maclaurin_cos() requires either an int or float for theta')
if not isinstance(__lowercase , __lowercase) or accuracy <= 0:
raise ValueError('maclaurin_cos() requires a positive int for accuracy')
UpperCamelCase_ = float(__lowercase)
UpperCamelCase_ = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(__lowercase))
if __name__ == "__main__":
import doctest
doctest.testmod()
print(maclaurin_sin(1_0))
print(maclaurin_sin(-1_0))
print(maclaurin_sin(1_0, 1_5))
print(maclaurin_sin(-1_0, 1_5))
print(maclaurin_cos(5))
print(maclaurin_cos(-5))
print(maclaurin_cos(1_0, 1_5))
print(maclaurin_cos(-1_0, 1_5))
| 23 |
from __future__ import annotations
import sys
from collections import deque
from typing import Generic, TypeVar
snake_case__ : Dict = TypeVar("""T""")
class _a ( Generic[T] ):
"""simple docstring"""
A_ = 42 # Cache store of keys
A_ = 42 # References of the keys in cache
A_ = 10 # Maximum capacity of cache
def __init__( self , _UpperCAmelCase ) -> None:
UpperCamelCase_ = deque()
UpperCamelCase_ = set()
if not n:
UpperCamelCase_ = sys.maxsize
elif n < 0:
raise ValueError('n should be an integer greater than 0.' )
else:
UpperCamelCase_ = n
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None:
if x not in self.key_reference:
if len(self.dq_store ) == LRUCache._MAX_CAPACITY:
UpperCamelCase_ = self.dq_store.pop()
self.key_reference.remove(_UpperCAmelCase )
else:
self.dq_store.remove(_UpperCAmelCase )
self.dq_store.appendleft(_UpperCAmelCase )
self.key_reference.add(_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> None:
for k in self.dq_store:
print(_UpperCAmelCase )
def __repr__( self ) -> str:
return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}"""
if __name__ == "__main__":
import doctest
doctest.testmod()
snake_case__ : LRUCache[str | int] = LRUCache(4)
lru_cache.refer("""A""")
lru_cache.refer(2)
lru_cache.refer(3)
lru_cache.refer("""A""")
lru_cache.refer(4)
lru_cache.refer(5)
lru_cache.display()
print(lru_cache)
assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
| 23 | 1 |
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class _a ( unittest.TestCase ):
"""simple docstring"""
A_ = MODEL_FOR_MASKED_LM_MAPPING
A_ = TF_MODEL_FOR_MASKED_LM_MAPPING
def _UpperCAmelCase ( self ) -> List[str]:
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' )
UpperCamelCase_ = unmasker('My name is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{'sequence': 'My name is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped'},
{'sequence': 'My name is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser'},
] , )
UpperCamelCase_ = unmasker('The largest city in France is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{
'sequence': 'The largest city in France is grouped',
'score': 2.1e-05,
'token': 38015,
'token_str': ' grouped',
},
{
'sequence': 'The largest city in France is accuser',
'score': 2.1e-05,
'token': 25506,
'token_str': ' accuser',
},
] , )
UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'},
{'sequence': 'My name is Patrick', 'score': 2e-05, 'token': 3499, 'token_str': ' Patrick'},
{'sequence': 'My name is Te', 'score': 1.9e-05, 'token': 2941, 'token_str': ' Te'},
] , )
@require_torch
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' )
UpperCamelCase_ = unmasker('My name is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{'sequence': 'My name is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul'},
{'sequence': 'My name isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'},
] , )
UpperCamelCase_ = unmasker('The largest city in France is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{
'sequence': 'The largest city in France is Maul',
'score': 2.2e-05,
'token': 35676,
'token_str': ' Maul',
},
{'sequence': 'The largest city in France isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'},
] , )
UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{'sequence': 'My name is Patrick', 'score': 2.1e-05, 'token': 3499, 'token_str': ' Patrick'},
{'sequence': 'My name is Te', 'score': 2e-05, 'token': 2941, 'token_str': ' Te'},
{'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'},
] , )
UpperCamelCase_ = unmasker('My name is <mask> <mask>' , top_k=2 )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
[
{
'score': 2.2e-05,
'token': 35676,
'token_str': ' Maul',
'sequence': '<s>My name is Maul<mask></s>',
},
{'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'},
],
[
{
'score': 2.2e-05,
'token': 35676,
'token_str': ' Maul',
'sequence': '<s>My name is<mask> Maul</s>',
},
{'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'},
],
] , )
@require_torch_gpu
def _UpperCAmelCase ( self ) -> Optional[Any]:
UpperCamelCase_ = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' )
# convert model to fp16
pipe.model.half()
UpperCamelCase_ = pipe('Paris is the [MASK] of France.' )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
@slow
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' )
self.run_large_test(_UpperCAmelCase )
@slow
@require_tf
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' )
self.run_large_test(_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple:
UpperCamelCase_ = unmasker('My name is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [
{'sequence': 'My name is John', 'score': 0.0_0_8, 'token': 610, 'token_str': ' John'},
{'sequence': 'My name is Chris', 'score': 0.0_0_7, 'token': 1573, 'token_str': ' Chris'},
] , )
UpperCamelCase_ = unmasker('The largest city in France is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [
{
'sequence': 'The largest city in France is Paris',
'score': 0.2_5_1,
'token': 2201,
'token_str': ' Paris',
},
{
'sequence': 'The largest city in France is Lyon',
'score': 0.2_1_4,
'token': 12790,
'token_str': ' Lyon',
},
] , )
UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [
{'sequence': 'My name is Patrick', 'score': 0.0_0_5, 'token': 3499, 'token_str': ' Patrick'},
{'sequence': 'My name is Clara', 'score': 0.0_0_0, 'token': 13606, 'token_str': ' Clara'},
{'sequence': 'My name is Te', 'score': 0.0_0_0, 'token': 2941, 'token_str': ' Te'},
] , )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' )
UpperCamelCase_ = None
UpperCamelCase_ = None
self.run_pipeline_test(_UpperCAmelCase , [] )
@require_tf
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' )
UpperCamelCase_ = None
UpperCamelCase_ = None
self.run_pipeline_test(_UpperCAmelCase , [] )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]:
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' )
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = [
f"""This is another {tokenizer.mask_token} test""",
]
return fill_masker, examples
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]:
UpperCamelCase_ = fill_masker.tokenizer
UpperCamelCase_ = fill_masker.model
UpperCamelCase_ = fill_masker(
f"""This is a {tokenizer.mask_token}""" , )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}"""] )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] )
self.assertEqual(
_UpperCAmelCase , [
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
] , )
with self.assertRaises(_UpperCAmelCase ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(_UpperCAmelCase ):
fill_masker('This is' )
self.run_test_top_k(_UpperCAmelCase , _UpperCAmelCase )
self.run_test_targets(_UpperCAmelCase , _UpperCAmelCase )
self.run_test_top_k_targets(_UpperCAmelCase , _UpperCAmelCase )
self.fill_mask_with_duplicate_targets_and_top_k(_UpperCAmelCase , _UpperCAmelCase )
self.fill_mask_with_multiple_masks(_UpperCAmelCase , _UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]:
UpperCamelCase_ = tokenizer.get_vocab()
UpperCamelCase_ = sorted(vocab.keys() )[:2]
# Pipeline argument
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , targets=_UpperCAmelCase )
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = {vocab[el] for el in targets}
self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase )
UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) )
# Call argument
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = {vocab[el] for el in targets}
self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase )
UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) )
# Score equivalence
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase )
UpperCamelCase_ = [top_mask['token_str'] for top_mask in outputs]
UpperCamelCase_ = [top_mask['score'] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(_UpperCAmelCase ) == set(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase )
UpperCamelCase_ = [top_mask['score'] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) )
# Raises with invalid
with self.assertRaises(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[''] )
with self.assertRaises(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets='' )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple:
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , top_k=2 )
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]:
UpperCamelCase_ = tokenizer.get_vocab()
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
# top_k=2, ntargets=3
UpperCamelCase_ = sorted(vocab.keys() )[:3]
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=_UpperCAmelCase )
# If we use the most probably targets, and filter differently, we should still
# have the same results
UpperCamelCase_ = [el['token_str'] for el in sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(_UpperCAmelCase ).issubset(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=_UpperCAmelCase )
# They should yield exactly the same result
self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]:
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = tokenizer.get_vocab()
# String duplicates + id duplicates
UpperCamelCase_ = sorted(vocab.keys() )[:3]
UpperCamelCase_ = [targets[0], targets[1], targets[0], targets[2], targets[1]]
UpperCamelCase_ = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=_UpperCAmelCase , top_k=10 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(_UpperCAmelCase ) , 3 )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]:
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = fill_masker(
f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 )
self.assertEqual(
_UpperCAmelCase , [
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
] , )
| 23 |
import numpy as np
def _snake_case (__lowercase):
return 1 / (1 + np.exp(-vector))
def _snake_case (__lowercase):
return vector * sigmoid(__lowercase)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 | 1 |
from torch import nn
def _snake_case (__lowercase):
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(f"""Unsupported activation function: {act_fn}""")
| 23 |
import math
from datetime import datetime, timedelta
def _snake_case (__lowercase):
UpperCamelCase_ = year % 19
UpperCamelCase_ = year % 4
UpperCamelCase_ = year % 7
UpperCamelCase_ = math.floor(year / 100)
UpperCamelCase_ = math.floor((13 + 8 * leap_day_inhibits) / 25)
UpperCamelCase_ = leap_day_inhibits / 4
UpperCamelCase_ = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
UpperCamelCase_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
UpperCamelCase_ = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
UpperCamelCase_ = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(__lowercase , 4 , 19)
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(__lowercase , 4 , 18)
else:
return datetime(__lowercase , 3 , 22) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday))
if __name__ == "__main__":
for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3):
snake_case__ : Dict = """will be""" if year > datetime.now().year else """was"""
print(f'Easter in {year} {tense} {gauss_easter(year)}')
| 23 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
snake_case__ : Optional[Any] = {
"""configuration_roberta_prelayernorm""": [
"""ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""RobertaPreLayerNormConfig""",
"""RobertaPreLayerNormOnnxConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Any = [
"""ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""RobertaPreLayerNormForCausalLM""",
"""RobertaPreLayerNormForMaskedLM""",
"""RobertaPreLayerNormForMultipleChoice""",
"""RobertaPreLayerNormForQuestionAnswering""",
"""RobertaPreLayerNormForSequenceClassification""",
"""RobertaPreLayerNormForTokenClassification""",
"""RobertaPreLayerNormModel""",
"""RobertaPreLayerNormPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Union[str, Any] = [
"""TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFRobertaPreLayerNormForCausalLM""",
"""TFRobertaPreLayerNormForMaskedLM""",
"""TFRobertaPreLayerNormForMultipleChoice""",
"""TFRobertaPreLayerNormForQuestionAnswering""",
"""TFRobertaPreLayerNormForSequenceClassification""",
"""TFRobertaPreLayerNormForTokenClassification""",
"""TFRobertaPreLayerNormMainLayer""",
"""TFRobertaPreLayerNormModel""",
"""TFRobertaPreLayerNormPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Optional[Any] = [
"""FlaxRobertaPreLayerNormForCausalLM""",
"""FlaxRobertaPreLayerNormForMaskedLM""",
"""FlaxRobertaPreLayerNormForMultipleChoice""",
"""FlaxRobertaPreLayerNormForQuestionAnswering""",
"""FlaxRobertaPreLayerNormForSequenceClassification""",
"""FlaxRobertaPreLayerNormForTokenClassification""",
"""FlaxRobertaPreLayerNormModel""",
"""FlaxRobertaPreLayerNormPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP,
RobertaPreLayerNormConfig,
RobertaPreLayerNormOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaPreLayerNormForCausalLM,
RobertaPreLayerNormForMaskedLM,
RobertaPreLayerNormForMultipleChoice,
RobertaPreLayerNormForQuestionAnswering,
RobertaPreLayerNormForSequenceClassification,
RobertaPreLayerNormForTokenClassification,
RobertaPreLayerNormModel,
RobertaPreLayerNormPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta_prelayernorm import (
TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaPreLayerNormForCausalLM,
TFRobertaPreLayerNormForMaskedLM,
TFRobertaPreLayerNormForMultipleChoice,
TFRobertaPreLayerNormForQuestionAnswering,
TFRobertaPreLayerNormForSequenceClassification,
TFRobertaPreLayerNormForTokenClassification,
TFRobertaPreLayerNormMainLayer,
TFRobertaPreLayerNormModel,
TFRobertaPreLayerNormPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormPreTrainedModel,
)
else:
import sys
snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 23 |
import requests
def _snake_case (__lowercase , __lowercase):
UpperCamelCase_ = {'Content-Type': 'application/json'}
UpperCamelCase_ = requests.post(__lowercase , json={'text': message_body} , headers=__lowercase)
if response.status_code != 200:
UpperCamelCase_ = (
'Request to slack returned an error '
f"""{response.status_code}, the response is:\n{response.text}"""
)
raise ValueError(__lowercase)
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
| 23 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
snake_case__ : List[str] = logging.get_logger(__name__)
snake_case__ : Any = {
"""kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""",
"""kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""",
"""kssteven/ibert-roberta-large-mnli""": (
"""https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"""
),
}
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = """ibert"""
def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-12 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase="absolute" , _UpperCAmelCase=False , _UpperCAmelCase="none" , **_UpperCAmelCase , ) -> Tuple:
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
UpperCamelCase_ = vocab_size
UpperCamelCase_ = hidden_size
UpperCamelCase_ = num_hidden_layers
UpperCamelCase_ = num_attention_heads
UpperCamelCase_ = hidden_act
UpperCamelCase_ = intermediate_size
UpperCamelCase_ = hidden_dropout_prob
UpperCamelCase_ = attention_probs_dropout_prob
UpperCamelCase_ = max_position_embeddings
UpperCamelCase_ = type_vocab_size
UpperCamelCase_ = initializer_range
UpperCamelCase_ = layer_norm_eps
UpperCamelCase_ = position_embedding_type
UpperCamelCase_ = quant_mode
UpperCamelCase_ = force_dequant
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
UpperCamelCase_ = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCamelCase_ = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 23 |
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict:
with open(_UpperCAmelCase , encoding='utf-8' ) as input_file:
UpperCamelCase_ = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' )
UpperCamelCase_ = input_file.read()
UpperCamelCase_ = regexp.search(_UpperCAmelCase )
return match
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict:
with open(_UpperCAmelCase , encoding='utf-8' ) as input_file:
UpperCamelCase_ = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL )
UpperCamelCase_ = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
UpperCamelCase_ = regexp.finditer(_UpperCAmelCase )
UpperCamelCase_ = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def _UpperCAmelCase ( self ) -> List[str]:
UpperCamelCase_ = Path('./datasets' )
UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(_UpperCAmelCase ) ):
raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" )
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ = Path('./datasets' )
UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) )
for dataset in dataset_files:
if self._no_print_statements(str(_UpperCAmelCase ) ):
raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
| 23 | 1 |
def _snake_case (__lowercase , __lowercase):
return int((input_a, input_a).count(0) != 0)
def _snake_case ():
assert nand_gate(0 , 0) == 1
assert nand_gate(0 , 1) == 1
assert nand_gate(1 , 0) == 1
assert nand_gate(1 , 1) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 23 |
import argparse
import random
import joblib
import numpy as np
import torch
from igf.igf import (
SecondaryLearner,
collect_objective_set,
compute_perplexity,
generate_datasets,
load_gpta,
recopy_gpta,
set_seed,
train_secondary_learner,
)
from torch.utils.data import DataLoader, RandomSampler
from transformers import GPTaLMHeadModel
def _snake_case (__lowercase=32 , __lowercase=10 , __lowercase=100 , __lowercase=1026 , __lowercase=True , __lowercase="data/tokenized_stories_train_wikitext103.jbl" , __lowercase="igf_context_pairs.jbl" , ):
set_seed(3)
# generate train_data and objective_set
UpperCamelCase_ , UpperCamelCase_ = generate_datasets(
__lowercase , __lowercase , number=__lowercase , min_len=1026 , trim=__lowercase)
# keeps model same across runs
set_seed(4)
# model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights
# can we train on GPU?
UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# load pretrained model
UpperCamelCase_ = load_gpta('gpt2').to(__lowercase)
print('computing perplexity on objective set')
UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase).item()
print('perplexity on objective set:' , __lowercase)
# collect igf pairs and save to file demo.jbl
collect_objective_set(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase)
# clean up, delete model and data we don't need anymore
del model, train_data, objective_set
torch.cuda.empty_cache()
def _snake_case (__lowercase , __lowercase=15 , __lowercase=128 , __lowercase=100 , __lowercase="igf_model.pt" , ):
set_seed(42)
# Load pre-trained model
UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2')
# Initialize secondary learner to use embedding weights of model
UpperCamelCase_ = SecondaryLearner(__lowercase)
# Train secondary learner
UpperCamelCase_ = train_secondary_learner(
__lowercase , __lowercase , max_epochs=__lowercase , batch_size=__lowercase , eval_freq=100 , igf_model_path=__lowercase , )
del model, secondary_learner_train_data
torch.cuda.empty_cache()
return secondary_learner
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=32 , __lowercase=1000 , __lowercase=16 , __lowercase=1.0 , __lowercase=recopy_gpta , __lowercase=None , __lowercase=10 , __lowercase="gpt2_finetuned.pt" , ):
UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
UpperCamelCase_ = RandomSampler(__lowercase)
UpperCamelCase_ = DataLoader(__lowercase , sampler=__lowercase)
UpperCamelCase_ = max_steps // (len(__lowercase)) + 1
UpperCamelCase_ = 0
UpperCamelCase_ = torch.zeros((1, context_len) , dtype=torch.long , device=__lowercase)
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = recopy_model(__lowercase , __lowercase , __lowercase)
model.train()
if secondary_learner is not None:
secondary_learner.to(__lowercase)
secondary_learner.eval()
UpperCamelCase_ = []
UpperCamelCase_ = 0
UpperCamelCase_ = []
UpperCamelCase_ = []
# Compute the performance of the transformer model at the beginning
UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase)
test_perps.append(__lowercase)
print('Test perplexity, step' , __lowercase , ':' , __lowercase)
for epoch in range(int(__lowercase)):
for step, example in enumerate(__lowercase):
torch.cuda.empty_cache()
UpperCamelCase_ = random.randint(0 , example.size(2) - context_len - 1)
UpperCamelCase_ = example[0, 0, start : start + context_len]
lm_optimizer.zero_grad()
UpperCamelCase_ = model(__lowercase , labels=__lowercase)
UpperCamelCase_ = True
if secondary_learner is not None:
UpperCamelCase_ = secondary_learner.forward(
torch.tensor(__lowercase , dtype=torch.long , device=__lowercase).unsqueeze(0))[0].item()
observed_qs.append(float(__lowercase))
# Here we implement the simple non-constant threshold for the predicted IG(X) value
# We will decay the selectivity of our secondary learner filter from
# 1 standard deviation above average to 1 below average after 10 batches.
if global_step == 10:
UpperCamelCase_ = -1
if predicted_q < threshold:
UpperCamelCase_ = False
# If we passed the filter, add the context to the batch!
if do_backprop:
contexts.append(np.array(context.cpu()))
UpperCamelCase_ = outputs[0]
lm_loss.backward()
examples += 1
del outputs
# Once the batch is filled with enough contexts, backprop on the batch.
if examples == batch_size:
torch.cuda.empty_cache()
UpperCamelCase_ = 0
# Do LM backprop
torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0)
lm_optimizer.step()
lm_scheduler.step() # Update learning rate schedule
global_step += 1
# Compute the performance of the transformer model at this batch
if global_step % eval_interval == 0:
UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase)
test_perps.append(__lowercase)
print('Test perplexity, step' , __lowercase , ':' , __lowercase)
# Break out of the loop after 60 batches
if max_steps > 0 and global_step > 60:
break
if max_steps > 0 and global_step > 60:
break
# save finetuned transformer model
torch.save(model.state_dict() , __lowercase)
torch.cuda.empty_cache()
# Do some cleaning up so we can reinitialize for the next run of this function
del lm_optimizer
del lm_scheduler
return model
def _snake_case ():
UpperCamelCase_ = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task')
# Required parameters
parser.add_argument(
'--data_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The input data dir. Should contain data files for WikiText.' , )
parser.add_argument(
'--model_name_or_path' , default=__lowercase , type=__lowercase , required=__lowercase , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--data_file' , type=__lowercase , default=__lowercase , help=(
'A jbl file containing tokenized data which can be split as objective dataset, '
'train_dataset and test_dataset.'
) , )
parser.add_argument(
'--igf_data_file' , type=__lowercase , default=__lowercase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , )
parser.add_argument(
'--output_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The output directory where the final fine-tuned model is stored.' , )
parser.add_argument(
'--tokenizer_name' , default=__lowercase , type=__lowercase , help='Pretrained tokenizer name or path if not the same as model_name' , )
parser.add_argument('--seed' , type=__lowercase , default=__lowercase , help='A seed for reproducible training.')
parser.add_argument(
'--context_len' , default=32 , type=__lowercase , help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
) , )
parser.add_argument(
'--size_objective_set' , default=100 , type=__lowercase , help='number of articles that are long enough to be used as our objective set' , )
parser.add_argument(
'--eval_freq' , default=100 , type=__lowercase , help='secondary model evaluation is triggered at eval_freq')
parser.add_argument('--max_steps' , default=1000 , type=__lowercase , help='To calculate training epochs')
parser.add_argument(
'--secondary_learner_batch_size' , default=128 , type=__lowercase , help='batch size of training data for secondary learner' , )
parser.add_argument(
'--batch_size' , default=16 , type=__lowercase , help='batch size of training data of language model(gpt2) ')
parser.add_argument(
'--eval_interval' , default=10 , type=__lowercase , help=(
'decay the selectivity of our secondary learner filter from'
'1 standard deviation above average to 1 below average after 10 batches'
) , )
parser.add_argument(
'--number' , default=100 , type=__lowercase , help='The number of examples split to be used as objective_set/test_data')
parser.add_argument(
'--min_len' , default=1026 , type=__lowercase , help='The minimum length of the article to be used as objective set')
parser.add_argument(
'--secondary_learner_max_epochs' , default=15 , type=__lowercase , help='number of epochs to train secondary learner')
parser.add_argument('--trim' , default=__lowercase , type=__lowercase , help='truncate the example if it exceeds context length')
parser.add_argument(
'--threshold' , default=1.0 , type=__lowercase , help=(
'The threshold value used by secondary learner to filter the train_data and allow only'
' informative data as input to the model'
) , )
parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=__lowercase , help='finetuned_model_name')
parser.add_argument(
'--recopy_model' , default=__lowercase , type=__lowercase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , )
# function calls
# Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner
generate_n_pairs(
context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=__lowercase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , )
# Load train data for secondary learner
UpperCamelCase_ = joblib.load('data/IGF_values.jbl')
# Train secondary learner
UpperCamelCase_ = training_secondary_learner(
__lowercase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , )
# load pretrained gpt2 model
UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2')
set_seed(42)
# Generate train and test data to train and evaluate gpt2 model
UpperCamelCase_ , UpperCamelCase_ = generate_datasets(
context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=__lowercase)
# fine-tuning of the gpt2 model using igf (Information Gain Filtration)
finetune(
__lowercase , __lowercase , __lowercase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=__lowercase , secondary_learner=__lowercase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , )
if __name__ == "__main__":
main()
| 23 | 1 |
import gc
import unittest
import numpy as np
import torch
from diffusers import (
AudioDiffusionPipeline,
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
DiffusionPipeline,
Mel,
UNetaDConditionModel,
UNetaDModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class _a ( unittest.TestCase ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> Optional[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _UpperCAmelCase ( self ) -> int:
torch.manual_seed(0 )
UpperCamelCase_ = UNetaDModel(
sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , )
return model
@property
def _UpperCAmelCase ( self ) -> str:
torch.manual_seed(0 )
UpperCamelCase_ = UNetaDConditionModel(
sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=10 , )
return model
@property
def _UpperCAmelCase ( self ) -> Dict:
torch.manual_seed(0 )
UpperCamelCase_ = AutoencoderKL(
sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , )
UpperCamelCase_ = UNetaDModel(
sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , )
return vqvae, unet
@slow
def _UpperCAmelCase ( self ) -> Optional[Any]:
UpperCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator
UpperCamelCase_ = Mel(
x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , )
UpperCamelCase_ = DDPMScheduler()
UpperCamelCase_ = AudioDiffusionPipeline(vqvae=_UpperCAmelCase , unet=self.dummy_unet , mel=_UpperCAmelCase , scheduler=_UpperCAmelCase )
UpperCamelCase_ = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(42 )
UpperCamelCase_ = pipe(generator=_UpperCAmelCase , steps=4 )
UpperCamelCase_ = output.audios[0]
UpperCamelCase_ = output.images[0]
UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(42 )
UpperCamelCase_ = pipe(generator=_UpperCAmelCase , steps=4 , return_dict=_UpperCAmelCase )
UpperCamelCase_ = output[0][0]
assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length)
assert (
image.height == self.dummy_unet.config.sample_size[0]
and image.width == self.dummy_unet.config.sample_size[1]
)
UpperCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10]
UpperCamelCase_ = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:10]
UpperCamelCase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0
UpperCamelCase_ = Mel(
x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , )
UpperCamelCase_ = DDIMScheduler()
UpperCamelCase_ = self.dummy_vqvae_and_unet
UpperCamelCase_ = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=_UpperCAmelCase , scheduler=_UpperCAmelCase )
UpperCamelCase_ = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
np.random.seed(0 )
UpperCamelCase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) )
UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(42 )
UpperCamelCase_ = pipe(raw_audio=_UpperCAmelCase , generator=_UpperCAmelCase , start_step=5 , steps=10 )
UpperCamelCase_ = output.images[0]
assert (
image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0]
and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1]
)
UpperCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10]
UpperCamelCase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
UpperCamelCase_ = self.dummy_unet_condition
UpperCamelCase_ = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=_UpperCAmelCase , mel=_UpperCAmelCase , scheduler=_UpperCAmelCase )
UpperCamelCase_ = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
np.random.seed(0 )
UpperCamelCase_ = torch.rand((1, 1, 10) )
UpperCamelCase_ = pipe(generator=_UpperCAmelCase , encoding=_UpperCAmelCase )
UpperCamelCase_ = output.images[0]
UpperCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10]
UpperCamelCase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
@slow
@require_torch_gpu
class _a ( unittest.TestCase ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCAmelCase ( self ) -> List[str]:
UpperCamelCase_ = torch_device
UpperCamelCase_ = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' )
UpperCamelCase_ = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(42 )
UpperCamelCase_ = pipe(generator=_UpperCAmelCase )
UpperCamelCase_ = output.audios[0]
UpperCamelCase_ = output.images[0]
assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length)
assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1]
UpperCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10]
UpperCamelCase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
| 23 |
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class _a :
"""simple docstring"""
A_ = MBartConfig
A_ = {}
A_ = """gelu"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ) -> Union[str, Any]:
UpperCamelCase_ = parent
UpperCamelCase_ = batch_size
UpperCamelCase_ = seq_length
UpperCamelCase_ = is_training
UpperCamelCase_ = use_labels
UpperCamelCase_ = vocab_size
UpperCamelCase_ = hidden_size
UpperCamelCase_ = num_hidden_layers
UpperCamelCase_ = num_attention_heads
UpperCamelCase_ = intermediate_size
UpperCamelCase_ = hidden_dropout_prob
UpperCamelCase_ = attention_probs_dropout_prob
UpperCamelCase_ = max_position_embeddings
UpperCamelCase_ = eos_token_id
UpperCamelCase_ = pad_token_id
UpperCamelCase_ = bos_token_id
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase_ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCamelCase_ = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return config, inputs_dict
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]:
UpperCamelCase_ = TFMBartModel(config=_UpperCAmelCase ).get_decoder()
UpperCamelCase_ = inputs_dict['input_ids']
UpperCamelCase_ = input_ids[:1, :]
UpperCamelCase_ = inputs_dict['attention_mask'][:1, :]
UpperCamelCase_ = inputs_dict['head_mask']
UpperCamelCase_ = 1
# first forward pass
UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase )
UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple()
UpperCamelCase_ = past_key_values[1]
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ):
if attention_mask is None:
UpperCamelCase_ = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id) , tf.inta)
if decoder_attention_mask is None:
UpperCamelCase_ = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta),
] , axis=-1 , )
if head_mask is None:
UpperCamelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads))
if decoder_head_mask is None:
UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads))
if cross_attn_head_mask is None:
UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads))
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
A_ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
A_ = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
A_ = (
{
"""conversational""": TFMBartForConditionalGeneration,
"""feature-extraction""": TFMBartModel,
"""summarization""": TFMBartForConditionalGeneration,
"""text2text-generation""": TFMBartForConditionalGeneration,
"""translation""": TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
A_ = True
A_ = False
A_ = False
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple:
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ = TFMBartModelTester(self )
UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase )
@require_sentencepiece
@require_tokenizers
@require_tf
class _a ( unittest.TestCase ):
"""simple docstring"""
A_ = [
""" UN Chief Says There Is No Military Solution in Syria""",
]
A_ = [
"""Şeful ONU declară că nu există o soluţie militară în Siria""",
]
A_ = """facebook/mbart-large-en-ro"""
@cached_property
def _UpperCAmelCase ( self ) -> Any:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _UpperCAmelCase ( self ) -> List[str]:
UpperCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> int:
UpperCamelCase_ = self.translate_src_text(**_UpperCAmelCase )
self.assertListEqual(self.expected_text , _UpperCAmelCase )
def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> List[str]:
UpperCamelCase_ = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='tf' )
UpperCamelCase_ = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
UpperCamelCase_ = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
return generated_words
@slow
def _UpperCAmelCase ( self ) -> List[Any]:
self._assert_generated_batch_equal_expected()
| 23 | 1 |
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
snake_case__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]:
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self , _UpperCAmelCase = 1 , _UpperCAmelCase = 100 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[AudioPipelineOutput, Tuple]:
if audio_length_in_s is None:
UpperCamelCase_ = self.unet.config.sample_size / self.unet.config.sample_rate
UpperCamelCase_ = audio_length_in_s * self.unet.config.sample_rate
UpperCamelCase_ = 2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
f"""{audio_length_in_s} is too small. Make sure it's bigger or equal to"""
f""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" )
UpperCamelCase_ = int(_UpperCAmelCase )
if sample_size % down_scale_factor != 0:
UpperCamelCase_ = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
f"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled"""
f""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising"""
' process.' )
UpperCamelCase_ = int(_UpperCAmelCase )
UpperCamelCase_ = next(iter(self.unet.parameters() ) ).dtype
UpperCamelCase_ = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size:
raise ValueError(
f"""You have passed a list of generators of length {len(_UpperCAmelCase )}, but requested an effective batch"""
f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
UpperCamelCase_ = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase )
# set step values
self.scheduler.set_timesteps(_UpperCAmelCase , device=audio.device )
UpperCamelCase_ = self.scheduler.timesteps.to(_UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
UpperCamelCase_ = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample
# 2. compute previous image: x_t -> t_t-1
UpperCamelCase_ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
UpperCamelCase_ = audio.clamp(-1 , 1 ).float().cpu().numpy()
UpperCamelCase_ = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=_UpperCAmelCase )
| 23 |
def _snake_case (__lowercase):
UpperCamelCase_ = 1
for i in range(1 , num + 1):
fact *= i
return fact
def _snake_case (__lowercase):
UpperCamelCase_ = 0
while number > 0:
UpperCamelCase_ = number % 10
sum_of_digits += last_digit
UpperCamelCase_ = number // 10 # Removing the last_digit from the given number
return sum_of_digits
def _snake_case (__lowercase = 100):
UpperCamelCase_ = factorial(__lowercase)
UpperCamelCase_ = split_and_add(__lowercase)
return result
if __name__ == "__main__":
print(solution(int(input("""Enter the Number: """).strip())))
| 23 | 1 |
import string
def _snake_case (__lowercase):
for key in range(len(string.ascii_uppercase)):
UpperCamelCase_ = ''
for symbol in message:
if symbol in string.ascii_uppercase:
UpperCamelCase_ = string.ascii_uppercase.find(__lowercase)
UpperCamelCase_ = num - key
if num < 0:
UpperCamelCase_ = num + len(string.ascii_uppercase)
UpperCamelCase_ = translated + string.ascii_uppercase[num]
else:
UpperCamelCase_ = translated + symbol
print(f"""Decryption using Key #{key}: {translated}""")
def _snake_case ():
UpperCamelCase_ = input('Encrypted message: ')
UpperCamelCase_ = message.upper()
decrypt(__lowercase)
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 23 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
snake_case__ : str = logging.get_logger(__name__)
def _snake_case (__lowercase):
if isinstance(__lowercase , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]):
return videos
elif isinstance(__lowercase , (list, tuple)) and is_valid_image(videos[0]):
return [videos]
elif is_valid_image(__lowercase):
return [[videos]]
raise ValueError(f"""Could not make batched video from {videos}""")
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = ["""pixel_values"""]
def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> None:
super().__init__(**_UpperCAmelCase )
UpperCamelCase_ = size if size is not None else {'shortest_edge': 224}
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224}
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' )
UpperCamelCase_ = do_resize
UpperCamelCase_ = size
UpperCamelCase_ = do_center_crop
UpperCamelCase_ = crop_size
UpperCamelCase_ = resample
UpperCamelCase_ = do_rescale
UpperCamelCase_ = rescale_factor
UpperCamelCase_ = do_normalize
UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray:
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "shortest_edge" in size:
UpperCamelCase_ = get_resize_output_image_size(_UpperCAmelCase , size['shortest_edge'] , default_to_square=_UpperCAmelCase )
elif "height" in size and "width" in size:
UpperCamelCase_ = (size['height'], size['width'])
else:
raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" )
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray:
UpperCamelCase_ = get_size_dict(_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" )
return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> int:
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray:
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray:
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
UpperCamelCase_ = to_numpy_array(_UpperCAmelCase )
if do_resize:
UpperCamelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase )
if do_center_crop:
UpperCamelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase )
if do_rescale:
UpperCamelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase )
if do_normalize:
UpperCamelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase )
UpperCamelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase )
return image
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ) -> PIL.Image.Image:
UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCamelCase_ = resample if resample is not None else self.resample
UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCamelCase_ = image_std if image_std is not None else self.image_std
UpperCamelCase_ = size if size is not None else self.size
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
UpperCamelCase_ = make_batched(_UpperCAmelCase )
UpperCamelCase_ = [
[
self._preprocess_image(
image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , )
for img in video
]
for video in videos
]
UpperCamelCase_ = {'pixel_values': videos}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 23 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
snake_case__ : int = {
"""configuration_biogpt""": ["""BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BioGptConfig"""],
"""tokenization_biogpt""": ["""BioGptTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Optional[Any] = [
"""BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BioGptForCausalLM""",
"""BioGptForTokenClassification""",
"""BioGptForSequenceClassification""",
"""BioGptModel""",
"""BioGptPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
snake_case__ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 23 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin, SchedulerOutput
@dataclass
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = 42
A_ = 42
class _a ( UpperCAmelCase__ , UpperCAmelCase__ ):
"""simple docstring"""
A_ = 1
@register_to_config
def __init__( self , _UpperCAmelCase = 2000 , _UpperCAmelCase = 0.1_5 , _UpperCAmelCase = 0.0_1 , _UpperCAmelCase = 1_3_4_8.0 , _UpperCAmelCase = 1e-5 , _UpperCAmelCase = 1 , ) -> Tuple:
# standard deviation of the initial noise distribution
UpperCamelCase_ = sigma_max
# setable values
UpperCamelCase_ = None
self.set_sigmas(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> torch.FloatTensor:
return sample
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> str:
UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps
UpperCamelCase_ = torch.linspace(1 , _UpperCAmelCase , _UpperCAmelCase , device=_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> Any:
UpperCamelCase_ = sigma_min if sigma_min is not None else self.config.sigma_min
UpperCamelCase_ = sigma_max if sigma_max is not None else self.config.sigma_max
UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps
if self.timesteps is None:
self.set_timesteps(_UpperCAmelCase , _UpperCAmelCase )
UpperCamelCase_ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
UpperCamelCase_ = torch.exp(torch.linspace(math.log(_UpperCAmelCase ) , math.log(_UpperCAmelCase ) , _UpperCAmelCase ) )
UpperCamelCase_ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]:
return torch.where(
timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SdeVeOutput, Tuple]:
if self.timesteps is None:
raise ValueError(
'`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' )
UpperCamelCase_ = timestep * torch.ones(
sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0])
UpperCamelCase_ = (timestep * (len(self.timesteps ) - 1)).long()
# mps requires indices to be in the same device, so we use cpu as is the default with cuda
UpperCamelCase_ = timesteps.to(self.discrete_sigmas.device )
UpperCamelCase_ = self.discrete_sigmas[timesteps].to(sample.device )
UpperCamelCase_ = self.get_adjacent_sigma(_UpperCAmelCase , _UpperCAmelCase ).to(sample.device )
UpperCamelCase_ = torch.zeros_like(_UpperCAmelCase )
UpperCamelCase_ = (sigma**2 - adjacent_sigma**2) ** 0.5
# equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
# also equation 47 shows the analog from SDE models to ancestral sampling methods
UpperCamelCase_ = diffusion.flatten()
while len(diffusion.shape ) < len(sample.shape ):
UpperCamelCase_ = diffusion.unsqueeze(-1 )
UpperCamelCase_ = drift - diffusion**2 * model_output
# equation 6: sample noise for the diffusion term of
UpperCamelCase_ = randn_tensor(
sample.shape , layout=sample.layout , generator=_UpperCAmelCase , device=sample.device , dtype=sample.dtype )
UpperCamelCase_ = sample - drift # subtract because `dt` is a small negative timestep
