code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class _a ( UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = WavaVecaPhonemeCTCTokenizer A_ = False def _UpperCAmelCase ( self ) -> Optional[int]: super().setUp() UpperCamelCase_ = ( '<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ' 'ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ' 'ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ' 'oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ' 'pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ' 'yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ' 'əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ' 'ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ' 'ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ' 'uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ' 'ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ' 'ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ' 'ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4' ).split(' ' ) UpperCamelCase_ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) UpperCamelCase_ = {'pad_token': '<pad>', 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>'} UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ) -> Tuple[str, list]: UpperCamelCase_ = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase )) for i in range(len(_UpperCAmelCase ) )] UpperCamelCase_ = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , do_phonemize=_UpperCAmelCase ) , _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: UpperCamelCase_ = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: UpperCamelCase_ = toks + toks # toks_str = [t[1] for t in toks] UpperCamelCase_ = [t[0] for t in toks] # Ensure consistency UpperCamelCase_ = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: UpperCamelCase_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: UpperCamelCase_ = ' ' + output_txt UpperCamelCase_ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) # check adding a single token tokenizer.add_tokens('xxx' ) UpperCamelCase_ = tokenizer('m xxx ɪ' , do_phonemize=_UpperCAmelCase ).input_ids self.assertEqual(_UpperCAmelCase , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(['aaa', 'bbb', 'ccc'] ) UpperCamelCase_ = tokenizer('m aaa ɪ ccc' , do_phonemize=_UpperCAmelCase ).input_ids self.assertEqual(_UpperCAmelCase , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa UpperCamelCase_ = tokenizer('maɪ c' , do_phonemize=_UpperCAmelCase ).input_ids self.assertEqual(_UpperCAmelCase , [3, 200] ) # mai should be <unk> (=3) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCamelCase_ = 'Hello how are you' UpperCamelCase_ = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) self.assertEqual(_UpperCAmelCase , 'h ə l oʊ h aʊ ɑːɹ j uː' ) def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCamelCase_ = 'Hello how are you' UpperCamelCase_ = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(_UpperCAmelCase ).input_ids , tokenizer(_UpperCAmelCase , do_phonemize=_UpperCAmelCase ).input_ids ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCamelCase_ = 'Hello how are you' UpperCamelCase_ = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) UpperCamelCase_ = tokenizer.decode(tokenizer(_UpperCAmelCase ).input_ids ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCamelCase_ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] UpperCamelCase_ = tokenizer.decode(sample_ids[0] ) UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , batch_tokens[0] ) self.assertEqual(_UpperCAmelCase , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCamelCase_ = 'Hello how are you' UpperCamelCase_ = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) self.assertEqual(_UpperCAmelCase , 'h ə l oʊ | h aʊ | ɑːɹ | j uː |' ) def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCamelCase_ = 'Hello how are you' UpperCamelCase_ = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(_UpperCAmelCase ).input_ids , tokenizer(_UpperCAmelCase , do_phonemize=_UpperCAmelCase ).input_ids ) def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off UpperCamelCase_ = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter UpperCamelCase_ = tokenizer.decode(sample_ids[0] ) UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , batch_tokens[0] ) self.assertEqual(_UpperCAmelCase , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) # decode with no word_del_token filter UpperCamelCase_ = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , filter_word_delimiter_token=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , batch_tokens[0] ) self.assertEqual(_UpperCAmelCase , ['k s ɾ | ɾ l | ɭʲ', '| j ð | s j ð s oːɹ'] ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCamelCase_ = 'Hello how are you' UpperCamelCase_ = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) UpperCamelCase_ = tokenizer.decode(tokenizer(_UpperCAmelCase ).input_ids , filter_word_delimiter_token=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCamelCase_ = 'Hello how are you' UpperCamelCase_ = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) UpperCamelCase_ = tokenizer.decode(tokenizer(_UpperCAmelCase ).input_ids , filter_word_delimiter_token=_UpperCAmelCase ) self.assertEqual(' '.join([p.strip() for p in phonemes.split(' |' )] ).strip() , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token=_UpperCAmelCase ) UpperCamelCase_ = 'Hello how are you' UpperCamelCase_ = tokenizer(_UpperCAmelCase , phonemizer_lang='en-us' ).input_ids UpperCamelCase_ = tokenizer(_UpperCAmelCase , phonemizer_lang='fr-fr' ).input_ids self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = tokenizer.decode(_UpperCAmelCase ) UpperCamelCase_ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , 'h ə l oʊ h aʊ ɑːɹ j uː' ) self.assertEqual(_UpperCAmelCase , 'ɛ l o h aʊ a ʁ j u' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCamelCase_ = 'Hello how Are you' UpperCamelCase_ = 'hello how are you' UpperCamelCase_ = tokenizer(_UpperCAmelCase ).input_ids UpperCamelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) tokenizer.add_tokens(['!', '?'] ) tokenizer.add_special_tokens({'cls_token': '$$$'} ) # fmt: off UpperCamelCase_ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ['k s ɾ ɾ l ɭʲ!?!? $$$', 'j ð s j ð s oːɹ $$$'] ) @staticmethod def _UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = self.get_tokenizer(word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" UpperCamelCase_ = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on UpperCamelCase_ = tokenizer.decode(_UpperCAmelCase , output_char_offsets=_UpperCAmelCase , filter_word_delimiter_token=_UpperCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('text' in outputs ) self.assertTrue('char_offsets' in outputs ) self.assertTrue(isinstance(_UpperCAmelCase , _UpperCAmelCase ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(' '.join(self.get_from_offsets(outputs['char_offsets'] , 'char' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'char' ) , ['k', 's', 'ɾ', 'ɾ', '|', 'ɾ', 'l', '|', 'ɭʲ'] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'start_offset' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'end_offset' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = self.get_tokenizer(word_delimiter_token='|' ) def check_list_tuples_equal(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(isinstance(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(isinstance(outputs_list[0] , _UpperCAmelCase ) ) # transform list to ModelOutput UpperCamelCase_ = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['text'] , outputs_batch_a['text'] ) def recursive_check(_UpperCAmelCase , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): [recursive_check(_UpperCAmelCase , _UpperCAmelCase ) for la, la in zip(_UpperCAmelCase , _UpperCAmelCase )] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['char_offsets'] , outputs_batch_a['char_offsets'] ) # fmt: off UpperCamelCase_ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , output_char_offsets=_UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode(_UpperCAmelCase , output_char_offsets=_UpperCAmelCase ) for ids in sample_ids] check_list_tuples_equal(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip('Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip('Wav2Vec2PhonemeTokenizer always puts spaces between phonemes' ) def _UpperCAmelCase ( self ) -> List[str]: pass @unittest.skip('encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip('Wav2Vec2PhonemeModel has no max model length => no testing' ) def _UpperCAmelCase ( self ) -> List[Any]: pass def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCamelCase_ = tokenizer.vocab_size UpperCamelCase_ = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) UpperCamelCase_ = ['aaaaa bbbbbb', 'cccccccccdddddddd'] UpperCamelCase_ = tokenizer.add_tokens(_UpperCAmelCase ) UpperCamelCase_ = tokenizer.vocab_size UpperCamelCase_ = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size + len(_UpperCAmelCase ) ) UpperCamelCase_ = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) UpperCamelCase_ = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} UpperCamelCase_ = tokenizer.add_special_tokens(_UpperCAmelCase ) UpperCamelCase_ = tokenizer.vocab_size UpperCamelCase_ = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size_a + len(_UpperCAmelCase ) ) UpperCamelCase_ = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def _UpperCAmelCase ( self ) -> List[Any]: pass def _UpperCAmelCase ( self ) -> Optional[int]: # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. UpperCamelCase_ = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCamelCase_ = ['ð', 'ɪ', 's', 'ɪ', 'z', 'ɐ', 't', 'ɛ', 'k', 's', 't'] UpperCamelCase_ = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(output['text'] , _UpperCAmelCase )
23
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case__ : Dict = TypeVar("""T""") class _a ( Generic[T] ): """simple docstring""" A_ = 42 # Cache store of keys A_ = 42 # References of the keys in cache A_ = 10 # Maximum capacity of cache def __init__( self , _UpperCAmelCase ) -> None: UpperCamelCase_ = deque() UpperCamelCase_ = set() if not n: UpperCamelCase_ = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCamelCase_ = n def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCamelCase_ = self.dq_store.pop() self.key_reference.remove(_UpperCAmelCase ) else: self.dq_store.remove(_UpperCAmelCase ) self.dq_store.appendleft(_UpperCAmelCase ) self.key_reference.add(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> None: for k in self.dq_store: print(_UpperCAmelCase ) def __repr__( self ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : LRUCache[str | int] = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
23
1
def _snake_case (__lowercase): UpperCamelCase_ = False while is_sorted is False: # Until all the indices are traversed keep looping UpperCamelCase_ = True for i in range(0 , len(__lowercase) - 1 , 2): # iterating over all even indices if input_list[i] > input_list[i + 1]: UpperCamelCase_ , UpperCamelCase_ = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCamelCase_ = False for i in range(1 , len(__lowercase) - 1 , 2): # iterating over all odd indices if input_list[i] > input_list[i + 1]: UpperCamelCase_ , UpperCamelCase_ = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCamelCase_ = False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") snake_case__ : Union[str, Any] = [int(x) for x in input().split()] # inputing elements of the list in one line snake_case__ : Dict = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
23
import numpy as np def _snake_case (__lowercase): return 1 / (1 + np.exp(-vector)) def _snake_case (__lowercase): return vector * sigmoid(__lowercase) if __name__ == "__main__": import doctest doctest.testmod()
23
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : List[str] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """yolos""" def __init__( self , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-12 , _UpperCAmelCase=[512, 864] , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=100 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=1 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , **_UpperCAmelCase , ) -> List[str]: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = qkv_bias UpperCamelCase_ = num_detection_tokens UpperCamelCase_ = use_mid_position_embeddings UpperCamelCase_ = auxiliary_loss # Hungarian matcher UpperCamelCase_ = class_cost UpperCamelCase_ = bbox_cost UpperCamelCase_ = giou_cost # Loss coefficients UpperCamelCase_ = bbox_loss_coefficient UpperCamelCase_ = giou_loss_coefficient UpperCamelCase_ = eos_coefficient class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = version.parse("""1.11""" ) @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-4 @property def _UpperCAmelCase ( self ) -> int: return 12
23
import math from datetime import datetime, timedelta def _snake_case (__lowercase): UpperCamelCase_ = year % 19 UpperCamelCase_ = year % 4 UpperCamelCase_ = year % 7 UpperCamelCase_ = math.floor(year / 100) UpperCamelCase_ = math.floor((13 + 8 * leap_day_inhibits) / 25) UpperCamelCase_ = leap_day_inhibits / 4 UpperCamelCase_ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 UpperCamelCase_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCamelCase_ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon UpperCamelCase_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 19) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 18) else: return datetime(__lowercase , 3 , 22) + timedelta( days=int(days_to_add + days_from_phm_to_sunday)) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): snake_case__ : Dict = """will be""" if year > datetime.now().year else """was""" print(f'Easter in {year} {tense} {gauss_easter(year)}')
23
1
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def _snake_case (__lowercase , __lowercase , __lowercase = "x" , __lowercase = 10**-10 , __lowercase = 1 , ): UpperCamelCase_ = symbols(__lowercase) UpperCamelCase_ = lambdify(__lowercase , __lowercase) UpperCamelCase_ = lambdify(__lowercase , diff(__lowercase , __lowercase)) UpperCamelCase_ = starting_point while True: if diff_function(__lowercase) != 0: UpperCamelCase_ = prev_guess - multiplicity * func(__lowercase) / diff_function( __lowercase) else: raise ZeroDivisionError('Could not find root') from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess) < precision: return next_guess UpperCamelCase_ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(f'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}') # Find value of e print( """The root of log(y) - 1 = 0 is """, f'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", f'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}', ) # Find root of cos(x) print(f'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
23
import requests def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = {'Content-Type': 'application/json'} UpperCamelCase_ = requests.post(__lowercase , json={'text': message_body} , headers=__lowercase) if response.status_code != 200: UpperCamelCase_ = ( 'Request to slack returned an error ' f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(__lowercase) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
23