# TODO is the variable diffusion the correct scaling term for the noise?
UpperCamelCase_ = prev_sample_mean + diffusion * noise # add impact of diffusion field g
if not return_dict:
return (prev_sample, prev_sample_mean)
return SdeVeOutput(prev_sample=_UpperCAmelCase , prev_sample_mean=_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]:
if self.timesteps is None:
raise ValueError(
'`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' )
# For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
# sample noise for correction
UpperCamelCase_ = randn_tensor(sample.shape , layout=sample.layout , generator=_UpperCAmelCase ).to(sample.device )
# compute step size from the model_output, the noise, and the snr
UpperCamelCase_ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean()
UpperCamelCase_ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean()
UpperCamelCase_ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
UpperCamelCase_ = step_size * torch.ones(sample.shape[0] ).to(sample.device )
# self.repeat_scalar(step_size, sample.shape[0])
# compute corrected sample: model_output term and noise term
UpperCamelCase_ = step_size.flatten()
while len(step_size.shape ) < len(sample.shape ):
UpperCamelCase_ = step_size.unsqueeze(-1 )
UpperCamelCase_ = sample + step_size * model_output
UpperCamelCase_ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
UpperCamelCase_ = timesteps.to(original_samples.device )
UpperCamelCase_ = self.discrete_sigmas.to(original_samples.device )[timesteps]
UpperCamelCase_ = (
noise * sigmas[:, None, None, None]
if noise is not None
else torch.randn_like(_UpperCAmelCase ) * sigmas[:, None, None, None]
)
UpperCamelCase_ = noise + original_samples
return noisy_samples
def __len__( self ) -> Optional[int]:
return self.config.num_train_timesteps
| 23 | 1 |
from __future__ import annotations
snake_case__ : Any = list[list[int]]
# assigning initial values to the grid
snake_case__ : Matrix = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
snake_case__ : Matrix = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase):
for i in range(9):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3):
for j in range(3):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def _snake_case (__lowercase):
for i in range(9):
for j in range(9):
if grid[i][j] == 0:
return i, j
return None
def _snake_case (__lowercase):
if location := find_empty_location(__lowercase):
UpperCamelCase_ , UpperCamelCase_ = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10):
if is_safe(__lowercase , __lowercase , __lowercase , __lowercase):
UpperCamelCase_ = digit
if sudoku(__lowercase) is not None:
return grid
UpperCamelCase_ = 0
return None
def _snake_case (__lowercase):
for row in grid:
for cell in row:
print(__lowercase , end=' ')
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("""\nExample grid:\n""" + """=""" * 2_0)
print_solution(example_grid)
print("""\nExample grid solution:""")
snake_case__ : Any = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("""Cannot find a solution.""")
| 23 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case__ : Optional[int] = {
"""configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Dict = [
"""PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PegasusXForConditionalGeneration""",
"""PegasusXModel""",
"""PegasusXPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
snake_case__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 23 | 1 |
import argparse
import glob
import logging
import os
import sys
import time
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Tuple
import numpy as np
import pytorch_lightning as pl
import torch
from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
from torch import nn
from torch.utils.data import DataLoader
from transformers import MBartTokenizer, TaForConditionalGeneration
from transformers.models.bart.modeling_bart import shift_tokens_right
from utils import (
ROUGE_KEYS,
LegacySeqaSeqDataset,
SeqaSeqDataset,
assert_all_frozen,
calculate_bleu,
calculate_rouge,
check_output_dir,
flatten_list,
freeze_embeds,
freeze_params,
get_git_info,
label_smoothed_nll_loss,
lmap,
pickle_save,
save_git_info,
save_json,
use_task_specific_params,
)
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa
snake_case__ : str = logging.getLogger(__name__)
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = """summarization"""
A_ = ["""loss"""]
A_ = ROUGE_KEYS
A_ = """rouge2"""
def __init__( self , _UpperCAmelCase , **_UpperCAmelCase ) -> Union[str, Any]:
if hparams.sortish_sampler and hparams.gpus > 1:
UpperCamelCase_ = False
elif hparams.max_tokens_per_batch is not None:
if hparams.gpus > 1:
raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training' )
if hparams.sortish_sampler:
raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously' )
super().__init__(_UpperCAmelCase , num_labels=_UpperCAmelCase , mode=self.mode , **_UpperCAmelCase )
use_task_specific_params(self.model , 'summarization' )
save_git_info(self.hparams.output_dir )
UpperCamelCase_ = Path(self.output_dir ) / 'metrics.json'
UpperCamelCase_ = Path(self.output_dir ) / 'hparams.pkl'
pickle_save(self.hparams , self.hparams_save_path )
UpperCamelCase_ = 0
UpperCamelCase_ = defaultdict(_UpperCAmelCase )
UpperCamelCase_ = self.config.model_type
UpperCamelCase_ = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size
UpperCamelCase_ = {
"data_dir": self.hparams.data_dir,
"max_source_length": self.hparams.max_source_length,
"prefix": self.model.config.prefix or "",
}
UpperCamelCase_ = {
'train': self.hparams.n_train,
'val': self.hparams.n_val,
'test': self.hparams.n_test,
}
UpperCamelCase_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}
UpperCamelCase_ = {
'train': self.hparams.max_target_length,
'val': self.hparams.val_max_target_length,
'test': self.hparams.test_max_target_length,
}
assert self.target_lens["train"] <= self.target_lens["val"], f"""target_lens: {self.target_lens}"""
assert self.target_lens["train"] <= self.target_lens["test"], f"""target_lens: {self.target_lens}"""
if self.hparams.freeze_embeds:
freeze_embeds(self.model )
if self.hparams.freeze_encoder:
freeze_params(self.model.get_encoder() )
assert_all_frozen(self.model.get_encoder() )
UpperCamelCase_ = get_git_info()['repo_sha']
UpperCamelCase_ = hparams.num_workers
UpperCamelCase_ = None # default to config
if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _UpperCAmelCase ):
UpperCamelCase_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang]
UpperCamelCase_ = self.decoder_start_token_id
UpperCamelCase_ = (
SeqaSeqDataset if hasattr(self.tokenizer , 'prepare_seq2seq_batch' ) else LegacySeqaSeqDataset
)
UpperCamelCase_ = False
UpperCamelCase_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams
if self.hparams.eval_max_gen_length is not None:
UpperCamelCase_ = self.hparams.eval_max_gen_length
else:
UpperCamelCase_ = self.model.config.max_length
UpperCamelCase_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict[str, List[str]]:
UpperCamelCase_ = {
k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items()
}
save_json(_UpperCAmelCase , Path(self.output_dir ) / 'text_batch.json' )
save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / 'tok_batch.json' )
UpperCamelCase_ = True
return readable_batch
def _UpperCAmelCase ( self , _UpperCAmelCase , **_UpperCAmelCase ) -> Union[str, Any]:
return self.model(_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> int:
UpperCamelCase_ = self.tokenizer.batch_decode(
_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )
return lmap(str.strip , _UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple:
UpperCamelCase_ = self.tokenizer.pad_token_id
UpperCamelCase_ , UpperCamelCase_ = batch['input_ids'], batch['attention_mask']
UpperCamelCase_ = batch['labels']
if isinstance(self.model , _UpperCAmelCase ):
UpperCamelCase_ = self.model._shift_right(_UpperCAmelCase )
else:
UpperCamelCase_ = shift_tokens_right(_UpperCAmelCase , _UpperCAmelCase )
if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero
UpperCamelCase_ = decoder_input_ids
self.save_readable_batch(_UpperCAmelCase )
UpperCamelCase_ = self(_UpperCAmelCase , attention_mask=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase , use_cache=_UpperCAmelCase )
UpperCamelCase_ = outputs['logits']
if self.hparams.label_smoothing == 0:
# Same behavior as modeling_bart.py, besides ignoring pad_token_id
UpperCamelCase_ = nn.CrossEntropyLoss(ignore_index=_UpperCAmelCase )
assert lm_logits.shape[-1] == self.vocab_size
UpperCamelCase_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) )
else:
UpperCamelCase_ = nn.functional.log_softmax(_UpperCAmelCase , dim=-1 )
UpperCamelCase_ , UpperCamelCase_ = label_smoothed_nll_loss(
_UpperCAmelCase , _UpperCAmelCase , self.hparams.label_smoothing , ignore_index=_UpperCAmelCase )
return (loss,)
@property
def _UpperCAmelCase ( self ) -> int:
return self.tokenizer.pad_token_id
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict:
UpperCamelCase_ = self._step(_UpperCAmelCase )
UpperCamelCase_ = dict(zip(self.loss_names , _UpperCAmelCase ) )
# tokens per batch
UpperCamelCase_ = batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum()
UpperCamelCase_ = batch['input_ids'].shape[0]
UpperCamelCase_ = batch['input_ids'].eq(self.pad ).sum()
UpperCamelCase_ = batch['input_ids'].eq(self.pad ).float().mean()
# TODO(SS): make a wandb summary metric for this
return {"loss": loss_tensors[0], "log": logs}
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict:
return self._generative_step(_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase="val" ) -> Dict:
self.step_count += 1
UpperCamelCase_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names}
UpperCamelCase_ = losses['loss']
UpperCamelCase_ = {
k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len']
}
UpperCamelCase_ = (
generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric]
)
UpperCamelCase_ = torch.tensor(_UpperCAmelCase ).type_as(_UpperCAmelCase )
generative_metrics.update({k: v.item() for k, v in losses.items()} )
losses.update(_UpperCAmelCase )
UpperCamelCase_ = {f"""{prefix}_avg_{k}""": x for k, x in losses.items()}
UpperCamelCase_ = self.step_count
self.metrics[prefix].append(_UpperCAmelCase ) # callback writes this to self.metrics_save_path
UpperCamelCase_ = flatten_list([x['preds'] for x in outputs] )
return {
"log": all_metrics,
"preds": preds,
f"""{prefix}_loss""": loss,
f"""{prefix}_{self.val_metric}""": metric_tensor,
}
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict:
return calculate_rouge(_UpperCAmelCase , _UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> dict:
UpperCamelCase_ = time.time()
# parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens')
UpperCamelCase_ = self.model.generate(
batch['input_ids'] , attention_mask=batch['attention_mask'] , use_cache=_UpperCAmelCase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , )
UpperCamelCase_ = (time.time() - ta) / batch['input_ids'].shape[0]
UpperCamelCase_ = self.ids_to_clean_text(_UpperCAmelCase )
UpperCamelCase_ = self.ids_to_clean_text(batch['labels'] )
UpperCamelCase_ = self._step(_UpperCAmelCase )
UpperCamelCase_ = dict(zip(self.loss_names , _UpperCAmelCase ) )
UpperCamelCase_ = self.calc_generative_metrics(_UpperCAmelCase , _UpperCAmelCase )
UpperCamelCase_ = np.mean(lmap(_UpperCAmelCase , _UpperCAmelCase ) )
base_metrics.update(gen_time=_UpperCAmelCase , gen_len=_UpperCAmelCase , preds=_UpperCAmelCase , target=_UpperCAmelCase , **_UpperCAmelCase )
return base_metrics
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> str:
return self._generative_step(_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> int:
return self.validation_epoch_end(_UpperCAmelCase , prefix='test' )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> SeqaSeqDataset:
UpperCamelCase_ = self.n_obs[type_path]
UpperCamelCase_ = self.target_lens[type_path]
UpperCamelCase_ = self.dataset_class(
self.tokenizer , type_path=_UpperCAmelCase , n_obs=_UpperCAmelCase , max_target_length=_UpperCAmelCase , **self.dataset_kwargs , )
return dataset
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False ) -> DataLoader:
UpperCamelCase_ = self.get_dataset(_UpperCAmelCase )
if self.hparams.sortish_sampler and type_path != "test" and type_path != "val":
UpperCamelCase_ = dataset.make_sortish_sampler(_UpperCAmelCase , distributed=self.hparams.gpus > 1 )
return DataLoader(
_UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=dataset.collate_fn , shuffle=_UpperCAmelCase , num_workers=self.num_workers , sampler=_UpperCAmelCase , )
elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val":
UpperCamelCase_ = dataset.make_dynamic_sampler(
self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 )
return DataLoader(
_UpperCAmelCase , batch_sampler=_UpperCAmelCase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , )
else:
return DataLoader(
_UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=dataset.collate_fn , shuffle=_UpperCAmelCase , num_workers=self.num_workers , sampler=_UpperCAmelCase , )
def _UpperCAmelCase ( self ) -> DataLoader:
UpperCamelCase_ = self.get_dataloader('train' , batch_size=self.hparams.train_batch_size , shuffle=_UpperCAmelCase )
return dataloader
def _UpperCAmelCase ( self ) -> DataLoader:
return self.get_dataloader('val' , batch_size=self.hparams.eval_batch_size )
def _UpperCAmelCase ( self ) -> DataLoader:
return self.get_dataloader('test' , batch_size=self.hparams.eval_batch_size )
@staticmethod
def _UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]:
BaseTransformer.add_model_specific_args(_UpperCAmelCase , _UpperCAmelCase )
add_generic_args(_UpperCAmelCase , _UpperCAmelCase )
parser.add_argument(
'--max_source_length' , default=1024 , type=_UpperCAmelCase , help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
) , )
parser.add_argument(
'--max_target_length' , default=56 , type=_UpperCAmelCase , help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
) , )
parser.add_argument(
'--val_max_target_length' , default=142 , type=_UpperCAmelCase , help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
) , )
parser.add_argument(
'--test_max_target_length' , default=142 , type=_UpperCAmelCase , help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
) , )
parser.add_argument('--freeze_encoder' , action='store_true' )
parser.add_argument('--freeze_embeds' , action='store_true' )
parser.add_argument('--sortish_sampler' , action='store_true' , default=_UpperCAmelCase )
parser.add_argument('--overwrite_output_dir' , action='store_true' , default=_UpperCAmelCase )
parser.add_argument('--max_tokens_per_batch' , type=_UpperCAmelCase , default=_UpperCAmelCase )
parser.add_argument('--logger_name' , type=_UpperCAmelCase , choices=['default', 'wandb', 'wandb_shared'] , default='default' )
parser.add_argument('--n_train' , type=_UpperCAmelCase , default=-1 , required=_UpperCAmelCase , help='# examples. -1 means use all.' )
parser.add_argument('--n_val' , type=_UpperCAmelCase , default=500 , required=_UpperCAmelCase , help='# examples. -1 means use all.' )
parser.add_argument('--n_test' , type=_UpperCAmelCase , default=-1 , required=_UpperCAmelCase , help='# examples. -1 means use all.' )
parser.add_argument(
'--task' , type=_UpperCAmelCase , default='summarization' , required=_UpperCAmelCase , help='# examples. -1 means use all.' )
parser.add_argument('--label_smoothing' , type=_UpperCAmelCase , default=0.0 , required=_UpperCAmelCase )
parser.add_argument('--src_lang' , type=_UpperCAmelCase , default='' , required=_UpperCAmelCase )
parser.add_argument('--tgt_lang' , type=_UpperCAmelCase , default='' , required=_UpperCAmelCase )
parser.add_argument('--eval_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase )
parser.add_argument(
'--val_metric' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , choices=['bleu', 'rouge2', 'loss', None] )
parser.add_argument('--eval_max_gen_length' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='never generate more than n tokens' )
parser.add_argument('--save_top_k' , type=_UpperCAmelCase , default=1 , required=_UpperCAmelCase , help='How many checkpoints to save' )
parser.add_argument(
'--early_stopping_patience' , type=_UpperCAmelCase , default=-1 , required=_UpperCAmelCase , help=(
'-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So'
' val_check_interval will effect it.'
) , )
return parser
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = """translation"""
A_ = ["""loss"""]
A_ = ["""bleu"""]
A_ = """bleu"""
def __init__( self , _UpperCAmelCase , **_UpperCAmelCase ) -> Optional[int]:
super().__init__(_UpperCAmelCase , **_UpperCAmelCase )
UpperCamelCase_ = hparams.src_lang
UpperCamelCase_ = hparams.tgt_lang
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> dict:
return calculate_bleu(_UpperCAmelCase , _UpperCAmelCase )
def _snake_case (__lowercase , __lowercase=None):
Path(args.output_dir).mkdir(exist_ok=__lowercase)
check_output_dir(__lowercase , expected_items=3)
if model is None:
if "summarization" in args.task:
UpperCamelCase_ = SummarizationModule(__lowercase)
else:
UpperCamelCase_ = TranslationModule(__lowercase)
UpperCamelCase_ = Path(args.data_dir).name
if (
args.logger_name == "default"
or args.fast_dev_run
or str(args.output_dir).startswith('/tmp')
or str(args.output_dir).startswith('/var')
):
UpperCamelCase_ = True # don't pollute wandb logs unnecessarily
elif args.logger_name == "wandb":
from pytorch_lightning.loggers import WandbLogger
UpperCamelCase_ = os.environ.get('WANDB_PROJECT' , __lowercase)
UpperCamelCase_ = WandbLogger(name=model.output_dir.name , project=__lowercase)
elif args.logger_name == "wandb_shared":
from pytorch_lightning.loggers import WandbLogger
UpperCamelCase_ = WandbLogger(name=model.output_dir.name , project=f"""hf_{dataset}""")
if args.early_stopping_patience >= 0:
UpperCamelCase_ = get_early_stopping_callback(model.val_metric , args.early_stopping_patience)
else:
UpperCamelCase_ = False
UpperCamelCase_ = args.val_metric == 'loss'
UpperCamelCase_ = generic_train(
__lowercase , __lowercase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback(
args.output_dir , model.val_metric , args.save_top_k , __lowercase) , early_stopping_callback=__lowercase , logger=__lowercase , )
pickle_save(model.hparams , model.output_dir / 'hparams.pkl')
if not args.do_predict:
return model
UpperCamelCase_ = ''
UpperCamelCase_ = sorted(glob.glob(os.path.join(args.output_dir , '*.ckpt') , recursive=__lowercase))
if checkpoints:
UpperCamelCase_ = checkpoints[-1]
UpperCamelCase_ = checkpoints[-1]
trainer.logger.log_hyperparams(model.hparams)
# test() without a model tests using the best checkpoint automatically
trainer.test()
return model
if __name__ == "__main__":
snake_case__ : Union[str, Any] = argparse.ArgumentParser()
snake_case__ : Dict = pl.Trainer.add_argparse_args(parser)
snake_case__ : List[str] = SummarizationModule.add_model_specific_args(parser, os.getcwd())
snake_case__ : Optional[Any] = parser.parse_args()
main(args)
| 23 |
import datasets
from .evaluate import evaluate
snake_case__ : int = """\
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={arXiv preprint arXiv:2103.06268},
year={2021}
}
"""
snake_case__ : Union[str, Any] = """
This metric wrap the official scoring script for version 1 of the Contract
Understanding Atticus Dataset (CUAD).
Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510
commercial legal contracts that have been manually labeled to identify 41 categories of important
clauses that lawyers look for when reviewing contracts in connection with corporate transactions.
"""
snake_case__ : Any = """
Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair as given in the references (see below)
- 'prediction_text': list of possible texts for the answer, as a list of strings
depending on a threshold on the confidence probability of each prediction.
references: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair (see above),
- 'answers': a Dict in the CUAD dataset format
{
'text': list of possible texts for the answer, as a list of strings
'answer_start': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
'exact_match': Exact match (the normalized answer exactly match the gold answer)
'f1': The F-score of predicted tokens versus the gold answer
'aupr': Area Under the Precision-Recall curve
'prec_at_80_recall': Precision at 80% recall
'prec_at_90_recall': Precision at 90% recall
Examples:
>>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> cuad_metric = datasets.load_metric(\"cuad\")
>>> results = cuad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _a ( datasets.Metric ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> Optional[int]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': {
'id': datasets.Value('string' ),
'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ),
},
'references': {
'id': datasets.Value('string' ),
'answers': datasets.features.Sequence(
{
'text': datasets.Value('string' ),
'answer_start': datasets.Value('int32' ),
} ),
},
} ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict:
UpperCamelCase_ = {prediction['id']: prediction['prediction_text'] for prediction in predictions}
UpperCamelCase_ = [
{
'paragraphs': [
{
'qas': [
{
'answers': [{'text': answer_text} for answer_text in ref['answers']['text']],
'id': ref['id'],
}
for ref in references
]
}
]
}
]
UpperCamelCase_ = evaluate(dataset=_UpperCAmelCase , predictions=_UpperCAmelCase )
return score
| 23 | 1 |
snake_case__ : Optional[Any] = tuple[float, float, float]
snake_case__ : Any = tuple[float, float, float]
def _snake_case (__lowercase , __lowercase):
UpperCamelCase_ = end_pointa[0] - end_pointa[0]
UpperCamelCase_ = end_pointa[1] - end_pointa[1]
UpperCamelCase_ = end_pointa[2] - end_pointa[2]
return (x, y, z)
def _snake_case (__lowercase , __lowercase):
UpperCamelCase_ = ab[1] * ac[2] - ab[2] * ac[1] # *i
UpperCamelCase_ = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j
UpperCamelCase_ = ab[0] * ac[1] - ab[1] * ac[0] # *k
return (x, y, z)
def _snake_case (__lowercase , __lowercase):
return tuple(round(__lowercase , __lowercase) for x in vector) == (0, 0, 0)
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase = 10):
UpperCamelCase_ = create_vector(__lowercase , __lowercase)
UpperCamelCase_ = create_vector(__lowercase , __lowercase)
return is_zero_vector(get_ad_vectors_cross(__lowercase , __lowercase) , __lowercase)
| 23 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import datasets
import datasets.config
from .utils import require_beam
class _a ( datasets.BeamBasedBuilder ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> List[str]:
return datasets.DatasetInfo(
features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=_UpperCAmelCase , )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]:
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )]
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple:
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase )
class _a ( datasets.BeamBasedBuilder ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> Any:
return datasets.DatasetInfo(
features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=_UpperCAmelCase , )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple:
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} )
]
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]:
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase )
def _snake_case ():
return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'])]
def _snake_case ():
return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'])]
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
@require_beam
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) )
UpperCamelCase_ = builder.as_dataset()
self.assertEqual(dset['train'].num_rows , _UpperCAmelCase )
self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase )
self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] )
self.assertDictEqual(
dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) )
del dset
@require_beam
def _UpperCAmelCase ( self ) -> List[str]:
import apache_beam as beam
UpperCamelCase_ = beam.io.parquetio.WriteToParquet
UpperCamelCase_ = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' )
with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock:
UpperCamelCase_ = partial(_UpperCAmelCase , num_shards=2 )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(
_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) )
self.assertTrue(
os.path.exists(
os.path.join(
_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) )
UpperCamelCase_ = builder.as_dataset()
self.assertEqual(dset['train'].num_rows , _UpperCAmelCase )
self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase )
# Order is not preserved when sharding, so we just check that all the elements are there
self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) )
self.assertTrue(
os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) )
del dset
@require_beam
def _UpperCAmelCase ( self ) -> Any:
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase )
self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare )
@require_beam
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = len(get_test_nested_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCamelCase_ = NestedBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) )
self.assertDictEqual(
builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) )
UpperCamelCase_ = builder.as_dataset()
self.assertEqual(dset['train'].num_rows , _UpperCAmelCase )
self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase )
self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] )
self.assertDictEqual(
dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) )
del dset
| 23 | 1 |
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
snake_case__ : Union[str, Any] = """platform"""
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class _a :
"""simple docstring"""
A_ = PegasusConfig
A_ = {}
A_ = """gelu"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ) -> Optional[int]:
UpperCamelCase_ = parent
UpperCamelCase_ = batch_size
UpperCamelCase_ = seq_length
UpperCamelCase_ = is_training
UpperCamelCase_ = use_labels
UpperCamelCase_ = vocab_size
UpperCamelCase_ = hidden_size
UpperCamelCase_ = num_hidden_layers
UpperCamelCase_ = num_attention_heads
UpperCamelCase_ = intermediate_size
UpperCamelCase_ = hidden_dropout_prob
UpperCamelCase_ = attention_probs_dropout_prob
UpperCamelCase_ = max_position_embeddings
UpperCamelCase_ = eos_token_id
UpperCamelCase_ = pad_token_id
UpperCamelCase_ = bos_token_id
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
UpperCamelCase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
UpperCamelCase_ = np.concatenate([input_ids, eos_tensor] , axis=1 )
UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase_ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCamelCase_ = prepare_pegasus_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return config, inputs_dict
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any:
UpperCamelCase_ = 20
UpperCamelCase_ = model_class_name(_UpperCAmelCase )
UpperCamelCase_ = model.encode(inputs_dict['input_ids'] )
UpperCamelCase_ , UpperCamelCase_ = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
UpperCamelCase_ = model.init_cache(decoder_input_ids.shape[0] , _UpperCAmelCase , _UpperCAmelCase )
UpperCamelCase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' )
UpperCamelCase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
UpperCamelCase_ = model.decode(
decoder_input_ids[:, :-1] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , )
UpperCamelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
UpperCamelCase_ = model.decode(
decoder_input_ids[:, -1:] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_UpperCAmelCase , )
UpperCamelCase_ = model.decode(_UpperCAmelCase , _UpperCAmelCase )
UpperCamelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]:
UpperCamelCase_ = 20
UpperCamelCase_ = model_class_name(_UpperCAmelCase )
UpperCamelCase_ = model.encode(inputs_dict['input_ids'] )
UpperCamelCase_ , UpperCamelCase_ = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
UpperCamelCase_ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
UpperCamelCase_ = model.init_cache(decoder_input_ids.shape[0] , _UpperCAmelCase , _UpperCAmelCase )
UpperCamelCase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
UpperCamelCase_ = model.decode(
decoder_input_ids[:, :-1] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , )
UpperCamelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
UpperCamelCase_ = model.decode(
decoder_input_ids[:, -1:] , _UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , )
UpperCamelCase_ = model.decode(_UpperCAmelCase , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase )
UpperCamelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , ):
if attention_mask is None:
UpperCamelCase_ = np.not_equal(__lowercase , config.pad_token_id).astype(np.inta)
if decoder_attention_mask is None:
UpperCamelCase_ = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id).astype(np.inta),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class _a ( UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
A_ = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
A_ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
A_ = True
A_ = False
A_ = False
A_ = False
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ = FlaxPegasusModelTester(self )
UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> str:
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Tuple:
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCamelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase )
UpperCamelCase_ = model_class(_UpperCAmelCase )
@jax.jit
def encode_jitted(_UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ):
return model.encode(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase )
with self.subTest('JIT Enabled' ):
UpperCamelCase_ = encode_jitted(**_UpperCAmelCase ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
UpperCamelCase_ = encode_jitted(**_UpperCAmelCase ).to_tuple()
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def _UpperCAmelCase ( self ) -> List[str]:
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCamelCase_ = model_class(_UpperCAmelCase )
UpperCamelCase_ = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] )
UpperCamelCase_ = {
'decoder_input_ids': inputs_dict['decoder_input_ids'],
'decoder_attention_mask': inputs_dict['decoder_attention_mask'],
'encoder_outputs': encoder_outputs,
}
@jax.jit
def decode_jitted(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
return model.decode(
decoder_input_ids=_UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , encoder_outputs=_UpperCAmelCase , )
with self.subTest('JIT Enabled' ):
UpperCamelCase_ = decode_jitted(**_UpperCAmelCase ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
UpperCamelCase_ = decode_jitted(**_UpperCAmelCase ).to_tuple()
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _UpperCAmelCase ( self ) -> int:
for model_class_name in self.all_model_classes:
UpperCamelCase_ = model_class_name.from_pretrained('google/pegasus-large' , from_pt=_UpperCAmelCase )
UpperCamelCase_ = np.ones((1, 1) )
UpperCamelCase_ = model(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@slow
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' )
UpperCamelCase_ = PegasusTokenizer.from_pretrained('google/pegasus-xsum' )
UpperCamelCase_ = [
' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.',
' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ',
]
UpperCamelCase_ = [
'California\'s largest electricity provider has turned off power to hundreds of thousands of customers.',
'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.',
]
UpperCamelCase_ = tokenizer(_UpperCAmelCase , return_tensors='np' , truncation=_UpperCAmelCase , max_length=512 , padding=_UpperCAmelCase )
UpperCamelCase_ = model.generate(**_UpperCAmelCase , num_beams=2 ).sequences
UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
assert tgt_text == decoded
| 23 |
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def _snake_case (__lowercase , __lowercase , __lowercase):
# Initialise PyTorch model
UpperCamelCase_ = AlbertConfig.from_json_file(__lowercase)
print(f"""Building PyTorch model from configuration: {config}""")
UpperCamelCase_ = AlbertForPreTraining(__lowercase)
# Load weights from tf checkpoint
load_tf_weights_in_albert(__lowercase , __lowercase , __lowercase)
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""")
torch.save(model.state_dict() , __lowercase)
if __name__ == "__main__":
snake_case__ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--albert_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained ALBERT model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
snake_case__ : str = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 23 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
snake_case__ : Tuple = {
"""configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""],
"""processing_trocr""": ["""TrOCRProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Tuple = [
"""TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TrOCRForCausalLM""",
"""TrOCRPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
snake_case__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 23 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
@slow
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' )
UpperCamelCase_ = BertTokenizer.from_pretrained('bert-base-uncased' )
UpperCamelCase_ = bertabert.config.encoder.vocab_size
UpperCamelCase_ = tokenizer.sep_token_id
UpperCamelCase_ = tokenizer.cls_token_id
UpperCamelCase_ = 128
UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' )
UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' )
UpperCamelCase_ = train_dataset.select(range(32 ) )
UpperCamelCase_ = val_dataset.select(range(16 ) )
UpperCamelCase_ = 4
def _map_to_encoder_decoder_inputs(_UpperCAmelCase ):
# Tokenizer will automatically set [BOS] <text> [EOS]
UpperCamelCase_ = tokenizer(batch['article'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=512 )
UpperCamelCase_ = tokenizer(batch['highlights'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=128 )
UpperCamelCase_ = inputs.input_ids
UpperCamelCase_ = inputs.attention_mask
UpperCamelCase_ = outputs.input_ids
UpperCamelCase_ = outputs.input_ids.copy()
UpperCamelCase_ = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels']
]
UpperCamelCase_ = outputs.attention_mask
assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids )
assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(_UpperCAmelCase ):
UpperCamelCase_ = pred.label_ids
UpperCamelCase_ = pred.predictions
# all unnecessary tokens are removed
UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
UpperCamelCase_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase )
return {"accuracy": accuracy}
# map train dataset
UpperCamelCase_ = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , )
train_dataset.set_format(
type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , )
# same for validation dataset
UpperCamelCase_ = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , )
val_dataset.set_format(
type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , )
UpperCamelCase_ = self.get_auto_remove_tmp_dir()
UpperCamelCase_ = SeqaSeqTrainingArguments(
output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy='steps' , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
UpperCamelCase_ = SeqaSeqTrainer(
model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , )
# start training
trainer.train()
| 23 | 1 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
@slow
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' )
UpperCamelCase_ = BertTokenizer.from_pretrained('bert-base-uncased' )
UpperCamelCase_ = bertabert.config.encoder.vocab_size
UpperCamelCase_ = tokenizer.sep_token_id
UpperCamelCase_ = tokenizer.cls_token_id
UpperCamelCase_ = 128
UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' )
UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' )
UpperCamelCase_ = train_dataset.select(range(32 ) )
UpperCamelCase_ = val_dataset.select(range(16 ) )
UpperCamelCase_ = 4
def _map_to_encoder_decoder_inputs(_UpperCAmelCase ):
# Tokenizer will automatically set [BOS] <text> [EOS]
UpperCamelCase_ = tokenizer(batch['article'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=512 )
UpperCamelCase_ = tokenizer(batch['highlights'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=128 )
UpperCamelCase_ = inputs.input_ids
UpperCamelCase_ = inputs.attention_mask
UpperCamelCase_ = outputs.input_ids
UpperCamelCase_ = outputs.input_ids.copy()
UpperCamelCase_ = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels']
]
UpperCamelCase_ = outputs.attention_mask
assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids )
assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(_UpperCAmelCase ):
UpperCamelCase_ = pred.label_ids
UpperCamelCase_ = pred.predictions
# all unnecessary tokens are removed
UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
UpperCamelCase_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase )
return {"accuracy": accuracy}
# map train dataset
UpperCamelCase_ = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , )
train_dataset.set_format(
type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , )
# same for validation dataset
UpperCamelCase_ = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , )
val_dataset.set_format(
type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , )
UpperCamelCase_ = self.get_auto_remove_tmp_dir()
UpperCamelCase_ = SeqaSeqTrainingArguments(
output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy='steps' , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
UpperCamelCase_ = SeqaSeqTrainer(
model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , )
# start training
trainer.train()
| 23 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
# and perform gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
snake_case__ : Dict = 1_6
snake_case__ : List[str] = 3_2
def _snake_case (__lowercase , __lowercase = 16):
UpperCamelCase_ = AutoTokenizer.from_pretrained('bert-base-cased')
UpperCamelCase_ = load_dataset('glue' , 'mrpc')
def tokenize_function(__lowercase):
# max_length=None => use the model max length (it's actually the default)
UpperCamelCase_ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__lowercase , max_length=__lowercase)
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
UpperCamelCase_ = datasets.map(
__lowercase , batched=__lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCamelCase_ = tokenized_datasets.rename_column('label' , 'labels')
def collate_fn(__lowercase):