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class _a ( UpperCAmelCase__ ): """simple docstring""" def __init__( self , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = data def __iter__( self ) -> Tuple: for element in self.data: yield element def _snake_case (__lowercase=True): UpperCamelCase_ = Accelerator(even_batches=__lowercase) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase = False): if iterable: UpperCamelCase_ = DummyIterableDataset(torch.as_tensor(range(__lowercase))) else: UpperCamelCase_ = TensorDataset(torch.as_tensor(range(__lowercase))) UpperCamelCase_ = DataLoader(__lowercase , batch_size=__lowercase) UpperCamelCase_ = accelerator.prepare(__lowercase) return dl def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): UpperCamelCase_ = create_dataloader(accelerator=__lowercase , dataset_size=__lowercase , batch_size=__lowercase) UpperCamelCase_ = [len(batch[0]) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def _snake_case (): UpperCamelCase_ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __lowercase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __lowercase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def _snake_case (): UpperCamelCase_ = create_accelerator(even_batches=__lowercase) verify_dataloader_batch_sizes( __lowercase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __lowercase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def _snake_case (): UpperCamelCase_ = create_accelerator(even_batches=__lowercase) UpperCamelCase_ = torch.nn.Linear(1 , 1) UpperCamelCase_ = accelerator.prepare(__lowercase) UpperCamelCase_ = create_dataloader(__lowercase , dataset_size=3 , batch_size=1) UpperCamelCase_ = [] with accelerator.join_uneven_inputs([ddp_model]): for batch_idx, batch in enumerate(__lowercase): UpperCamelCase_ = ddp_model(batch[0].float()) UpperCamelCase_ = output.sum() loss.backward() batch_idxs.append(__lowercase) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def _snake_case (__lowercase): with warnings.catch_warnings(record=__lowercase) as w: with accelerator.join_uneven_inputs([Mock()]): pass assert issubclass(w[-1].category , __lowercase) assert "only supported for multi-GPU" in str(w[-1].message) def _snake_case (): UpperCamelCase_ = True UpperCamelCase_ = False UpperCamelCase_ = create_accelerator(even_batches=__lowercase) UpperCamelCase_ = torch.nn.Linear(1 , 1) UpperCamelCase_ = accelerator.prepare(__lowercase) UpperCamelCase_ = create_dataloader(__lowercase , dataset_size=3 , batch_size=1) UpperCamelCase_ = create_dataloader(__lowercase , dataset_size=3 , batch_size=1) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowercase): UpperCamelCase_ = train_dl.batch_sampler.even_batches UpperCamelCase_ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def _snake_case (): UpperCamelCase_ = True UpperCamelCase_ = False UpperCamelCase_ = create_accelerator(even_batches=__lowercase) UpperCamelCase_ = torch.nn.Linear(1 , 1) UpperCamelCase_ = accelerator.prepare(__lowercase) create_dataloader(__lowercase , dataset_size=3 , batch_size=1 , iterable=__lowercase) UpperCamelCase_ = create_dataloader(__lowercase , dataset_size=3 , batch_size=1) with warnings.catch_warnings(): warnings.filterwarnings('ignore') try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowercase): UpperCamelCase_ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def _snake_case (): UpperCamelCase_ = create_accelerator() UpperCamelCase_ = torch.nn.Linear(1 , 1) UpperCamelCase_ = accelerator.prepare(__lowercase) create_dataloader(__lowercase , dataset_size=3 , batch_size=1 , iterable=__lowercase) with warnings.catch_warnings(record=__lowercase) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowercase): pass assert issubclass(w[-1].category , __lowercase) assert "only supported for map-style datasets" in str(w[-1].message) def _snake_case (): UpperCamelCase_ = create_accelerator() accelerator.print('Test that even_batches variable ensures uniform batches across processes') test_default_ensures_even_batch_sizes() accelerator.print('Run tests with even_batches disabled') test_can_disable_even_batches() accelerator.print('Test joining uneven inputs') test_can_join_uneven_inputs() accelerator.print('Test overriding even_batches when joining uneven inputs') test_join_can_override_even_batches() accelerator.print('Test overriding even_batches for mixed dataloader types') test_join_can_override_for_mixed_type_dataloaders() accelerator.print('Test overriding even_batches raises a warning for iterable dataloaders') test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('Test join with non DDP distributed raises warning') UpperCamelCase_ = accelerator.state.distributed_type UpperCamelCase_ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__lowercase) UpperCamelCase_ = original_state if __name__ == "__main__": main()
23
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _a ( UpperCAmelCase__ ): """simple docstring""" def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) UpperCamelCase_ = input_file.read() UpperCamelCase_ = regexp.search(_UpperCAmelCase ) return match def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) UpperCamelCase_ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase_ = regexp.finditer(_UpperCAmelCase ) UpperCamelCase_ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_UpperCAmelCase ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(_UpperCAmelCase ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
23
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer snake_case__ : Dict = logging.get_logger(__name__) snake_case__ : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} snake_case__ : List[str] = { """vocab_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-german-cased""": ( """https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json""" ), """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json""" ), }, } snake_case__ : List[str] = { """distilbert-base-uncased""": 5_1_2, """distilbert-base-uncased-distilled-squad""": 5_1_2, """distilbert-base-cased""": 5_1_2, """distilbert-base-cased-distilled-squad""": 5_1_2, """distilbert-base-german-cased""": 5_1_2, """distilbert-base-multilingual-cased""": 5_1_2, } snake_case__ : Optional[Any] = { """distilbert-base-uncased""": {"""do_lower_case""": True}, """distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True}, """distilbert-base-cased""": {"""do_lower_case""": False}, """distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False}, """distilbert-base-german-cased""": {"""do_lower_case""": False}, """distilbert-base-multilingual-cased""": {"""do_lower_case""": False}, } class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = PRETRAINED_INIT_CONFIGURATION A_ = ["""input_ids""", """attention_mask"""] A_ = DistilBertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase="[UNK]" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="[PAD]" , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[MASK]" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ) -> Optional[Any]: super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenize_chinese_chars=_UpperCAmelCase , strip_accents=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _UpperCAmelCase ) != tokenize_chinese_chars ): UpperCamelCase_ = getattr(_UpperCAmelCase , normalizer_state.pop('type' ) ) UpperCamelCase_ = do_lower_case UpperCamelCase_ = strip_accents UpperCamelCase_ = tokenize_chinese_chars UpperCamelCase_ = normalizer_class(**_UpperCAmelCase ) UpperCamelCase_ = do_lower_case def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None ) -> str: UpperCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> List[int]: UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> Tuple[str]: UpperCamelCase_ = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
23
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _snake_case (__lowercase=32 , __lowercase=10 , __lowercase=100 , __lowercase=1026 , __lowercase=True , __lowercase="data/tokenized_stories_train_wikitext103.jbl" , __lowercase="igf_context_pairs.jbl" , ): set_seed(3) # generate train_data and objective_set UpperCamelCase_ , UpperCamelCase_ = generate_datasets( __lowercase , __lowercase , number=__lowercase , min_len=1026 , trim=__lowercase) # keeps model same across runs set_seed(4) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # load pretrained model UpperCamelCase_ = load_gpta('gpt2').to(__lowercase) print('computing perplexity on objective set') UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase).item() print('perplexity on objective set:' , __lowercase) # collect igf pairs and save to file demo.jbl collect_objective_set(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _snake_case (__lowercase , __lowercase=15 , __lowercase=128 , __lowercase=100 , __lowercase="igf_model.pt" , ): set_seed(42) # Load pre-trained model UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2') # Initialize secondary learner to use embedding weights of model UpperCamelCase_ = SecondaryLearner(__lowercase) # Train secondary learner UpperCamelCase_ = train_secondary_learner( __lowercase , __lowercase , max_epochs=__lowercase , batch_size=__lowercase , eval_freq=100 , igf_model_path=__lowercase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=32 , __lowercase=1000 , __lowercase=16 , __lowercase=1.0 , __lowercase=recopy_gpta , __lowercase=None , __lowercase=10 , __lowercase="gpt2_finetuned.pt" , ): UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') UpperCamelCase_ = RandomSampler(__lowercase) UpperCamelCase_ = DataLoader(__lowercase , sampler=__lowercase) UpperCamelCase_ = max_steps // (len(__lowercase)) + 1 UpperCamelCase_ = 0 UpperCamelCase_ = torch.zeros((1, context_len) , dtype=torch.long , device=__lowercase) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = recopy_model(__lowercase , __lowercase , __lowercase) model.train() if secondary_learner is not None: secondary_learner.to(__lowercase) secondary_learner.eval() UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = [] UpperCamelCase_ = [] # Compute the performance of the transformer model at the beginning UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase) test_perps.append(__lowercase) print('Test perplexity, step' , __lowercase , ':' , __lowercase) for epoch in range(int(__lowercase)): for step, example in enumerate(__lowercase): torch.cuda.empty_cache() UpperCamelCase_ = random.randint(0 , example.size(2) - context_len - 1) UpperCamelCase_ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() UpperCamelCase_ = model(__lowercase , labels=__lowercase) UpperCamelCase_ = True if secondary_learner is not None: UpperCamelCase_ = secondary_learner.forward( torch.tensor(__lowercase , dtype=torch.long , device=__lowercase).unsqueeze(0))[0].item() observed_qs.append(float(__lowercase)) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: UpperCamelCase_ = -1 if predicted_q < threshold: UpperCamelCase_ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu())) UpperCamelCase_ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() UpperCamelCase_ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase) test_perps.append(__lowercase) print('Test perplexity, step' , __lowercase , ':' , __lowercase) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , __lowercase) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task') # Required parameters parser.add_argument( '--data_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=__lowercase , type=__lowercase , required=__lowercase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=__lowercase , default=__lowercase , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=__lowercase , default=__lowercase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=__lowercase , type=__lowercase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=__lowercase , default=__lowercase , help='A seed for reproducible training.') parser.add_argument( '--context_len' , default=32 , type=__lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=__lowercase , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=__lowercase , help='secondary model evaluation is triggered at eval_freq') parser.add_argument('--max_steps' , default=1000 , type=__lowercase , help='To calculate training epochs') parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=__lowercase , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=__lowercase , help='batch size of training data of language model(gpt2) ') parser.add_argument( '--eval_interval' , default=10 , type=__lowercase , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=__lowercase , help='The number of examples split to be used as objective_set/test_data') parser.add_argument( '--min_len' , default=1026 , type=__lowercase , help='The minimum length of the article to be used as objective set') parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=__lowercase , help='number of epochs to train secondary learner') parser.add_argument('--trim' , default=__lowercase , type=__lowercase , help='truncate the example if it exceeds context length') parser.add_argument( '--threshold' , default=1.0 , type=__lowercase , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=__lowercase , help='finetuned_model_name') parser.add_argument( '--recopy_model' , default=__lowercase , type=__lowercase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=__lowercase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner UpperCamelCase_ = joblib.load('data/IGF_values.jbl') # Train secondary learner UpperCamelCase_ = training_secondary_learner( __lowercase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2') set_seed(42) # Generate train and test data to train and evaluate gpt2 model UpperCamelCase_ , UpperCamelCase_ = generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=__lowercase) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( __lowercase , __lowercase , __lowercase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=__lowercase , secondary_learner=__lowercase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
23
1
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING snake_case__ : str = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class _a ( UpperCAmelCase__ ): """simple docstring""" def __init__( self , **_UpperCAmelCase ) -> Optional[Any]: super().__init__(**_UpperCAmelCase ) requires_backends(self , 'vision' ) requires_backends(self , 'torch' ) if self.framework != "pt": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) self.check_model_type(_UpperCAmelCase ) def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> Any: UpperCamelCase_ = {} UpperCamelCase_ = {} UpperCamelCase_ = {} # preprocess args if "points_per_batch" in kwargs: UpperCamelCase_ = kwargs['points_per_batch'] if "points_per_crop" in kwargs: UpperCamelCase_ = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: UpperCamelCase_ = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: UpperCamelCase_ = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: UpperCamelCase_ = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: UpperCamelCase_ = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: UpperCamelCase_ = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: UpperCamelCase_ = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: UpperCamelCase_ = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: UpperCamelCase_ = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: UpperCamelCase_ = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: UpperCamelCase_ = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , _UpperCAmelCase , *_UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ) -> List[str]: return super().__call__(_UpperCAmelCase , *_UpperCAmelCase , num_workers=_UpperCAmelCase , batch_size=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=64 , _UpperCAmelCase = 0 , _UpperCAmelCase = 512 / 1500 , _UpperCAmelCase = 32 , _UpperCAmelCase = 1 , ) -> Optional[Any]: UpperCamelCase_ = load_image(_UpperCAmelCase ) UpperCamelCase_ = self.image_processor.size['longest_edge'] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.image_processor.generate_crop_boxes( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = self.image_processor(images=_UpperCAmelCase , return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": UpperCamelCase_ = self.get_inference_context() with inference_context(): UpperCamelCase_ = self._ensure_tensor_on_device(_UpperCAmelCase , device=self.device ) UpperCamelCase_ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) UpperCamelCase_ = image_embeddings UpperCamelCase_ = grid_points.shape[1] UpperCamelCase_ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase_ = grid_points[:, i : i + points_per_batch, :, :] UpperCamelCase_ = input_labels[:, i : i + points_per_batch] UpperCamelCase_ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0.8_8 , _UpperCAmelCase=0.9_5 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , ) -> List[Any]: UpperCamelCase_ = model_inputs.pop('input_boxes' ) UpperCamelCase_ = model_inputs.pop('is_last' ) UpperCamelCase_ = model_inputs.pop('original_sizes' ).tolist() UpperCamelCase_ = model_inputs.pop('reshaped_input_sizes' ).tolist() UpperCamelCase_ = self.model(**_UpperCAmelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCamelCase_ = model_outputs['pred_masks'] UpperCamelCase_ = self.image_processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , binarize=_UpperCAmelCase ) UpperCamelCase_ = model_outputs['iou_scores'] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.7 , ) -> Any: UpperCamelCase_ = [] UpperCamelCase_ = [] UpperCamelCase_ = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) UpperCamelCase_ = torch.cat(_UpperCAmelCase ) UpperCamelCase_ = torch.cat(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.image_processor.post_process_for_mask_generation( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = defaultdict(_UpperCAmelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(_UpperCAmelCase ) UpperCamelCase_ = {} if output_rle_mask: UpperCamelCase_ = rle_mask if output_bboxes_mask: UpperCamelCase_ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
23