# On TPU it's best to pad everything to the same length or training will be very slow.
UpperCamelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
UpperCamelCase_ = 16
elif accelerator.mixed_precision != "no":
UpperCamelCase_ = 8
else:
UpperCamelCase_ = None
return tokenizer.pad(
__lowercase , padding='longest' , max_length=__lowercase , pad_to_multiple_of=__lowercase , return_tensors='pt' , )
# Instantiate dataloaders.
UpperCamelCase_ = DataLoader(
tokenized_datasets['train'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase)
UpperCamelCase_ = DataLoader(
tokenized_datasets['validation'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase)
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
snake_case__ : List[str] = mocked_dataloaders # noqa: F811
def _snake_case (__lowercase , __lowercase):
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS' , __lowercase) == "1":
UpperCamelCase_ = 2
# New Code #
UpperCamelCase_ = int(args.gradient_accumulation_steps)
# Initialize accelerator
UpperCamelCase_ = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowercase)
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
raise NotImplementedError(
'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`')
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCamelCase_ = config['lr']
UpperCamelCase_ = int(config['num_epochs'])
UpperCamelCase_ = int(config['seed'])
UpperCamelCase_ = int(config['batch_size'])
UpperCamelCase_ = evaluate.load('glue' , 'mrpc')
set_seed(__lowercase)
UpperCamelCase_ , UpperCamelCase_ = get_dataloaders(__lowercase , __lowercase)
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCamelCase_ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__lowercase)
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCamelCase_ = model.to(accelerator.device)
# Instantiate optimizer
UpperCamelCase_ = AdamW(params=model.parameters() , lr=__lowercase)
# Instantiate scheduler
UpperCamelCase_ = get_linear_schedule_with_warmup(
optimizer=__lowercase , num_warmup_steps=100 , num_training_steps=(len(__lowercase) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare(
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase)
# Now we train the model
for epoch in range(__lowercase):
model.train()
for step, batch in enumerate(__lowercase):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(__lowercase):
UpperCamelCase_ = model(**__lowercase)
UpperCamelCase_ = output.loss
accelerator.backward(__lowercase)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__lowercase):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
with torch.no_grad():
UpperCamelCase_ = model(**__lowercase)
UpperCamelCase_ = outputs.logits.argmax(dim=-1)
UpperCamelCase_ , UpperCamelCase_ = accelerator.gather_for_metrics((predictions, batch['labels']))
metric.add_batch(
predictions=__lowercase , references=__lowercase , )
UpperCamelCase_ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""" , __lowercase)
def _snake_case ():
UpperCamelCase_ = argparse.ArgumentParser(description='Simple example of training script.')
parser.add_argument(
'--mixed_precision' , type=__lowercase , default=__lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.' , )
# New Code #
parser.add_argument(
'--gradient_accumulation_steps' , type=__lowercase , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , )
parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.')
UpperCamelCase_ = parser.parse_args()
UpperCamelCase_ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16}
training_function(__lowercase , __lowercase)
if __name__ == "__main__":
main()
| 23 | 1 |
import argparse
import hashlib # hashlib is only used inside the Test class
import struct
class _a :
"""simple docstring"""
def __init__( self , _UpperCAmelCase ) -> Optional[int]:
UpperCamelCase_ = data
UpperCamelCase_ = [0x6745_2301, 0xEFCD_AB89, 0x98BA_DCFE, 0x1032_5476, 0xC3D2_E1F0]
@staticmethod
def _UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict:
return ((n << b) | (n >> (32 - b))) & 0xFFFF_FFFF
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = B'\x80' + B'\x00' * (63 - (len(self.data ) + 8) % 64)
UpperCamelCase_ = self.data + padding + struct.pack('>Q' , 8 * len(self.data ) )
return padded_data
def _UpperCAmelCase ( self ) -> Optional[int]:
return [
self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 )
]
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Optional[int]:
UpperCamelCase_ = list(struct.unpack('>16L' , _UpperCAmelCase ) ) + [0] * 64
for i in range(16 , 80 ):
UpperCamelCase_ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 )
return w
def _UpperCAmelCase ( self ) -> Any:
UpperCamelCase_ = self.padding()
UpperCamelCase_ = self.split_blocks()
for block in self.blocks:
UpperCamelCase_ = self.expand_block(_UpperCAmelCase )
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.h
for i in range(0 , 80 ):
if 0 <= i < 20:
UpperCamelCase_ = (b & c) | ((~b) & d)
UpperCamelCase_ = 0x5A82_7999
elif 20 <= i < 40:
UpperCamelCase_ = b ^ c ^ d
UpperCamelCase_ = 0x6ED9_EBA1
elif 40 <= i < 60:
UpperCamelCase_ = (b & c) | (b & d) | (c & d)
UpperCamelCase_ = 0x8F1B_BCDC
elif 60 <= i < 80:
UpperCamelCase_ = b ^ c ^ d
UpperCamelCase_ = 0xCA62_C1D6
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = (
self.rotate(_UpperCAmelCase , 5 ) + f + e + k + expanded_block[i] & 0xFFFF_FFFF,
a,
self.rotate(_UpperCAmelCase , 30 ),
c,
d,
)
UpperCamelCase_ = (
self.h[0] + a & 0xFFFF_FFFF,
self.h[1] + b & 0xFFFF_FFFF,
self.h[2] + c & 0xFFFF_FFFF,
self.h[3] + d & 0xFFFF_FFFF,
self.h[4] + e & 0xFFFF_FFFF,
)
return ("{:08x}" * 5).format(*self.h )
def _snake_case ():
UpperCamelCase_ = B'Test String'
assert SHAaHash(__lowercase).final_hash() == hashlib.shaa(__lowercase).hexdigest() # noqa: S324
def _snake_case ():
UpperCamelCase_ = argparse.ArgumentParser(description='Process some strings or files')
parser.add_argument(
'--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file')
UpperCamelCase_ = parser.parse_args()
UpperCamelCase_ = args.input_string
# In any case hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb') as f:
UpperCamelCase_ = f.read()
else:
UpperCamelCase_ = bytes(__lowercase , 'utf-8')
print(SHAaHash(__lowercase).final_hash())
if __name__ == "__main__":
main()
import doctest
doctest.testmod()
| 23 |
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class _a :
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=10 , _UpperCAmelCase=3 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=4 , _UpperCAmelCase=64 , ) -> List[Any]:
UpperCamelCase_ = parent
UpperCamelCase_ = batch_size
UpperCamelCase_ = is_training
UpperCamelCase_ = use_auxiliary_loss
UpperCamelCase_ = num_queries
UpperCamelCase_ = num_channels
UpperCamelCase_ = min_size
UpperCamelCase_ = max_size
UpperCamelCase_ = num_labels
UpperCamelCase_ = hidden_dim
UpperCamelCase_ = hidden_dim
def _UpperCAmelCase ( self ) -> List[str]:
UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
_UpperCAmelCase )
UpperCamelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_UpperCAmelCase )
UpperCamelCase_ = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_UpperCAmelCase ) > 0.5
).float()
UpperCamelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=_UpperCAmelCase ) > 0.5).long()
UpperCamelCase_ = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ = MaskaFormerConfig(
hidden_size=self.hidden_dim , )
UpperCamelCase_ = self.num_queries
UpperCamelCase_ = self.num_labels
UpperCamelCase_ = [1, 1, 1, 1]
UpperCamelCase_ = self.num_channels
UpperCamelCase_ = 64
UpperCamelCase_ = 128
UpperCamelCase_ = self.hidden_dim
UpperCamelCase_ = self.hidden_dim
UpperCamelCase_ = self.hidden_dim
return config
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs()
UpperCamelCase_ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask}
return config, inputs_dict
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]:
UpperCamelCase_ = output.encoder_hidden_states
UpperCamelCase_ = output.pixel_decoder_hidden_states
UpperCamelCase_ = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(_UpperCAmelCase ) , config.decoder_layers )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Any:
with torch.no_grad():
UpperCamelCase_ = MaskaFormerModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase )
UpperCamelCase_ = model(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(_UpperCAmelCase , _UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]:
UpperCamelCase_ = MaskaFormerForUniversalSegmentation(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
def comm_check_on_output(_UpperCAmelCase ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase )
UpperCamelCase_ = model(_UpperCAmelCase )
comm_check_on_output(_UpperCAmelCase )
UpperCamelCase_ = model(
pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase )
comm_check_on_output(_UpperCAmelCase )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
A_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
A_ = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {}
A_ = False
A_ = False
A_ = False
A_ = False
def _UpperCAmelCase ( self ) -> Optional[Any]:
UpperCamelCase_ = MaskaFormerModelTester(self )
UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_UpperCAmelCase )
@unittest.skip(reason='Mask2Former does not use inputs_embeds' )
def _UpperCAmelCase ( self ) -> Any:
pass
@unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' )
def _UpperCAmelCase ( self ) -> Optional[int]:
pass
@unittest.skip(reason='Mask2Former is not a generative model' )
def _UpperCAmelCase ( self ) -> Any:
pass
@unittest.skip(reason='Mask2Former does not use token embeddings' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
pass
@require_torch_multi_gpu
@unittest.skip(
reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def _UpperCAmelCase ( self ) -> int:
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _UpperCAmelCase ( self ) -> str:
pass
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase_ = model_class(_UpperCAmelCase )
UpperCamelCase_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase_ = [*signature.parameters.keys()]
UpperCamelCase_ = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
@slow
def _UpperCAmelCase ( self ) -> Tuple:
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
UpperCamelCase_ = MaskaFormerModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ = (self.model_tester.min_size,) * 2
UpperCamelCase_ = {
'pixel_values': torch.randn((2, 3, *size) , device=_UpperCAmelCase ),
'mask_labels': torch.randn((2, 10, *size) , device=_UpperCAmelCase ),
'class_labels': torch.zeros(2 , 10 , device=_UpperCAmelCase ).long(),
}
UpperCamelCase_ = self.model_tester.get_config()
UpperCamelCase_ = MaskaFormerForUniversalSegmentation(_UpperCAmelCase ).to(_UpperCAmelCase )
UpperCamelCase_ = model(**_UpperCAmelCase )
self.assertTrue(outputs.loss is not None )
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase )
UpperCamelCase_ = model(**_UpperCAmelCase , output_attentions=_UpperCAmelCase )
self.assertTrue(outputs.attentions is not None )
def _UpperCAmelCase ( self ) -> List[Any]:
if not self.model_tester.is_training:
return
UpperCamelCase_ = self.all_model_classes[1]
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs()
UpperCamelCase_ = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.train()
UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ).loss
loss.backward()
def _UpperCAmelCase ( self ) -> int:
UpperCamelCase_ = self.all_model_classes[1]
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs()
UpperCamelCase_ = True
UpperCamelCase_ = True
UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase )
model.train()
UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase )
UpperCamelCase_ = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
UpperCamelCase_ = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
UpperCamelCase_ = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
UpperCamelCase_ = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=_UpperCAmelCase )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
snake_case__ : List[Any] = 1E-4
def _snake_case ():
UpperCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
return image
@require_vision
@slow
class _a ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _UpperCAmelCase ( self ) -> Optional[int]:
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def _UpperCAmelCase ( self ) -> List[str]:
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase )
UpperCamelCase_ = self.default_image_processor
UpperCamelCase_ = prepare_img()
UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
UpperCamelCase_ = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) )
with torch.no_grad():
UpperCamelCase_ = model(**_UpperCAmelCase )
UpperCamelCase_ = torch.tensor(
[[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) )
UpperCamelCase_ = torch.tensor(
[[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) )
UpperCamelCase_ = torch.tensor(
[[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) )
def _UpperCAmelCase ( self ) -> Optional[Any]:
UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval()
UpperCamelCase_ = self.default_image_processor
UpperCamelCase_ = prepare_img()
UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
UpperCamelCase_ = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) )
with torch.no_grad():
UpperCamelCase_ = model(**_UpperCAmelCase )
# masks_queries_logits
UpperCamelCase_ = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
UpperCamelCase_ = [
[-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1],
[-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1],
[-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5],
]
UpperCamelCase_ = torch.tensor(_UpperCAmelCase ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) )
# class_queries_logits
UpperCamelCase_ = outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) )
UpperCamelCase_ = torch.tensor(
[
[1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2],
[0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3],
[0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5],
] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) )
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval()
UpperCamelCase_ = self.default_image_processor
UpperCamelCase_ = image_processor(
[np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , )
UpperCamelCase_ = inputs['pixel_values'].to(_UpperCAmelCase )
UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['mask_labels']]
UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['class_labels']]
with torch.no_grad():
UpperCamelCase_ = model(**_UpperCAmelCase )
self.assertTrue(outputs.loss is not None )
| 23 | 1 |
import os
import time
import pytest
from datasets.utils.filelock import FileLock, Timeout
def _snake_case (__lowercase):
UpperCamelCase_ = FileLock(str(tmpdir / 'foo.lock'))
UpperCamelCase_ = FileLock(str(tmpdir / 'foo.lock'))
UpperCamelCase_ = 0.01
with locka.acquire():
with pytest.raises(__lowercase):
UpperCamelCase_ = time.time()
locka.acquire(__lowercase)
assert time.time() - _start > timeout
def _snake_case (__lowercase):
UpperCamelCase_ = 'a' * 1000 + '.lock'
UpperCamelCase_ = FileLock(str(tmpdir / filename))
assert locka._lock_file.endswith('.lock')
assert not locka._lock_file.endswith(__lowercase)
assert len(os.path.basename(locka._lock_file)) <= 255
UpperCamelCase_ = FileLock(tmpdir / filename)
with locka.acquire():
with pytest.raises(__lowercase):
locka.acquire(0)
| 23 |
import copy
from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
if TYPE_CHECKING:
from ... import PreTrainedTokenizerBase, TensorType
snake_case__ : List[str] = logging.get_logger(__name__)
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = """vision-encoder-decoder"""
A_ = True
def __init__( self , **_UpperCAmelCase ) -> Dict:
super().__init__(**_UpperCAmelCase )
if "encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError(
f"""A configuraton of type {self.model_type} cannot be instantiated because """
f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" )
UpperCamelCase_ = kwargs.pop('encoder' )
UpperCamelCase_ = encoder_config.pop('model_type' )
UpperCamelCase_ = kwargs.pop('decoder' )
UpperCamelCase_ = decoder_config.pop('model_type' )
UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase )
UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase )
UpperCamelCase_ = True
@classmethod
def _UpperCAmelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> PretrainedConfig:
logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' )
UpperCamelCase_ = True
UpperCamelCase_ = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> int:
UpperCamelCase_ = copy.deepcopy(self.__dict__ )
UpperCamelCase_ = self.encoder.to_dict()
UpperCamelCase_ = self.decoder.to_dict()
UpperCamelCase_ = self.__class__.model_type
return output
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = version.parse("""1.11""" )
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def _UpperCAmelCase ( self ) -> float:
return 1e-4
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} )
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
UpperCamelCase_ = OrderedDict()
UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
UpperCamelCase_ = {0: 'batch', 1: 'encoder_sequence'}
return common_inputs
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ) -> Mapping[str, Any]:
import torch
UpperCamelCase_ = OrderedDict()
UpperCamelCase_ = super().generate_dummy_inputs(
_UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase )
UpperCamelCase_ , UpperCamelCase_ = dummy_input['input_ids'].shape
UpperCamelCase_ = (batch, encoder_sequence, self._config.encoder_hidden_size)
UpperCamelCase_ = dummy_input.pop('input_ids' )
UpperCamelCase_ = dummy_input.pop('attention_mask' )
UpperCamelCase_ = torch.zeros(_UpperCAmelCase )
return common_inputs
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
@property
def _UpperCAmelCase ( self ) -> None:
pass
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> OnnxConfig:
return VisionEncoderDecoderEncoderOnnxConfig(_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = "default" ) -> OnnxConfig:
UpperCamelCase_ = encoder_config.hidden_size
return VisionEncoderDecoderDecoderOnnxConfig(_UpperCAmelCase , _UpperCAmelCase )
| 23 | 1 |
from statistics import mean, stdev
def _snake_case (__lowercase , __lowercase = 3):
UpperCamelCase_ = min(__lowercase)
UpperCamelCase_ = max(__lowercase)
# normalize data
return [round((x - x_min) / (x_max - x_min) , __lowercase) for x in data]
def _snake_case (__lowercase , __lowercase = 3):
UpperCamelCase_ = mean(__lowercase)
UpperCamelCase_ = stdev(__lowercase)
# standardize data
return [round((x - mu) / (sigma) , __lowercase) for x in data]
| 23 |
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def _snake_case (__lowercase , __lowercase , __lowercase):
# Initialise PyTorch model
UpperCamelCase_ = MobileBertConfig.from_json_file(__lowercase)
print(f"""Building PyTorch model from configuration: {config}""")
UpperCamelCase_ = MobileBertForPreTraining(__lowercase)
# Load weights from tf checkpoint
UpperCamelCase_ = load_tf_weights_in_mobilebert(__lowercase , __lowercase , __lowercase)
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""")
torch.save(model.state_dict() , __lowercase)
if __name__ == "__main__":
snake_case__ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--mobilebert_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained MobileBERT model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
snake_case__ : Optional[Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 23 | 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.31.0""")
snake_case__ : List[str] = logging.getLogger(__name__)
@dataclass
class _a :
"""simple docstring"""
A_ = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
A_ = field(
default=UpperCAmelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
A_ = field(
default=UpperCAmelCase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
A_ = field(
default=UpperCAmelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
A_ = field(
default=UpperCAmelCase__ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
A_ = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
A_ = field(
default=UpperCAmelCase__ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
@dataclass
class _a :
"""simple docstring"""
A_ = field(default=UpperCAmelCase__ , metadata={"""help""": """The input training data file (a text file)."""} )
A_ = field(
default=UpperCAmelCase__ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , )
A_ = field(
default=UpperCAmelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
A_ = field(
default=UpperCAmelCase__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , )
A_ = field(
default=UpperCAmelCase__ , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. If passed, sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
A_ = field(
default=UpperCAmelCase__ , metadata={
"""help""": (
"""Whether to pad all samples to the maximum sentence length. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch. More """
"""efficient on GPU but very bad for TPU."""
)
} , )
A_ = field(
default=UpperCAmelCase__ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
A_ = field(
default=UpperCAmelCase__ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} , )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
if self.train_file is not None:
UpperCamelCase_ = self.train_file.split('.' )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
UpperCamelCase_ = self.validation_file.split('.' )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class _a :
"""simple docstring"""
A_ = 42
A_ = True
A_ = None
A_ = None
def __call__( self , _UpperCAmelCase ) -> List[Any]:
UpperCamelCase_ = 'label' if 'label' in features[0].keys() else 'labels'
UpperCamelCase_ = [feature.pop(_UpperCAmelCase ) for feature in features]
UpperCamelCase_ = len(_UpperCAmelCase )
UpperCamelCase_ = len(features[0]['input_ids'] )
UpperCamelCase_ = [
[{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features
]
UpperCamelCase_ = list(chain(*_UpperCAmelCase ) )
UpperCamelCase_ = self.tokenizer.pad(
_UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , )
# Un-flatten
UpperCamelCase_ = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()}
# Add back labels
UpperCamelCase_ = torch.tensor(_UpperCAmelCase , dtype=torch.intaa )
return batch
def _snake_case ():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith('.json'):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_swag' , __lowercase , __lowercase)
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout)] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
UpperCamelCase_ = training_args.get_process_log_level()
logger.setLevel(__lowercase)
datasets.utils.logging.set_verbosity(__lowercase)
transformers.utils.logging.set_verbosity(__lowercase)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}""")
logger.info(f"""Training/evaluation parameters {training_args}""")
# Detecting last checkpoint.
UpperCamelCase_ = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
UpperCamelCase_ = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'Use --overwrite_output_dir to overcome.')
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.')
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
UpperCamelCase_ = {}
if data_args.train_file is not None:
UpperCamelCase_ = data_args.train_file
if data_args.validation_file is not None:
UpperCamelCase_ = data_args.validation_file
UpperCamelCase_ = data_args.train_file.split('.')[-1]
UpperCamelCase_ = load_dataset(
__lowercase , data_files=__lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
UpperCamelCase_ = load_dataset(
'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCamelCase_ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
UpperCamelCase_ = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
UpperCamelCase_ = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
UpperCamelCase_ = [f"""ending{i}""" for i in range(4)]
UpperCamelCase_ = 'sent1'
UpperCamelCase_ = 'sent2'
if data_args.max_seq_length is None:
UpperCamelCase_ = tokenizer.model_max_length
if max_seq_length > 1024:
logger.warning(
'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value'
' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can'
' override this default with `--block_size xxx`.')
UpperCamelCase_ = 1024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""")
UpperCamelCase_ = min(data_args.max_seq_length , tokenizer.model_max_length)