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _a : """simple docstring""" A_ = MBartConfig A_ = {} A_ = """gelu""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ) -> Union[str, Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_ = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = TFMBartModel(config=_UpperCAmelCase ).get_decoder() UpperCamelCase_ = inputs_dict['input_ids'] UpperCamelCase_ = input_ids[:1, :] UpperCamelCase_ = inputs_dict['attention_mask'][:1, :] UpperCamelCase_ = inputs_dict['head_mask'] UpperCamelCase_ = 1 # first forward pass UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple() UpperCamelCase_ = past_key_values[1] def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ): if attention_mask is None: UpperCamelCase_ = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id) , tf.inta) if decoder_attention_mask is None: UpperCamelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () A_ = (TFMBartForConditionalGeneration,) if is_tf_available() else () A_ = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) A_ = True A_ = False A_ = False def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = TFMBartModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class _a ( unittest.TestCase ): """simple docstring""" A_ = [ """ UN Chief Says There Is No Military Solution in Syria""", ] A_ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] A_ = """facebook/mbart-large-en-ro""" @cached_property def _UpperCAmelCase ( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> int: UpperCamelCase_ = self.translate_src_text(**_UpperCAmelCase ) self.assertListEqual(self.expected_text , _UpperCAmelCase ) def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> List[str]: UpperCamelCase_ = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='tf' ) UpperCamelCase_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCamelCase_ = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) return generated_words @slow def _UpperCAmelCase ( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
23
1
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType snake_case__ : List[str] = logging.get_logger(__name__) class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """vision-encoder-decoder""" A_ = True def __init__( self , **_UpperCAmelCase ) -> Dict: super().__init__(**_UpperCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) UpperCamelCase_ = kwargs.pop('encoder' ) UpperCamelCase_ = encoder_config.pop('model_type' ) UpperCamelCase_ = kwargs.pop('decoder' ) UpperCamelCase_ = decoder_config.pop('model_type' ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = True @classmethod def _UpperCAmelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> PretrainedConfig: logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) UpperCamelCase_ = True UpperCamelCase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.encoder.to_dict() UpperCamelCase_ = self.decoder.to_dict() UpperCamelCase_ = self.__class__.model_type return output class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = version.parse("""1.11""" ) @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-4 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase_ = OrderedDict() UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ) -> Mapping[str, Any]: import torch UpperCamelCase_ = OrderedDict() UpperCamelCase_ = super().generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = dummy_input['input_ids'].shape UpperCamelCase_ = (batch, encoder_sequence, self._config.encoder_hidden_size) UpperCamelCase_ = dummy_input.pop('input_ids' ) UpperCamelCase_ = dummy_input.pop('attention_mask' ) UpperCamelCase_ = torch.zeros(_UpperCAmelCase ) return common_inputs class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> None: pass def _UpperCAmelCase ( self , _UpperCAmelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = "default" ) -> OnnxConfig: UpperCamelCase_ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_UpperCAmelCase , _UpperCAmelCase )
23
def _snake_case (__lowercase): UpperCamelCase_ = 1 for i in range(1 , num + 1): fact *= i return fact def _snake_case (__lowercase): UpperCamelCase_ = 0 while number > 0: UpperCamelCase_ = number % 10 sum_of_digits += last_digit UpperCamelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def _snake_case (__lowercase = 100): UpperCamelCase_ = factorial(__lowercase) UpperCamelCase_ = split_and_add(__lowercase) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
23
1
import numpy as np def _snake_case (__lowercase): return 1 / (1 + np.exp(-vector)) def _snake_case (__lowercase): return vector * sigmoid(__lowercase) if __name__ == "__main__": import doctest doctest.testmod()
23
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case__ : str = logging.get_logger(__name__) def _snake_case (__lowercase): if isinstance(__lowercase , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(__lowercase , (list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(__lowercase): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""") class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = ["""pixel_values"""] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> None: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = size if size is not None else {'shortest_edge': 224} UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = resample UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCamelCase_ = get_resize_output_image_size(_UpperCAmelCase , size['shortest_edge'] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCamelCase_ = (size['height'], size['width']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: UpperCamelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> int: return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCamelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCamelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCamelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCamelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCamelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCamelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ) -> PIL.Image.Image: UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean UpperCamelCase_ = image_std if image_std is not None else self.image_std UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) UpperCamelCase_ = make_batched(_UpperCAmelCase ) UpperCamelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCamelCase_ = {'pixel_values': videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
23
1
def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = len(__lowercase) UpperCamelCase_ = [[False] * (required_sum + 1) for _ in range(arr_len + 1)] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1): UpperCamelCase_ = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1): UpperCamelCase_ = False for i in range(1 , arr_len + 1): for j in range(1 , required_sum + 1): if arr[i - 1] > j: UpperCamelCase_ = subset[i - 1][j] if arr[i - 1] <= j: UpperCamelCase_ = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
23
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = 42 A_ = 42 class _a ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" A_ = 1 @register_to_config def __init__( self , _UpperCAmelCase = 2000 , _UpperCAmelCase = 0.1_5 , _UpperCAmelCase = 0.0_1 , _UpperCAmelCase = 1_3_4_8.0 , _UpperCAmelCase = 1e-5 , _UpperCAmelCase = 1 , ) -> Tuple: # standard deviation of the initial noise distribution UpperCamelCase_ = sigma_max # setable values UpperCamelCase_ = None self.set_sigmas(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> torch.FloatTensor: return sample def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> str: UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps UpperCamelCase_ = torch.linspace(1 , _UpperCAmelCase , _UpperCAmelCase , device=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> Any: UpperCamelCase_ = sigma_min if sigma_min is not None else self.config.sigma_min UpperCamelCase_ = sigma_max if sigma_max is not None else self.config.sigma_max UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) UpperCamelCase_ = torch.exp(torch.linspace(math.log(_UpperCAmelCase ) , math.log(_UpperCAmelCase ) , _UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) UpperCamelCase_ = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) UpperCamelCase_ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda UpperCamelCase_ = timesteps.to(self.discrete_sigmas.device ) UpperCamelCase_ = self.discrete_sigmas[timesteps].to(sample.device ) UpperCamelCase_ = self.get_adjacent_sigma(_UpperCAmelCase , _UpperCAmelCase ).to(sample.device ) UpperCamelCase_ = torch.zeros_like(_UpperCAmelCase ) UpperCamelCase_ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods UpperCamelCase_ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): UpperCamelCase_ = diffusion.unsqueeze(-1 ) UpperCamelCase_ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of UpperCamelCase_ = randn_tensor( sample.shape , layout=sample.layout , generator=_UpperCAmelCase , device=sample.device , dtype=sample.dtype ) UpperCamelCase_ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? UpperCamelCase_ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_UpperCAmelCase , prev_sample_mean=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction UpperCamelCase_ = randn_tensor(sample.shape , layout=sample.layout , generator=_UpperCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr UpperCamelCase_ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase_ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase_ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 UpperCamelCase_ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term UpperCamelCase_ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): UpperCamelCase_ = step_size.unsqueeze(-1 ) UpperCamelCase_ = sample + step_size * model_output UpperCamelCase_ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCamelCase_ = timesteps.to(original_samples.device ) UpperCamelCase_ = self.discrete_sigmas.to(original_samples.device )[timesteps] UpperCamelCase_ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_UpperCAmelCase ) * sigmas[:, None, None, None] ) UpperCamelCase_ = noise + original_samples return noisy_samples def __len__( self ) -> Optional[int]: return self.config.num_train_timesteps
23
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : int = logging.get_logger(__name__) snake_case__ : Any = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """lxmert""" A_ = {} def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-12 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.6_7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ) -> str: UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = num_qa_labels UpperCamelCase_ = num_object_labels UpperCamelCase_ = num_attr_labels UpperCamelCase_ = l_layers UpperCamelCase_ = x_layers UpperCamelCase_ = r_layers UpperCamelCase_ = visual_feat_dim UpperCamelCase_ = visual_pos_dim UpperCamelCase_ = visual_loss_normalizer UpperCamelCase_ = task_matched UpperCamelCase_ = task_mask_lm UpperCamelCase_ = task_obj_predict UpperCamelCase_ = task_qa UpperCamelCase_ = visual_obj_loss UpperCamelCase_ = visual_attr_loss UpperCamelCase_ = visual_feat_loss UpperCamelCase_ = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**_UpperCAmelCase )
23
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Optional[int] = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys snake_case__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
23
1
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: snake_case__ : str = None snake_case__ : Optional[int] = logging.get_logger(__name__) snake_case__ : Dict = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} snake_case__ : Any = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", }, """tokenizer_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/tokenizer.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/tokenizer.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/tokenizer.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/tokenizer.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/tokenizer.json""", }, } # TODO(PVP) - this should be removed in Transformers v5 snake_case__ : List[Any] = { """t5-small""": 5_1_2, """t5-base""": 5_1_2, """t5-large""": 5_1_2, """t5-3b""": 5_1_2, """t5-11b""": 5_1_2, } class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ["""input_ids""", """attention_mask"""] A_ = TaTokenizer A_ = [] def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="</s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase=100 , _UpperCAmelCase=None , **_UpperCAmelCase , ) -> Dict: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCamelCase_ = [f"""<extra_id_{i}>""" for i in range(_UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCamelCase_ = len(set(filter(lambda _UpperCAmelCase : bool('extra_id_' in str(_UpperCAmelCase ) ) , _UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , extra_ids=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCamelCase_ = vocab_file UpperCamelCase_ = False if not self.vocab_file else True UpperCamelCase_ = extra_ids @staticmethod def _UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCamelCase_ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , _UpperCAmelCase , ) return max_model_length def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase_ = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) logger.info(f"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> List[int]: UpperCamelCase_ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCamelCase_ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> List[int]: UpperCamelCase_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _UpperCAmelCase ( self ) -> List[str]: return list( set(filter(lambda _UpperCAmelCase : bool(re.search(R'<extra_id_\d+>' , _UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def _UpperCAmelCase ( self ) -> Optional[int]: return [self.convert_tokens_to_ids(_UpperCAmelCase ) for token in self.get_sentinel_tokens()]
23
import datasets from .evaluate import evaluate snake_case__ : int = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ snake_case__ : Union[str, Any] = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ snake_case__ : Any = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def _UpperCAmelCase ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: UpperCamelCase_ = {prediction['id']: prediction['prediction_text'] for prediction in predictions} UpperCamelCase_ = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] UpperCamelCase_ = evaluate(dataset=_UpperCAmelCase , predictions=_UpperCAmelCase ) return score
23
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case__ : Optional[int] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} snake_case__ : Any = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } snake_case__ : List[str] = { """bert-base-uncased""": 5_1_2, """bert-large-uncased""": 5_1_2, """bert-base-cased""": 5_1_2, """bert-large-cased""": 5_1_2, """bert-base-multilingual-uncased""": 5_1_2, """bert-base-multilingual-cased""": 5_1_2, """bert-base-chinese""": 5_1_2, """bert-base-german-cased""": 5_1_2, """bert-large-uncased-whole-word-masking""": 5_1_2, """bert-large-cased-whole-word-masking""": 5_1_2, """bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-base-cased-finetuned-mrpc""": 5_1_2, """bert-base-german-dbmdz-cased""": 5_1_2, """bert-base-german-dbmdz-uncased""": 5_1_2, """TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2, """TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2, """wietsedv/bert-base-dutch-cased""": 5_1_2, } snake_case__ : Tuple = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_INIT_CONFIGURATION A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = BertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase="[UNK]" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="[PAD]" , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[MASK]" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ) -> List[Any]: super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenize_chinese_chars=_UpperCAmelCase , strip_accents=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _UpperCAmelCase ) != tokenize_chinese_chars ): UpperCamelCase_ = getattr(_UpperCAmelCase , normalizer_state.pop('type' ) ) UpperCamelCase_ = do_lower_case UpperCamelCase_ = strip_accents UpperCamelCase_ = tokenize_chinese_chars UpperCamelCase_ = normalizer_class(**_UpperCAmelCase ) UpperCamelCase_ = do_lower_case def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None ) -> Union[str, Any]: UpperCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> List[int]: UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> Tuple[str]: UpperCamelCase_ = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
23