# Preprocessing the datasets.
def preprocess_function(__lowercase):
UpperCamelCase_ = [[context] * 4 for context in examples[context_name]]
UpperCamelCase_ = examples[question_header_name]
UpperCamelCase_ = [
[f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__lowercase)
]
# Flatten out
UpperCamelCase_ = list(chain(*__lowercase))
UpperCamelCase_ = list(chain(*__lowercase))
# Tokenize
UpperCamelCase_ = tokenizer(
__lowercase , __lowercase , truncation=__lowercase , max_length=__lowercase , padding='max_length' if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(__lowercase) , 4)] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('--do_train requires a train dataset')
UpperCamelCase_ = raw_datasets['train']
if data_args.max_train_samples is not None:
UpperCamelCase_ = min(len(__lowercase) , data_args.max_train_samples)
UpperCamelCase_ = train_dataset.select(range(__lowercase))
with training_args.main_process_first(desc='train dataset map pre-processing'):
UpperCamelCase_ = train_dataset.map(
__lowercase , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError('--do_eval requires a validation dataset')
UpperCamelCase_ = raw_datasets['validation']
if data_args.max_eval_samples is not None:
UpperCamelCase_ = min(len(__lowercase) , data_args.max_eval_samples)
UpperCamelCase_ = eval_dataset.select(range(__lowercase))
with training_args.main_process_first(desc='validation dataset map pre-processing'):
UpperCamelCase_ = eval_dataset.map(
__lowercase , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
UpperCamelCase_ = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=__lowercase , pad_to_multiple_of=8 if training_args.fpaa else None)
)
# Metric
def compute_metrics(__lowercase):
UpperCamelCase_ , UpperCamelCase_ = eval_predictions
UpperCamelCase_ = np.argmax(__lowercase , axis=1)
return {"accuracy": (preds == label_ids).astype(np.floataa).mean().item()}
# Initialize our Trainer
UpperCamelCase_ = Trainer(
model=__lowercase , args=__lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , compute_metrics=__lowercase , )
# Training
if training_args.do_train:
UpperCamelCase_ = None
if training_args.resume_from_checkpoint is not None:
UpperCamelCase_ = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
UpperCamelCase_ = last_checkpoint
UpperCamelCase_ = trainer.train(resume_from_checkpoint=__lowercase)
trainer.save_model() # Saves the tokenizer too for easy upload
UpperCamelCase_ = train_result.metrics
UpperCamelCase_ = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowercase)
)
UpperCamelCase_ = min(__lowercase , len(__lowercase))
trainer.log_metrics('train' , __lowercase)
trainer.save_metrics('train' , __lowercase)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***')
UpperCamelCase_ = trainer.evaluate()
UpperCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__lowercase)
UpperCamelCase_ = min(__lowercase , len(__lowercase))
trainer.log_metrics('eval' , __lowercase)
trainer.save_metrics('eval' , __lowercase)
UpperCamelCase_ = {
'finetuned_from': model_args.model_name_or_path,
'tasks': 'multiple-choice',
'dataset_tags': 'swag',
'dataset_args': 'regular',
'dataset': 'SWAG',
'language': 'en',
}
if training_args.push_to_hub:
trainer.push_to_hub(**__lowercase)
else:
trainer.create_model_card(**__lowercase)
def _snake_case (__lowercase):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 23 |
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class _a ( unittest.TestCase ):
"""simple docstring"""
A_ = MODEL_FOR_MASKED_LM_MAPPING
A_ = TF_MODEL_FOR_MASKED_LM_MAPPING
def _UpperCAmelCase ( self ) -> List[str]:
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' )
UpperCamelCase_ = unmasker('My name is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{'sequence': 'My name is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped'},
{'sequence': 'My name is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser'},
] , )
UpperCamelCase_ = unmasker('The largest city in France is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{
'sequence': 'The largest city in France is grouped',
'score': 2.1e-05,
'token': 38015,
'token_str': ' grouped',
},
{
'sequence': 'The largest city in France is accuser',
'score': 2.1e-05,
'token': 25506,
'token_str': ' accuser',
},
] , )
UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'},
{'sequence': 'My name is Patrick', 'score': 2e-05, 'token': 3499, 'token_str': ' Patrick'},
{'sequence': 'My name is Te', 'score': 1.9e-05, 'token': 2941, 'token_str': ' Te'},
] , )
@require_torch
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' )
UpperCamelCase_ = unmasker('My name is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{'sequence': 'My name is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul'},
{'sequence': 'My name isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'},
] , )
UpperCamelCase_ = unmasker('The largest city in France is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{
'sequence': 'The largest city in France is Maul',
'score': 2.2e-05,
'token': 35676,
'token_str': ' Maul',
},
{'sequence': 'The largest city in France isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'},
] , )
UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{'sequence': 'My name is Patrick', 'score': 2.1e-05, 'token': 3499, 'token_str': ' Patrick'},
{'sequence': 'My name is Te', 'score': 2e-05, 'token': 2941, 'token_str': ' Te'},
{'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'},
] , )
UpperCamelCase_ = unmasker('My name is <mask> <mask>' , top_k=2 )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
[
{
'score': 2.2e-05,
'token': 35676,
'token_str': ' Maul',
'sequence': '<s>My name is Maul<mask></s>',
},
{'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'},
],
[
{
'score': 2.2e-05,
'token': 35676,
'token_str': ' Maul',
'sequence': '<s>My name is<mask> Maul</s>',
},
{'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'},
],
] , )
@require_torch_gpu
def _UpperCAmelCase ( self ) -> Optional[Any]:
UpperCamelCase_ = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' )
# convert model to fp16
pipe.model.half()
UpperCamelCase_ = pipe('Paris is the [MASK] of France.' )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
@slow
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' )
self.run_large_test(_UpperCAmelCase )
@slow
@require_tf
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' )
self.run_large_test(_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple:
UpperCamelCase_ = unmasker('My name is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [
{'sequence': 'My name is John', 'score': 0.0_0_8, 'token': 610, 'token_str': ' John'},
{'sequence': 'My name is Chris', 'score': 0.0_0_7, 'token': 1573, 'token_str': ' Chris'},
] , )
UpperCamelCase_ = unmasker('The largest city in France is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [
{
'sequence': 'The largest city in France is Paris',
'score': 0.2_5_1,
'token': 2201,
'token_str': ' Paris',
},
{
'sequence': 'The largest city in France is Lyon',
'score': 0.2_1_4,
'token': 12790,
'token_str': ' Lyon',
},
] , )
UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [
{'sequence': 'My name is Patrick', 'score': 0.0_0_5, 'token': 3499, 'token_str': ' Patrick'},
{'sequence': 'My name is Clara', 'score': 0.0_0_0, 'token': 13606, 'token_str': ' Clara'},
{'sequence': 'My name is Te', 'score': 0.0_0_0, 'token': 2941, 'token_str': ' Te'},
] , )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' )
UpperCamelCase_ = None
UpperCamelCase_ = None
self.run_pipeline_test(_UpperCAmelCase , [] )
@require_tf
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' )
UpperCamelCase_ = None
UpperCamelCase_ = None
self.run_pipeline_test(_UpperCAmelCase , [] )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]:
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' )
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = [
f"""This is another {tokenizer.mask_token} test""",
]
return fill_masker, examples
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]:
UpperCamelCase_ = fill_masker.tokenizer
UpperCamelCase_ = fill_masker.model
UpperCamelCase_ = fill_masker(
f"""This is a {tokenizer.mask_token}""" , )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}"""] )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] )
self.assertEqual(
_UpperCAmelCase , [
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
] , )
with self.assertRaises(_UpperCAmelCase ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(_UpperCAmelCase ):
fill_masker('This is' )
self.run_test_top_k(_UpperCAmelCase , _UpperCAmelCase )
self.run_test_targets(_UpperCAmelCase , _UpperCAmelCase )
self.run_test_top_k_targets(_UpperCAmelCase , _UpperCAmelCase )
self.fill_mask_with_duplicate_targets_and_top_k(_UpperCAmelCase , _UpperCAmelCase )
self.fill_mask_with_multiple_masks(_UpperCAmelCase , _UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]:
UpperCamelCase_ = tokenizer.get_vocab()
UpperCamelCase_ = sorted(vocab.keys() )[:2]
# Pipeline argument
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , targets=_UpperCAmelCase )
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = {vocab[el] for el in targets}
self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase )
UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) )
# Call argument
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = {vocab[el] for el in targets}
self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase )
UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) )
# Score equivalence
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase )
UpperCamelCase_ = [top_mask['token_str'] for top_mask in outputs]
UpperCamelCase_ = [top_mask['score'] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(_UpperCAmelCase ) == set(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase )
UpperCamelCase_ = [top_mask['score'] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) )
# Raises with invalid
with self.assertRaises(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[''] )
with self.assertRaises(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets='' )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple:
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , top_k=2 )
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]:
UpperCamelCase_ = tokenizer.get_vocab()
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
# top_k=2, ntargets=3
UpperCamelCase_ = sorted(vocab.keys() )[:3]
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=_UpperCAmelCase )
# If we use the most probably targets, and filter differently, we should still
# have the same results
UpperCamelCase_ = [el['token_str'] for el in sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(_UpperCAmelCase ).issubset(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=_UpperCAmelCase )
# They should yield exactly the same result
self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]:
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = tokenizer.get_vocab()
# String duplicates + id duplicates
UpperCamelCase_ = sorted(vocab.keys() )[:3]
UpperCamelCase_ = [targets[0], targets[1], targets[0], targets[2], targets[1]]
UpperCamelCase_ = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=_UpperCAmelCase , top_k=10 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(_UpperCAmelCase ) , 3 )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]:
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = fill_masker(
f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 )
self.assertEqual(
_UpperCAmelCase , [
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
] , )
| 23 | 1 |
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase):
UpperCamelCase_ , UpperCamelCase_ = len(__lowercase), len(grid[0])
if (
min(__lowercase , __lowercase) < 0
or row == row_length
or col == col_length
or (row, col) in visit
or grid[row][col] == 1
):
return 0
if row == row_length - 1 and col == col_length - 1:
return 1
visit.add((row, col))
UpperCamelCase_ = 0
count += depth_first_search(__lowercase , row + 1 , __lowercase , __lowercase)
count += depth_first_search(__lowercase , row - 1 , __lowercase , __lowercase)
count += depth_first_search(__lowercase , __lowercase , col + 1 , __lowercase)
count += depth_first_search(__lowercase , __lowercase , col - 1 , __lowercase)
visit.remove((row, col))
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
A_ = StableDiffusionSAGPipeline
A_ = TEXT_TO_IMAGE_PARAMS
A_ = TEXT_TO_IMAGE_BATCH_PARAMS
A_ = TEXT_TO_IMAGE_IMAGE_PARAMS
A_ = TEXT_TO_IMAGE_IMAGE_PARAMS
A_ = False
def _UpperCAmelCase ( self ) -> Optional[Any]:
torch.manual_seed(0 )
UpperCamelCase_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
UpperCamelCase_ = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , )
torch.manual_seed(0 )
UpperCamelCase_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCamelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
UpperCamelCase_ = CLIPTextModel(_UpperCAmelCase )
UpperCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
UpperCamelCase_ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ) -> List[Any]:
if str(_UpperCAmelCase ).startswith('mps' ):
UpperCamelCase_ = torch.manual_seed(_UpperCAmelCase )
else:
UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
UpperCamelCase_ = {
'prompt': '.',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 1.0,
'sag_scale': 1.0,
'output_type': 'numpy',
}
return inputs
def _UpperCAmelCase ( self ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class _a ( unittest.TestCase ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' )
UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase )
sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCamelCase_ = '.'
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = sag_pipe(
[prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' )
UpperCamelCase_ = output.images
UpperCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase_ = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' )
UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase )
sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCamelCase_ = '.'
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = sag_pipe(
[prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' )
UpperCamelCase_ = output.images
UpperCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase_ = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' )
UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase )
sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCamelCase_ = '.'
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = sag_pipe(
[prompt] , width=768 , height=512 , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , )
UpperCamelCase_ = output.images
assert image.shape == (1, 512, 768, 3)
| 23 | 1 |
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def _snake_case (__lowercase , __lowercase):
return math.sqrt(sum(pow(a - b , 2) for a, b in zip(__lowercase , __lowercase)))
def _snake_case (__lowercase , __lowercase):
if dataset.ndim != value_array.ndim:
UpperCamelCase_ = (
'Wrong input data\'s dimensions... '
f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}"""
)
raise ValueError(__lowercase)
try:
if dataset.shape[1] != value_array.shape[1]:
UpperCamelCase_ = (
'Wrong input data\'s shape... '
f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}"""
)
raise ValueError(__lowercase)
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError('Wrong shape')
if dataset.dtype != value_array.dtype:
UpperCamelCase_ = (
'Input data have different datatype... '
f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}"""
)
raise TypeError(__lowercase)
UpperCamelCase_ = []
for value in value_array:
UpperCamelCase_ = euclidean(__lowercase , dataset[0])
UpperCamelCase_ = dataset[0].tolist()
for dataset_value in dataset[1:]:
UpperCamelCase_ = euclidean(__lowercase , __lowercase)
if dist > temp_dist:
UpperCamelCase_ = temp_dist
UpperCamelCase_ = dataset_value.tolist()
answer.append([vector, dist])
return answer
def _snake_case (__lowercase , __lowercase):
return np.dot(__lowercase , __lowercase) / (norm(__lowercase) * norm(__lowercase))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 |
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
snake_case__ : List[str] = TypeVar("""T""")
def _snake_case (__lowercase):
return (position - 1) // 2
def _snake_case (__lowercase):
return (2 * position) + 1
def _snake_case (__lowercase):
return (2 * position) + 2
class _a ( Generic[T] ):
"""simple docstring"""
def __init__( self ) -> None:
UpperCamelCase_ = []
UpperCamelCase_ = {}
UpperCamelCase_ = 0
def __len__( self ) -> int:
return self.elements
def __repr__( self ) -> str:
return str(self.heap )
def _UpperCAmelCase ( self ) -> bool:
# Check if the priority queue is empty
return self.elements == 0
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None:
# Add an element with given priority to the queue
self.heap.append((elem, weight) )
UpperCamelCase_ = self.elements
self.elements += 1
self._bubble_up(_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> T:
# Remove and return the element with lowest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
UpperCamelCase_ , UpperCamelCase_ = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
UpperCamelCase_ , UpperCamelCase_ = self.heap[0]
self._bubble_down(_UpperCAmelCase )
return elem
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None:
# Update the weight of the given key
UpperCamelCase_ = self.position_map[elem]
UpperCamelCase_ = (elem, weight)
if position > 0:
UpperCamelCase_ = get_parent_position(_UpperCAmelCase )
UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(_UpperCAmelCase )
else:
self._bubble_down(_UpperCAmelCase )
else:
self._bubble_down(_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None:
# Place a node at the proper position (upward movement) [to be used internally
# only]
UpperCamelCase_ = self.position_map[elem]
if curr_pos == 0:
return None
UpperCamelCase_ = get_parent_position(_UpperCAmelCase )
UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos]
UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase )
return self._bubble_up(_UpperCAmelCase )
return None
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None:
# Place a node at the proper position (downward movement) [to be used
# internally only]
UpperCamelCase_ = self.position_map[elem]
UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos]
UpperCamelCase_ = get_child_left_position(_UpperCAmelCase )
UpperCamelCase_ = get_child_right_position(_UpperCAmelCase )
if child_left_position < self.elements and child_right_position < self.elements:
UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position]
UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase )
return self._bubble_down(_UpperCAmelCase )
if child_left_position < self.elements:
UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase )
return self._bubble_down(_UpperCAmelCase )
else:
return None
if child_right_position < self.elements:
UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase )
return self._bubble_down(_UpperCAmelCase )
return None
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None:
# Swap the nodes at the given positions
UpperCamelCase_ = self.heap[nodea_pos][0]
UpperCamelCase_ = self.heap[nodea_pos][0]
UpperCamelCase_ , UpperCamelCase_ = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
UpperCamelCase_ = nodea_pos
UpperCamelCase_ = nodea_pos
class _a ( Generic[T] ):
"""simple docstring"""
def __init__( self ) -> None:
UpperCamelCase_ = {}
UpperCamelCase_ = 0
def __repr__( self ) -> str:
return str(self.connections )
def __len__( self ) -> int:
return self.nodes
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None:
# Add a node in the graph if it is not in the graph
if node not in self.connections:
UpperCamelCase_ = {}
self.nodes += 1
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None:
# Add an edge between 2 nodes in the graph
self.add_node(_UpperCAmelCase )
self.add_node(_UpperCAmelCase )
UpperCamelCase_ = weight
UpperCamelCase_ = weight
def _snake_case (__lowercase , ):
UpperCamelCase_ = {node: maxsize for node in graph.connections}
UpperCamelCase_ = {node: None for node in graph.connections}
UpperCamelCase_ = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(__lowercase , __lowercase)
if priority_queue.is_empty():
return dist, parent
# initialization
UpperCamelCase_ = priority_queue.extract_min()
UpperCamelCase_ = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
UpperCamelCase_ = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(__lowercase , dist[neighbour])
UpperCamelCase_ = node
# running prim's algorithm
while not priority_queue.is_empty():
UpperCamelCase_ = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
UpperCamelCase_ = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(__lowercase , dist[neighbour])
UpperCamelCase_ = node
return dist, parent
| 23 | 1 |
import logging
import os
from dataclasses import dataclass
from typing import List, Optional, Union
import tqdm
from filelock import FileLock
from transformers import (
BartTokenizer,
BartTokenizerFast,
DataProcessor,
PreTrainedTokenizer,
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
is_tf_available,
is_torch_available,
)
snake_case__ : Optional[Any] = logging.getLogger(__name__)
@dataclass(frozen=UpperCAmelCase__ )
class _a :
"""simple docstring"""
A_ = 42
A_ = 42
A_ = None
A_ = None
A_ = None
@dataclass(frozen=UpperCAmelCase__ )
class _a :
"""simple docstring"""
A_ = 42
A_ = None
A_ = None
A_ = None
A_ = None
if is_torch_available():
import torch
from torch.utils.data import Dataset
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = 42
def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase=False , _UpperCAmelCase = False , ) -> Optional[Any]:
UpperCamelCase_ = hans_processors[task]()
UpperCamelCase_ = os.path.join(
_UpperCAmelCase , 'cached_{}_{}_{}_{}'.format(
'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(_UpperCAmelCase ) , _UpperCAmelCase , ) , )
UpperCamelCase_ = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
UpperCamelCase_ , UpperCamelCase_ = label_list[2], label_list[1]
UpperCamelCase_ = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
UpperCamelCase_ = cached_features_file + '.lock'
with FileLock(_UpperCAmelCase ):
if os.path.exists(_UpperCAmelCase ) and not overwrite_cache:
logger.info(f"""Loading features from cached file {cached_features_file}""" )
UpperCamelCase_ = torch.load(_UpperCAmelCase )
else:
logger.info(f"""Creating features from dataset file at {data_dir}""" )
UpperCamelCase_ = (
processor.get_dev_examples(_UpperCAmelCase ) if evaluate else processor.get_train_examples(_UpperCAmelCase )
)
logger.info('Training examples: %s' , len(_UpperCAmelCase ) )
UpperCamelCase_ = hans_convert_examples_to_features(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
logger.info('Saving features into cached file %s' , _UpperCAmelCase )
torch.save(self.features , _UpperCAmelCase )
def __len__( self ) -> int:
return len(self.features )
def __getitem__( self , _UpperCAmelCase ) -> InputFeatures:
return self.features[i]
def _UpperCAmelCase ( self ) -> List[Any]:
return self.label_list
if is_tf_available():
import tensorflow as tf
class _a :
"""simple docstring"""
A_ = 42
def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 128 , _UpperCAmelCase=False , _UpperCAmelCase = False , ) -> Dict:
UpperCamelCase_ = hans_processors[task]()
UpperCamelCase_ = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
UpperCamelCase_ , UpperCamelCase_ = label_list[2], label_list[1]
UpperCamelCase_ = label_list
UpperCamelCase_ = processor.get_dev_examples(_UpperCAmelCase ) if evaluate else processor.get_train_examples(_UpperCAmelCase )
UpperCamelCase_ = hans_convert_examples_to_features(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def gen():
for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ):
if ex_index % 10000 == 0:
logger.info('Writing example %d of %d' % (ex_index, len(_UpperCAmelCase )) )
yield (
{
"example_id": 0,
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label,
)
UpperCamelCase_ = tf.data.Dataset.from_generator(
_UpperCAmelCase , (
{
'example_id': tf.intaa,
'input_ids': tf.intaa,
'attention_mask': tf.intaa,
'token_type_ids': tf.intaa,
},
tf.intaa,
) , (
{
'example_id': tf.TensorShape([] ),
'input_ids': tf.TensorShape([None, None] ),
'attention_mask': tf.TensorShape([None, None] ),
'token_type_ids': tf.TensorShape([None, None] ),
},
tf.TensorShape([] ),
) , )
def _UpperCAmelCase ( self ) -> List[Any]:
return self.dataset
def __len__( self ) -> str:
return len(self.features )
def __getitem__( self , _UpperCAmelCase ) -> InputFeatures:
return self.features[i]
def _UpperCAmelCase ( self ) -> List[str]:
return self.label_list
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Optional[Any]:
return self._create_examples(self._read_tsv(os.path.join(_UpperCAmelCase , 'heuristics_train_set.txt' ) ) , 'train' )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[str]:
return self._create_examples(self._read_tsv(os.path.join(_UpperCAmelCase , 'heuristics_evaluation_set.txt' ) ) , 'dev' )
def _UpperCAmelCase ( self ) -> List[str]:
return ["contradiction", "entailment", "neutral"]
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict:
UpperCamelCase_ = []
for i, line in enumerate(_UpperCAmelCase ):
if i == 0:
continue
UpperCamelCase_ = '%s-%s' % (set_type, line[0])
UpperCamelCase_ = line[5]
UpperCamelCase_ = line[6]
UpperCamelCase_ = line[7][2:] if line[7].startswith('ex' ) else line[7]
UpperCamelCase_ = line[0]
examples.append(InputExample(guid=_UpperCAmelCase , text_a=_UpperCAmelCase , text_b=_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) )
return examples
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , ):
UpperCamelCase_ = {label: i for i, label in enumerate(__lowercase)}
UpperCamelCase_ = []
for ex_index, example in tqdm.tqdm(enumerate(__lowercase) , desc='convert examples to features'):
if ex_index % 10000 == 0:
logger.info('Writing example %d' % (ex_index))
UpperCamelCase_ = tokenizer(
example.text_a , example.text_b , add_special_tokens=__lowercase , max_length=__lowercase , padding='max_length' , truncation=__lowercase , return_overflowing_tokens=__lowercase , )
UpperCamelCase_ = label_map[example.label] if example.label in label_map else 0
UpperCamelCase_ = int(example.pairID)
features.append(InputFeatures(**__lowercase , label=__lowercase , pairID=__lowercase))
for i, example in enumerate(examples[:5]):
logger.info('*** Example ***')
logger.info(f"""guid: {example}""")
logger.info(f"""features: {features[i]}""")
return features
snake_case__ : str = {
"""hans""": 3,
}
snake_case__ : Optional[Any] = {
"""hans""": HansProcessor,
}
| 23 |
from __future__ import annotations
import sys
from collections import deque
from typing import Generic, TypeVar
snake_case__ : Dict = TypeVar("""T""")
class _a ( Generic[T] ):
"""simple docstring"""
A_ = 42 # Cache store of keys
A_ = 42 # References of the keys in cache
A_ = 10 # Maximum capacity of cache
def __init__( self , _UpperCAmelCase ) -> None:
UpperCamelCase_ = deque()
UpperCamelCase_ = set()
if not n:
UpperCamelCase_ = sys.maxsize
elif n < 0:
raise ValueError('n should be an integer greater than 0.' )
else:
UpperCamelCase_ = n
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None:
if x not in self.key_reference:
if len(self.dq_store ) == LRUCache._MAX_CAPACITY:
UpperCamelCase_ = self.dq_store.pop()
self.key_reference.remove(_UpperCAmelCase )
else:
self.dq_store.remove(_UpperCAmelCase )
self.dq_store.appendleft(_UpperCAmelCase )
self.key_reference.add(_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> None:
for k in self.dq_store:
print(_UpperCAmelCase )
def __repr__( self ) -> str:
return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}"""
if __name__ == "__main__":
import doctest
doctest.testmod()
snake_case__ : LRUCache[str | int] = LRUCache(4)
lru_cache.refer("""A""")
lru_cache.refer(2)
lru_cache.refer(3)
lru_cache.refer("""A""")
lru_cache.refer(4)
lru_cache.refer(5)
lru_cache.display()
print(lru_cache)
assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
| 23 | 1 |
import collections
import os
from typing import List, Optional, Tuple
from transformers.utils import is_jieba_available, requires_backends
if is_jieba_available():
import jieba
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
snake_case__ : Any = logging.get_logger(__name__)
snake_case__ : Any = {"""vocab_file""": """vocab.txt"""}
snake_case__ : int = {
"""vocab_file""": {
"""openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""",
},
}
snake_case__ : int = {
"""openbmb/cpm-ant-10b""": 1_0_2_4,
}
def _snake_case (__lowercase):
UpperCamelCase_ = collections.OrderedDict()
with open(__lowercase , 'r' , encoding='utf-8') as reader:
UpperCamelCase_ = reader.readlines()
for index, token in enumerate(__lowercase):
UpperCamelCase_ = token.rstrip('\n')
UpperCamelCase_ = index
return vocab
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase="<unk>" , _UpperCAmelCase=200 ) -> Any:
UpperCamelCase_ = vocab
UpperCamelCase_ = unk_token
UpperCamelCase_ = max_input_chars_per_word
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple:
UpperCamelCase_ = list(_UpperCAmelCase )
if len(_UpperCAmelCase ) > self.max_input_chars_per_word:
return [self.unk_token]
UpperCamelCase_ = 0
UpperCamelCase_ = []
while start < len(_UpperCAmelCase ):
UpperCamelCase_ = len(_UpperCAmelCase )
UpperCamelCase_ = None
while start < end:
UpperCamelCase_ = ''.join(chars[start:end] )
if substr in self.vocab:
UpperCamelCase_ = substr
break
end -= 1
if cur_substr is None:
sub_tokens.append(self.unk_token )
start += 1
else:
sub_tokens.append(_UpperCAmelCase )
UpperCamelCase_ = end
return sub_tokens
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = VOCAB_FILES_NAMES
A_ = PRETRAINED_VOCAB_FILES_MAP
A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ = ["""input_ids""", """attention_mask"""]
A_ = False
def __init__( self , _UpperCAmelCase , _UpperCAmelCase="<d>" , _UpperCAmelCase="</d>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="</n>" , _UpperCAmelCase="</_>" , _UpperCAmelCase="left" , **_UpperCAmelCase , ) -> List[Any]:
requires_backends(self , ['jieba'] )
super().__init__(
bod_token=_UpperCAmelCase , eod_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , line_token=_UpperCAmelCase , space_token=_UpperCAmelCase , padding_side=_UpperCAmelCase , **_UpperCAmelCase , )
UpperCamelCase_ = bod_token
UpperCamelCase_ = eod_token
UpperCamelCase_ = load_vocab(_UpperCAmelCase )
UpperCamelCase_ = self.encoder[space_token]
UpperCamelCase_ = self.encoder[line_token]
del self.encoder[space_token]
del self.encoder[line_token]
UpperCamelCase_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _UpperCAmelCase : x[1] ) )
UpperCamelCase_ = {v: k for k, v in self.encoder.items()}
UpperCamelCase_ = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token )
@property
def _UpperCAmelCase ( self ) -> Optional[Any]:
return self.encoder[self.bod_token]
@property
def _UpperCAmelCase ( self ) -> List[Any]:
return self.encoder[self.eod_token]
@property
def _UpperCAmelCase ( self ) -> Any:
return self.encoder["\n"]
@property
def _UpperCAmelCase ( self ) -> int:
return len(self.encoder )
def _UpperCAmelCase ( self ) -> str:
return dict(self.encoder , **self.added_tokens_encoder )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Optional[int]:
UpperCamelCase_ = []
for x in jieba.cut(_UpperCAmelCase , cut_all=_UpperCAmelCase ):
output_tokens.extend(self.wordpiece_tokenizer.tokenize(_UpperCAmelCase ) )
return output_tokens
def _UpperCAmelCase ( self , _UpperCAmelCase , **_UpperCAmelCase ) -> Optional[int]:
UpperCamelCase_ = [i for i in token_ids if i >= 0]
UpperCamelCase_ = [
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
]
return super()._decode(_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> str:
return token in self.encoder
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> str:
return "".join(_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> int:
return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Optional[Any]:
return self.decoder.get(_UpperCAmelCase , self.unk_token )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> Tuple[str]:
if os.path.isdir(_UpperCAmelCase ):
UpperCamelCase_ = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
else:
UpperCamelCase_ = (filename_prefix + '-' if filename_prefix else '') + save_directory
UpperCamelCase_ = 0
if " " in self.encoder:
UpperCamelCase_ = self.encoder[' ']
del self.encoder[" "]
if "\n" in self.encoder:
UpperCamelCase_ = self.encoder['\n']
del self.encoder["\n"]
UpperCamelCase_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _UpperCAmelCase : x[1] ) )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as writer:
for token, token_index in self.encoder.items():
if index != token_index:
logger.warning(
f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
' Please check that the vocabulary is not corrupted!' )
UpperCamelCase_ = token_index
writer.write(token + '\n' )
index += 1
return (vocab_file,)
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> List[int]:
if token_ids_a is None:
return [self.bos_token_id] + token_ids_a
return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is not None:
return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase ))
return [1] + ([0] * len(_UpperCAmelCase ))
| 23 |
import numpy as np
def _snake_case (__lowercase):
return 1 / (1 + np.exp(-vector))
def _snake_case (__lowercase):
return vector * sigmoid(__lowercase)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 | 1 |
def _snake_case (__lowercase):
UpperCamelCase_ = int(__lowercase)
if decimal in (0, 1): # Exit cases for the recursion
return str(__lowercase)
UpperCamelCase_ , UpperCamelCase_ = divmod(__lowercase , 2)
return binary_recursive(__lowercase) + str(__lowercase)
def _snake_case (__lowercase):
UpperCamelCase_ = str(__lowercase).strip()
if not number:
raise ValueError('No input value was provided')
UpperCamelCase_ = '-' if number.startswith('-') else ''
UpperCamelCase_ = number.lstrip('-')
if not number.isnumeric():
raise ValueError('Input value is not an integer')
return f"""{negative}0b{binary_recursive(int(__lowercase))}"""
if __name__ == "__main__":
from doctest import testmod
testmod()
| 23 |
import math
from datetime import datetime, timedelta
def _snake_case (__lowercase):
UpperCamelCase_ = year % 19
UpperCamelCase_ = year % 4
UpperCamelCase_ = year % 7
UpperCamelCase_ = math.floor(year / 100)
UpperCamelCase_ = math.floor((13 + 8 * leap_day_inhibits) / 25)
UpperCamelCase_ = leap_day_inhibits / 4
UpperCamelCase_ = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
UpperCamelCase_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
UpperCamelCase_ = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
UpperCamelCase_ = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(__lowercase , 4 , 19)
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(__lowercase , 4 , 18)
else:
return datetime(__lowercase , 3 , 22) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday))
if __name__ == "__main__":
for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3):
snake_case__ : Dict = """will be""" if year > datetime.now().year else """was"""
print(f'Easter in {year} {tense} {gauss_easter(year)}')
| 23 | 1 |
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def _snake_case ():
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT):
with pytest.raises(__lowercase):
requests.request('GET' , 'https://huggingface.co')
with pytest.raises(requests.exceptions.ConnectTimeout):
requests.request('GET' , 'https://huggingface.co' , timeout=1.0)
@pytest.mark.integration
def _snake_case ():
with offline(OfflineSimulationMode.CONNECTION_FAILS):
with pytest.raises(requests.exceptions.ConnectionError):
requests.request('GET' , 'https://huggingface.co')
def _snake_case ():
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1):
with pytest.raises(__lowercase):
http_head('https://huggingface.co')
| 23 |
import requests
def _snake_case (__lowercase , __lowercase):
UpperCamelCase_ = {'Content-Type': 'application/json'}
UpperCamelCase_ = requests.post(__lowercase , json={'text': message_body} , headers=__lowercase)
if response.status_code != 200:
UpperCamelCase_ = (
'Request to slack returned an error '
f"""{response.status_code}, the response is:\n{response.text}"""
)
raise ValueError(__lowercase)
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
| 23 | 1 |
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, PegasusConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
@require_tf
class _a :
"""simple docstring"""
A_ = PegasusConfig
A_ = {}
A_ = """gelu"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=40 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ) -> Tuple:
UpperCamelCase_ = parent
UpperCamelCase_ = batch_size
UpperCamelCase_ = seq_length
UpperCamelCase_ = is_training
UpperCamelCase_ = use_labels
UpperCamelCase_ = vocab_size
UpperCamelCase_ = hidden_size
UpperCamelCase_ = num_hidden_layers
UpperCamelCase_ = num_attention_heads
UpperCamelCase_ = intermediate_size
UpperCamelCase_ = hidden_dropout_prob
UpperCamelCase_ = attention_probs_dropout_prob
UpperCamelCase_ = max_position_embeddings
UpperCamelCase_ = eos_token_id
UpperCamelCase_ = pad_token_id
UpperCamelCase_ = bos_token_id
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase_ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCamelCase_ = prepare_pegasus_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return config, inputs_dict
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]:
UpperCamelCase_ = TFPegasusModel(config=_UpperCAmelCase ).get_decoder()
UpperCamelCase_ = inputs_dict['input_ids']
UpperCamelCase_ = input_ids[:1, :]
UpperCamelCase_ = inputs_dict['attention_mask'][:1, :]
UpperCamelCase_ = inputs_dict['head_mask']
UpperCamelCase_ = 1
# first forward pass
UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase )
UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCamelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCamelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCamelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0]
UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCamelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCamelCase_ = output_from_no_past[:, -3:, random_slice_idx]
UpperCamelCase_ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , rtol=1e-3 )
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ):
if attention_mask is None:
UpperCamelCase_ = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id) , tf.inta)
if decoder_attention_mask is None:
UpperCamelCase_ = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta),
] , axis=-1 , )
if head_mask is None:
UpperCamelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads))
if decoder_head_mask is None:
UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads))
if cross_attn_head_mask is None:
UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads))
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
A_ = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
A_ = (TFPegasusForConditionalGeneration,) if is_tf_available() else ()
A_ = (
{
"""conversational""": TFPegasusForConditionalGeneration,
"""feature-extraction""": TFPegasusModel,
"""summarization""": TFPegasusForConditionalGeneration,
"""text2text-generation""": TFPegasusForConditionalGeneration,
"""translation""": TFPegasusForConditionalGeneration,
}
if is_tf_available()
else {}
)
A_ = True
A_ = False
A_ = False
def _UpperCAmelCase ( self ) -> Any:
UpperCamelCase_ = TFPegasusModelTester(self )
UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> List[str]:
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase )
@require_sentencepiece
@require_tokenizers
@require_tf
class _a ( unittest.TestCase ):
"""simple docstring"""
A_ = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
A_ = [
"""California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to"""
""" reduce the risk of wildfires.""",
"""N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""",
] # differs slightly from pytorch, likely due to numerical differences in linear layers
A_ = """google/pegasus-xsum"""
@cached_property
def _UpperCAmelCase ( self ) -> Dict:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> List[Any]:
UpperCamelCase_ = self.translate_src_text(**_UpperCAmelCase )
assert self.expected_text == generated_words
def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> Optional[int]:
UpperCamelCase_ = self.tokenizer(self.src_text , **_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='tf' )
UpperCamelCase_ = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_UpperCAmelCase , )
UpperCamelCase_ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_UpperCAmelCase )
return generated_words
@slow
def _UpperCAmelCase ( self ) -> Optional[Any]:
self._assert_generated_batch_equal_expected()
| 23 |
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict:
with open(_UpperCAmelCase , encoding='utf-8' ) as input_file:
UpperCamelCase_ = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' )
UpperCamelCase_ = input_file.read()
UpperCamelCase_ = regexp.search(_UpperCAmelCase )
return match
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict:
with open(_UpperCAmelCase , encoding='utf-8' ) as input_file:
UpperCamelCase_ = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL )
UpperCamelCase_ = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
UpperCamelCase_ = regexp.finditer(_UpperCAmelCase )
UpperCamelCase_ = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def _UpperCAmelCase ( self ) -> List[str]:
UpperCamelCase_ = Path('./datasets' )
UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(_UpperCAmelCase ) ):
raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" )
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ = Path('./datasets' )
UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) )
for dataset in dataset_files:
if self._no_print_statements(str(_UpperCAmelCase ) ):
raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
| 23 | 1 |
from math import factorial
def _snake_case (__lowercase = 20):
UpperCamelCase_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
UpperCamelCase_ = n // 2
return int(factorial(__lowercase) / (factorial(__lowercase) * factorial(n - k)))
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(2_0))
else:
try:
snake_case__ : Any = int(sys.argv[1])
print(solution(n))
except ValueError:
print("""Invalid entry - please enter a number.""")
| 23 |
import argparse
import random
import joblib
import numpy as np
import torch
from igf.igf import (
SecondaryLearner,
collect_objective_set,
compute_perplexity,
generate_datasets,
load_gpta,
recopy_gpta,
set_seed,
train_secondary_learner,
)
from torch.utils.data import DataLoader, RandomSampler
from transformers import GPTaLMHeadModel
def _snake_case (__lowercase=32 , __lowercase=10 , __lowercase=100 , __lowercase=1026 , __lowercase=True , __lowercase="data/tokenized_stories_train_wikitext103.jbl" , __lowercase="igf_context_pairs.jbl" , ):
set_seed(3)
# generate train_data and objective_set
UpperCamelCase_ , UpperCamelCase_ = generate_datasets(
__lowercase , __lowercase , number=__lowercase , min_len=1026 , trim=__lowercase)
# keeps model same across runs
set_seed(4)
# model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights
# can we train on GPU?
UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# load pretrained model
UpperCamelCase_ = load_gpta('gpt2').to(__lowercase)
print('computing perplexity on objective set')
UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase).item()
print('perplexity on objective set:' , __lowercase)
# collect igf pairs and save to file demo.jbl
collect_objective_set(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase)
# clean up, delete model and data we don't need anymore
del model, train_data, objective_set
torch.cuda.empty_cache()
def _snake_case (__lowercase , __lowercase=15 , __lowercase=128 , __lowercase=100 , __lowercase="igf_model.pt" , ):
set_seed(42)
# Load pre-trained model
UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2')
# Initialize secondary learner to use embedding weights of model
UpperCamelCase_ = SecondaryLearner(__lowercase)
# Train secondary learner
UpperCamelCase_ = train_secondary_learner(
__lowercase , __lowercase , max_epochs=__lowercase , batch_size=__lowercase , eval_freq=100 , igf_model_path=__lowercase , )
del model, secondary_learner_train_data
torch.cuda.empty_cache()
return secondary_learner
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=32 , __lowercase=1000 , __lowercase=16 , __lowercase=1.0 , __lowercase=recopy_gpta , __lowercase=None , __lowercase=10 , __lowercase="gpt2_finetuned.pt" , ):
UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
UpperCamelCase_ = RandomSampler(__lowercase)
UpperCamelCase_ = DataLoader(__lowercase , sampler=__lowercase)
UpperCamelCase_ = max_steps // (len(__lowercase)) + 1
UpperCamelCase_ = 0
UpperCamelCase_ = torch.zeros((1, context_len) , dtype=torch.long , device=__lowercase)
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = recopy_model(__lowercase , __lowercase , __lowercase)
model.train()
if secondary_learner is not None:
secondary_learner.to(__lowercase)
secondary_learner.eval()
UpperCamelCase_ = []
UpperCamelCase_ = 0
UpperCamelCase_ = []
UpperCamelCase_ = []
# Compute the performance of the transformer model at the beginning
UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase)
test_perps.append(__lowercase)
print('Test perplexity, step' , __lowercase , ':' , __lowercase)
for epoch in range(int(__lowercase)):
for step, example in enumerate(__lowercase):
torch.cuda.empty_cache()
UpperCamelCase_ = random.randint(0 , example.size(2) - context_len - 1)
UpperCamelCase_ = example[0, 0, start : start + context_len]
lm_optimizer.zero_grad()
UpperCamelCase_ = model(__lowercase , labels=__lowercase)
UpperCamelCase_ = True
if secondary_learner is not None:
UpperCamelCase_ = secondary_learner.forward(
torch.tensor(__lowercase , dtype=torch.long , device=__lowercase).unsqueeze(0))[0].item()
observed_qs.append(float(__lowercase))
# Here we implement the simple non-constant threshold for the predicted IG(X) value
# We will decay the selectivity of our secondary learner filter from
# 1 standard deviation above average to 1 below average after 10 batches.
if global_step == 10:
UpperCamelCase_ = -1
if predicted_q < threshold:
UpperCamelCase_ = False
# If we passed the filter, add the context to the batch!
if do_backprop:
contexts.append(np.array(context.cpu()))
UpperCamelCase_ = outputs[0]
lm_loss.backward()
examples += 1
del outputs
# Once the batch is filled with enough contexts, backprop on the batch.
if examples == batch_size:
torch.cuda.empty_cache()
UpperCamelCase_ = 0
# Do LM backprop
torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0)
lm_optimizer.step()
lm_scheduler.step() # Update learning rate schedule
global_step += 1
# Compute the performance of the transformer model at this batch
if global_step % eval_interval == 0:
UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase)
test_perps.append(__lowercase)
print('Test perplexity, step' , __lowercase , ':' , __lowercase)
# Break out of the loop after 60 batches
if max_steps > 0 and global_step > 60:
break
if max_steps > 0 and global_step > 60:
break
# save finetuned transformer model
torch.save(model.state_dict() , __lowercase)
torch.cuda.empty_cache()
# Do some cleaning up so we can reinitialize for the next run of this function
del lm_optimizer
del lm_scheduler
return model
def _snake_case ():
UpperCamelCase_ = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task')
# Required parameters
parser.add_argument(
'--data_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The input data dir. Should contain data files for WikiText.' , )
parser.add_argument(
'--model_name_or_path' , default=__lowercase , type=__lowercase , required=__lowercase , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--data_file' , type=__lowercase , default=__lowercase , help=(
'A jbl file containing tokenized data which can be split as objective dataset, '
'train_dataset and test_dataset.'
) , )
parser.add_argument(
'--igf_data_file' , type=__lowercase , default=__lowercase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , )
parser.add_argument(
'--output_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The output directory where the final fine-tuned model is stored.' , )
parser.add_argument(
'--tokenizer_name' , default=__lowercase , type=__lowercase , help='Pretrained tokenizer name or path if not the same as model_name' , )
parser.add_argument('--seed' , type=__lowercase , default=__lowercase , help='A seed for reproducible training.')
parser.add_argument(
'--context_len' , default=32 , type=__lowercase , help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
) , )
parser.add_argument(
'--size_objective_set' , default=100 , type=__lowercase , help='number of articles that are long enough to be used as our objective set' , )
parser.add_argument(
'--eval_freq' , default=100 , type=__lowercase , help='secondary model evaluation is triggered at eval_freq')
parser.add_argument('--max_steps' , default=1000 , type=__lowercase , help='To calculate training epochs')
parser.add_argument(
'--secondary_learner_batch_size' , default=128 , type=__lowercase , help='batch size of training data for secondary learner' , )
parser.add_argument(
'--batch_size' , default=16 , type=__lowercase , help='batch size of training data of language model(gpt2) ')
parser.add_argument(
'--eval_interval' , default=10 , type=__lowercase , help=(
'decay the selectivity of our secondary learner filter from'
'1 standard deviation above average to 1 below average after 10 batches'
) , )
parser.add_argument(
'--number' , default=100 , type=__lowercase , help='The number of examples split to be used as objective_set/test_data')
parser.add_argument(
'--min_len' , default=1026 , type=__lowercase , help='The minimum length of the article to be used as objective set')
parser.add_argument(
'--secondary_learner_max_epochs' , default=15 , type=__lowercase , help='number of epochs to train secondary learner')
parser.add_argument('--trim' , default=__lowercase , type=__lowercase , help='truncate the example if it exceeds context length')
parser.add_argument(
'--threshold' , default=1.0 , type=__lowercase , help=(
'The threshold value used by secondary learner to filter the train_data and allow only'
' informative data as input to the model'
) , )
parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=__lowercase , help='finetuned_model_name')
parser.add_argument(
'--recopy_model' , default=__lowercase , type=__lowercase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , )
# function calls
# Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner
generate_n_pairs(
context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=__lowercase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , )
# Load train data for secondary learner
UpperCamelCase_ = joblib.load('data/IGF_values.jbl')
# Train secondary learner
UpperCamelCase_ = training_secondary_learner(
__lowercase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , )
# load pretrained gpt2 model
UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2')
set_seed(42)
# Generate train and test data to train and evaluate gpt2 model
UpperCamelCase_ , UpperCamelCase_ = generate_datasets(
context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=__lowercase)
# fine-tuning of the gpt2 model using igf (Information Gain Filtration)
finetune(
__lowercase , __lowercase , __lowercase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=__lowercase , secondary_learner=__lowercase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , )
if __name__ == "__main__":
main()
| 23 | 1 |
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
snake_case__ : Any = logging.getLogger(__name__)
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
def __init__( self , _UpperCAmelCase=-1 ) -> str:
# in NER datasets, the last column is usually reserved for NER label
UpperCamelCase_ = label_idx
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[InputExample]:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
UpperCamelCase_ = mode.value
UpperCamelCase_ = os.path.join(_UpperCAmelCase , f"""{mode}.txt""" )
UpperCamelCase_ = 1
UpperCamelCase_ = []
with open(_UpperCAmelCase , encoding='utf-8' ) as f:
UpperCamelCase_ = []
UpperCamelCase_ = []
for line in f:
if line.startswith('-DOCSTART-' ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=_UpperCAmelCase , labels=_UpperCAmelCase ) )
guid_index += 1
UpperCamelCase_ = []
UpperCamelCase_ = []
else:
UpperCamelCase_ = line.split(' ' )
words.append(splits[0] )
if len(_UpperCAmelCase ) > 1:
labels.append(splits[self.label_idx].replace('\n' , '' ) )
else:
# Examples could have no label for mode = "test"
labels.append('O' )
if words:
examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=_UpperCAmelCase , labels=_UpperCAmelCase ) )
return examples
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]:
UpperCamelCase_ = 0
for line in test_input_reader:
if line.startswith('-DOCSTART-' ) or line == "" or line == "\n":
writer.write(_UpperCAmelCase )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
UpperCamelCase_ = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n'
writer.write(_UpperCAmelCase )
else:
logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[str]:
if path:
with open(_UpperCAmelCase , 'r' ) as f:
UpperCamelCase_ = f.read().splitlines()
if "O" not in labels:
UpperCamelCase_ = ['O'] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
def __init__( self ) -> Optional[int]:
# in CONLL2003 dataset chunk column is second-to-last
super().__init__(label_idx=-2 )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[str]:
if path:
with open(_UpperCAmelCase , 'r' ) as f:
UpperCamelCase_ = f.read().splitlines()
if "O" not in labels:
UpperCamelCase_ = ['O'] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[InputExample]:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
UpperCamelCase_ = mode.value
UpperCamelCase_ = os.path.join(_UpperCAmelCase , f"""{mode}.txt""" )
UpperCamelCase_ = 1
UpperCamelCase_ = []
with open(_UpperCAmelCase , encoding='utf-8' ) as f:
for sentence in parse_incr(_UpperCAmelCase ):
UpperCamelCase_ = []
UpperCamelCase_ = []
for token in sentence:
words.append(token['form'] )
labels.append(token['upos'] )
assert len(_UpperCAmelCase ) == len(_UpperCAmelCase )
if words:
examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=_UpperCAmelCase , labels=_UpperCAmelCase ) )
guid_index += 1
return examples
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str:
UpperCamelCase_ = 0
for sentence in parse_incr(_UpperCAmelCase ):
UpperCamelCase_ = preds_list[example_id]
UpperCamelCase_ = ''
for token in sentence:
out += f"""{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) """
out += "\n"
writer.write(_UpperCAmelCase )
example_id += 1
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[str]:
if path:
with open(_UpperCAmelCase , 'r' ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 23 |
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class _a :
"""simple docstring"""
A_ = MBartConfig
A_ = {}
A_ = """gelu"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ) -> Union[str, Any]:
UpperCamelCase_ = parent
UpperCamelCase_ = batch_size
UpperCamelCase_ = seq_length
UpperCamelCase_ = is_training
UpperCamelCase_ = use_labels
UpperCamelCase_ = vocab_size
UpperCamelCase_ = hidden_size
UpperCamelCase_ = num_hidden_layers
UpperCamelCase_ = num_attention_heads
UpperCamelCase_ = intermediate_size
UpperCamelCase_ = hidden_dropout_prob
UpperCamelCase_ = attention_probs_dropout_prob
UpperCamelCase_ = max_position_embeddings
UpperCamelCase_ = eos_token_id
UpperCamelCase_ = pad_token_id
UpperCamelCase_ = bos_token_id
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase_ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCamelCase_ = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return config, inputs_dict
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]:
UpperCamelCase_ = TFMBartModel(config=_UpperCAmelCase ).get_decoder()
UpperCamelCase_ = inputs_dict['input_ids']
UpperCamelCase_ = input_ids[:1, :]
UpperCamelCase_ = inputs_dict['attention_mask'][:1, :]
UpperCamelCase_ = inputs_dict['head_mask']
UpperCamelCase_ = 1
# first forward pass
UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase )
UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple()
UpperCamelCase_ = past_key_values[1]
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ):
if attention_mask is None:
UpperCamelCase_ = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id) , tf.inta)
if decoder_attention_mask is None:
UpperCamelCase_ = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta),
] , axis=-1 , )
if head_mask is None:
UpperCamelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads))
if decoder_head_mask is None:
UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads))
if cross_attn_head_mask is None:
UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads))
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
A_ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
A_ = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
A_ = (
{
"""conversational""": TFMBartForConditionalGeneration,
"""feature-extraction""": TFMBartModel,
"""summarization""": TFMBartForConditionalGeneration,
"""text2text-generation""": TFMBartForConditionalGeneration,
"""translation""": TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
A_ = True
A_ = False
A_ = False
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple:
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ = TFMBartModelTester(self )
UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase )
@require_sentencepiece
@require_tokenizers
@require_tf
class _a ( unittest.TestCase ):
"""simple docstring"""
A_ = [
""" UN Chief Says There Is No Military Solution in Syria""",
]
A_ = [
"""Şeful ONU declară că nu există o soluţie militară în Siria""",
]
A_ = """facebook/mbart-large-en-ro"""
@cached_property
def _UpperCAmelCase ( self ) -> Any:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _UpperCAmelCase ( self ) -> List[str]:
UpperCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> int:
UpperCamelCase_ = self.translate_src_text(**_UpperCAmelCase )
self.assertListEqual(self.expected_text , _UpperCAmelCase )
def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> List[str]:
UpperCamelCase_ = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='tf' )
UpperCamelCase_ = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
UpperCamelCase_ = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
return generated_words
@slow
def _UpperCAmelCase ( self ) -> List[Any]:
self._assert_generated_batch_equal_expected()
| 23 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
snake_case__ : Optional[Any] = {"""tokenization_herbert""": ["""HerbertTokenizer"""]}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Any = ["""HerbertTokenizerFast"""]
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
snake_case__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 23 |
def _snake_case (__lowercase):
UpperCamelCase_ = 1
for i in range(1 , num + 1):
fact *= i
return fact
def _snake_case (__lowercase):
UpperCamelCase_ = 0
while number > 0:
UpperCamelCase_ = number % 10
sum_of_digits += last_digit
UpperCamelCase_ = number // 10 # Removing the last_digit from the given number
return sum_of_digits
def _snake_case (__lowercase = 100):
UpperCamelCase_ = factorial(__lowercase)
UpperCamelCase_ = split_and_add(__lowercase)
return result
if __name__ == "__main__":
print(solution(int(input("""Enter the Number: """).strip())))
| 23 | 1 |
import argparse
import io
import requests
import torch
from omegaconf import OmegaConf
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
assign_to_checkpoint,
conv_attn_to_linear,
create_vae_diffusers_config,
renew_vae_attention_paths,
renew_vae_resnet_paths,
)
def _snake_case (__lowercase , __lowercase):
UpperCamelCase_ = checkpoint
UpperCamelCase_ = {}
UpperCamelCase_ = vae_state_dict['encoder.conv_in.weight']
UpperCamelCase_ = vae_state_dict['encoder.conv_in.bias']
UpperCamelCase_ = vae_state_dict['encoder.conv_out.weight']
UpperCamelCase_ = vae_state_dict['encoder.conv_out.bias']
UpperCamelCase_ = vae_state_dict['encoder.norm_out.weight']
UpperCamelCase_ = vae_state_dict['encoder.norm_out.bias']
UpperCamelCase_ = vae_state_dict['decoder.conv_in.weight']
UpperCamelCase_ = vae_state_dict['decoder.conv_in.bias']
UpperCamelCase_ = vae_state_dict['decoder.conv_out.weight']
UpperCamelCase_ = vae_state_dict['decoder.conv_out.bias']
UpperCamelCase_ = vae_state_dict['decoder.norm_out.weight']
UpperCamelCase_ = vae_state_dict['decoder.norm_out.bias']
UpperCamelCase_ = vae_state_dict['quant_conv.weight']
UpperCamelCase_ = vae_state_dict['quant_conv.bias']
UpperCamelCase_ = vae_state_dict['post_quant_conv.weight']
UpperCamelCase_ = vae_state_dict['post_quant_conv.bias']
# Retrieves the keys for the encoder down blocks only
UpperCamelCase_ = len({'.'.join(layer.split('.')[:3]) for layer in vae_state_dict if 'encoder.down' in layer})
UpperCamelCase_ = {
layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(__lowercase)
}
# Retrieves the keys for the decoder up blocks only
UpperCamelCase_ = len({'.'.join(layer.split('.')[:3]) for layer in vae_state_dict if 'decoder.up' in layer})
UpperCamelCase_ = {
layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(__lowercase)
}
for i in range(__lowercase):
UpperCamelCase_ = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key]
if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict:
UpperCamelCase_ = vae_state_dict.pop(
f"""encoder.down.{i}.downsample.conv.weight""")
UpperCamelCase_ = vae_state_dict.pop(
f"""encoder.down.{i}.downsample.conv.bias""")
UpperCamelCase_ = renew_vae_resnet_paths(__lowercase)
UpperCamelCase_ = {'old': f"""down.{i}.block""", 'new': f"""down_blocks.{i}.resnets"""}
assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase)
UpperCamelCase_ = [key for key in vae_state_dict if 'encoder.mid.block' in key]
UpperCamelCase_ = 2
for i in range(1 , num_mid_res_blocks + 1):
UpperCamelCase_ = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key]
UpperCamelCase_ = renew_vae_resnet_paths(__lowercase)
UpperCamelCase_ = {'old': f"""mid.block_{i}""", 'new': f"""mid_block.resnets.{i - 1}"""}
assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase)
UpperCamelCase_ = [key for key in vae_state_dict if 'encoder.mid.attn' in key]
UpperCamelCase_ = renew_vae_attention_paths(__lowercase)
UpperCamelCase_ = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'}
assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase)
conv_attn_to_linear(__lowercase)
for i in range(__lowercase):
UpperCamelCase_ = num_up_blocks - 1 - i
UpperCamelCase_ = [
key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key
]
if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict:
UpperCamelCase_ = vae_state_dict[
f"""decoder.up.{block_id}.upsample.conv.weight"""
]
UpperCamelCase_ = vae_state_dict[
f"""decoder.up.{block_id}.upsample.conv.bias"""
]
UpperCamelCase_ = renew_vae_resnet_paths(__lowercase)
UpperCamelCase_ = {'old': f"""up.{block_id}.block""", 'new': f"""up_blocks.{i}.resnets"""}
assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase)
UpperCamelCase_ = [key for key in vae_state_dict if 'decoder.mid.block' in key]
UpperCamelCase_ = 2
for i in range(1 , num_mid_res_blocks + 1):
UpperCamelCase_ = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key]
UpperCamelCase_ = renew_vae_resnet_paths(__lowercase)
UpperCamelCase_ = {'old': f"""mid.block_{i}""", 'new': f"""mid_block.resnets.{i - 1}"""}
assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase)
UpperCamelCase_ = [key for key in vae_state_dict if 'decoder.mid.attn' in key]
UpperCamelCase_ = renew_vae_attention_paths(__lowercase)
UpperCamelCase_ = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'}
assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase)
conv_attn_to_linear(__lowercase)
return new_checkpoint
def _snake_case (__lowercase , __lowercase , ):
# Only support V1
UpperCamelCase_ = requests.get(
' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml')
UpperCamelCase_ = io.BytesIO(r.content)
UpperCamelCase_ = OmegaConf.load(__lowercase)
UpperCamelCase_ = 512
UpperCamelCase_ = 'cuda' if torch.cuda.is_available() else 'cpu'
if checkpoint_path.endswith('safetensors'):
from safetensors import safe_open
UpperCamelCase_ = {}
with safe_open(__lowercase , framework='pt' , device='cpu') as f:
for key in f.keys():
UpperCamelCase_ = f.get_tensor(__lowercase)
else:
UpperCamelCase_ = torch.load(__lowercase , map_location=__lowercase)['state_dict']
# Convert the VAE model.
UpperCamelCase_ = create_vae_diffusers_config(__lowercase , image_size=__lowercase)
UpperCamelCase_ = custom_convert_ldm_vae_checkpoint(__lowercase , __lowercase)
UpperCamelCase_ = AutoencoderKL(**__lowercase)
vae.load_state_dict(__lowercase)
vae.save_pretrained(__lowercase)
if __name__ == "__main__":
snake_case__ : int = argparse.ArgumentParser()
parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""")
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""")
snake_case__ : Union[str, Any] = parser.parse_args()
vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
| 23 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
snake_case__ : str = logging.get_logger(__name__)
def _snake_case (__lowercase):
if isinstance(__lowercase , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]):
return videos
elif isinstance(__lowercase , (list, tuple)) and is_valid_image(videos[0]):
return [videos]
elif is_valid_image(__lowercase):
return [[videos]]
raise ValueError(f"""Could not make batched video from {videos}""")
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = ["""pixel_values"""]
def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> None:
super().__init__(**_UpperCAmelCase )
UpperCamelCase_ = size if size is not None else {'shortest_edge': 224}
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224}
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' )
UpperCamelCase_ = do_resize
UpperCamelCase_ = size
UpperCamelCase_ = do_center_crop
UpperCamelCase_ = crop_size
UpperCamelCase_ = resample
UpperCamelCase_ = do_rescale
UpperCamelCase_ = rescale_factor
UpperCamelCase_ = do_normalize
UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray:
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "shortest_edge" in size:
UpperCamelCase_ = get_resize_output_image_size(_UpperCAmelCase , size['shortest_edge'] , default_to_square=_UpperCAmelCase )
elif "height" in size and "width" in size:
UpperCamelCase_ = (size['height'], size['width'])
else:
raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" )
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray:
UpperCamelCase_ = get_size_dict(_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" )
return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> int:
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray:
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray:
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
UpperCamelCase_ = to_numpy_array(_UpperCAmelCase )
if do_resize:
UpperCamelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase )
if do_center_crop:
UpperCamelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase )
if do_rescale:
UpperCamelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase )
if do_normalize:
UpperCamelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase )
UpperCamelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase )
return image
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ) -> PIL.Image.Image:
UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCamelCase_ = resample if resample is not None else self.resample
UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCamelCase_ = image_std if image_std is not None else self.image_std
UpperCamelCase_ = size if size is not None else self.size
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
UpperCamelCase_ = make_batched(_UpperCAmelCase )
UpperCamelCase_ = [
[
self._preprocess_image(
image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , )
for img in video
]
for video in videos
]
UpperCamelCase_ = {'pixel_values': videos}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 23 | 1 |
def _snake_case (__lowercase):
UpperCamelCase_ = [0] * len(__lowercase)
UpperCamelCase_ = []
UpperCamelCase_ = [1] * len(__lowercase)
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(__lowercase)):
if indegree[i] == 0:
queue.append(__lowercase)
while queue:
UpperCamelCase_ = queue.pop(0)
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
UpperCamelCase_ = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(__lowercase)
print(max(__lowercase))
# Adjacency list of Graph
snake_case__ : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 23 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin, SchedulerOutput
@dataclass
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = 42
A_ = 42
class _a ( UpperCAmelCase__ , UpperCAmelCase__ ):
"""simple docstring"""
A_ = 1
@register_to_config
def __init__( self , _UpperCAmelCase = 2000 , _UpperCAmelCase = 0.1_5 , _UpperCAmelCase = 0.0_1 , _UpperCAmelCase = 1_3_4_8.0 , _UpperCAmelCase = 1e-5 , _UpperCAmelCase = 1 , ) -> Tuple:
# standard deviation of the initial noise distribution
UpperCamelCase_ = sigma_max
# setable values
UpperCamelCase_ = None
self.set_sigmas(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> torch.FloatTensor:
return sample
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> str:
UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps
UpperCamelCase_ = torch.linspace(1 , _UpperCAmelCase , _UpperCAmelCase , device=_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> Any:
UpperCamelCase_ = sigma_min if sigma_min is not None else self.config.sigma_min
UpperCamelCase_ = sigma_max if sigma_max is not None else self.config.sigma_max
UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps
if self.timesteps is None:
self.set_timesteps(_UpperCAmelCase , _UpperCAmelCase )
UpperCamelCase_ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
UpperCamelCase_ = torch.exp(torch.linspace(math.log(_UpperCAmelCase ) , math.log(_UpperCAmelCase ) , _UpperCAmelCase ) )
UpperCamelCase_ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]:
return torch.where(
timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SdeVeOutput, Tuple]:
if self.timesteps is None:
raise ValueError(
'`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' )
UpperCamelCase_ = timestep * torch.ones(
sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0])
UpperCamelCase_ = (timestep * (len(self.timesteps ) - 1)).long()
# mps requires indices to be in the same device, so we use cpu as is the default with cuda
UpperCamelCase_ = timesteps.to(self.discrete_sigmas.device )
UpperCamelCase_ = self.discrete_sigmas[timesteps].to(sample.device )
UpperCamelCase_ = self.get_adjacent_sigma(_UpperCAmelCase , _UpperCAmelCase ).to(sample.device )
UpperCamelCase_ = torch.zeros_like(_UpperCAmelCase )
UpperCamelCase_ = (sigma**2 - adjacent_sigma**2) ** 0.5
# equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
# also equation 47 shows the analog from SDE models to ancestral sampling methods
UpperCamelCase_ = diffusion.flatten()
while len(diffusion.shape ) < len(sample.shape ):
UpperCamelCase_ = diffusion.unsqueeze(-1 )
UpperCamelCase_ = drift - diffusion**2 * model_output
# equation 6: sample noise for the diffusion term of
UpperCamelCase_ = randn_tensor(
sample.shape , layout=sample.layout , generator=_UpperCAmelCase , device=sample.device , dtype=sample.dtype )
UpperCamelCase_ = sample - drift # subtract because `dt` is a small negative timestep
# TODO is the variable diffusion the correct scaling term for the noise?
UpperCamelCase_ = prev_sample_mean + diffusion * noise # add impact of diffusion field g
if not return_dict:
return (prev_sample, prev_sample_mean)
return SdeVeOutput(prev_sample=_UpperCAmelCase , prev_sample_mean=_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]:
if self.timesteps is None:
raise ValueError(
'`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' )
# For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
# sample noise for correction
UpperCamelCase_ = randn_tensor(sample.shape , layout=sample.layout , generator=_UpperCAmelCase ).to(sample.device )
# compute step size from the model_output, the noise, and the snr
UpperCamelCase_ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean()
UpperCamelCase_ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean()
UpperCamelCase_ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
UpperCamelCase_ = step_size * torch.ones(sample.shape[0] ).to(sample.device )
# self.repeat_scalar(step_size, sample.shape[0])
# compute corrected sample: model_output term and noise term
UpperCamelCase_ = step_size.flatten()
while len(step_size.shape ) < len(sample.shape ):
UpperCamelCase_ = step_size.unsqueeze(-1 )
UpperCamelCase_ = sample + step_size * model_output
UpperCamelCase_ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
UpperCamelCase_ = timesteps.to(original_samples.device )
UpperCamelCase_ = self.discrete_sigmas.to(original_samples.device )[timesteps]
UpperCamelCase_ = (
noise * sigmas[:, None, None, None]
if noise is not None
else torch.randn_like(_UpperCAmelCase ) * sigmas[:, None, None, None]
)
UpperCamelCase_ = noise + original_samples
return noisy_samples
def __len__( self ) -> Optional[int]:
return self.config.num_train_timesteps
| 23 | 1 |
import math
def _snake_case (__lowercase):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__lowercase) + 1) , 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _snake_case (__lowercase = 10001):
try:
UpperCamelCase_ = int(__lowercase)
except (TypeError, ValueError):
raise TypeError('Parameter nth must be int or castable to int.') from None
if nth <= 0:
raise ValueError('Parameter nth must be greater than or equal to one.')
UpperCamelCase_ = []
UpperCamelCase_ = 2
while len(__lowercase) < nth:
if is_prime(__lowercase):
primes.append(__lowercase)
num += 1
else:
num += 1
return primes[len(__lowercase) - 1]
if __name__ == "__main__":
print(f'{solution() = }')
| 23 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case__ : Optional[int] = {
"""configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Dict = [
"""PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PegasusXForConditionalGeneration""",
"""PegasusXModel""",
"""PegasusXPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
snake_case__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 23 | 1 |
def _snake_case (__lowercase = 10 , __lowercase = 22):
UpperCamelCase_ = range(1 , __lowercase)
UpperCamelCase_ = range(1 , __lowercase)
return sum(
1 for power in powers for base in bases if len(str(base**power)) == power)
if __name__ == "__main__":
print(f'{solution(1_0, 2_2) = }')
| 23 |
import datasets
from .evaluate import evaluate
snake_case__ : int = """\
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={arXiv preprint arXiv:2103.06268},
year={2021}
}
"""
snake_case__ : Union[str, Any] = """
This metric wrap the official scoring script for version 1 of the Contract
Understanding Atticus Dataset (CUAD).
Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510
commercial legal contracts that have been manually labeled to identify 41 categories of important
clauses that lawyers look for when reviewing contracts in connection with corporate transactions.