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class _a ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCAmelCase ( self ) -> List[str]: return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) class _a ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCAmelCase ( self ) -> Any: return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) def _snake_case (): return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'])] def _snake_case (): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'])] class _a ( UpperCAmelCase__ ): """simple docstring""" @require_beam def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def _UpperCAmelCase ( self ) -> List[str]: import apache_beam as beam UpperCamelCase_ = beam.io.parquetio.WriteToParquet UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: UpperCamelCase_ = partial(_UpperCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def _UpperCAmelCase ( self ) -> Any: with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = NestedBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
23
1
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _snake_case (): UpperCamelCase_ = HfArgumentParser(__lowercase) UpperCamelCase_ = parser.parse_args_into_dataclasses()[0] UpperCamelCase_ = TensorFlowBenchmark(args=__lowercase) try: UpperCamelCase_ = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCamelCase_ = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' UpperCamelCase_ = ' '.join(str(__lowercase).split(' ')[:-1]) UpperCamelCase_ = '' UpperCamelCase_ = eval(str(__lowercase).split(' ')[-1]) UpperCamelCase_ = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(__lowercase) if len(__lowercase) > 0: UpperCamelCase_ = full_error_msg + begin_error_msg + str(__lowercase) raise ValueError(__lowercase) benchmark.run() if __name__ == "__main__": main()
23
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): # Initialise PyTorch model UpperCamelCase_ = AlbertConfig.from_json_file(__lowercase) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = AlbertForPreTraining(__lowercase) # Load weights from tf checkpoint load_tf_weights_in_albert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
23
1
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _a ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" @register_to_config def __init__( self , _UpperCAmelCase = 768 , ) -> Dict: super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(1 , _UpperCAmelCase ) ) UpperCamelCase_ = nn.Parameter(torch.ones(1 , _UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase = None , _UpperCAmelCase = None , ) -> List[Any]: UpperCamelCase_ = nn.Parameter(self.mean.to(_UpperCAmelCase ).to(_UpperCAmelCase ) ) UpperCamelCase_ = nn.Parameter(self.std.to(_UpperCAmelCase ).to(_UpperCAmelCase ) ) return self def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: UpperCamelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = (embeds * self.std) + self.mean return embeds
23
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _a ( UpperCAmelCase__ ): """simple docstring""" @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) UpperCamelCase_ = BertTokenizer.from_pretrained('bert-base-uncased' ) UpperCamelCase_ = bertabert.config.encoder.vocab_size UpperCamelCase_ = tokenizer.sep_token_id UpperCamelCase_ = tokenizer.cls_token_id UpperCamelCase_ = 128 UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) UpperCamelCase_ = train_dataset.select(range(32 ) ) UpperCamelCase_ = val_dataset.select(range(16 ) ) UpperCamelCase_ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCamelCase_ = tokenizer(batch['article'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=512 ) UpperCamelCase_ = tokenizer(batch['highlights'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=128 ) UpperCamelCase_ = inputs.input_ids UpperCamelCase_ = inputs.attention_mask UpperCamelCase_ = outputs.input_ids UpperCamelCase_ = outputs.input_ids.copy() UpperCamelCase_ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] UpperCamelCase_ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase ): UpperCamelCase_ = pred.label_ids UpperCamelCase_ = pred.predictions # all unnecessary tokens are removed UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset UpperCamelCase_ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset UpperCamelCase_ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy='steps' , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCamelCase_ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
23
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class _a ( unittest.TestCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=True , _UpperCAmelCase=1 / 255 , _UpperCAmelCase=True , ) -> str: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCamelCase_ = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean UpperCamelCase_ = image_std UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_pad def _UpperCAmelCase ( self ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=False ) -> Tuple: if not batched: UpperCamelCase_ = image_inputs[0] if isinstance(_UpperCAmelCase , Image.Image ): UpperCamelCase_ , UpperCamelCase_ = image.size else: UpperCamelCase_ , UpperCamelCase_ = image.shape[1], image.shape[2] if w < h: UpperCamelCase_ = int(self.size['shortest_edge'] * h / w ) UpperCamelCase_ = self.size['shortest_edge'] elif w > h: UpperCamelCase_ = self.size['shortest_edge'] UpperCamelCase_ = int(self.size['shortest_edge'] * w / h ) else: UpperCamelCase_ = self.size['shortest_edge'] UpperCamelCase_ = self.size['shortest_edge'] else: UpperCamelCase_ = [] for image in image_inputs: UpperCamelCase_ , UpperCamelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase_ = max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[0] )[0] UpperCamelCase_ = max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = ConditionalDetrImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = ConditionalDetrImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _UpperCAmelCase ) UpperCamelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_UpperCAmelCase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: pass def _UpperCAmelCase ( self ) -> List[Any]: # Initialize image_processing UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) UpperCamelCase_ = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self ) -> int: # Initialize image_processing UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self ) -> Any: # Initialize image_processing UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _UpperCAmelCase ( self ) -> Any: # prepare image and target UpperCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: UpperCamelCase_ = json.loads(f.read() ) UpperCamelCase_ = {'image_id': 39769, 'annotations': target} # encode them UpperCamelCase_ = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) UpperCamelCase_ = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , return_tensors='pt' ) # verify pixel values UpperCamelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _UpperCAmelCase ) UpperCamelCase_ = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCAmelCase , atol=1e-4 ) ) # verify area UpperCamelCase_ = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCAmelCase ) ) # verify boxes UpperCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCAmelCase ) UpperCamelCase_ = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCAmelCase , atol=1e-3 ) ) # verify image_id UpperCamelCase_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCAmelCase ) ) # verify is_crowd UpperCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCAmelCase ) ) # verify class_labels UpperCamelCase_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCAmelCase ) ) # verify orig_size UpperCamelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCAmelCase ) ) # verify size UpperCamelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCAmelCase ) ) @slow def _UpperCAmelCase ( self ) -> List[Any]: # prepare image, target and masks_path UpperCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: UpperCamelCase_ = json.loads(f.read() ) UpperCamelCase_ = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} UpperCamelCase_ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them UpperCamelCase_ = ConditionalDetrImageProcessor(format='coco_panoptic' ) UpperCamelCase_ = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , masks_path=_UpperCAmelCase , return_tensors='pt' ) # verify pixel values UpperCamelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _UpperCAmelCase ) UpperCamelCase_ = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCAmelCase , atol=1e-4 ) ) # verify area UpperCamelCase_ = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCAmelCase ) ) # verify boxes UpperCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCAmelCase ) UpperCamelCase_ = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCAmelCase , atol=1e-3 ) ) # verify image_id UpperCamelCase_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCAmelCase ) ) # verify is_crowd UpperCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCAmelCase ) ) # verify class_labels UpperCamelCase_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCAmelCase ) ) # verify masks UpperCamelCase_ = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _UpperCAmelCase ) # verify orig_size UpperCamelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCAmelCase ) ) # verify size UpperCamelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCAmelCase ) )
23
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case__ : Dict = 1_6 snake_case__ : List[str] = 3_2 def _snake_case (__lowercase , __lowercase = 16): UpperCamelCase_ = AutoTokenizer.from_pretrained('bert-base-cased') UpperCamelCase_ = load_dataset('glue' , 'mrpc') def tokenize_function(__lowercase): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__lowercase , max_length=__lowercase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase_ = datasets.map( __lowercase , batched=__lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_ = tokenized_datasets.rename_column('label' , 'labels') def collate_fn(__lowercase): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase_ = 16 elif accelerator.mixed_precision != "no": UpperCamelCase_ = 8 else: UpperCamelCase_ = None return tokenizer.pad( __lowercase , padding='longest' , max_length=__lowercase , pad_to_multiple_of=__lowercase , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase_ = DataLoader( tokenized_datasets['train'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase) UpperCamelCase_ = DataLoader( tokenized_datasets['validation'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case__ : List[str] = mocked_dataloaders # noqa: F811 def _snake_case (__lowercase , __lowercase): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , __lowercase) == "1": UpperCamelCase_ = 2 # New Code # UpperCamelCase_ = int(args.gradient_accumulation_steps) # Initialize accelerator UpperCamelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowercase) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`') # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_ = config['lr'] UpperCamelCase_ = int(config['num_epochs']) UpperCamelCase_ = int(config['seed']) UpperCamelCase_ = int(config['batch_size']) UpperCamelCase_ = evaluate.load('glue' , 'mrpc') set_seed(__lowercase) UpperCamelCase_ , UpperCamelCase_ = get_dataloaders(__lowercase , __lowercase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__lowercase) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase_ = model.to(accelerator.device) # Instantiate optimizer UpperCamelCase_ = AdamW(params=model.parameters() , lr=__lowercase) # Instantiate scheduler UpperCamelCase_ = get_linear_schedule_with_warmup( optimizer=__lowercase , num_warmup_steps=100 , num_training_steps=(len(__lowercase) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) # Now we train the model for epoch in range(__lowercase): model.train() for step, batch in enumerate(__lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowercase): UpperCamelCase_ = model(**__lowercase) UpperCamelCase_ = output.loss accelerator.backward(__lowercase) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): UpperCamelCase_ = model(**__lowercase) UpperCamelCase_ = outputs.logits.argmax(dim=-1) UpperCamelCase_ , UpperCamelCase_ = accelerator.gather_for_metrics((predictions, batch['labels'])) metric.add_batch( predictions=__lowercase , references=__lowercase , ) UpperCamelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowercase) def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser(description='Simple example of training script.') parser.add_argument( '--mixed_precision' , type=__lowercase , default=__lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=__lowercase , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.') UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__lowercase , __lowercase) if __name__ == "__main__": main()
23
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _a ( UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = TextToVideoSDPipeline A_ = TEXT_TO_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. A_ = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def _UpperCAmelCase ( self ) -> List[str]: torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) UpperCamelCase_ = CLIPTextModel(_UpperCAmelCase ) UpperCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ) -> Optional[Any]: if str(_UpperCAmelCase ).startswith('mps' ): UpperCamelCase_ = torch.manual_seed(_UpperCAmelCase ) else: UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCamelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = TextToVideoSDPipeline(**_UpperCAmelCase ) UpperCamelCase_ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = self.get_dummy_inputs(_UpperCAmelCase ) UpperCamelCase_ = 'np' UpperCamelCase_ = sd_pipe(**_UpperCAmelCase ).frames UpperCamelCase_ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) UpperCamelCase_ = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> Any: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_UpperCAmelCase , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _UpperCAmelCase ( self ) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_UpperCAmelCase , expected_max_diff=1e-2 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def _UpperCAmelCase ( self ) -> Dict: pass def _UpperCAmelCase ( self ) -> Tuple: return super().test_progress_bar() @slow @skip_mps class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' ) UpperCamelCase_ = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) UpperCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCamelCase_ = pipe.to('cuda' ) UpperCamelCase_ = 'Spiderman is surfing' UpperCamelCase_ = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_ = pipe(_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=25 , output_type='pt' ).frames UpperCamelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' ) UpperCamelCase_ = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) UpperCamelCase_ = pipe.to('cuda' ) UpperCamelCase_ = 'Spiderman is surfing' UpperCamelCase_ = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_ = pipe(_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='pt' ).frames UpperCamelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
23