"""
snake_case__ : Any = """
Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair as given in the references (see below)
- 'prediction_text': list of possible texts for the answer, as a list of strings
depending on a threshold on the confidence probability of each prediction.
references: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair (see above),
- 'answers': a Dict in the CUAD dataset format
{
'text': list of possible texts for the answer, as a list of strings
'answer_start': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
'exact_match': Exact match (the normalized answer exactly match the gold answer)
'f1': The F-score of predicted tokens versus the gold answer
'aupr': Area Under the Precision-Recall curve
'prec_at_80_recall': Precision at 80% recall
'prec_at_90_recall': Precision at 90% recall
Examples:
>>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> cuad_metric = datasets.load_metric(\"cuad\")
>>> results = cuad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _a ( datasets.Metric ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> Optional[int]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': {
'id': datasets.Value('string' ),
'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ),
},
'references': {
'id': datasets.Value('string' ),
'answers': datasets.features.Sequence(
{
'text': datasets.Value('string' ),
'answer_start': datasets.Value('int32' ),
} ),
},
} ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict:
UpperCamelCase_ = {prediction['id']: prediction['prediction_text'] for prediction in predictions}
UpperCamelCase_ = [
{
'paragraphs': [
{
'qas': [
{
'answers': [{'text': answer_text} for answer_text in ref['answers']['text']],
'id': ref['id'],
}
for ref in references
]
}
]
}
]
UpperCamelCase_ = evaluate(dataset=_UpperCAmelCase , predictions=_UpperCAmelCase )
return score
| 23 | 1 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case__ : Any = {
"""configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""],
"""feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""],
"""processing_mctct""": ["""MCTCTProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : List[str] = [
"""MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MCTCTForCTC""",
"""MCTCTModel""",
"""MCTCTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 23 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import datasets
import datasets.config
from .utils import require_beam
class _a ( datasets.BeamBasedBuilder ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> List[str]:
return datasets.DatasetInfo(
features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=_UpperCAmelCase , )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]:
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )]
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple:
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase )
class _a ( datasets.BeamBasedBuilder ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> Any:
return datasets.DatasetInfo(
features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=_UpperCAmelCase , )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple:
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} )
]
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]:
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase )
def _snake_case ():
return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'])]
def _snake_case ():
return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'])]
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
@require_beam
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) )
UpperCamelCase_ = builder.as_dataset()
self.assertEqual(dset['train'].num_rows , _UpperCAmelCase )
self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase )
self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] )
self.assertDictEqual(
dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) )
del dset
@require_beam
def _UpperCAmelCase ( self ) -> List[str]:
import apache_beam as beam
UpperCamelCase_ = beam.io.parquetio.WriteToParquet
UpperCamelCase_ = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' )
with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock:
UpperCamelCase_ = partial(_UpperCAmelCase , num_shards=2 )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(
_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) )
self.assertTrue(
os.path.exists(
os.path.join(
_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) )
UpperCamelCase_ = builder.as_dataset()
self.assertEqual(dset['train'].num_rows , _UpperCAmelCase )
self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase )
# Order is not preserved when sharding, so we just check that all the elements are there
self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) )
self.assertTrue(
os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) )
del dset
@require_beam
def _UpperCAmelCase ( self ) -> Any:
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase )
self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare )
@require_beam
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = len(get_test_nested_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCamelCase_ = NestedBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) )
self.assertDictEqual(
builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) )
UpperCamelCase_ = builder.as_dataset()
self.assertEqual(dset['train'].num_rows , _UpperCAmelCase )
self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase )
self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] )
self.assertDictEqual(
dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) )
del dset
| 23 | 1 |
snake_case__ : Union[str, Any] = """Input must be a string of 8 numbers plus letter"""
snake_case__ : Optional[int] = """TRWAGMYFPDXBNJZSQVHLCKE"""
def _snake_case (__lowercase):
if not isinstance(__lowercase , __lowercase):
UpperCamelCase_ = f"""Expected string as input, found {type(__lowercase).__name__}"""
raise TypeError(__lowercase)
UpperCamelCase_ = spanish_id.replace('-' , '').upper()
if len(__lowercase) != 9:
raise ValueError(__lowercase)
try:
UpperCamelCase_ = int(spanish_id_clean[0:8])
UpperCamelCase_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(__lowercase) from ex
if letter.isdigit():
raise ValueError(__lowercase)
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 |
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def _snake_case (__lowercase , __lowercase , __lowercase):
# Initialise PyTorch model
UpperCamelCase_ = AlbertConfig.from_json_file(__lowercase)
print(f"""Building PyTorch model from configuration: {config}""")
UpperCamelCase_ = AlbertForPreTraining(__lowercase)
# Load weights from tf checkpoint
load_tf_weights_in_albert(__lowercase , __lowercase , __lowercase)
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""")
torch.save(model.state_dict() , __lowercase)
if __name__ == "__main__":
snake_case__ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--albert_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained ALBERT model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
snake_case__ : str = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 23 | 1 |
def _snake_case (__lowercase):
UpperCamelCase_ = int(__lowercase)
if n_element < 1:
UpperCamelCase_ = ValueError('a should be a positive number')
raise my_error
UpperCamelCase_ = [1]
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = (0, 0, 0)
UpperCamelCase_ = 1
while index < n_element:
while hamming_list[i] * 2 <= hamming_list[-1]:
i += 1
while hamming_list[j] * 3 <= hamming_list[-1]:
j += 1
while hamming_list[k] * 5 <= hamming_list[-1]:
k += 1
hamming_list.append(
min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5))
index += 1
return hamming_list
if __name__ == "__main__":
snake_case__ : str = input("""Enter the last number (nth term) of the Hamming Number Series: """)
print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""")
snake_case__ : Optional[Any] = hamming(int(n))
print("""-----------------------------------------------------""")
print(f'The list with nth numbers is: {hamming_numbers}')
print("""-----------------------------------------------------""")
| 23 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
@slow
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' )
UpperCamelCase_ = BertTokenizer.from_pretrained('bert-base-uncased' )
UpperCamelCase_ = bertabert.config.encoder.vocab_size
UpperCamelCase_ = tokenizer.sep_token_id
UpperCamelCase_ = tokenizer.cls_token_id
UpperCamelCase_ = 128
UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' )
UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' )
UpperCamelCase_ = train_dataset.select(range(32 ) )
UpperCamelCase_ = val_dataset.select(range(16 ) )
UpperCamelCase_ = 4
def _map_to_encoder_decoder_inputs(_UpperCAmelCase ):
# Tokenizer will automatically set [BOS] <text> [EOS]
UpperCamelCase_ = tokenizer(batch['article'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=512 )
UpperCamelCase_ = tokenizer(batch['highlights'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=128 )
UpperCamelCase_ = inputs.input_ids
UpperCamelCase_ = inputs.attention_mask
UpperCamelCase_ = outputs.input_ids
UpperCamelCase_ = outputs.input_ids.copy()
UpperCamelCase_ = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels']
]
UpperCamelCase_ = outputs.attention_mask
assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids )
assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(_UpperCAmelCase ):
UpperCamelCase_ = pred.label_ids
UpperCamelCase_ = pred.predictions
# all unnecessary tokens are removed
UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
UpperCamelCase_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase )
return {"accuracy": accuracy}
# map train dataset
UpperCamelCase_ = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , )
train_dataset.set_format(
type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , )
# same for validation dataset
UpperCamelCase_ = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , )
val_dataset.set_format(
type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , )
UpperCamelCase_ = self.get_auto_remove_tmp_dir()
UpperCamelCase_ = SeqaSeqTrainingArguments(
output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy='steps' , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
UpperCamelCase_ = SeqaSeqTrainer(
model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , )
# start training
trainer.train()
| 23 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
snake_case__ : Optional[Any] = {
"""configuration_tapas""": ["""TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TapasConfig"""],
"""tokenization_tapas""": ["""TapasTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Tuple = [
"""TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TapasForMaskedLM""",
"""TapasForQuestionAnswering""",
"""TapasForSequenceClassification""",
"""TapasModel""",
"""TapasPreTrainedModel""",
"""load_tf_weights_in_tapas""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Optional[Any] = [
"""TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFTapasForMaskedLM""",
"""TFTapasForQuestionAnswering""",
"""TFTapasForSequenceClassification""",
"""TFTapasModel""",
"""TFTapasPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig
from .tokenization_tapas import TapasTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tapas import (
TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasPreTrainedModel,
load_tf_weights_in_tapas,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_tapas import (
TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTapasForMaskedLM,
TFTapasForQuestionAnswering,
TFTapasForSequenceClassification,
TFTapasModel,
TFTapasPreTrainedModel,
)
else:
import sys
snake_case__ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 23 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
# and perform gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
snake_case__ : Dict = 1_6
snake_case__ : List[str] = 3_2
def _snake_case (__lowercase , __lowercase = 16):
UpperCamelCase_ = AutoTokenizer.from_pretrained('bert-base-cased')
UpperCamelCase_ = load_dataset('glue' , 'mrpc')
def tokenize_function(__lowercase):
# max_length=None => use the model max length (it's actually the default)
UpperCamelCase_ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__lowercase , max_length=__lowercase)
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
UpperCamelCase_ = datasets.map(
__lowercase , batched=__lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCamelCase_ = tokenized_datasets.rename_column('label' , 'labels')
def collate_fn(__lowercase):
# On TPU it's best to pad everything to the same length or training will be very slow.
UpperCamelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
UpperCamelCase_ = 16
elif accelerator.mixed_precision != "no":
UpperCamelCase_ = 8
else:
UpperCamelCase_ = None
return tokenizer.pad(
__lowercase , padding='longest' , max_length=__lowercase , pad_to_multiple_of=__lowercase , return_tensors='pt' , )
# Instantiate dataloaders.
UpperCamelCase_ = DataLoader(
tokenized_datasets['train'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase)
UpperCamelCase_ = DataLoader(
tokenized_datasets['validation'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase)
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
snake_case__ : List[str] = mocked_dataloaders # noqa: F811
def _snake_case (__lowercase , __lowercase):
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS' , __lowercase) == "1":
UpperCamelCase_ = 2
# New Code #
UpperCamelCase_ = int(args.gradient_accumulation_steps)
# Initialize accelerator
UpperCamelCase_ = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowercase)
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
raise NotImplementedError(
'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`')
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCamelCase_ = config['lr']
UpperCamelCase_ = int(config['num_epochs'])
UpperCamelCase_ = int(config['seed'])
UpperCamelCase_ = int(config['batch_size'])
UpperCamelCase_ = evaluate.load('glue' , 'mrpc')
set_seed(__lowercase)
UpperCamelCase_ , UpperCamelCase_ = get_dataloaders(__lowercase , __lowercase)
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCamelCase_ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__lowercase)
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCamelCase_ = model.to(accelerator.device)
# Instantiate optimizer
UpperCamelCase_ = AdamW(params=model.parameters() , lr=__lowercase)
# Instantiate scheduler
UpperCamelCase_ = get_linear_schedule_with_warmup(
optimizer=__lowercase , num_warmup_steps=100 , num_training_steps=(len(__lowercase) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare(
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase)
# Now we train the model
for epoch in range(__lowercase):
model.train()
for step, batch in enumerate(__lowercase):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(__lowercase):
UpperCamelCase_ = model(**__lowercase)
UpperCamelCase_ = output.loss
accelerator.backward(__lowercase)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__lowercase):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
with torch.no_grad():
UpperCamelCase_ = model(**__lowercase)
UpperCamelCase_ = outputs.logits.argmax(dim=-1)
UpperCamelCase_ , UpperCamelCase_ = accelerator.gather_for_metrics((predictions, batch['labels']))
metric.add_batch(
predictions=__lowercase , references=__lowercase , )
UpperCamelCase_ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""" , __lowercase)
def _snake_case ():
UpperCamelCase_ = argparse.ArgumentParser(description='Simple example of training script.')
parser.add_argument(
'--mixed_precision' , type=__lowercase , default=__lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.' , )
# New Code #
parser.add_argument(
'--gradient_accumulation_steps' , type=__lowercase , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , )
parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.')
UpperCamelCase_ = parser.parse_args()
UpperCamelCase_ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16}
training_function(__lowercase , __lowercase)
if __name__ == "__main__":
main()
| 23 | 1 |
from __future__ import annotations
import math
def _snake_case (__lowercase):
if num <= 0:
UpperCamelCase_ = f"""{num}: Invalid input, please enter a positive integer."""
raise ValueError(__lowercase)
UpperCamelCase_ = [True] * (num + 1)
UpperCamelCase_ = []
UpperCamelCase_ = 2
UpperCamelCase_ = int(math.sqrt(__lowercase))
while start <= end:
# If start is a prime
if sieve[start] is True:
prime.append(__lowercase)
# Set multiples of start be False
for i in range(start * start , num + 1 , __lowercase):
if sieve[i] is True:
UpperCamelCase_ = False
start += 1
for j in range(end + 1 , num + 1):
if sieve[j] is True:
prime.append(__lowercase)
return prime
if __name__ == "__main__":
print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
| 23 |
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class _a :
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=10 , _UpperCAmelCase=3 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=4 , _UpperCAmelCase=64 , ) -> List[Any]:
UpperCamelCase_ = parent
UpperCamelCase_ = batch_size
UpperCamelCase_ = is_training
UpperCamelCase_ = use_auxiliary_loss
UpperCamelCase_ = num_queries
UpperCamelCase_ = num_channels
UpperCamelCase_ = min_size
UpperCamelCase_ = max_size
UpperCamelCase_ = num_labels
UpperCamelCase_ = hidden_dim
UpperCamelCase_ = hidden_dim
def _UpperCAmelCase ( self ) -> List[str]:
UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
_UpperCAmelCase )
UpperCamelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_UpperCAmelCase )
UpperCamelCase_ = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_UpperCAmelCase ) > 0.5
).float()
UpperCamelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=_UpperCAmelCase ) > 0.5).long()
UpperCamelCase_ = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ = MaskaFormerConfig(
hidden_size=self.hidden_dim , )
UpperCamelCase_ = self.num_queries
UpperCamelCase_ = self.num_labels
UpperCamelCase_ = [1, 1, 1, 1]
UpperCamelCase_ = self.num_channels
UpperCamelCase_ = 64
UpperCamelCase_ = 128
UpperCamelCase_ = self.hidden_dim
UpperCamelCase_ = self.hidden_dim
UpperCamelCase_ = self.hidden_dim
return config
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs()
UpperCamelCase_ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask}
return config, inputs_dict
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]:
UpperCamelCase_ = output.encoder_hidden_states
UpperCamelCase_ = output.pixel_decoder_hidden_states
UpperCamelCase_ = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(_UpperCAmelCase ) , config.decoder_layers )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Any:
with torch.no_grad():
UpperCamelCase_ = MaskaFormerModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase )
UpperCamelCase_ = model(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(_UpperCAmelCase , _UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]:
UpperCamelCase_ = MaskaFormerForUniversalSegmentation(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
def comm_check_on_output(_UpperCAmelCase ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase )
UpperCamelCase_ = model(_UpperCAmelCase )
comm_check_on_output(_UpperCAmelCase )
UpperCamelCase_ = model(
pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase )
comm_check_on_output(_UpperCAmelCase )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
A_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
A_ = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {}
A_ = False
A_ = False
A_ = False
A_ = False
def _UpperCAmelCase ( self ) -> Optional[Any]:
UpperCamelCase_ = MaskaFormerModelTester(self )
UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_UpperCAmelCase )
@unittest.skip(reason='Mask2Former does not use inputs_embeds' )
def _UpperCAmelCase ( self ) -> Any:
pass
@unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' )
def _UpperCAmelCase ( self ) -> Optional[int]:
pass
@unittest.skip(reason='Mask2Former is not a generative model' )
def _UpperCAmelCase ( self ) -> Any:
pass
@unittest.skip(reason='Mask2Former does not use token embeddings' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
pass
@require_torch_multi_gpu
@unittest.skip(
reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def _UpperCAmelCase ( self ) -> int:
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _UpperCAmelCase ( self ) -> str:
pass
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase_ = model_class(_UpperCAmelCase )
UpperCamelCase_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase_ = [*signature.parameters.keys()]
UpperCamelCase_ = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
@slow
def _UpperCAmelCase ( self ) -> Tuple:
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
UpperCamelCase_ = MaskaFormerModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ = (self.model_tester.min_size,) * 2
UpperCamelCase_ = {
'pixel_values': torch.randn((2, 3, *size) , device=_UpperCAmelCase ),
'mask_labels': torch.randn((2, 10, *size) , device=_UpperCAmelCase ),
'class_labels': torch.zeros(2 , 10 , device=_UpperCAmelCase ).long(),
}
UpperCamelCase_ = self.model_tester.get_config()
UpperCamelCase_ = MaskaFormerForUniversalSegmentation(_UpperCAmelCase ).to(_UpperCAmelCase )
UpperCamelCase_ = model(**_UpperCAmelCase )
self.assertTrue(outputs.loss is not None )
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase )
UpperCamelCase_ = model(**_UpperCAmelCase , output_attentions=_UpperCAmelCase )
self.assertTrue(outputs.attentions is not None )
def _UpperCAmelCase ( self ) -> List[Any]:
if not self.model_tester.is_training:
return
UpperCamelCase_ = self.all_model_classes[1]
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs()
UpperCamelCase_ = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.train()
UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ).loss
loss.backward()
def _UpperCAmelCase ( self ) -> int:
UpperCamelCase_ = self.all_model_classes[1]
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs()
UpperCamelCase_ = True
UpperCamelCase_ = True
UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase )
model.train()
UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase )
UpperCamelCase_ = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
UpperCamelCase_ = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
UpperCamelCase_ = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
UpperCamelCase_ = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=_UpperCAmelCase )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
snake_case__ : List[Any] = 1E-4
def _snake_case ():
UpperCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
return image
@require_vision
@slow
class _a ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _UpperCAmelCase ( self ) -> Optional[int]:
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def _UpperCAmelCase ( self ) -> List[str]:
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase )
UpperCamelCase_ = self.default_image_processor
UpperCamelCase_ = prepare_img()
UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
UpperCamelCase_ = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) )
with torch.no_grad():
UpperCamelCase_ = model(**_UpperCAmelCase )
UpperCamelCase_ = torch.tensor(
[[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) )
UpperCamelCase_ = torch.tensor(
[[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) )
UpperCamelCase_ = torch.tensor(
[[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) )
def _UpperCAmelCase ( self ) -> Optional[Any]:
UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval()
UpperCamelCase_ = self.default_image_processor
UpperCamelCase_ = prepare_img()
UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
UpperCamelCase_ = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) )
with torch.no_grad():
UpperCamelCase_ = model(**_UpperCAmelCase )
# masks_queries_logits
UpperCamelCase_ = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
UpperCamelCase_ = [
[-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1],
[-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1],
[-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5],
]
UpperCamelCase_ = torch.tensor(_UpperCAmelCase ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) )
# class_queries_logits
UpperCamelCase_ = outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) )
UpperCamelCase_ = torch.tensor(
[
[1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2],
[0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3],
[0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5],
] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) )
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval()
UpperCamelCase_ = self.default_image_processor
UpperCamelCase_ = image_processor(
[np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , )
UpperCamelCase_ = inputs['pixel_values'].to(_UpperCAmelCase )
UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['mask_labels']]
UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['class_labels']]
with torch.no_grad():
UpperCamelCase_ = model(**_UpperCAmelCase )
self.assertTrue(outputs.loss is not None )
| 23 | 1 |
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
snake_case__ : List[Any] = (3, 9, -1_1, 0, 7, 5, 1, -1)
snake_case__ : Optional[Any] = (4, 6, 2, 0, 8, 1_0, 3, -2)
@dataclass
class _a :
"""simple docstring"""
A_ = 42
A_ = 42
class _a :
"""simple docstring"""
def __init__( self , _UpperCAmelCase ) -> None:
UpperCamelCase_ = None
for i in sorted(_UpperCAmelCase , reverse=_UpperCAmelCase ):
UpperCamelCase_ = Node(_UpperCAmelCase , self.head )
def __iter__( self ) -> Iterator[int]:
UpperCamelCase_ = self.head
while node:
yield node.data
UpperCamelCase_ = node.next_node
def __len__( self ) -> int:
return sum(1 for _ in self )
def __str__( self ) -> str:
return " -> ".join([str(_UpperCAmelCase ) for node in self] )
def _snake_case (__lowercase , __lowercase):
return SortedLinkedList(list(__lowercase) + list(__lowercase))
if __name__ == "__main__":
import doctest
doctest.testmod()
snake_case__ : str = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 23 |
import copy
from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
if TYPE_CHECKING:
from ... import PreTrainedTokenizerBase, TensorType
snake_case__ : List[str] = logging.get_logger(__name__)
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = """vision-encoder-decoder"""
A_ = True
def __init__( self , **_UpperCAmelCase ) -> Dict:
super().__init__(**_UpperCAmelCase )
if "encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError(
f"""A configuraton of type {self.model_type} cannot be instantiated because """
f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" )
UpperCamelCase_ = kwargs.pop('encoder' )
UpperCamelCase_ = encoder_config.pop('model_type' )
UpperCamelCase_ = kwargs.pop('decoder' )
UpperCamelCase_ = decoder_config.pop('model_type' )
UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase )
UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase )
UpperCamelCase_ = True
@classmethod
def _UpperCAmelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> PretrainedConfig:
logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' )
UpperCamelCase_ = True
UpperCamelCase_ = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> int:
UpperCamelCase_ = copy.deepcopy(self.__dict__ )
UpperCamelCase_ = self.encoder.to_dict()
UpperCamelCase_ = self.decoder.to_dict()
UpperCamelCase_ = self.__class__.model_type
return output
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = version.parse("""1.11""" )
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def _UpperCAmelCase ( self ) -> float:
return 1e-4
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} )
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
UpperCamelCase_ = OrderedDict()
UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
UpperCamelCase_ = {0: 'batch', 1: 'encoder_sequence'}
return common_inputs
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ) -> Mapping[str, Any]:
import torch
UpperCamelCase_ = OrderedDict()
UpperCamelCase_ = super().generate_dummy_inputs(
_UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase )
UpperCamelCase_ , UpperCamelCase_ = dummy_input['input_ids'].shape
UpperCamelCase_ = (batch, encoder_sequence, self._config.encoder_hidden_size)
UpperCamelCase_ = dummy_input.pop('input_ids' )
UpperCamelCase_ = dummy_input.pop('attention_mask' )
UpperCamelCase_ = torch.zeros(_UpperCAmelCase )
return common_inputs
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
@property
def _UpperCAmelCase ( self ) -> None:
pass
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> OnnxConfig:
return VisionEncoderDecoderEncoderOnnxConfig(_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = "default" ) -> OnnxConfig:
UpperCamelCase_ = encoder_config.hidden_size
return VisionEncoderDecoderDecoderOnnxConfig(_UpperCAmelCase , _UpperCAmelCase )
| 23 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
snake_case__ : str = {"""configuration_fnet""": ["""FNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FNetConfig"""]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : List[Any] = ["""FNetTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Optional[int] = ["""FNetTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Dict = [
"""FNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FNetForMaskedLM""",
"""FNetForMultipleChoice""",
"""FNetForNextSentencePrediction""",
"""FNetForPreTraining""",
"""FNetForQuestionAnswering""",
"""FNetForSequenceClassification""",
"""FNetForTokenClassification""",
"""FNetLayer""",
"""FNetModel""",
"""FNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
snake_case__ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 23 |
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def _snake_case (__lowercase , __lowercase , __lowercase):
# Initialise PyTorch model
UpperCamelCase_ = MobileBertConfig.from_json_file(__lowercase)
print(f"""Building PyTorch model from configuration: {config}""")
UpperCamelCase_ = MobileBertForPreTraining(__lowercase)
# Load weights from tf checkpoint
UpperCamelCase_ = load_tf_weights_in_mobilebert(__lowercase , __lowercase , __lowercase)
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""")
torch.save(model.state_dict() , __lowercase)
if __name__ == "__main__":
snake_case__ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--mobilebert_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained MobileBERT model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
snake_case__ : Optional[Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 23 | 1 |
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
snake_case__ : int = """src/transformers"""
snake_case__ : Dict = """docs/source/en/tasks"""
def _snake_case (__lowercase , __lowercase , __lowercase):
with open(__lowercase , 'r' , encoding='utf-8' , newline='\n') as f:
UpperCamelCase_ = f.readlines()
# Find the start prompt.
UpperCamelCase_ = 0
while not lines[start_index].startswith(__lowercase):
start_index += 1
start_index += 1
UpperCamelCase_ = start_index
while not lines[end_index].startswith(__lowercase):
end_index += 1
end_index -= 1
while len(lines[start_index]) <= 1:
start_index += 1
while len(lines[end_index]) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index]), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
snake_case__ : int = direct_transformers_import(TRANSFORMERS_PATH)
snake_case__ : Any = {
"""asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
"""audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
"""language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
"""image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
"""masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
"""multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
"""object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
"""question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
"""semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
"""sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
"""summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
"""token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
"""translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
"""video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
"""document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
"""monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
snake_case__ : Any = {
"""summarization.md""": ("""nllb""",),
"""translation.md""": ("""nllb""",),
}
def _snake_case (__lowercase):
UpperCamelCase_ = TASK_GUIDE_TO_MODELS[task_guide]
UpperCamelCase_ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__lowercase , set())
UpperCamelCase_ = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()]) + "\n"
def _snake_case (__lowercase , __lowercase=False):
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = _find_text_in_file(
filename=os.path.join(__lowercase , __lowercase) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , )
UpperCamelCase_ = get_model_list_for_task(__lowercase)
if current_list != new_list:
if overwrite:
with open(os.path.join(__lowercase , __lowercase) , 'w' , encoding='utf-8' , newline='\n') as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:])
else:
raise ValueError(
f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`"""
' to fix this.')
if __name__ == "__main__":
snake_case__ : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
snake_case__ : str = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 23 |
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class _a ( unittest.TestCase ):
"""simple docstring"""
A_ = MODEL_FOR_MASKED_LM_MAPPING
A_ = TF_MODEL_FOR_MASKED_LM_MAPPING
def _UpperCAmelCase ( self ) -> List[str]:
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' )
UpperCamelCase_ = unmasker('My name is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{'sequence': 'My name is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped'},
{'sequence': 'My name is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser'},
] , )
UpperCamelCase_ = unmasker('The largest city in France is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{
'sequence': 'The largest city in France is grouped',
'score': 2.1e-05,
'token': 38015,
'token_str': ' grouped',
},
{
'sequence': 'The largest city in France is accuser',
'score': 2.1e-05,
'token': 25506,
'token_str': ' accuser',
},
] , )
UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'},
{'sequence': 'My name is Patrick', 'score': 2e-05, 'token': 3499, 'token_str': ' Patrick'},
{'sequence': 'My name is Te', 'score': 1.9e-05, 'token': 2941, 'token_str': ' Te'},
] , )
@require_torch
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' )
UpperCamelCase_ = unmasker('My name is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{'sequence': 'My name is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul'},
{'sequence': 'My name isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'},
] , )
UpperCamelCase_ = unmasker('The largest city in France is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{
'sequence': 'The largest city in France is Maul',
'score': 2.2e-05,
'token': 35676,
'token_str': ' Maul',
},
{'sequence': 'The largest city in France isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'},
] , )
UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
{'sequence': 'My name is Patrick', 'score': 2.1e-05, 'token': 3499, 'token_str': ' Patrick'},
{'sequence': 'My name is Te', 'score': 2e-05, 'token': 2941, 'token_str': ' Te'},
{'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'},
] , )
UpperCamelCase_ = unmasker('My name is <mask> <mask>' , top_k=2 )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=6 ) , [
[
{
'score': 2.2e-05,
'token': 35676,
'token_str': ' Maul',
'sequence': '<s>My name is Maul<mask></s>',
},
{'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'},
],
[
{
'score': 2.2e-05,
'token': 35676,
'token_str': ' Maul',
'sequence': '<s>My name is<mask> Maul</s>',
},
{'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'},
],
] , )
@require_torch_gpu
def _UpperCAmelCase ( self ) -> Optional[Any]:
UpperCamelCase_ = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' )
# convert model to fp16
pipe.model.half()
UpperCamelCase_ = pipe('Paris is the [MASK] of France.' )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
@slow
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' )
self.run_large_test(_UpperCAmelCase )
@slow
@require_tf
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' )
self.run_large_test(_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple:
UpperCamelCase_ = unmasker('My name is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [
{'sequence': 'My name is John', 'score': 0.0_0_8, 'token': 610, 'token_str': ' John'},
{'sequence': 'My name is Chris', 'score': 0.0_0_7, 'token': 1573, 'token_str': ' Chris'},
] , )
UpperCamelCase_ = unmasker('The largest city in France is <mask>' )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [
{
'sequence': 'The largest city in France is Paris',
'score': 0.2_5_1,
'token': 2201,
'token_str': ' Paris',
},
{
'sequence': 'The largest city in France is Lyon',
'score': 0.2_1_4,
'token': 12790,
'token_str': ' Lyon',
},
] , )
UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [
{'sequence': 'My name is Patrick', 'score': 0.0_0_5, 'token': 3499, 'token_str': ' Patrick'},
{'sequence': 'My name is Clara', 'score': 0.0_0_0, 'token': 13606, 'token_str': ' Clara'},
{'sequence': 'My name is Te', 'score': 0.0_0_0, 'token': 2941, 'token_str': ' Te'},
] , )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' )
UpperCamelCase_ = None
UpperCamelCase_ = None
self.run_pipeline_test(_UpperCAmelCase , [] )
@require_tf
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' )
UpperCamelCase_ = None
UpperCamelCase_ = None
self.run_pipeline_test(_UpperCAmelCase , [] )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]:
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' )
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = [
f"""This is another {tokenizer.mask_token} test""",
]
return fill_masker, examples
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]:
UpperCamelCase_ = fill_masker.tokenizer
UpperCamelCase_ = fill_masker.model
UpperCamelCase_ = fill_masker(
f"""This is a {tokenizer.mask_token}""" , )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}"""] )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] )
self.assertEqual(
_UpperCAmelCase , [
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
] , )
with self.assertRaises(_UpperCAmelCase ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(_UpperCAmelCase ):
fill_masker('This is' )
self.run_test_top_k(_UpperCAmelCase , _UpperCAmelCase )
self.run_test_targets(_UpperCAmelCase , _UpperCAmelCase )
self.run_test_top_k_targets(_UpperCAmelCase , _UpperCAmelCase )
self.fill_mask_with_duplicate_targets_and_top_k(_UpperCAmelCase , _UpperCAmelCase )
self.fill_mask_with_multiple_masks(_UpperCAmelCase , _UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]:
UpperCamelCase_ = tokenizer.get_vocab()
UpperCamelCase_ = sorted(vocab.keys() )[:2]
# Pipeline argument
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , targets=_UpperCAmelCase )
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = {vocab[el] for el in targets}
self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase )
UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) )
# Call argument
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = {vocab[el] for el in targets}
self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase )
UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) )
# Score equivalence
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase )
UpperCamelCase_ = [top_mask['token_str'] for top_mask in outputs]
UpperCamelCase_ = [top_mask['score'] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(_UpperCAmelCase ) == set(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase )
UpperCamelCase_ = [top_mask['score'] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) )
# Raises with invalid
with self.assertRaises(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[''] )
with self.assertRaises(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets='' )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple:
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , top_k=2 )
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 )
self.assertEqual(
_UpperCAmelCase , [
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
] , )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]:
UpperCamelCase_ = tokenizer.get_vocab()
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
# top_k=2, ntargets=3
UpperCamelCase_ = sorted(vocab.keys() )[:3]
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=_UpperCAmelCase )
# If we use the most probably targets, and filter differently, we should still
# have the same results
UpperCamelCase_ = [el['token_str'] for el in sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(_UpperCAmelCase ).issubset(_UpperCAmelCase ):
UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=_UpperCAmelCase )
# They should yield exactly the same result
self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]:
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = tokenizer.get_vocab()
# String duplicates + id duplicates
UpperCamelCase_ = sorted(vocab.keys() )[:3]
UpperCamelCase_ = [targets[0], targets[1], targets[0], targets[2], targets[1]]
UpperCamelCase_ = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=_UpperCAmelCase , top_k=10 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(_UpperCAmelCase ) , 3 )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]:
UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
UpperCamelCase_ = fill_masker(
f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 )
self.assertEqual(
_UpperCAmelCase , [
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
[
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
{'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )},
],
] , )
| 23 | 1 |
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
snake_case__ : int = {"""LayoutLMv2Config""", """LayoutLMv3Config"""}
@is_pipeline_test
class _a ( unittest.TestCase ):
"""simple docstring"""
A_ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
A_ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
A_ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
A_ = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def _UpperCAmelCase ( self ) -> Tuple:
UpperCamelCase_ = pipeline(
task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' )
UpperCamelCase_ = text_classifier('This is great !' )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': 'LABEL_0', 'score': 0.5_0_4}] )
UpperCamelCase_ = text_classifier('This is great !' , top_k=2 )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}] )
UpperCamelCase_ = text_classifier(['This is great !', 'This is bad'] , top_k=2 )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [
[{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}],
[{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}],
] , )
UpperCamelCase_ = text_classifier('This is great !' , top_k=1 )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': 'LABEL_0', 'score': 0.5_0_4}] )
# Legacy behavior
UpperCamelCase_ = text_classifier('This is great !' , return_all_scores=_UpperCAmelCase )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': 'LABEL_0', 'score': 0.5_0_4}] )
UpperCamelCase_ = text_classifier('This is great !' , return_all_scores=_UpperCAmelCase )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [[{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}]] )
UpperCamelCase_ = text_classifier(['This is great !', 'Something else'] , return_all_scores=_UpperCAmelCase )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [
[{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}],
[{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}],
] , )
UpperCamelCase_ = text_classifier(['This is great !', 'Something else'] , return_all_scores=_UpperCAmelCase )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [
{'label': 'LABEL_0', 'score': 0.5_0_4},
{'label': 'LABEL_0', 'score': 0.5_0_4},
] , )
@require_torch
def _UpperCAmelCase ( self ) -> Union[str, Any]:
import torch
UpperCamelCase_ = pipeline(
task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' , device=torch.device('cpu' ) , )
UpperCamelCase_ = text_classifier('This is great !' )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': 'LABEL_0', 'score': 0.5_0_4}] )
@require_tf
def _UpperCAmelCase ( self ) -> Tuple:
UpperCamelCase_ = pipeline(
task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='tf' )
UpperCamelCase_ = text_classifier('This is great !' )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': 'LABEL_0', 'score': 0.5_0_4}] )
@slow
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = pipeline('text-classification' )
UpperCamelCase_ = text_classifier('This is great !' )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': 'POSITIVE', 'score': 1.0}] )
UpperCamelCase_ = text_classifier('This is bad !' )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': 'NEGATIVE', 'score': 1.0}] )
UpperCamelCase_ = text_classifier('Birds are a type of animal' )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': 'POSITIVE', 'score': 0.9_8_8}] )
@slow
@require_tf
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = pipeline('text-classification' , framework='tf' )
UpperCamelCase_ = text_classifier('This is great !' )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': 'POSITIVE', 'score': 1.0}] )
UpperCamelCase_ = text_classifier('This is bad !' )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': 'NEGATIVE', 'score': 1.0}] )
UpperCamelCase_ = text_classifier('Birds are a type of animal' )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': 'POSITIVE', 'score': 0.9_8_8}] )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]:
UpperCamelCase_ = TextClassificationPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
return text_classifier, ["HuggingFace is in", "This is another test"]
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]:
UpperCamelCase_ = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
UpperCamelCase_ = 'HuggingFace is in'
UpperCamelCase_ = text_classifier(_UpperCAmelCase )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase )}] )
self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() )
UpperCamelCase_ = ['HuggingFace is in ', 'Paris is in France']
UpperCamelCase_ = text_classifier(_UpperCAmelCase )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [{'label': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase )}, {'label': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase )}] , )
self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() )
self.assertTrue(outputs[1]['label'] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
UpperCamelCase_ = text_classifier(_UpperCAmelCase , top_k=_UpperCAmelCase )
UpperCamelCase_ = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [[{'label': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase )}] * N, [{'label': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase )}] * N] , )
UpperCamelCase_ = {'text': 'HuggingFace is in ', 'text_pair': 'Paris is in France'}
UpperCamelCase_ = text_classifier(_UpperCAmelCase )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , {'label': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase )} , )
self.assertTrue(outputs['label'] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
UpperCamelCase_ = [['HuggingFace is in ', 'Paris is in France']]
with self.assertRaises(_UpperCAmelCase ):
text_classifier(_UpperCAmelCase )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
UpperCamelCase_ = text_classifier([[['HuggingFace is in ', 'Paris is in France']]] )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [{'label': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase )}] , )
self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() )
| 23 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
A_ = StableDiffusionSAGPipeline
A_ = TEXT_TO_IMAGE_PARAMS
A_ = TEXT_TO_IMAGE_BATCH_PARAMS
A_ = TEXT_TO_IMAGE_IMAGE_PARAMS
A_ = TEXT_TO_IMAGE_IMAGE_PARAMS
A_ = False
def _UpperCAmelCase ( self ) -> Optional[Any]:
torch.manual_seed(0 )
UpperCamelCase_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
UpperCamelCase_ = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , )
torch.manual_seed(0 )
UpperCamelCase_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCamelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
UpperCamelCase_ = CLIPTextModel(_UpperCAmelCase )
UpperCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
UpperCamelCase_ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ) -> List[Any]:
if str(_UpperCAmelCase ).startswith('mps' ):
UpperCamelCase_ = torch.manual_seed(_UpperCAmelCase )
else:
UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
UpperCamelCase_ = {
'prompt': '.',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 1.0,
'sag_scale': 1.0,
'output_type': 'numpy',
}
return inputs
def _UpperCAmelCase ( self ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class _a ( unittest.TestCase ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' )
UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase )
sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCamelCase_ = '.'