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _a : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=10 , _UpperCAmelCase=3 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=4 , _UpperCAmelCase=64 , ) -> List[Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = is_training UpperCamelCase_ = use_auxiliary_loss UpperCamelCase_ = num_queries UpperCamelCase_ = num_channels UpperCamelCase_ = min_size UpperCamelCase_ = max_size UpperCamelCase_ = num_labels UpperCamelCase_ = hidden_dim UpperCamelCase_ = hidden_dim def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _UpperCAmelCase ) UpperCamelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_UpperCAmelCase ) UpperCamelCase_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_UpperCAmelCase ) > 0.5 ).float() UpperCamelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=_UpperCAmelCase ) > 0.5).long() UpperCamelCase_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) UpperCamelCase_ = self.num_queries UpperCamelCase_ = self.num_labels UpperCamelCase_ = [1, 1, 1, 1] UpperCamelCase_ = self.num_channels UpperCamelCase_ = 64 UpperCamelCase_ = 128 UpperCamelCase_ = self.hidden_dim UpperCamelCase_ = self.hidden_dim UpperCamelCase_ = self.hidden_dim return config def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = output.encoder_hidden_states UpperCamelCase_ = output.pixel_decoder_hidden_states UpperCamelCase_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , config.decoder_layers ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Any: with torch.no_grad(): UpperCamelCase_ = MaskaFormerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCamelCase_ = model(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = MaskaFormerForUniversalSegmentation(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() def comm_check_on_output(_UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCamelCase_ = model(_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) UpperCamelCase_ = model( pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () A_ = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} A_ = False A_ = False A_ = False A_ = False def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = MaskaFormerModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_UpperCAmelCase ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _UpperCAmelCase ( self ) -> int: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> str: pass def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ) UpperCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCamelCase_ = MaskaFormerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = (self.model_tester.min_size,) * 2 UpperCamelCase_ = { 'pixel_values': torch.randn((2, 3, *size) , device=_UpperCAmelCase ), 'mask_labels': torch.randn((2, 10, *size) , device=_UpperCAmelCase ), 'class_labels': torch.zeros(2 , 10 , device=_UpperCAmelCase ).long(), } UpperCamelCase_ = self.model_tester.get_config() UpperCamelCase_ = MaskaFormerForUniversalSegmentation(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase , output_attentions=_UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def _UpperCAmelCase ( self ) -> List[Any]: if not self.model_tester.is_training: return UpperCamelCase_ = self.all_model_classes[1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ).loss loss.backward() def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = self.all_model_classes[1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) model.train() UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) UpperCamelCase_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) snake_case__ : List[Any] = 1E-4 def _snake_case (): UpperCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_vision @slow class _a ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCAmelCase ( self ) -> Optional[int]: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _UpperCAmelCase ( self ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) UpperCamelCase_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) UpperCamelCase_ = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) UpperCamelCase_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) # masks_queries_logits UpperCamelCase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCamelCase_ = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] UpperCamelCase_ = torch.tensor(_UpperCAmelCase ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) # class_queries_logits UpperCamelCase_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) UpperCamelCase_ = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) UpperCamelCase_ = inputs['pixel_values'].to(_UpperCAmelCase ) UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['mask_labels']] UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['class_labels']] with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
23
1
import math def _snake_case (__lowercase): UpperCamelCase_ = [] UpperCamelCase_ = 2 UpperCamelCase_ = int(math.sqrt(__lowercase)) # Size of every segment UpperCamelCase_ = [True] * (end + 1) UpperCamelCase_ = [] while start <= end: if temp[start] is True: in_prime.append(__lowercase) for i in range(start * start , end + 1 , __lowercase): UpperCamelCase_ = False start += 1 prime += in_prime UpperCamelCase_ = end + 1 UpperCamelCase_ = min(2 * end , __lowercase) while low <= n: UpperCamelCase_ = [True] * (high - low + 1) for each in in_prime: UpperCamelCase_ = math.floor(low / each) * each if t < low: t += each for j in range(__lowercase , high + 1 , __lowercase): UpperCamelCase_ = False for j in range(len(__lowercase)): if temp[j] is True: prime.append(j + low) UpperCamelCase_ = high + 1 UpperCamelCase_ = min(high + end , __lowercase) return prime print(sieve(1_0**6))
23
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType snake_case__ : List[str] = logging.get_logger(__name__) class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """vision-encoder-decoder""" A_ = True def __init__( self , **_UpperCAmelCase ) -> Dict: super().__init__(**_UpperCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) UpperCamelCase_ = kwargs.pop('encoder' ) UpperCamelCase_ = encoder_config.pop('model_type' ) UpperCamelCase_ = kwargs.pop('decoder' ) UpperCamelCase_ = decoder_config.pop('model_type' ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = True @classmethod def _UpperCAmelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> PretrainedConfig: logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) UpperCamelCase_ = True UpperCamelCase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.encoder.to_dict() UpperCamelCase_ = self.decoder.to_dict() UpperCamelCase_ = self.__class__.model_type return output class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = version.parse("""1.11""" ) @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-4 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase_ = OrderedDict() UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ) -> Mapping[str, Any]: import torch UpperCamelCase_ = OrderedDict() UpperCamelCase_ = super().generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = dummy_input['input_ids'].shape UpperCamelCase_ = (batch, encoder_sequence, self._config.encoder_hidden_size) UpperCamelCase_ = dummy_input.pop('input_ids' ) UpperCamelCase_ = dummy_input.pop('attention_mask' ) UpperCamelCase_ = torch.zeros(_UpperCAmelCase ) return common_inputs class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> None: pass def _UpperCAmelCase ( self , _UpperCAmelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = "default" ) -> OnnxConfig: UpperCamelCase_ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_UpperCAmelCase , _UpperCAmelCase )
23
1
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _a ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" @register_to_config def __init__( self , *, _UpperCAmelCase = 4 , _UpperCAmelCase = 768 , _UpperCAmelCase , _UpperCAmelCase , ) -> Any: super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(_UpperCAmelCase ) ) # parameters for additional clip time embeddings UpperCamelCase_ = nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) # parameters for encoder hidden states UpperCamelCase_ = clip_extra_context_tokens UpperCamelCase_ = nn.Linear( _UpperCAmelCase , self.clip_extra_context_tokens * cross_attention_dim ) UpperCamelCase_ = nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = nn.LayerNorm(_UpperCAmelCase ) def _UpperCAmelCase ( self , *, _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCamelCase_ = image_embeddings.shape[0] UpperCamelCase_ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCamelCase_ = classifier_free_guidance_embeddings.expand( _UpperCAmelCase , -1 ) UpperCamelCase_ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCamelCase_ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCamelCase_ = self.embedding_proj(_UpperCAmelCase ) UpperCamelCase_ = self.clip_image_embeddings_project_to_time_embeddings(_UpperCAmelCase ) UpperCamelCase_ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCamelCase_ = self.clip_extra_context_tokens_proj(_UpperCAmelCase ) UpperCamelCase_ = clip_extra_context_tokens.reshape(_UpperCAmelCase , -1 , self.clip_extra_context_tokens ) UpperCamelCase_ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCamelCase_ = self.encoder_hidden_states_proj(_UpperCAmelCase ) UpperCamelCase_ = self.text_encoder_hidden_states_norm(_UpperCAmelCase ) UpperCamelCase_ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
23
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): # Initialise PyTorch model UpperCamelCase_ = MobileBertConfig.from_json_file(__lowercase) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = MobileBertForPreTraining(__lowercase) # Load weights from tf checkpoint UpperCamelCase_ = load_tf_weights_in_mobilebert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig snake_case__ : int = logging.get_logger(__name__) # General docstring snake_case__ : List[str] = """RegNetConfig""" # Base docstring snake_case__ : Any = """facebook/regnet-y-040""" snake_case__ : Any = [1, 1_0_8_8, 7, 7] # Image classification docstring snake_case__ : List[Any] = """facebook/regnet-y-040""" snake_case__ : Union[str, Any] = """tabby, tabby cat""" snake_case__ : Optional[int] = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = 3 , _UpperCAmelCase = 1 , _UpperCAmelCase = 1 , _UpperCAmelCase = "relu" , **_UpperCAmelCase , ) -> Tuple: super().__init__(**_UpperCAmelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb UpperCamelCase_ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) UpperCamelCase_ = tf.keras.layers.ConvaD( filters=_UpperCAmelCase , kernel_size=_UpperCAmelCase , strides=_UpperCAmelCase , padding='VALID' , groups=_UpperCAmelCase , use_bias=_UpperCAmelCase , name='convolution' , ) UpperCamelCase_ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) UpperCamelCase_ = ACTaFN[activation] if activation is not None else tf.identity def _UpperCAmelCase ( self , _UpperCAmelCase ) -> str: UpperCamelCase_ = self.convolution(self.padding(_UpperCAmelCase ) ) UpperCamelCase_ = self.normalization(_UpperCAmelCase ) UpperCamelCase_ = self.activation(_UpperCAmelCase ) return hidden_state class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _UpperCAmelCase , **_UpperCAmelCase ) -> Any: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = config.num_channels UpperCamelCase_ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = shape_list(_UpperCAmelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) UpperCamelCase_ = tf.transpose(_UpperCAmelCase , perm=(0, 2, 3, 1) ) UpperCamelCase_ = self.embedder(_UpperCAmelCase ) return hidden_state class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = 2 , **_UpperCAmelCase ) -> Union[str, Any]: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = tf.keras.layers.ConvaD( filters=_UpperCAmelCase , kernel_size=1 , strides=_UpperCAmelCase , use_bias=_UpperCAmelCase , name='convolution' ) UpperCamelCase_ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = False ) -> tf.Tensor: return self.normalization(self.convolution(_UpperCAmelCase ) , training=_UpperCAmelCase ) class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> List[str]: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_UpperCAmelCase , name='pooler' ) UpperCamelCase_ = [ tf.keras.layers.ConvaD(filters=_UpperCAmelCase , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=_UpperCAmelCase , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def _UpperCAmelCase ( self , _UpperCAmelCase ) -> str: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] UpperCamelCase_ = self.pooler(_UpperCAmelCase ) for layer_module in self.attention: UpperCamelCase_ = layer_module(_UpperCAmelCase ) UpperCamelCase_ = hidden_state * pooled return hidden_state class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 , **_UpperCAmelCase ) -> List[str]: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = in_channels != out_channels or stride != 1 UpperCamelCase_ = max(1 , out_channels // config.groups_width ) UpperCamelCase_ = ( TFRegNetShortCut(_UpperCAmelCase , stride=_UpperCAmelCase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. UpperCamelCase_ = [ TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase , name='layer.2' ), ] UpperCamelCase_ = ACTaFN[config.hidden_act] def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = hidden_state for layer_module in self.layers: UpperCamelCase_ = layer_module(_UpperCAmelCase ) UpperCamelCase_ = self.shortcut(_UpperCAmelCase ) hidden_state += residual UpperCamelCase_ = self.activation(_UpperCAmelCase ) return hidden_state class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 , **_UpperCAmelCase ) -> Optional[int]: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = in_channels != out_channels or stride != 1 UpperCamelCase_ = max(1 , out_channels // config.groups_width ) UpperCamelCase_ = ( TFRegNetShortCut(_UpperCAmelCase , stride=_UpperCAmelCase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) UpperCamelCase_ = [ TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase , name='layer.3' ), ] UpperCamelCase_ = ACTaFN[config.hidden_act] def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = hidden_state for layer_module in self.layers: UpperCamelCase_ = layer_module(_UpperCAmelCase ) UpperCamelCase_ = self.shortcut(_UpperCAmelCase ) hidden_state += residual UpperCamelCase_ = self.activation(_UpperCAmelCase ) return hidden_state class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , **_UpperCAmelCase ) -> List[Any]: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer UpperCamelCase_ = [ # downsampling is done in the first layer with stride of 2 layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , name='layers.0' ), *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Union[str, Any]: for layer_module in self.layers: UpperCamelCase_ = layer_module(_UpperCAmelCase ) return hidden_state class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _UpperCAmelCase , **_UpperCAmelCase ) -> str: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) UpperCamelCase_ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_UpperCAmelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase , name=f"""stages.{i+1}""" ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = True ) -> TFBaseModelOutputWithNoAttention: UpperCamelCase_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase_ = hidden_states + (hidden_state,) UpperCamelCase_ = stage_module(_UpperCAmelCase ) if output_hidden_states: UpperCamelCase_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase ) @keras_serializable class _a ( tf.keras.layers.Layer ): """simple docstring""" A_ = RegNetConfig def __init__( self , _UpperCAmelCase , **_UpperCAmelCase ) -> Tuple: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = config UpperCamelCase_ = TFRegNetEmbeddings(_UpperCAmelCase , name='embedder' ) UpperCamelCase_ = TFRegNetEncoder(_UpperCAmelCase , name='encoder' ) UpperCamelCase_ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_UpperCAmelCase , name='pooler' ) @unpack_inputs def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: UpperCamelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase_ = self.embedder(_UpperCAmelCase , training=_UpperCAmelCase ) UpperCamelCase_ = self.encoder( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase , training=_UpperCAmelCase ) UpperCamelCase_ = encoder_outputs[0] UpperCamelCase_ = self.pooler(_UpperCAmelCase ) # Change to NCHW output format have uniformity in the modules UpperCamelCase_ = tf.transpose(_UpperCAmelCase , perm=(0, 3, 1, 2) ) UpperCamelCase_ = tf.transpose(_UpperCAmelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: UpperCamelCase_ = tuple([tf.transpose(_UpperCAmelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = RegNetConfig A_ = """regnet""" A_ = """pixel_values""" @property def _UpperCAmelCase ( self ) -> Tuple: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} snake_case__ : Dict = R""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ snake_case__ : Optional[Any] = R""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , UpperCAmelCase__ , ) class _a ( UpperCAmelCase__ ): """simple docstring""" def __init__( self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) -> List[Any]: super().__init__(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = TFRegNetMainLayer(_UpperCAmelCase , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: UpperCamelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase_ = self.regnet( pixel_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase , training=_UpperCAmelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , UpperCAmelCase__ , ) class _a ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" def __init__( self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) -> List[Any]: super().__init__(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = config.num_labels UpperCamelCase_ = TFRegNetMainLayer(_UpperCAmelCase , name='regnet' ) # classification head UpperCamelCase_ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCAmelCase ( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: UpperCamelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase_ = self.regnet( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase , training=_UpperCAmelCase ) UpperCamelCase_ = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase_ = self.classifier[0](_UpperCAmelCase ) UpperCamelCase_ = self.classifier[1](_UpperCAmelCase ) UpperCamelCase_ = None if labels is None else self.hf_compute_loss(labels=_UpperCAmelCase , logits=_UpperCAmelCase ) if not return_dict: UpperCamelCase_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
23
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _a ( unittest.TestCase ): """simple docstring""" A_ = MODEL_FOR_MASKED_LM_MAPPING A_ = TF_MODEL_FOR_MASKED_LM_MAPPING def _UpperCAmelCase ( self ) -> List[str]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9e-05, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2e-05, 'token': 2941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() UpperCamelCase_ = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(_UpperCAmelCase ) @slow @require_tf def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is John', 'score': 0.0_0_8, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.0_0_7, 'token': 1573, 'token_str': ' Chris'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.2_5_1, 'token': 2201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.2_1_4, 'token': 12790, 'token_str': ' Lyon', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is Patrick', 'score': 0.0_0_5, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.0_0_0, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.0_0_0, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) @require_tf def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = fill_masker.tokenizer UpperCamelCase_ = fill_masker.model UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , ) with self.assertRaises(_UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_UpperCAmelCase ): fill_masker('This is' ) self.run_test_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_targets(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_top_k_targets(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_multiple_masks(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = sorted(vocab.keys() )[:2] # Pipeline argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , targets=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Call argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Score equivalence UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['token_str'] for top_mask in outputs] UpperCamelCase_ = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ) == set(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[''] ) with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets='' ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , top_k=2 ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) # top_k=2, ntargets=3 UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=_UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCamelCase_ = [el['token_str'] for el in sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ).issubset(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=_UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.get_vocab() # String duplicates + id duplicates UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCamelCase_ = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=_UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_UpperCAmelCase ) , 3 ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , )
23
1
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def _snake_case (__lowercase): return (data["data"], data["target"]) def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = XGBClassifier() classifier.fit(__lowercase , __lowercase) return classifier def _snake_case (): UpperCamelCase_ = load_iris() UpperCamelCase_ , UpperCamelCase_ = data_handling(__lowercase) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = train_test_split( __lowercase , __lowercase , test_size=0.25) UpperCamelCase_ = iris['target_names'] # Create an XGBoost Classifier from the training data UpperCamelCase_ = xgboost(__lowercase , __lowercase) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowercase , __lowercase , __lowercase , display_labels=__lowercase , cmap='Blues' , normalize='true' , ) plt.title('Normalized Confusion Matrix - IRIS Dataset') plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
23
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionSAGPipeline A_ = TEXT_TO_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_BATCH_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = False def _UpperCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCamelCase_ = CLIPTextModel(_UpperCAmelCase ) UpperCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ) -> List[Any]: if str(_UpperCAmelCase ).startswith('mps' ): UpperCamelCase_ = torch.manual_seed(_UpperCAmelCase ) else: UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCamelCase_ = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def _UpperCAmelCase ( self ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , width=768 , height=512 , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) UpperCamelCase_ = output.images assert image.shape == (1, 512, 768, 3)
23
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ : Dict = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Any = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[Any] = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys snake_case__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
23
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar snake_case__ : List[str] = TypeVar("""T""") def _snake_case (__lowercase): return (position - 1) // 2 def _snake_case (__lowercase): return (2 * position) + 1 def _snake_case (__lowercase): return (2 * position) + 2 class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = [] UpperCamelCase_ = {} UpperCamelCase_ = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def _UpperCAmelCase ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) UpperCamelCase_ = self.elements self.elements += 1 self._bubble_up(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) UpperCamelCase_ , UpperCamelCase_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: UpperCamelCase_ , UpperCamelCase_ = self.heap[0] self._bubble_down(_UpperCAmelCase ) return elem def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Update the weight of the given key UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ = (elem, weight) if position > 0: UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] UpperCamelCase_ = self.position_map[elem] if curr_pos == 0: return None UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_up(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ = get_child_left_position(_UpperCAmelCase ) UpperCamelCase_ = get_child_right_position(_UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) if child_left_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) else: return None if child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Swap the nodes at the given positions UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ , UpperCamelCase_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) UpperCamelCase_ = nodea_pos UpperCamelCase_ = nodea_pos class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = {} UpperCamelCase_ = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: UpperCamelCase_ = {} self.nodes += 1 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an edge between 2 nodes in the graph self.add_node(_UpperCAmelCase ) self.add_node(_UpperCAmelCase ) UpperCamelCase_ = weight UpperCamelCase_ = weight def _snake_case (__lowercase , ): UpperCamelCase_ = {node: maxsize for node in graph.connections} UpperCamelCase_ = {node: None for node in graph.connections} UpperCamelCase_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__lowercase , __lowercase) if priority_queue.is_empty(): return dist, parent # initialization UpperCamelCase_ = priority_queue.extract_min() UpperCamelCase_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node # running prim's algorithm while not priority_queue.is_empty(): UpperCamelCase_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node return dist, parent
23
1
import doctest from collections import deque import numpy as np class _a : """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = [2, 1, 2, -1] UpperCamelCase_ = [1, 2, 3, 4] def _UpperCAmelCase ( self ) -> list[float]: UpperCamelCase_ = len(self.first_signal ) UpperCamelCase_ = len(self.second_signal ) UpperCamelCase_ = max(_UpperCAmelCase , _UpperCAmelCase ) # create a zero matrix of max_length x max_length UpperCamelCase_ = [[0] * max_length for i in range(_UpperCAmelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_UpperCAmelCase ): UpperCamelCase_ = deque(self.second_signal ) rotated_signal.rotate(_UpperCAmelCase ) for j, item in enumerate(_UpperCAmelCase ): matrix[i][j] += item # multiply the matrix with the first signal UpperCamelCase_ = np.matmul(np.transpose(_UpperCAmelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(_UpperCAmelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
23
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case__ : Dict = TypeVar("""T""") class _a ( Generic[T] ): """simple docstring""" A_ = 42 # Cache store of keys A_ = 42 # References of the keys in cache A_ = 10 # Maximum capacity of cache def __init__( self , _UpperCAmelCase ) -> None: UpperCamelCase_ = deque() UpperCamelCase_ = set() if not n: UpperCamelCase_ = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCamelCase_ = n def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCamelCase_ = self.dq_store.pop() self.key_reference.remove(_UpperCAmelCase ) else: self.dq_store.remove(_UpperCAmelCase ) self.dq_store.appendleft(_UpperCAmelCase ) self.key_reference.add(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> None: for k in self.dq_store: print(_UpperCAmelCase ) def __repr__( self ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : LRUCache[str | int] = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
23
1
import sys import turtle def _snake_case (__lowercase , __lowercase): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1]) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1]) my_pen.goto(vertexa[0] , vertexa[1]) my_pen.goto(vertexa[0] , vertexa[1]) if depth == 0: return triangle(__lowercase , get_mid(__lowercase , __lowercase) , get_mid(__lowercase , __lowercase) , depth - 1) triangle(__lowercase , get_mid(__lowercase , __lowercase) , get_mid(__lowercase , __lowercase) , depth - 1) triangle(__lowercase , get_mid(__lowercase , __lowercase) , get_mid(__lowercase , __lowercase) , depth - 1) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) snake_case__ : Tuple = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") snake_case__ : Optional[Any] = [(-1_7_5, -1_2_5), (0, 1_7_5), (1_7_5, -1_2_5)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
23
import numpy as np def _snake_case (__lowercase): return 1 / (1 + np.exp(-vector)) def _snake_case (__lowercase): return vector * sigmoid(__lowercase) if __name__ == "__main__": import doctest doctest.testmod()
23
1
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , ): if config_name_or_path is None: UpperCamelCase_ = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: UpperCamelCase_ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: UpperCamelCase_ = question_encoder_name_or_path UpperCamelCase_ = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. UpperCamelCase_ = RagConfig.from_pretrained(__lowercase) UpperCamelCase_ = AutoConfig.from_pretrained(__lowercase) UpperCamelCase_ = AutoConfig.from_pretrained(__lowercase) UpperCamelCase_ = gen_config UpperCamelCase_ = question_encoder_config UpperCamelCase_ = model_class.from_pretrained_question_encoder_generator( __lowercase , __lowercase , config=__lowercase) rag_model.save_pretrained(__lowercase) # Sanity check. model_class.from_pretrained(__lowercase) # Save tokenizers. UpperCamelCase_ = AutoTokenizer.from_pretrained(__lowercase) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/') UpperCamelCase_ = AutoTokenizer.from_pretrained(__lowercase) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/') if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--model_type""", choices=["""rag_sequence""", """rag_token"""], required=True, type=str, help="""RAG model type: rag_sequence, rag_token""", ) parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""") parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""") parser.add_argument( """--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier""" ) parser.add_argument( """--generator_tokenizer_name_or_path""", type=str, help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""", ) parser.add_argument( """--question_encoder_tokenizer_name_or_path""", type=str, help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""", ) parser.add_argument( """--config_name_or_path""", type=str, help=( """Identifier of the model config to use, if not provided, resolves to a base config for a given""" """ ``model_type``""" ), ) snake_case__ : int = parser.parse_args() snake_case__ : str = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
23
import math from datetime import datetime, timedelta def _snake_case (__lowercase): UpperCamelCase_ = year % 19 UpperCamelCase_ = year % 4 UpperCamelCase_ = year % 7 UpperCamelCase_ = math.floor(year / 100) UpperCamelCase_ = math.floor((13 + 8 * leap_day_inhibits) / 25) UpperCamelCase_ = leap_day_inhibits / 4 UpperCamelCase_ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 UpperCamelCase_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCamelCase_ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon UpperCamelCase_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 19) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 18) else: return datetime(__lowercase , 3 , 22) + timedelta( days=int(days_to_add + days_from_phm_to_sunday)) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): snake_case__ : Dict = """will be""" if year > datetime.now().year else """was""" print(f'Easter in {year} {tense} {gauss_easter(year)}')
23
1
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(UpperCAmelCase__ ) , """Tatoeba directory does not exist.""" ) class _a ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = tempfile.mkdtemp() return TatoebaConverter(save_dir=_UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: self.resolver.convert_models(['heb-eng'] ) @slow def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ , UpperCamelCase_ = self.resolver.write_model_card('opus-mt-he-en' , dry_run=_UpperCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
23
import requests def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = {'Content-Type': 'application/json'} UpperCamelCase_ = requests.post(__lowercase , json={'text': message_body} , headers=__lowercase) if response.status_code != 200: UpperCamelCase_ = ( 'Request to slack returned an error ' f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(__lowercase) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
23
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer snake_case__ : Optional[Any] = logging.get_logger(__name__) snake_case__ : Dict = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} snake_case__ : Union[str, Any] = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } snake_case__ : List[Any] = { """yjernite/retribert-base-uncased""": 5_1_2, } snake_case__ : List[str] = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = PRETRAINED_INIT_CONFIGURATION A_ = RetriBertTokenizer A_ = ["""input_ids""", """attention_mask"""] def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase="[UNK]" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="[PAD]" , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[MASK]" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ) -> int: super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenize_chinese_chars=_UpperCAmelCase , strip_accents=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _UpperCAmelCase ) != tokenize_chinese_chars ): UpperCamelCase_ = getattr(_UpperCAmelCase , normalizer_state.pop('type' ) ) UpperCamelCase_ = do_lower_case UpperCamelCase_ = strip_accents UpperCamelCase_ = tokenize_chinese_chars UpperCamelCase_ = normalizer_class(**_UpperCAmelCase ) UpperCamelCase_ = do_lower_case def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None ) -> Union[str, Any]: UpperCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> List[int]: UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> Tuple[str]: UpperCamelCase_ = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
23
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _a ( UpperCAmelCase__ ): """simple docstring""" def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) UpperCamelCase_ = input_file.read() UpperCamelCase_ = regexp.search(_UpperCAmelCase ) return match def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) UpperCamelCase_ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase_ = regexp.finditer(_UpperCAmelCase ) UpperCamelCase_ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_UpperCAmelCase ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(_UpperCAmelCase ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
23
1
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor snake_case__ : Optional[Any] = logging.get_logger(__name__) class _a ( UpperCAmelCase__ ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
23