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = sag_pipe(
[prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' )
UpperCamelCase_ = output.images
UpperCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase_ = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' )
UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase )
sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCamelCase_ = '.'
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = sag_pipe(
[prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' )
UpperCamelCase_ = output.images
UpperCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase_ = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' )
UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase )
sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCamelCase_ = '.'
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = sag_pipe(
[prompt] , width=768 , height=512 , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , )
UpperCamelCase_ = output.images
assert image.shape == (1, 512, 768, 3)
| 23 | 1 |
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
)
@flax.struct.dataclass
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = 42
A_ = 42
class _a ( nn.Module ):
"""simple docstring"""
A_ = 42
A_ = (16, 32, 96, 256)
A_ = jnp.floataa
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = nn.Conv(
self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
UpperCamelCase_ = []
for i in range(len(self.block_out_channels ) - 1 ):
UpperCamelCase_ = self.block_out_channels[i]
UpperCamelCase_ = self.block_out_channels[i + 1]
UpperCamelCase_ = nn.Conv(
_UpperCAmelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
blocks.append(_UpperCAmelCase )
UpperCamelCase_ = nn.Conv(
_UpperCAmelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
blocks.append(_UpperCAmelCase )
UpperCamelCase_ = blocks
UpperCamelCase_ = nn.Conv(
self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
def __call__( self , _UpperCAmelCase ) -> Any:
UpperCamelCase_ = self.conv_in(_UpperCAmelCase )
UpperCamelCase_ = nn.silu(_UpperCAmelCase )
for block in self.blocks:
UpperCamelCase_ = block(_UpperCAmelCase )
UpperCamelCase_ = nn.silu(_UpperCAmelCase )
UpperCamelCase_ = self.conv_out(_UpperCAmelCase )
return embedding
@flax_register_to_config
class _a ( nn.Module , UpperCAmelCase__ , UpperCAmelCase__ ):
"""simple docstring"""
A_ = 32
A_ = 4
A_ = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
A_ = False
A_ = (320, 640, 1_280, 1_280)
A_ = 2
A_ = 8
A_ = None
A_ = 1_280
A_ = 0.0
A_ = False
A_ = jnp.floataa
A_ = True
A_ = 0
A_ = "rgb"
A_ = (16, 32, 96, 256)
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> FrozenDict:
# init input tensors
UpperCamelCase_ = (1, self.in_channels, self.sample_size, self.sample_size)
UpperCamelCase_ = jnp.zeros(_UpperCAmelCase , dtype=jnp.floataa )
UpperCamelCase_ = jnp.ones((1,) , dtype=jnp.intaa )
UpperCamelCase_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
UpperCamelCase_ = (1, 3, self.sample_size * 8, self.sample_size * 8)
UpperCamelCase_ = jnp.zeros(_UpperCAmelCase , dtype=jnp.floataa )
UpperCamelCase_ , UpperCamelCase_ = jax.random.split(_UpperCAmelCase )
UpperCamelCase_ = {'params': params_rng, 'dropout': dropout_rng}
return self.init(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )["params"]
def _UpperCAmelCase ( self ) -> List[str]:
UpperCamelCase_ = self.block_out_channels
UpperCamelCase_ = block_out_channels[0] * 4
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
UpperCamelCase_ = self.num_attention_heads or self.attention_head_dim
# input
UpperCamelCase_ = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
UpperCamelCase_ = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
UpperCamelCase_ = FlaxTimestepEmbedding(_UpperCAmelCase , dtype=self.dtype )
UpperCamelCase_ = FlaxControlNetConditioningEmbedding(
conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , )
UpperCamelCase_ = self.only_cross_attention
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
UpperCamelCase_ = (only_cross_attention,) * len(self.down_block_types )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
UpperCamelCase_ = (num_attention_heads,) * len(self.down_block_types )
# down
UpperCamelCase_ = []
UpperCamelCase_ = []
UpperCamelCase_ = block_out_channels[0]
UpperCamelCase_ = nn.Conv(
_UpperCAmelCase , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(_UpperCAmelCase )
for i, down_block_type in enumerate(self.down_block_types ):
UpperCamelCase_ = output_channel
UpperCamelCase_ = block_out_channels[i]
UpperCamelCase_ = i == len(_UpperCAmelCase ) - 1
if down_block_type == "CrossAttnDownBlock2D":
UpperCamelCase_ = FlaxCrossAttnDownBlockaD(
in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , )
else:
UpperCamelCase_ = FlaxDownBlockaD(
in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(_UpperCAmelCase )
for _ in range(self.layers_per_block ):
UpperCamelCase_ = nn.Conv(
_UpperCAmelCase , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(_UpperCAmelCase )
if not is_final_block:
UpperCamelCase_ = nn.Conv(
_UpperCAmelCase , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(_UpperCAmelCase )
UpperCamelCase_ = down_blocks
UpperCamelCase_ = controlnet_down_blocks
# mid
UpperCamelCase_ = block_out_channels[-1]
UpperCamelCase_ = FlaxUNetMidBlockaDCrossAttn(
in_channels=_UpperCAmelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , )
UpperCamelCase_ = nn.Conv(
_UpperCAmelCase , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1.0 , _UpperCAmelCase = True , _UpperCAmelCase = False , ) -> Union[FlaxControlNetOutput, Tuple]:
UpperCamelCase_ = self.controlnet_conditioning_channel_order
if channel_order == "bgr":
UpperCamelCase_ = jnp.flip(_UpperCAmelCase , axis=1 )
# 1. time
if not isinstance(_UpperCAmelCase , jnp.ndarray ):
UpperCamelCase_ = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(_UpperCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0:
UpperCamelCase_ = timesteps.astype(dtype=jnp.floataa )
UpperCamelCase_ = jnp.expand_dims(_UpperCAmelCase , 0 )
UpperCamelCase_ = self.time_proj(_UpperCAmelCase )
UpperCamelCase_ = self.time_embedding(_UpperCAmelCase )
# 2. pre-process
UpperCamelCase_ = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) )
UpperCamelCase_ = self.conv_in(_UpperCAmelCase )
UpperCamelCase_ = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) )
UpperCamelCase_ = self.controlnet_cond_embedding(_UpperCAmelCase )
sample += controlnet_cond
# 3. down
UpperCamelCase_ = (sample,)
for down_block in self.down_blocks:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
UpperCamelCase_ , UpperCamelCase_ = down_block(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , deterministic=not train )
else:
UpperCamelCase_ , UpperCamelCase_ = down_block(_UpperCAmelCase , _UpperCAmelCase , deterministic=not train )
down_block_res_samples += res_samples
# 4. mid
UpperCamelCase_ = self.mid_block(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , deterministic=not train )
# 5. contronet blocks
UpperCamelCase_ = ()
for down_block_res_sample, controlnet_block in zip(_UpperCAmelCase , self.controlnet_down_blocks ):
UpperCamelCase_ = controlnet_block(_UpperCAmelCase )
controlnet_down_block_res_samples += (down_block_res_sample,)
UpperCamelCase_ = controlnet_down_block_res_samples
UpperCamelCase_ = self.controlnet_mid_block(_UpperCAmelCase )
# 6. scaling
UpperCamelCase_ = [sample * conditioning_scale for sample in down_block_res_samples]
mid_block_res_sample *= conditioning_scale
if not return_dict:
return (down_block_res_samples, mid_block_res_sample)
return FlaxControlNetOutput(
down_block_res_samples=_UpperCAmelCase , mid_block_res_sample=_UpperCAmelCase )
| 23 |
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
snake_case__ : List[str] = TypeVar("""T""")
def _snake_case (__lowercase):
return (position - 1) // 2
def _snake_case (__lowercase):
return (2 * position) + 1
def _snake_case (__lowercase):
return (2 * position) + 2
class _a ( Generic[T] ):
"""simple docstring"""
def __init__( self ) -> None:
UpperCamelCase_ = []
UpperCamelCase_ = {}
UpperCamelCase_ = 0
def __len__( self ) -> int:
return self.elements
def __repr__( self ) -> str:
return str(self.heap )
def _UpperCAmelCase ( self ) -> bool:
# Check if the priority queue is empty
return self.elements == 0
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None:
# Add an element with given priority to the queue
self.heap.append((elem, weight) )
UpperCamelCase_ = self.elements
self.elements += 1
self._bubble_up(_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> T:
# Remove and return the element with lowest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
UpperCamelCase_ , UpperCamelCase_ = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
UpperCamelCase_ , UpperCamelCase_ = self.heap[0]
self._bubble_down(_UpperCAmelCase )
return elem
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None:
# Update the weight of the given key
UpperCamelCase_ = self.position_map[elem]
UpperCamelCase_ = (elem, weight)
if position > 0:
UpperCamelCase_ = get_parent_position(_UpperCAmelCase )
UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(_UpperCAmelCase )
else:
self._bubble_down(_UpperCAmelCase )
else:
self._bubble_down(_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None:
# Place a node at the proper position (upward movement) [to be used internally
# only]
UpperCamelCase_ = self.position_map[elem]
if curr_pos == 0:
return None
UpperCamelCase_ = get_parent_position(_UpperCAmelCase )
UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos]
UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase )
return self._bubble_up(_UpperCAmelCase )
return None
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None:
# Place a node at the proper position (downward movement) [to be used
# internally only]
UpperCamelCase_ = self.position_map[elem]
UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos]
UpperCamelCase_ = get_child_left_position(_UpperCAmelCase )
UpperCamelCase_ = get_child_right_position(_UpperCAmelCase )
if child_left_position < self.elements and child_right_position < self.elements:
UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position]
UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase )
return self._bubble_down(_UpperCAmelCase )
if child_left_position < self.elements:
UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase )
return self._bubble_down(_UpperCAmelCase )
else:
return None
if child_right_position < self.elements:
UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase )
return self._bubble_down(_UpperCAmelCase )
return None
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None:
# Swap the nodes at the given positions
UpperCamelCase_ = self.heap[nodea_pos][0]
UpperCamelCase_ = self.heap[nodea_pos][0]
UpperCamelCase_ , UpperCamelCase_ = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
UpperCamelCase_ = nodea_pos
UpperCamelCase_ = nodea_pos
class _a ( Generic[T] ):
"""simple docstring"""
def __init__( self ) -> None:
UpperCamelCase_ = {}
UpperCamelCase_ = 0
def __repr__( self ) -> str:
return str(self.connections )
def __len__( self ) -> int:
return self.nodes
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None:
# Add a node in the graph if it is not in the graph
if node not in self.connections:
UpperCamelCase_ = {}
self.nodes += 1
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None:
# Add an edge between 2 nodes in the graph
self.add_node(_UpperCAmelCase )
self.add_node(_UpperCAmelCase )
UpperCamelCase_ = weight
UpperCamelCase_ = weight
def _snake_case (__lowercase , ):
UpperCamelCase_ = {node: maxsize for node in graph.connections}
UpperCamelCase_ = {node: None for node in graph.connections}
UpperCamelCase_ = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(__lowercase , __lowercase)
if priority_queue.is_empty():
return dist, parent
# initialization
UpperCamelCase_ = priority_queue.extract_min()
UpperCamelCase_ = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
UpperCamelCase_ = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(__lowercase , dist[neighbour])
UpperCamelCase_ = node
# running prim's algorithm
while not priority_queue.is_empty():
UpperCamelCase_ = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
UpperCamelCase_ = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(__lowercase , dist[neighbour])
UpperCamelCase_ = node
return dist, parent
| 23 | 1 |
import copy
import inspect
import unittest
from transformers import PretrainedConfig, SwiftFormerConfig
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwiftFormerForImageClassification, SwiftFormerModel
from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _a :
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=224 , _UpperCAmelCase=1000 , _UpperCAmelCase=[3, 3, 6, 4] , _UpperCAmelCase=[48, 56, 112, 220] , ) -> Optional[int]:
UpperCamelCase_ = parent
UpperCamelCase_ = batch_size
UpperCamelCase_ = num_channels
UpperCamelCase_ = is_training
UpperCamelCase_ = use_labels
UpperCamelCase_ = hidden_dropout_prob
UpperCamelCase_ = attention_probs_dropout_prob
UpperCamelCase_ = num_labels
UpperCamelCase_ = image_size
UpperCamelCase_ = layer_depths
UpperCamelCase_ = embed_dims
def _UpperCAmelCase ( self ) -> Optional[Any]:
UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase_ = None
if self.use_labels:
UpperCamelCase_ = ids_tensor([self.batch_size] , self.num_labels )
UpperCamelCase_ = self.get_config()
return config, pixel_values, labels
def _UpperCAmelCase ( self ) -> str:
return SwiftFormerConfig(
depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='gelu' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_UpperCAmelCase , layer_scale_init_value=1e-5 , )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int:
UpperCamelCase_ = SwiftFormerModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCamelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]:
UpperCamelCase_ = self.num_labels
UpperCamelCase_ = SwiftFormerForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCamelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
UpperCamelCase_ = SwiftFormerForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCAmelCase ( self ) -> str:
((UpperCamelCase_) , (UpperCamelCase_) , (UpperCamelCase_)) = self.prepare_config_and_inputs()
UpperCamelCase_ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
A_ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else ()
A_ = (
{"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification}
if is_torch_available()
else {}
)
A_ = False
A_ = False
A_ = False
A_ = False
A_ = False
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = SwiftFormerModelTester(self )
UpperCamelCase_ = ConfigTester(
self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , )
def _UpperCAmelCase ( self ) -> str:
self.config_tester.run_common_tests()
@unittest.skip(reason='SwiftFormer does not use inputs_embeds' )
def _UpperCAmelCase ( self ) -> List[str]:
pass
def _UpperCAmelCase ( self ) -> int:
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase_ = model_class(_UpperCAmelCase )
UpperCamelCase_ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) )
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase_ = model_class(_UpperCAmelCase )
UpperCamelCase_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase_ = [*signature.parameters.keys()]
UpperCamelCase_ = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Any:
UpperCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
@slow
def _UpperCAmelCase ( self ) -> Optional[Any]:
for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase_ = SwiftFormerModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@unittest.skip(reason='SwiftFormer does not output attentions' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
pass
def _UpperCAmelCase ( self ) -> int:
def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
UpperCamelCase_ = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
UpperCamelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
UpperCamelCase_ = outputs.hidden_states
UpperCamelCase_ = 8
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # TODO
# SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width)
# with the width and height being successively divided by 2, after every 2 blocks
for i in range(len(_UpperCAmelCase ) ):
self.assertEqual(
hidden_states[i].shape , torch.Size(
[
self.model_tester.batch_size,
self.model_tester.embed_dims[i // 2],
(self.model_tester.image_size // 4) // 2 ** (i // 2),
(self.model_tester.image_size // 4) // 2 ** (i // 2),
] ) , )
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase_ = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase_ = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Tuple:
def _config_zero_init(_UpperCAmelCase ):
UpperCamelCase_ = copy.deepcopy(_UpperCAmelCase )
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(_UpperCAmelCase , _UpperCAmelCase , 1e-10 )
if isinstance(getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ):
UpperCamelCase_ = _config_zero_init(getattr(_UpperCAmelCase , _UpperCAmelCase ) )
setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return configs_no_init
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase_ = _config_zero_init(_UpperCAmelCase )
for model_class in self.all_model_classes:
UpperCamelCase_ = model_class(config=_UpperCAmelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
pass
def _snake_case ():
UpperCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
return image
@require_torch
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _UpperCAmelCase ( self ) -> List[str]:
return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs' ) if is_vision_available() else None
@slow
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs' ).to(_UpperCAmelCase )
UpperCamelCase_ = self.default_image_processor
UpperCamelCase_ = prepare_img()
UpperCamelCase_ = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCamelCase_ = model(**_UpperCAmelCase )
# verify the logits
UpperCamelCase_ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
UpperCamelCase_ = torch.tensor([[-2.1703e00, 2.1107e00, -2.0811e00]] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
| 23 |
from __future__ import annotations
import sys
from collections import deque
from typing import Generic, TypeVar
snake_case__ : Dict = TypeVar("""T""")
class _a ( Generic[T] ):
"""simple docstring"""
A_ = 42 # Cache store of keys
A_ = 42 # References of the keys in cache
A_ = 10 # Maximum capacity of cache
def __init__( self , _UpperCAmelCase ) -> None:
UpperCamelCase_ = deque()
UpperCamelCase_ = set()
if not n:
UpperCamelCase_ = sys.maxsize
elif n < 0:
raise ValueError('n should be an integer greater than 0.' )
else:
UpperCamelCase_ = n
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None:
if x not in self.key_reference:
if len(self.dq_store ) == LRUCache._MAX_CAPACITY:
UpperCamelCase_ = self.dq_store.pop()
self.key_reference.remove(_UpperCAmelCase )
else:
self.dq_store.remove(_UpperCAmelCase )
self.dq_store.appendleft(_UpperCAmelCase )
self.key_reference.add(_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> None:
for k in self.dq_store:
print(_UpperCAmelCase )
def __repr__( self ) -> str:
return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}"""
if __name__ == "__main__":
import doctest
doctest.testmod()
snake_case__ : LRUCache[str | int] = LRUCache(4)
lru_cache.refer("""A""")
lru_cache.refer(2)
lru_cache.refer(3)
lru_cache.refer("""A""")
lru_cache.refer(4)
lru_cache.refer(5)
lru_cache.display()
print(lru_cache)
assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
| 23 | 1 |
import argparse
import random
import joblib
import numpy as np
import torch
from igf.igf import (
SecondaryLearner,
collect_objective_set,
compute_perplexity,
generate_datasets,
load_gpta,
recopy_gpta,
set_seed,
train_secondary_learner,
)
from torch.utils.data import DataLoader, RandomSampler
from transformers import GPTaLMHeadModel
def _snake_case (__lowercase=32 , __lowercase=10 , __lowercase=100 , __lowercase=1026 , __lowercase=True , __lowercase="data/tokenized_stories_train_wikitext103.jbl" , __lowercase="igf_context_pairs.jbl" , ):
set_seed(3)
# generate train_data and objective_set
UpperCamelCase_ , UpperCamelCase_ = generate_datasets(
__lowercase , __lowercase , number=__lowercase , min_len=1026 , trim=__lowercase)
# keeps model same across runs
set_seed(4)
# model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights
# can we train on GPU?
UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# load pretrained model
UpperCamelCase_ = load_gpta('gpt2').to(__lowercase)
print('computing perplexity on objective set')
UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase).item()
print('perplexity on objective set:' , __lowercase)
# collect igf pairs and save to file demo.jbl
collect_objective_set(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase)
# clean up, delete model and data we don't need anymore
del model, train_data, objective_set
torch.cuda.empty_cache()
def _snake_case (__lowercase , __lowercase=15 , __lowercase=128 , __lowercase=100 , __lowercase="igf_model.pt" , ):
set_seed(42)
# Load pre-trained model
UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2')
# Initialize secondary learner to use embedding weights of model
UpperCamelCase_ = SecondaryLearner(__lowercase)
# Train secondary learner
UpperCamelCase_ = train_secondary_learner(
__lowercase , __lowercase , max_epochs=__lowercase , batch_size=__lowercase , eval_freq=100 , igf_model_path=__lowercase , )
del model, secondary_learner_train_data
torch.cuda.empty_cache()
return secondary_learner
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=32 , __lowercase=1000 , __lowercase=16 , __lowercase=1.0 , __lowercase=recopy_gpta , __lowercase=None , __lowercase=10 , __lowercase="gpt2_finetuned.pt" , ):
UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
UpperCamelCase_ = RandomSampler(__lowercase)
UpperCamelCase_ = DataLoader(__lowercase , sampler=__lowercase)
UpperCamelCase_ = max_steps // (len(__lowercase)) + 1
UpperCamelCase_ = 0
UpperCamelCase_ = torch.zeros((1, context_len) , dtype=torch.long , device=__lowercase)
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = recopy_model(__lowercase , __lowercase , __lowercase)
model.train()
if secondary_learner is not None:
secondary_learner.to(__lowercase)
secondary_learner.eval()
UpperCamelCase_ = []
UpperCamelCase_ = 0
UpperCamelCase_ = []
UpperCamelCase_ = []
# Compute the performance of the transformer model at the beginning
UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase)
test_perps.append(__lowercase)
print('Test perplexity, step' , __lowercase , ':' , __lowercase)
for epoch in range(int(__lowercase)):
for step, example in enumerate(__lowercase):
torch.cuda.empty_cache()
UpperCamelCase_ = random.randint(0 , example.size(2) - context_len - 1)
UpperCamelCase_ = example[0, 0, start : start + context_len]
lm_optimizer.zero_grad()
UpperCamelCase_ = model(__lowercase , labels=__lowercase)
UpperCamelCase_ = True
if secondary_learner is not None:
UpperCamelCase_ = secondary_learner.forward(
torch.tensor(__lowercase , dtype=torch.long , device=__lowercase).unsqueeze(0))[0].item()
observed_qs.append(float(__lowercase))
# Here we implement the simple non-constant threshold for the predicted IG(X) value
# We will decay the selectivity of our secondary learner filter from
# 1 standard deviation above average to 1 below average after 10 batches.
if global_step == 10:
UpperCamelCase_ = -1
if predicted_q < threshold:
UpperCamelCase_ = False
# If we passed the filter, add the context to the batch!
if do_backprop:
contexts.append(np.array(context.cpu()))
UpperCamelCase_ = outputs[0]
lm_loss.backward()
examples += 1
del outputs
# Once the batch is filled with enough contexts, backprop on the batch.
if examples == batch_size:
torch.cuda.empty_cache()
UpperCamelCase_ = 0
# Do LM backprop
torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0)
lm_optimizer.step()
lm_scheduler.step() # Update learning rate schedule
global_step += 1
# Compute the performance of the transformer model at this batch
if global_step % eval_interval == 0:
UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase)
test_perps.append(__lowercase)
print('Test perplexity, step' , __lowercase , ':' , __lowercase)
# Break out of the loop after 60 batches
if max_steps > 0 and global_step > 60:
break
if max_steps > 0 and global_step > 60:
break
# save finetuned transformer model
torch.save(model.state_dict() , __lowercase)
torch.cuda.empty_cache()
# Do some cleaning up so we can reinitialize for the next run of this function
del lm_optimizer
del lm_scheduler
return model
def _snake_case ():
UpperCamelCase_ = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task')
# Required parameters
parser.add_argument(
'--data_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The input data dir. Should contain data files for WikiText.' , )
parser.add_argument(
'--model_name_or_path' , default=__lowercase , type=__lowercase , required=__lowercase , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--data_file' , type=__lowercase , default=__lowercase , help=(
'A jbl file containing tokenized data which can be split as objective dataset, '
'train_dataset and test_dataset.'
) , )
parser.add_argument(
'--igf_data_file' , type=__lowercase , default=__lowercase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , )
parser.add_argument(
'--output_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The output directory where the final fine-tuned model is stored.' , )
parser.add_argument(
'--tokenizer_name' , default=__lowercase , type=__lowercase , help='Pretrained tokenizer name or path if not the same as model_name' , )
parser.add_argument('--seed' , type=__lowercase , default=__lowercase , help='A seed for reproducible training.')