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _snake_case (__lowercase=32 , __lowercase=10 , __lowercase=100 , __lowercase=1026 , __lowercase=True , __lowercase="data/tokenized_stories_train_wikitext103.jbl" , __lowercase="igf_context_pairs.jbl" , ): set_seed(3) # generate train_data and objective_set UpperCamelCase_ , UpperCamelCase_ = generate_datasets( __lowercase , __lowercase , number=__lowercase , min_len=1026 , trim=__lowercase) # keeps model same across runs set_seed(4) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # load pretrained model UpperCamelCase_ = load_gpta('gpt2').to(__lowercase) print('computing perplexity on objective set') UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase).item() print('perplexity on objective set:' , __lowercase) # collect igf pairs and save to file demo.jbl collect_objective_set(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _snake_case (__lowercase , __lowercase=15 , __lowercase=128 , __lowercase=100 , __lowercase="igf_model.pt" , ): set_seed(42) # Load pre-trained model UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2') # Initialize secondary learner to use embedding weights of model UpperCamelCase_ = SecondaryLearner(__lowercase) # Train secondary learner UpperCamelCase_ = train_secondary_learner( __lowercase , __lowercase , max_epochs=__lowercase , batch_size=__lowercase , eval_freq=100 , igf_model_path=__lowercase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=32 , __lowercase=1000 , __lowercase=16 , __lowercase=1.0 , __lowercase=recopy_gpta , __lowercase=None , __lowercase=10 , __lowercase="gpt2_finetuned.pt" , ): UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') UpperCamelCase_ = RandomSampler(__lowercase) UpperCamelCase_ = DataLoader(__lowercase , sampler=__lowercase) UpperCamelCase_ = max_steps // (len(__lowercase)) + 1 UpperCamelCase_ = 0 UpperCamelCase_ = torch.zeros((1, context_len) , dtype=torch.long , device=__lowercase) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = recopy_model(__lowercase , __lowercase , __lowercase) model.train() if secondary_learner is not None: secondary_learner.to(__lowercase) secondary_learner.eval() UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = [] UpperCamelCase_ = [] # Compute the performance of the transformer model at the beginning UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase) test_perps.append(__lowercase) print('Test perplexity, step' , __lowercase , ':' , __lowercase) for epoch in range(int(__lowercase)): for step, example in enumerate(__lowercase): torch.cuda.empty_cache() UpperCamelCase_ = random.randint(0 , example.size(2) - context_len - 1) UpperCamelCase_ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() UpperCamelCase_ = model(__lowercase , labels=__lowercase) UpperCamelCase_ = True if secondary_learner is not None: UpperCamelCase_ = secondary_learner.forward( torch.tensor(__lowercase , dtype=torch.long , device=__lowercase).unsqueeze(0))[0].item() observed_qs.append(float(__lowercase)) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: UpperCamelCase_ = -1 if predicted_q < threshold: UpperCamelCase_ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu())) UpperCamelCase_ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() UpperCamelCase_ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase) test_perps.append(__lowercase) print('Test perplexity, step' , __lowercase , ':' , __lowercase) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , __lowercase) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task') # Required parameters parser.add_argument( '--data_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=__lowercase , type=__lowercase , required=__lowercase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=__lowercase , default=__lowercase , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=__lowercase , default=__lowercase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=__lowercase , type=__lowercase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=__lowercase , default=__lowercase , help='A seed for reproducible training.') parser.add_argument( '--context_len' , default=32 , type=__lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=__lowercase , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=__lowercase , help='secondary model evaluation is triggered at eval_freq') parser.add_argument('--max_steps' , default=1000 , type=__lowercase , help='To calculate training epochs') parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=__lowercase , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=__lowercase , help='batch size of training data of language model(gpt2) ') parser.add_argument( '--eval_interval' , default=10 , type=__lowercase , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=__lowercase , help='The number of examples split to be used as objective_set/test_data') parser.add_argument( '--min_len' , default=1026 , type=__lowercase , help='The minimum length of the article to be used as objective set') parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=__lowercase , help='number of epochs to train secondary learner') parser.add_argument('--trim' , default=__lowercase , type=__lowercase , help='truncate the example if it exceeds context length') parser.add_argument( '--threshold' , default=1.0 , type=__lowercase , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=__lowercase , help='finetuned_model_name') parser.add_argument( '--recopy_model' , default=__lowercase , type=__lowercase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=__lowercase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner UpperCamelCase_ = joblib.load('data/IGF_values.jbl') # Train secondary learner UpperCamelCase_ = training_secondary_learner( __lowercase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2') set_seed(42) # Generate train and test data to train and evaluate gpt2 model UpperCamelCase_ , UpperCamelCase_ = generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=__lowercase) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( __lowercase , __lowercase , __lowercase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=__lowercase , secondary_learner=__lowercase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
23
1
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging snake_case__ : Tuple = logging.get_logger(__name__) def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = nn.functional.normalize(__lowercase) UpperCamelCase_ = nn.functional.normalize(__lowercase) return torch.mm(__lowercase , normalized_text_embeds.t()) class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = CLIPConfig A_ = ["""CLIPEncoderLayer"""] def __init__( self , _UpperCAmelCase ) -> Dict: super().__init__(_UpperCAmelCase ) UpperCamelCase_ = CLIPVisionModel(config.vision_config ) UpperCamelCase_ = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase ) UpperCamelCase_ = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) UpperCamelCase_ = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) UpperCamelCase_ = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase ) UpperCamelCase_ = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase ) @torch.no_grad() def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: UpperCamelCase_ = self.vision_model(_UpperCAmelCase )[1] # pooled_output UpperCamelCase_ = self.visual_projection(_UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase_ = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() UpperCamelCase_ = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() UpperCamelCase_ = [] UpperCamelCase_ = image_embeds.shape[0] for i in range(_UpperCAmelCase ): UpperCamelCase_ = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images UpperCamelCase_ = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): UpperCamelCase_ = special_cos_dist[i][concept_idx] UpperCamelCase_ = self.special_care_embeds_weights[concept_idx].item() UpperCamelCase_ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) UpperCamelCase_ = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): UpperCamelCase_ = cos_dist[i][concept_idx] UpperCamelCase_ = self.concept_embeds_weights[concept_idx].item() UpperCamelCase_ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) UpperCamelCase_ = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = self.vision_model(_UpperCAmelCase )[1] # pooled_output UpperCamelCase_ = self.visual_projection(_UpperCAmelCase ) UpperCamelCase_ = cosine_distance(_UpperCAmelCase , self.special_care_embeds ) UpperCamelCase_ = cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images UpperCamelCase_ = 0.0 UpperCamelCase_ = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) UpperCamelCase_ = torch.any(special_scores > 0 , dim=1 ) UpperCamelCase_ = special_care * 0.0_1 UpperCamelCase_ = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) UpperCamelCase_ = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) UpperCamelCase_ = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
23
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _a : """simple docstring""" A_ = MBartConfig A_ = {} A_ = """gelu""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ) -> Union[str, Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_ = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = TFMBartModel(config=_UpperCAmelCase ).get_decoder() UpperCamelCase_ = inputs_dict['input_ids'] UpperCamelCase_ = input_ids[:1, :] UpperCamelCase_ = inputs_dict['attention_mask'][:1, :] UpperCamelCase_ = inputs_dict['head_mask'] UpperCamelCase_ = 1 # first forward pass UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple() UpperCamelCase_ = past_key_values[1] def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ): if attention_mask is None: UpperCamelCase_ = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id) , tf.inta) if decoder_attention_mask is None: UpperCamelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () A_ = (TFMBartForConditionalGeneration,) if is_tf_available() else () A_ = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) A_ = True A_ = False A_ = False def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = TFMBartModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class _a ( unittest.TestCase ): """simple docstring""" A_ = [ """ UN Chief Says There Is No Military Solution in Syria""", ] A_ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] A_ = """facebook/mbart-large-en-ro""" @cached_property def _UpperCAmelCase ( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> int: UpperCamelCase_ = self.translate_src_text(**_UpperCAmelCase ) self.assertListEqual(self.expected_text , _UpperCAmelCase ) def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> List[str]: UpperCamelCase_ = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='tf' ) UpperCamelCase_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCamelCase_ = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) return generated_words @slow def _UpperCAmelCase ( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
23
1
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging snake_case__ : int = logging.get_logger(__name__) class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = ["""audio_values""", """audio_mask"""] def __init__( self , _UpperCAmelCase=2048 , _UpperCAmelCase=1 , _UpperCAmelCase=[16, 16] , _UpperCAmelCase=128 , _UpperCAmelCase=44100 , _UpperCAmelCase=86 , _UpperCAmelCase=2048 , _UpperCAmelCase=0.0 , **_UpperCAmelCase , ) -> Optional[Any]: super().__init__( feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCamelCase_ = spectrogram_length UpperCamelCase_ = num_channels UpperCamelCase_ = patch_size UpperCamelCase_ = feature_size // self.patch_size[1] UpperCamelCase_ = n_fft UpperCamelCase_ = sampling_rate // hop_length_to_sampling_rate UpperCamelCase_ = sampling_rate UpperCamelCase_ = padding_value UpperCamelCase_ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_UpperCAmelCase , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=_UpperCAmelCase , norm='slaney' , mel_scale='slaney' , ).T def _UpperCAmelCase ( self , _UpperCAmelCase ) -> np.ndarray: UpperCamelCase_ = spectrogram( _UpperCAmelCase , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=8_0.0 , ) UpperCamelCase_ = log_spec[:, :-1] UpperCamelCase_ = log_spec - 2_0.0 UpperCamelCase_ = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , **_UpperCAmelCase , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) UpperCamelCase_ = isinstance(_UpperCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase_ = is_batched_numpy or ( isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase_ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ): UpperCamelCase_ = np.asarray(_UpperCAmelCase , dtype=np.floataa ) elif isinstance(_UpperCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase_ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis UpperCamelCase_ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , _UpperCAmelCase ): UpperCamelCase_ = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask UpperCamelCase_ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: UpperCamelCase_ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] UpperCamelCase_ = np.array(_UpperCAmelCase ).astype(np.floataa ) # convert into correct format for padding UpperCamelCase_ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch UpperCamelCase_ = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) UpperCamelCase_ = padded_audio_features * self.padding_value for i in range(len(_UpperCAmelCase ) ): UpperCamelCase_ = audio_features[i] UpperCamelCase_ = feature # return as BatchFeature if return_attention_mask: UpperCamelCase_ = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: UpperCamelCase_ = {'audio_values': padded_audio_features} UpperCamelCase_ = BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase ) return encoded_inputs
23
def _snake_case (__lowercase): UpperCamelCase_ = 1 for i in range(1 , num + 1): fact *= i return fact def _snake_case (__lowercase): UpperCamelCase_ = 0 while number > 0: UpperCamelCase_ = number % 10 sum_of_digits += last_digit UpperCamelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def _snake_case (__lowercase = 100): UpperCamelCase_ = factorial(__lowercase) UpperCamelCase_ = split_and_add(__lowercase) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
23
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case__ : str = logging.get_logger(__name__) def _snake_case (__lowercase): if isinstance(__lowercase , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(__lowercase , (list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(__lowercase): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""") class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = ["""pixel_values"""] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> None: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = size if size is not None else {'shortest_edge': 224} UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = resample UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCamelCase_ = get_resize_output_image_size(_UpperCAmelCase , size['shortest_edge'] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCamelCase_ = (size['height'], size['width']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: UpperCamelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> int: return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCamelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCamelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCamelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCamelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCamelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCamelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ) -> PIL.Image.Image: UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean UpperCamelCase_ = image_std if image_std is not None else self.image_std UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) UpperCamelCase_ = make_batched(_UpperCAmelCase ) UpperCamelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCamelCase_ = {'pixel_values': videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
23
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case__ : str = logging.get_logger(__name__) def _snake_case (__lowercase): if isinstance(__lowercase , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(__lowercase , (list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(__lowercase): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""") class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = ["""pixel_values"""] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> None: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = size if size is not None else {'shortest_edge': 224} UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = resample UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCamelCase_ = get_resize_output_image_size(_UpperCAmelCase , size['shortest_edge'] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCamelCase_ = (size['height'], size['width']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: UpperCamelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> int: return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCamelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCamelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCamelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCamelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCamelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCamelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ) -> PIL.Image.Image: UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean UpperCamelCase_ = image_std if image_std is not None else self.image_std UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) UpperCamelCase_ = make_batched(_UpperCAmelCase ) UpperCamelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCamelCase_ = {'pixel_values': videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