parser.add_argument(
'--context_len' , default=32 , type=__lowercase , help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
) , )
parser.add_argument(
'--size_objective_set' , default=100 , type=__lowercase , help='number of articles that are long enough to be used as our objective set' , )
parser.add_argument(
'--eval_freq' , default=100 , type=__lowercase , help='secondary model evaluation is triggered at eval_freq')
parser.add_argument('--max_steps' , default=1000 , type=__lowercase , help='To calculate training epochs')
parser.add_argument(
'--secondary_learner_batch_size' , default=128 , type=__lowercase , help='batch size of training data for secondary learner' , )
parser.add_argument(
'--batch_size' , default=16 , type=__lowercase , help='batch size of training data of language model(gpt2) ')
parser.add_argument(
'--eval_interval' , default=10 , type=__lowercase , help=(
'decay the selectivity of our secondary learner filter from'
'1 standard deviation above average to 1 below average after 10 batches'
) , )
parser.add_argument(
'--number' , default=100 , type=__lowercase , help='The number of examples split to be used as objective_set/test_data')
parser.add_argument(
'--min_len' , default=1026 , type=__lowercase , help='The minimum length of the article to be used as objective set')
parser.add_argument(
'--secondary_learner_max_epochs' , default=15 , type=__lowercase , help='number of epochs to train secondary learner')
parser.add_argument('--trim' , default=__lowercase , type=__lowercase , help='truncate the example if it exceeds context length')
parser.add_argument(
'--threshold' , default=1.0 , type=__lowercase , help=(
'The threshold value used by secondary learner to filter the train_data and allow only'
' informative data as input to the model'
) , )
parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=__lowercase , help='finetuned_model_name')
parser.add_argument(
'--recopy_model' , default=__lowercase , type=__lowercase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , )
# function calls
# Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner
generate_n_pairs(
context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=__lowercase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , )
# Load train data for secondary learner
UpperCamelCase_ = joblib.load('data/IGF_values.jbl')
# Train secondary learner
UpperCamelCase_ = training_secondary_learner(
__lowercase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , )
# load pretrained gpt2 model
UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2')
set_seed(42)
# Generate train and test data to train and evaluate gpt2 model
UpperCamelCase_ , UpperCamelCase_ = generate_datasets(
context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=__lowercase)
# fine-tuning of the gpt2 model using igf (Information Gain Filtration)
finetune(
__lowercase , __lowercase , __lowercase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=__lowercase , secondary_learner=__lowercase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , )
if __name__ == "__main__":
main()
| 23 |
import numpy as np
def _snake_case (__lowercase):
return 1 / (1 + np.exp(-vector))
def _snake_case (__lowercase):
return vector * sigmoid(__lowercase)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
A_ = StableUnCLIPImgaImgPipeline
A_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
A_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
A_ = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
A_ = frozenset([] )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = 32
UpperCamelCase_ = embedder_hidden_size
# image encoding components
UpperCamelCase_ = CLIPImageProcessor(crop_size=32 , size=32 )
torch.manual_seed(0 )
UpperCamelCase_ = CLIPVisionModelWithProjection(
CLIPVisionConfig(
hidden_size=_UpperCAmelCase , projection_dim=_UpperCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) )
# regular denoising components
torch.manual_seed(0 )
UpperCamelCase_ = StableUnCLIPImageNormalizer(embedding_dim=_UpperCAmelCase )
UpperCamelCase_ = DDPMScheduler(beta_schedule='squaredcos_cap_v2' )
torch.manual_seed(0 )
UpperCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
torch.manual_seed(0 )
UpperCamelCase_ = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
UpperCamelCase_ = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_UpperCAmelCase , layers_per_block=1 , upcast_attention=_UpperCAmelCase , use_linear_projection=_UpperCAmelCase , )
torch.manual_seed(0 )
UpperCamelCase_ = DDIMScheduler(
beta_schedule='scaled_linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='v_prediction' , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , )
torch.manual_seed(0 )
UpperCamelCase_ = AutoencoderKL()
UpperCamelCase_ = {
# image encoding components
'feature_extractor': feature_extractor,
'image_encoder': image_encoder.eval(),
# image noising components
'image_normalizer': image_normalizer.eval(),
'image_noising_scheduler': image_noising_scheduler,
# regular denoising components
'tokenizer': tokenizer,
'text_encoder': text_encoder.eval(),
'unet': unet.eval(),
'scheduler': scheduler,
'vae': vae.eval(),
}
return components
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 , _UpperCAmelCase=True ) -> Optional[int]:
if str(_UpperCAmelCase ).startswith('mps' ):
UpperCamelCase_ = torch.manual_seed(_UpperCAmelCase )
else:
UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
UpperCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase )
if pil_image:
UpperCamelCase_ = input_image * 0.5 + 0.5
UpperCamelCase_ = input_image.clamp(0 , 1 )
UpperCamelCase_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
UpperCamelCase_ = DiffusionPipeline.numpy_to_pil(_UpperCAmelCase )[0]
return {
"prompt": "An anime racoon running a marathon",
"image": input_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
}
@skip_mps
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator
UpperCamelCase_ = self.get_dummy_components()
UpperCamelCase_ = StableUnCLIPImgaImgPipeline(**_UpperCAmelCase )
UpperCamelCase_ = sd_pipe.to(_UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCamelCase_ = self.get_dummy_inputs(_UpperCAmelCase )
inputs.update({'image_embeds': None} )
UpperCamelCase_ = sd_pipe(**_UpperCAmelCase ).images
UpperCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCamelCase_ = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _UpperCAmelCase ( self ) -> Any:
UpperCamelCase_ = torch_device in ['cpu', 'mps']
self._test_attention_slicing_forward_pass(test_max_difference=_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = torch_device in ['cpu', 'mps']
self._test_inference_batch_single_identical(test_max_difference=_UpperCAmelCase )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def _UpperCAmelCase ( self ) -> Tuple:
self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_UpperCAmelCase )
@slow
@require_torch_gpu
class _a ( unittest.TestCase ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' )
UpperCamelCase_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy' )
UpperCamelCase_ = StableUnCLIPImgaImgPipeline.from_pretrained(
'fusing/stable-unclip-2-1-l-img2img' , torch_dtype=torch.floataa )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCamelCase_ = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase_ = pipe(_UpperCAmelCase , 'anime turle' , generator=_UpperCAmelCase , output_type='np' )
UpperCamelCase_ = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
def _UpperCAmelCase ( self ) -> int:
UpperCamelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' )
UpperCamelCase_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy' )
UpperCamelCase_ = StableUnCLIPImgaImgPipeline.from_pretrained(
'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCamelCase_ = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase_ = pipe(_UpperCAmelCase , 'anime turle' , generator=_UpperCAmelCase , output_type='np' )
UpperCamelCase_ = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' )
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
UpperCamelCase_ = StableUnCLIPImgaImgPipeline.from_pretrained(
'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa )
UpperCamelCase_ = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCamelCase_ = pipe(
_UpperCAmelCase , 'anime turtle' , num_inference_steps=2 , output_type='np' , )
UpperCamelCase_ = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 23 |
import math
from datetime import datetime, timedelta
def _snake_case (__lowercase):
UpperCamelCase_ = year % 19
UpperCamelCase_ = year % 4
UpperCamelCase_ = year % 7
UpperCamelCase_ = math.floor(year / 100)
UpperCamelCase_ = math.floor((13 + 8 * leap_day_inhibits) / 25)
UpperCamelCase_ = leap_day_inhibits / 4
UpperCamelCase_ = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
UpperCamelCase_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
UpperCamelCase_ = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
UpperCamelCase_ = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(__lowercase , 4 , 19)
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(__lowercase , 4 , 18)
else:
return datetime(__lowercase , 3 , 22) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday))
if __name__ == "__main__":
for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3):
snake_case__ : Dict = """will be""" if year > datetime.now().year else """was"""
print(f'Easter in {year} {tense} {gauss_easter(year)}')
| 23 | 1 |
def _snake_case (__lowercase , __lowercase):
if a < 0 or b < 0:
raise ValueError('the value of both inputs must be positive')
UpperCamelCase_ = str(bin(__lowercase))[2:] # remove the leading "0b"
UpperCamelCase_ = str(bin(__lowercase))[2:]
UpperCamelCase_ = max(len(__lowercase) , len(__lowercase))
return "0b" + "".join(
str(int('1' in (char_a, char_b)))
for char_a, char_b in zip(a_binary.zfill(__lowercase) , b_binary.zfill(__lowercase)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 |
import requests
def _snake_case (__lowercase , __lowercase):
UpperCamelCase_ = {'Content-Type': 'application/json'}
UpperCamelCase_ = requests.post(__lowercase , json={'text': message_body} , headers=__lowercase)
if response.status_code != 200:
UpperCamelCase_ = (
'Request to slack returned an error '
f"""{response.status_code}, the response is:\n{response.text}"""
)
raise ValueError(__lowercase)
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
| 23 | 1 |
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
snake_case__ : List[str] = TypeVar("""T""")
def _snake_case (__lowercase):
return (position - 1) // 2
def _snake_case (__lowercase):
return (2 * position) + 1
def _snake_case (__lowercase):
return (2 * position) + 2
class _a ( Generic[T] ):
"""simple docstring"""
def __init__( self ) -> None:
UpperCamelCase_ = []
UpperCamelCase_ = {}
UpperCamelCase_ = 0
def __len__( self ) -> int:
return self.elements
def __repr__( self ) -> str:
return str(self.heap )
def _UpperCAmelCase ( self ) -> bool:
# Check if the priority queue is empty
return self.elements == 0
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None:
# Add an element with given priority to the queue
self.heap.append((elem, weight) )
UpperCamelCase_ = self.elements
self.elements += 1
self._bubble_up(_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> T:
# Remove and return the element with lowest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
UpperCamelCase_ , UpperCamelCase_ = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
UpperCamelCase_ , UpperCamelCase_ = self.heap[0]
self._bubble_down(_UpperCAmelCase )
return elem
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None:
# Update the weight of the given key
UpperCamelCase_ = self.position_map[elem]
UpperCamelCase_ = (elem, weight)
if position > 0:
UpperCamelCase_ = get_parent_position(_UpperCAmelCase )
UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(_UpperCAmelCase )
else:
self._bubble_down(_UpperCAmelCase )
else:
self._bubble_down(_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None:
# Place a node at the proper position (upward movement) [to be used internally
# only]
UpperCamelCase_ = self.position_map[elem]
if curr_pos == 0:
return None
UpperCamelCase_ = get_parent_position(_UpperCAmelCase )
UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos]
UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase )
return self._bubble_up(_UpperCAmelCase )
return None
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None:
# Place a node at the proper position (downward movement) [to be used
# internally only]
UpperCamelCase_ = self.position_map[elem]
UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos]
UpperCamelCase_ = get_child_left_position(_UpperCAmelCase )
UpperCamelCase_ = get_child_right_position(_UpperCAmelCase )
if child_left_position < self.elements and child_right_position < self.elements:
UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position]
UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase )
return self._bubble_down(_UpperCAmelCase )
if child_left_position < self.elements:
UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase )
return self._bubble_down(_UpperCAmelCase )
else:
return None
if child_right_position < self.elements:
UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase )
return self._bubble_down(_UpperCAmelCase )
return None
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None:
# Swap the nodes at the given positions
UpperCamelCase_ = self.heap[nodea_pos][0]
UpperCamelCase_ = self.heap[nodea_pos][0]
UpperCamelCase_ , UpperCamelCase_ = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
UpperCamelCase_ = nodea_pos
UpperCamelCase_ = nodea_pos
class _a ( Generic[T] ):
"""simple docstring"""
def __init__( self ) -> None:
UpperCamelCase_ = {}
UpperCamelCase_ = 0
def __repr__( self ) -> str:
return str(self.connections )
def __len__( self ) -> int:
return self.nodes
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None:
# Add a node in the graph if it is not in the graph
if node not in self.connections:
UpperCamelCase_ = {}
self.nodes += 1
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None:
# Add an edge between 2 nodes in the graph
self.add_node(_UpperCAmelCase )
self.add_node(_UpperCAmelCase )
UpperCamelCase_ = weight
UpperCamelCase_ = weight
def _snake_case (__lowercase , ):
UpperCamelCase_ = {node: maxsize for node in graph.connections}
UpperCamelCase_ = {node: None for node in graph.connections}
UpperCamelCase_ = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(__lowercase , __lowercase)
if priority_queue.is_empty():
return dist, parent
# initialization
UpperCamelCase_ = priority_queue.extract_min()
UpperCamelCase_ = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
UpperCamelCase_ = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(__lowercase , dist[neighbour])
UpperCamelCase_ = node
# running prim's algorithm
while not priority_queue.is_empty():
UpperCamelCase_ = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
UpperCamelCase_ = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(__lowercase , dist[neighbour])
UpperCamelCase_ = node
return dist, parent
| 23 |
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict:
with open(_UpperCAmelCase , encoding='utf-8' ) as input_file:
UpperCamelCase_ = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' )
UpperCamelCase_ = input_file.read()
UpperCamelCase_ = regexp.search(_UpperCAmelCase )
return match
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict:
with open(_UpperCAmelCase , encoding='utf-8' ) as input_file:
UpperCamelCase_ = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL )
UpperCamelCase_ = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
UpperCamelCase_ = regexp.finditer(_UpperCAmelCase )
UpperCamelCase_ = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def _UpperCAmelCase ( self ) -> List[str]:
UpperCamelCase_ = Path('./datasets' )
UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(_UpperCAmelCase ) ):
raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" )
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ = Path('./datasets' )
UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) )
for dataset in dataset_files:
if self._no_print_statements(str(_UpperCAmelCase ) ):
raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
| 23 | 1 |
import unittest
from transformers import DonutProcessor
snake_case__ : Union[str, Any] = """naver-clova-ix/donut-base"""
class _a ( unittest.TestCase ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> Any:
UpperCamelCase_ = DonutProcessor.from_pretrained(_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = {
'name': 'John Doe',
'age': '99',
'city': 'Atlanta',
'state': 'GA',
'zip': '30301',
'phone': '123-4567',
'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}],
}
UpperCamelCase_ = (
'<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>'
'<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>'
'<s_nicknames><s_nickname>Johnny</s_nickname>'
'<sep/><s_nickname>JD</s_nickname></s_nicknames>'
)
UpperCamelCase_ = self.processor.tokenajson(_UpperCAmelCase )
self.assertDictEqual(_UpperCAmelCase , _UpperCAmelCase )
| 23 |
import argparse
import random
import joblib
import numpy as np
import torch
from igf.igf import (
SecondaryLearner,
collect_objective_set,
compute_perplexity,
generate_datasets,
load_gpta,
recopy_gpta,
set_seed,
train_secondary_learner,
)
from torch.utils.data import DataLoader, RandomSampler
from transformers import GPTaLMHeadModel
def _snake_case (__lowercase=32 , __lowercase=10 , __lowercase=100 , __lowercase=1026 , __lowercase=True , __lowercase="data/tokenized_stories_train_wikitext103.jbl" , __lowercase="igf_context_pairs.jbl" , ):
set_seed(3)
# generate train_data and objective_set
UpperCamelCase_ , UpperCamelCase_ = generate_datasets(
__lowercase , __lowercase , number=__lowercase , min_len=1026 , trim=__lowercase)
# keeps model same across runs
set_seed(4)
# model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights
# can we train on GPU?
UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# load pretrained model
UpperCamelCase_ = load_gpta('gpt2').to(__lowercase)
print('computing perplexity on objective set')
UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase).item()
print('perplexity on objective set:' , __lowercase)
# collect igf pairs and save to file demo.jbl
collect_objective_set(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase)
# clean up, delete model and data we don't need anymore
del model, train_data, objective_set
torch.cuda.empty_cache()
def _snake_case (__lowercase , __lowercase=15 , __lowercase=128 , __lowercase=100 , __lowercase="igf_model.pt" , ):
set_seed(42)
# Load pre-trained model
UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2')
# Initialize secondary learner to use embedding weights of model
UpperCamelCase_ = SecondaryLearner(__lowercase)
# Train secondary learner
UpperCamelCase_ = train_secondary_learner(
__lowercase , __lowercase , max_epochs=__lowercase , batch_size=__lowercase , eval_freq=100 , igf_model_path=__lowercase , )
del model, secondary_learner_train_data
torch.cuda.empty_cache()
return secondary_learner
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=32 , __lowercase=1000 , __lowercase=16 , __lowercase=1.0 , __lowercase=recopy_gpta , __lowercase=None , __lowercase=10 , __lowercase="gpt2_finetuned.pt" , ):
UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
UpperCamelCase_ = RandomSampler(__lowercase)
UpperCamelCase_ = DataLoader(__lowercase , sampler=__lowercase)
UpperCamelCase_ = max_steps // (len(__lowercase)) + 1
UpperCamelCase_ = 0
UpperCamelCase_ = torch.zeros((1, context_len) , dtype=torch.long , device=__lowercase)
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = recopy_model(__lowercase , __lowercase , __lowercase)
model.train()
if secondary_learner is not None:
secondary_learner.to(__lowercase)
secondary_learner.eval()
UpperCamelCase_ = []
UpperCamelCase_ = 0
UpperCamelCase_ = []
UpperCamelCase_ = []
# Compute the performance of the transformer model at the beginning
UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase)
test_perps.append(__lowercase)
print('Test perplexity, step' , __lowercase , ':' , __lowercase)
for epoch in range(int(__lowercase)):
for step, example in enumerate(__lowercase):
torch.cuda.empty_cache()
UpperCamelCase_ = random.randint(0 , example.size(2) - context_len - 1)
UpperCamelCase_ = example[0, 0, start : start + context_len]
lm_optimizer.zero_grad()
UpperCamelCase_ = model(__lowercase , labels=__lowercase)
UpperCamelCase_ = True
if secondary_learner is not None:
UpperCamelCase_ = secondary_learner.forward(
torch.tensor(__lowercase , dtype=torch.long , device=__lowercase).unsqueeze(0))[0].item()
observed_qs.append(float(__lowercase))
# Here we implement the simple non-constant threshold for the predicted IG(X) value
# We will decay the selectivity of our secondary learner filter from
# 1 standard deviation above average to 1 below average after 10 batches.
if global_step == 10:
UpperCamelCase_ = -1
if predicted_q < threshold:
UpperCamelCase_ = False
# If we passed the filter, add the context to the batch!
if do_backprop:
contexts.append(np.array(context.cpu()))
UpperCamelCase_ = outputs[0]
lm_loss.backward()
examples += 1
del outputs
# Once the batch is filled with enough contexts, backprop on the batch.
if examples == batch_size:
torch.cuda.empty_cache()
UpperCamelCase_ = 0
# Do LM backprop
torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0)
lm_optimizer.step()
lm_scheduler.step() # Update learning rate schedule
global_step += 1
# Compute the performance of the transformer model at this batch
if global_step % eval_interval == 0:
UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase)
test_perps.append(__lowercase)
print('Test perplexity, step' , __lowercase , ':' , __lowercase)
# Break out of the loop after 60 batches
if max_steps > 0 and global_step > 60:
break
if max_steps > 0 and global_step > 60:
break
# save finetuned transformer model
torch.save(model.state_dict() , __lowercase)
torch.cuda.empty_cache()
# Do some cleaning up so we can reinitialize for the next run of this function
del lm_optimizer
del lm_scheduler
return model
def _snake_case ():
UpperCamelCase_ = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task')
# Required parameters
parser.add_argument(
'--data_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The input data dir. Should contain data files for WikiText.' , )
parser.add_argument(
'--model_name_or_path' , default=__lowercase , type=__lowercase , required=__lowercase , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--data_file' , type=__lowercase , default=__lowercase , help=(
'A jbl file containing tokenized data which can be split as objective dataset, '
'train_dataset and test_dataset.'
) , )
parser.add_argument(
'--igf_data_file' , type=__lowercase , default=__lowercase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , )
parser.add_argument(
'--output_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The output directory where the final fine-tuned model is stored.' , )
parser.add_argument(
'--tokenizer_name' , default=__lowercase , type=__lowercase , help='Pretrained tokenizer name or path if not the same as model_name' , )
parser.add_argument('--seed' , type=__lowercase , default=__lowercase , help='A seed for reproducible training.')
parser.add_argument(
'--context_len' , default=32 , type=__lowercase , help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
) , )
parser.add_argument(
'--size_objective_set' , default=100 , type=__lowercase , help='number of articles that are long enough to be used as our objective set' , )
parser.add_argument(
'--eval_freq' , default=100 , type=__lowercase , help='secondary model evaluation is triggered at eval_freq')
parser.add_argument('--max_steps' , default=1000 , type=__lowercase , help='To calculate training epochs')
parser.add_argument(
'--secondary_learner_batch_size' , default=128 , type=__lowercase , help='batch size of training data for secondary learner' , )
parser.add_argument(
'--batch_size' , default=16 , type=__lowercase , help='batch size of training data of language model(gpt2) ')
parser.add_argument(
'--eval_interval' , default=10 , type=__lowercase , help=(
'decay the selectivity of our secondary learner filter from'
'1 standard deviation above average to 1 below average after 10 batches'
) , )
parser.add_argument(
'--number' , default=100 , type=__lowercase , help='The number of examples split to be used as objective_set/test_data')
parser.add_argument(
'--min_len' , default=1026 , type=__lowercase , help='The minimum length of the article to be used as objective set')
parser.add_argument(
'--secondary_learner_max_epochs' , default=15 , type=__lowercase , help='number of epochs to train secondary learner')
parser.add_argument('--trim' , default=__lowercase , type=__lowercase , help='truncate the example if it exceeds context length')
parser.add_argument(
'--threshold' , default=1.0 , type=__lowercase , help=(
'The threshold value used by secondary learner to filter the train_data and allow only'
' informative data as input to the model'
) , )
parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=__lowercase , help='finetuned_model_name')
parser.add_argument(
'--recopy_model' , default=__lowercase , type=__lowercase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , )
# function calls
# Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner
generate_n_pairs(
context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=__lowercase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , )
# Load train data for secondary learner
UpperCamelCase_ = joblib.load('data/IGF_values.jbl')
# Train secondary learner
UpperCamelCase_ = training_secondary_learner(
__lowercase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , )
# load pretrained gpt2 model
UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2')
set_seed(42)
# Generate train and test data to train and evaluate gpt2 model
UpperCamelCase_ , UpperCamelCase_ = generate_datasets(
context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=__lowercase)
# fine-tuning of the gpt2 model using igf (Information Gain Filtration)
finetune(
__lowercase , __lowercase , __lowercase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=__lowercase , secondary_learner=__lowercase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , )
if __name__ == "__main__":
main()
| 23 | 1 |
def _snake_case (__lowercase):
if not isinstance(__lowercase , __lowercase):
raise TypeError('only integers accepted as input')
else:
UpperCamelCase_ = str(abs(__lowercase))
UpperCamelCase_ = [list(__lowercase) for char in range(len(__lowercase))]
for index in range(len(__lowercase)):
num_transpositions[index].pop(__lowercase)
return max(
int(''.join(list(__lowercase))) for transposition in num_transpositions)
if __name__ == "__main__":
__import__("""doctest""").testmod()
| 23 |
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class _a :
"""simple docstring"""
A_ = MBartConfig
A_ = {}
A_ = """gelu"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ) -> Union[str, Any]:
UpperCamelCase_ = parent
UpperCamelCase_ = batch_size
UpperCamelCase_ = seq_length
UpperCamelCase_ = is_training
UpperCamelCase_ = use_labels
UpperCamelCase_ = vocab_size
UpperCamelCase_ = hidden_size
UpperCamelCase_ = num_hidden_layers
UpperCamelCase_ = num_attention_heads
UpperCamelCase_ = intermediate_size
UpperCamelCase_ = hidden_dropout_prob
UpperCamelCase_ = attention_probs_dropout_prob
UpperCamelCase_ = max_position_embeddings
UpperCamelCase_ = eos_token_id
UpperCamelCase_ = pad_token_id
UpperCamelCase_ = bos_token_id
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase_ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCamelCase_ = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return config, inputs_dict
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]:
UpperCamelCase_ = TFMBartModel(config=_UpperCAmelCase ).get_decoder()
UpperCamelCase_ = inputs_dict['input_ids']
UpperCamelCase_ = input_ids[:1, :]
UpperCamelCase_ = inputs_dict['attention_mask'][:1, :]
UpperCamelCase_ = inputs_dict['head_mask']
UpperCamelCase_ = 1
# first forward pass
UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase )
UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple()
UpperCamelCase_ = past_key_values[1]
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ):
if attention_mask is None:
UpperCamelCase_ = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id) , tf.inta)
if decoder_attention_mask is None:
UpperCamelCase_ = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta),
] , axis=-1 , )
if head_mask is None:
UpperCamelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads))
if decoder_head_mask is None:
UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads))
if cross_attn_head_mask is None:
UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads))
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
A_ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
A_ = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
A_ = (
{
"""conversational""": TFMBartForConditionalGeneration,
"""feature-extraction""": TFMBartModel,
"""summarization""": TFMBartForConditionalGeneration,
"""text2text-generation""": TFMBartForConditionalGeneration,
"""translation""": TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
A_ = True
A_ = False
A_ = False
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple:
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ = TFMBartModelTester(self )
UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase )
@require_sentencepiece
@require_tokenizers
@require_tf
class _a ( unittest.TestCase ):
"""simple docstring"""
A_ = [
""" UN Chief Says There Is No Military Solution in Syria""",
]
A_ = [
"""Şeful ONU declară că nu există o soluţie militară în Siria""",
]
A_ = """facebook/mbart-large-en-ro"""
@cached_property
def _UpperCAmelCase ( self ) -> Any:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _UpperCAmelCase ( self ) -> List[str]:
UpperCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> int:
UpperCamelCase_ = self.translate_src_text(**_UpperCAmelCase )
self.assertListEqual(self.expected_text , _UpperCAmelCase )
def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> List[str]:
UpperCamelCase_ = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='tf' )
UpperCamelCase_ = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
UpperCamelCase_ = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
return generated_words
@slow
def _UpperCAmelCase ( self ) -> List[Any]:
self._assert_generated_batch_equal_expected()
| 23 | 1 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class _a :
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=12 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=0 , _UpperCAmelCase=None , ) -> Dict:
UpperCamelCase_ = parent
UpperCamelCase_ = batch_size
UpperCamelCase_ = seq_length
UpperCamelCase_ = is_training
UpperCamelCase_ = use_input_mask
UpperCamelCase_ = use_labels
UpperCamelCase_ = vocab_size
UpperCamelCase_ = hidden_size
UpperCamelCase_ = projection_dim
UpperCamelCase_ = num_hidden_layers
UpperCamelCase_ = num_attention_heads
UpperCamelCase_ = intermediate_size
UpperCamelCase_ = dropout
UpperCamelCase_ = attention_dropout
UpperCamelCase_ = max_position_embeddings
UpperCamelCase_ = initializer_range
UpperCamelCase_ = scope
UpperCamelCase_ = bos_token_id
def _UpperCAmelCase ( self ) -> Dict:
UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase_ = None
if self.use_input_mask:
UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
UpperCamelCase_ = input_mask.numpy()
UpperCamelCase_ , UpperCamelCase_ = input_mask.shape
UpperCamelCase_ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(_UpperCAmelCase ):
UpperCamelCase_ = 1
UpperCamelCase_ = 0
UpperCamelCase_ = self.get_config()
return config, input_ids, tf.convert_to_tensor(_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
return BlipTextConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]:
UpperCamelCase_ = TFBlipTextModel(config=_UpperCAmelCase )
UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , training=_UpperCAmelCase )
UpperCamelCase_ = model(_UpperCAmelCase , training=_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = self.prepare_config_and_inputs()
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs
UpperCamelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class _a ( UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
A_ = (TFBlipTextModel,) if is_tf_available() else ()
A_ = False
A_ = False
A_ = False
def _UpperCAmelCase ( self ) -> List[str]:
UpperCamelCase_ = BlipTextModelTester(self )
UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def _UpperCAmelCase ( self ) -> List[str]:
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> Optional[Any]:
UpperCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[Any]:
pass
def _UpperCAmelCase ( self ) -> List[Any]:
pass
@unittest.skip(reason='Blip does not use inputs_embeds' )
def _UpperCAmelCase ( self ) -> List[str]:
pass
@unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
pass
@unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' )
def _UpperCAmelCase ( self ) -> Dict:
pass
@slow
def _UpperCAmelCase ( self ) -> int:
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase_ = TFBlipTextModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase=True ) -> List[Any]:
super().test_pt_tf_model_equivalence(allow_missing_keys=_UpperCAmelCase )
| 23 |
def _snake_case (__lowercase):
UpperCamelCase_ = 1
for i in range(1 , num + 1):
fact *= i
return fact
def _snake_case (__lowercase):
UpperCamelCase_ = 0
while number > 0:
UpperCamelCase_ = number % 10
sum_of_digits += last_digit
UpperCamelCase_ = number // 10 # Removing the last_digit from the given number
return sum_of_digits
def _snake_case (__lowercase = 100):
UpperCamelCase_ = factorial(__lowercase)
UpperCamelCase_ = split_and_add(__lowercase)
return result
if __name__ == "__main__":
print(solution(int(input("""Enter the Number: """).strip())))
| 23 | 1 |
import re
def _snake_case (__lowercase):
return [char.split() for char in re.split(r'[^ a-z A-Z 0-9 \s]' , str_)]
def _snake_case (__lowercase):
UpperCamelCase_ = split_input(str_)
return "".join(
[''.join([char.capitalize() for char in sub_str]) for sub_str in string_split])
def _snake_case (__lowercase , __lowercase , __lowercase):
try:
UpperCamelCase_ = split_input(__lowercase)
if upper:
UpperCamelCase_ = ''.join(
[
separator.join([char.upper() for char in sub_str])
for sub_str in string_split
])
else:
UpperCamelCase_ = ''.join(
[
separator.join([char.lower() for char in sub_str])
for sub_str in string_split
])
return res_str
except IndexError:
return "not valid string"
def _snake_case (__lowercase):
return to_simple_case(__lowercase)
def _snake_case (__lowercase):
try:
UpperCamelCase_ = to_simple_case(__lowercase)
return res_str[0].lower() + res_str[1:]
except IndexError:
return "not valid string"
def _snake_case (__lowercase , __lowercase):
return to_complex_case(__lowercase , __lowercase , '_')
def _snake_case (__lowercase , __lowercase):
return to_complex_case(__lowercase , __lowercase , '-')
if __name__ == "__main__":
__import__("""doctest""").testmod()
| 23 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
snake_case__ : str = logging.get_logger(__name__)
def _snake_case (__lowercase):
if isinstance(__lowercase , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]):
return videos
elif isinstance(__lowercase , (list, tuple)) and is_valid_image(videos[0]):
return [videos]
elif is_valid_image(__lowercase):
return [[videos]]
raise ValueError(f"""Could not make batched video from {videos}""")
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = ["""pixel_values"""]
def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> None:
super().__init__(**_UpperCAmelCase )
UpperCamelCase_ = size if size is not None else {'shortest_edge': 224}
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224}
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' )
UpperCamelCase_ = do_resize
UpperCamelCase_ = size
UpperCamelCase_ = do_center_crop
UpperCamelCase_ = crop_size
UpperCamelCase_ = resample
UpperCamelCase_ = do_rescale
UpperCamelCase_ = rescale_factor
UpperCamelCase_ = do_normalize
UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray:
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "shortest_edge" in size:
UpperCamelCase_ = get_resize_output_image_size(_UpperCAmelCase , size['shortest_edge'] , default_to_square=_UpperCAmelCase )
elif "height" in size and "width" in size:
UpperCamelCase_ = (size['height'], size['width'])
else:
raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" )
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray:
UpperCamelCase_ = get_size_dict(_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" )
return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> int:
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray:
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray:
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
UpperCamelCase_ = to_numpy_array(_UpperCAmelCase )
if do_resize:
UpperCamelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase )
if do_center_crop:
UpperCamelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase )
if do_rescale:
UpperCamelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase )
if do_normalize:
UpperCamelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase )
UpperCamelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase )
return image
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ) -> PIL.Image.Image:
UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCamelCase_ = resample if resample is not None else self.resample
UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCamelCase_ = image_std if image_std is not None else self.image_std
UpperCamelCase_ = size if size is not None else self.size
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size
UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
UpperCamelCase_ = make_batched(_UpperCAmelCase )
UpperCamelCase_ = [
[
self._preprocess_image(
image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , )
for img in video
]
for video in videos
]
UpperCamelCase_ = {'pixel_values': videos}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 23 | 1 |
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def _snake_case (__lowercase = 8):
UpperCamelCase_ = ascii_letters + digits + punctuation
return "".join(secrets.choice(__lowercase) for _ in range(__lowercase))
def _snake_case (__lowercase , __lowercase):
# Password Generator = full boot with random_number, random_letters, and
# random_character FUNCTIONS
# Put your code here...
i -= len(__lowercase)
UpperCamelCase_ = i // 3
UpperCamelCase_ = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
UpperCamelCase_ = (
chars_incl
+ random(__lowercase , quotient + remainder)
+ random(__lowercase , __lowercase)
+ random(__lowercase , __lowercase)
)
UpperCamelCase_ = list(__lowercase)
shuffle(__lowercase)
return "".join(__lowercase)
# random is a generalised function for letters, characters and numbers
def _snake_case (__lowercase , __lowercase):
return "".join(secrets.choice(__lowercase) for _ in range(__lowercase))
def _snake_case (__lowercase , __lowercase):
pass # Put your code here...
def _snake_case (__lowercase , __lowercase):
pass # Put your code here...
def _snake_case (__lowercase , __lowercase):
pass # Put your code here...
def _snake_case (__lowercase , __lowercase = 8):
if len(__lowercase) < min_length:
# Your Password must be at least 8 characters long
return False
UpperCamelCase_ = any(char in ascii_uppercase for char in password)
UpperCamelCase_ = any(char in ascii_lowercase for char in password)
UpperCamelCase_ = any(char in digits for char in password)
UpperCamelCase_ = any(char in punctuation for char in password)
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def _snake_case ():
UpperCamelCase_ = int(input('Please indicate the max length of your password: ').strip())
UpperCamelCase_ = input(
'Please indicate the characters that must be in your password: ').strip()
print('Password generated:' , password_generator(__lowercase))
print(
'Alternative Password generated:' , alternative_password_generator(__lowercase , __lowercase) , )
print('[If you are thinking of using this passsword, You better save it.]')
if __name__ == "__main__":
main()
| 23 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin, SchedulerOutput
@dataclass
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = 42
A_ = 42
class _a ( UpperCAmelCase__ , UpperCAmelCase__ ):
"""simple docstring"""
A_ = 1
@register_to_config
def __init__( self , _UpperCAmelCase = 2000 , _UpperCAmelCase = 0.1_5 , _UpperCAmelCase = 0.0_1 , _UpperCAmelCase = 1_3_4_8.0 , _UpperCAmelCase = 1e-5 , _UpperCAmelCase = 1 , ) -> Tuple:
# standard deviation of the initial noise distribution
UpperCamelCase_ = sigma_max
# setable values
UpperCamelCase_ = None
self.set_sigmas(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> torch.FloatTensor:
return sample
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> str:
UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps
UpperCamelCase_ = torch.linspace(1 , _UpperCAmelCase , _UpperCAmelCase , device=_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> Any:
UpperCamelCase_ = sigma_min if sigma_min is not None else self.config.sigma_min
UpperCamelCase_ = sigma_max if sigma_max is not None else self.config.sigma_max
UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps
if self.timesteps is None:
self.set_timesteps(_UpperCAmelCase , _UpperCAmelCase )
UpperCamelCase_ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
UpperCamelCase_ = torch.exp(torch.linspace(math.log(_UpperCAmelCase ) , math.log(_UpperCAmelCase ) , _UpperCAmelCase ) )
UpperCamelCase_ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]:
return torch.where(
timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SdeVeOutput, Tuple]:
if self.timesteps is None:
raise ValueError(
'`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' )
UpperCamelCase_ = timestep * torch.ones(
sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0])
UpperCamelCase_ = (timestep * (len(self.timesteps ) - 1)).long()
# mps requires indices to be in the same device, so we use cpu as is the default with cuda
UpperCamelCase_ = timesteps.to(self.discrete_sigmas.device )
UpperCamelCase_ = self.discrete_sigmas[timesteps].to(sample.device )
UpperCamelCase_ = self.get_adjacent_sigma(_UpperCAmelCase , _UpperCAmelCase ).to(sample.device )
UpperCamelCase_ = torch.zeros_like(_UpperCAmelCase )
UpperCamelCase_ = (sigma**2 - adjacent_sigma**2) ** 0.5
# equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
# also equation 47 shows the analog from SDE models to ancestral sampling methods
UpperCamelCase_ = diffusion.flatten()
while len(diffusion.shape ) < len(sample.shape ):
UpperCamelCase_ = diffusion.unsqueeze(-1 )
UpperCamelCase_ = drift - diffusion**2 * model_output
# equation 6: sample noise for the diffusion term of
UpperCamelCase_ = randn_tensor(
sample.shape , layout=sample.layout , generator=_UpperCAmelCase , device=sample.device , dtype=sample.dtype )
UpperCamelCase_ = sample - drift # subtract because `dt` is a small negative timestep
# TODO is the variable diffusion the correct scaling term for the noise?
UpperCamelCase_ = prev_sample_mean + diffusion * noise # add impact of diffusion field g
if not return_dict:
return (prev_sample, prev_sample_mean)
return SdeVeOutput(prev_sample=_UpperCAmelCase , prev_sample_mean=_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]:
if self.timesteps is None:
raise ValueError(
'`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' )
# For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
# sample noise for correction
UpperCamelCase_ = randn_tensor(sample.shape , layout=sample.layout , generator=_UpperCAmelCase ).to(sample.device )
# compute step size from the model_output, the noise, and the snr
UpperCamelCase_ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean()
UpperCamelCase_ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean()
UpperCamelCase_ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
UpperCamelCase_ = step_size * torch.ones(sample.shape[0] ).to(sample.device )
# self.repeat_scalar(step_size, sample.shape[0])
# compute corrected sample: model_output term and noise term
UpperCamelCase_ = step_size.flatten()
while len(step_size.shape ) < len(sample.shape ):
UpperCamelCase_ = step_size.unsqueeze(-1 )
UpperCamelCase_ = sample + step_size * model_output
UpperCamelCase_ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
UpperCamelCase_ = timesteps.to(original_samples.device )
UpperCamelCase_ = self.discrete_sigmas.to(original_samples.device )[timesteps]
UpperCamelCase_ = (
noise * sigmas[:, None, None, None]
if noise is not None
else torch.randn_like(_UpperCAmelCase ) * sigmas[:, None, None, None]
)
UpperCamelCase_ = noise + original_samples
return noisy_samples
def __len__( self ) -> Optional[int]:
return self.config.num_train_timesteps
| 23 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.