23
1
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } UpperCamelCase_ = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(_UpperCAmelCase ) , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase ) , x.transpose() ) ) UpperCamelCase_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = np.random.randn(3 , 4 ) UpperCamelCase_ = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase ) , transpose(_UpperCAmelCase ).numpy() ) ) UpperCamelCase_ = np.random.randn(3 , 4 , 5 ) UpperCamelCase_ = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) , transpose(_UpperCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = np.random.randn(3 , 4 ) UpperCamelCase_ = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase ) , transpose(_UpperCAmelCase ).numpy() ) ) UpperCamelCase_ = np.random.randn(3 , 4 , 5 ) UpperCamelCase_ = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) , transpose(_UpperCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = np.random.randn(3 , 4 ) UpperCamelCase_ = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase ) , np.asarray(transpose(_UpperCAmelCase ) ) ) ) UpperCamelCase_ = np.random.randn(3 , 4 , 5 ) UpperCamelCase_ = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) , np.asarray(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) ) ) ) def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (4, 3) ) , np.reshape(_UpperCAmelCase , (4, 3) ) ) ) UpperCamelCase_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (12, 5) ) , np.reshape(_UpperCAmelCase , (12, 5) ) ) ) @require_torch def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = np.random.randn(3 , 4 ) UpperCamelCase_ = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (4, 3) ) , reshape(_UpperCAmelCase , (4, 3) ).numpy() ) ) UpperCamelCase_ = np.random.randn(3 , 4 , 5 ) UpperCamelCase_ = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (12, 5) ) , reshape(_UpperCAmelCase , (12, 5) ).numpy() ) ) @require_tf def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = np.random.randn(3 , 4 ) UpperCamelCase_ = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (4, 3) ) , reshape(_UpperCAmelCase , (4, 3) ).numpy() ) ) UpperCamelCase_ = np.random.randn(3 , 4 , 5 ) UpperCamelCase_ = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (12, 5) ) , reshape(_UpperCAmelCase , (12, 5) ).numpy() ) ) @require_flax def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = np.random.randn(3 , 4 ) UpperCamelCase_ = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (4, 3) ) , np.asarray(reshape(_UpperCAmelCase , (4, 3) ) ) ) ) UpperCamelCase_ = np.random.randn(3 , 4 , 5 ) UpperCamelCase_ = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (12, 5) ) , np.asarray(reshape(_UpperCAmelCase , (12, 5) ) ) ) ) def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase ) , np.squeeze(_UpperCAmelCase ) ) ) UpperCamelCase_ = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase , axis=2 ) , np.squeeze(_UpperCAmelCase , axis=2 ) ) ) @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = np.random.randn(1 , 3 , 4 ) UpperCamelCase_ = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase ) , squeeze(_UpperCAmelCase ).numpy() ) ) UpperCamelCase_ = np.random.randn(1 , 4 , 1 , 5 ) UpperCamelCase_ = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase , axis=2 ) , squeeze(_UpperCAmelCase , axis=2 ).numpy() ) ) @require_tf def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = np.random.randn(1 , 3 , 4 ) UpperCamelCase_ = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase ) , squeeze(_UpperCAmelCase ).numpy() ) ) UpperCamelCase_ = np.random.randn(1 , 4 , 1 , 5 ) UpperCamelCase_ = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase , axis=2 ) , squeeze(_UpperCAmelCase , axis=2 ).numpy() ) ) @require_flax def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = np.random.randn(1 , 3 , 4 ) UpperCamelCase_ = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase ) , np.asarray(squeeze(_UpperCAmelCase ) ) ) ) UpperCamelCase_ = np.random.randn(1 , 4 , 1 , 5 ) UpperCamelCase_ = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase , axis=2 ) , np.asarray(squeeze(_UpperCAmelCase , axis=2 ) ) ) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_UpperCAmelCase , axis=1 ) , np.expand_dims(_UpperCAmelCase , axis=1 ) ) ) @require_torch def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = np.random.randn(3 , 4 ) UpperCamelCase_ = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(_UpperCAmelCase , axis=1 ) , expand_dims(_UpperCAmelCase , axis=1 ).numpy() ) ) @require_tf def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = np.random.randn(3 , 4 ) UpperCamelCase_ = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(_UpperCAmelCase , axis=1 ) , expand_dims(_UpperCAmelCase , axis=1 ).numpy() ) ) @require_flax def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = np.random.randn(3 , 4 ) UpperCamelCase_ = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(_UpperCAmelCase , axis=1 ) , np.asarray(expand_dims(_UpperCAmelCase , axis=1 ) ) ) )
23
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = 42 A_ = 42 class _a ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" A_ = 1 @register_to_config def __init__( self , _UpperCAmelCase = 2000 , _UpperCAmelCase = 0.1_5 , _UpperCAmelCase = 0.0_1 , _UpperCAmelCase = 1_3_4_8.0 , _UpperCAmelCase = 1e-5 , _UpperCAmelCase = 1 , ) -> Tuple: # standard deviation of the initial noise distribution UpperCamelCase_ = sigma_max # setable values UpperCamelCase_ = None self.set_sigmas(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> torch.FloatTensor: return sample def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> str: UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps UpperCamelCase_ = torch.linspace(1 , _UpperCAmelCase , _UpperCAmelCase , device=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> Any: UpperCamelCase_ = sigma_min if sigma_min is not None else self.config.sigma_min UpperCamelCase_ = sigma_max if sigma_max is not None else self.config.sigma_max UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) UpperCamelCase_ = torch.exp(torch.linspace(math.log(_UpperCAmelCase ) , math.log(_UpperCAmelCase ) , _UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) UpperCamelCase_ = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) UpperCamelCase_ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda UpperCamelCase_ = timesteps.to(self.discrete_sigmas.device ) UpperCamelCase_ = self.discrete_sigmas[timesteps].to(sample.device ) UpperCamelCase_ = self.get_adjacent_sigma(_UpperCAmelCase , _UpperCAmelCase ).to(sample.device ) UpperCamelCase_ = torch.zeros_like(_UpperCAmelCase ) UpperCamelCase_ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods UpperCamelCase_ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): UpperCamelCase_ = diffusion.unsqueeze(-1 ) UpperCamelCase_ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of UpperCamelCase_ = randn_tensor( sample.shape , layout=sample.layout , generator=_UpperCAmelCase , device=sample.device , dtype=sample.dtype ) UpperCamelCase_ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? UpperCamelCase_ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_UpperCAmelCase , prev_sample_mean=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction UpperCamelCase_ = randn_tensor(sample.shape , layout=sample.layout , generator=_UpperCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr UpperCamelCase_ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase_ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase_ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 UpperCamelCase_ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term UpperCamelCase_ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): UpperCamelCase_ = step_size.unsqueeze(-1 ) UpperCamelCase_ = sample + step_size * model_output UpperCamelCase_ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCamelCase_ = timesteps.to(original_samples.device ) UpperCamelCase_ = self.discrete_sigmas.to(original_samples.device )[timesteps] UpperCamelCase_ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_UpperCAmelCase ) * sigmas[:, None, None, None] ) UpperCamelCase_ = noise + original_samples return noisy_samples def __len__( self ) -> Optional[int]: return self.config.num_train_timesteps
23
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case__ : Dict = 1_6 snake_case__ : List[str] = 3_2 def _snake_case (__lowercase , __lowercase = 16): UpperCamelCase_ = AutoTokenizer.from_pretrained('bert-base-cased') UpperCamelCase_ = load_dataset('glue' , 'mrpc') def tokenize_function(__lowercase): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__lowercase , max_length=__lowercase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase_ = datasets.map( __lowercase , batched=__lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_ = tokenized_datasets.rename_column('label' , 'labels') def collate_fn(__lowercase): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase_ = 16 elif accelerator.mixed_precision != "no": UpperCamelCase_ = 8 else: UpperCamelCase_ = None return tokenizer.pad( __lowercase , padding='longest' , max_length=__lowercase , pad_to_multiple_of=__lowercase , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase_ = DataLoader( tokenized_datasets['train'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase) UpperCamelCase_ = DataLoader( tokenized_datasets['validation'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case__ : List[str] = mocked_dataloaders # noqa: F811 def _snake_case (__lowercase , __lowercase): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , __lowercase) == "1": UpperCamelCase_ = 2 # New Code # UpperCamelCase_ = int(args.gradient_accumulation_steps) # Initialize accelerator UpperCamelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowercase) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`') # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_ = config['lr'] UpperCamelCase_ = int(config['num_epochs']) UpperCamelCase_ = int(config['seed']) UpperCamelCase_ = int(config['batch_size']) UpperCamelCase_ = evaluate.load('glue' , 'mrpc') set_seed(__lowercase) UpperCamelCase_ , UpperCamelCase_ = get_dataloaders(__lowercase , __lowercase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__lowercase) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase_ = model.to(accelerator.device) # Instantiate optimizer UpperCamelCase_ = AdamW(params=model.parameters() , lr=__lowercase) # Instantiate scheduler UpperCamelCase_ = get_linear_schedule_with_warmup( optimizer=__lowercase , num_warmup_steps=100 , num_training_steps=(len(__lowercase) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) # Now we train the model for epoch in range(__lowercase): model.train() for step, batch in enumerate(__lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowercase): UpperCamelCase_ = model(**__lowercase) UpperCamelCase_ = output.loss accelerator.backward(__lowercase) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): UpperCamelCase_ = model(**__lowercase) UpperCamelCase_ = outputs.logits.argmax(dim=-1) UpperCamelCase_ , UpperCamelCase_ = accelerator.gather_for_metrics((predictions, batch['labels'])) metric.add_batch( predictions=__lowercase , references=__lowercase , ) UpperCamelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowercase) def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser(description='Simple example of training script.') parser.add_argument( '--mixed_precision' , type=__lowercase , default=__lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=__lowercase , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.') UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__lowercase , __lowercase) if __name__ == "__main__": main()
23
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Optional[int] = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys snake_case__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
23
1
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def _snake_case (__lowercase): UpperCamelCase_ = [False] * len(__lowercase) UpperCamelCase_ = [-1] * len(__lowercase) def dfs(__lowercase , __lowercase): UpperCamelCase_ = True UpperCamelCase_ = c for u in graph[v]: if not visited[u]: dfs(__lowercase , 1 - c) for i in range(len(__lowercase)): if not visited[i]: dfs(__lowercase , 0) for i in range(len(__lowercase)): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph snake_case__ : Any = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
23
import datasets from .evaluate import evaluate snake_case__ : int = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ snake_case__ : Union[str, Any] = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ snake_case__ : Any = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def _UpperCAmelCase ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: UpperCamelCase_ = {prediction['id']: prediction['prediction_text'] for prediction in predictions} UpperCamelCase_ = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] UpperCamelCase_ = evaluate(dataset=_UpperCAmelCase , predictions=_UpperCAmelCase ) return score
23
1
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' UpperCamelCase_ = Image.open(requests.get(__lowercase , stream=__lowercase).raw).convert('RGB') UpperCamelCase_ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711)), ]) UpperCamelCase_ = transform(__lowercase).unsqueeze(0).to(__lowercase) return image def _snake_case (__lowercase): if "visual_encoder" in key: UpperCamelCase_ = re.sub('visual_encoder*' , 'vision_model.encoder' , __lowercase) if "blocks" in key: UpperCamelCase_ = re.sub(r'blocks' , 'layers' , __lowercase) if "attn" in key: UpperCamelCase_ = re.sub(r'attn' , 'self_attn' , __lowercase) if "norm1" in key: UpperCamelCase_ = re.sub(r'norm1' , 'layer_norm1' , __lowercase) if "norm2" in key: UpperCamelCase_ = re.sub(r'norm2' , 'layer_norm2' , __lowercase) if "encoder.norm" in key: UpperCamelCase_ = re.sub(r'encoder.norm' , 'post_layernorm' , __lowercase) if "encoder.patch_embed.proj" in key: UpperCamelCase_ = re.sub(r'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , __lowercase) if "encoder.pos_embed" in key: UpperCamelCase_ = re.sub(r'encoder.pos_embed' , 'embeddings.position_embedding' , __lowercase) if "encoder.cls_token" in key: UpperCamelCase_ = re.sub(r'encoder.cls_token' , 'embeddings.class_embedding' , __lowercase) if "self_attn" in key: UpperCamelCase_ = re.sub(r'self_attn.proj' , 'self_attn.projection' , __lowercase) return key @torch.no_grad() def _snake_case (__lowercase , __lowercase=None): if config_path is not None: UpperCamelCase_ = BlipConfig.from_pretrained(__lowercase) else: UpperCamelCase_ = BlipConfig(projection_dim=512 , text_config={} , vision_config={}) UpperCamelCase_ = BlipForConditionalGeneration(__lowercase).eval() UpperCamelCase_ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' UpperCamelCase_ = blip_decoder(pretrained=__lowercase , image_size=384 , vit='base') UpperCamelCase_ = pt_model.eval() UpperCamelCase_ = pt_model.state_dict() for key in modified_state_dict.copy(): UpperCamelCase_ = modified_state_dict.pop(__lowercase) UpperCamelCase_ = rename_key(__lowercase) UpperCamelCase_ = value hf_model.load_state_dict(__lowercase) UpperCamelCase_ = 384 UpperCamelCase_ = load_demo_image(image_size=__lowercase , device='cpu') UpperCamelCase_ = BertTokenizer.from_pretrained('bert-base-uncased') UpperCamelCase_ = tokenizer(['a picture of']).input_ids UpperCamelCase_ = hf_model.generate(__lowercase , __lowercase) assert out[0].tolist() == [30522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] UpperCamelCase_ = hf_model.generate(__lowercase) assert out[0].tolist() == [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__lowercase) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' UpperCamelCase_ = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) UpperCamelCase_ = blip_vqa(pretrained=__lowercase , image_size=__lowercase , vit='base') vqa_model.eval() UpperCamelCase_ = vqa_model.state_dict() for key in modified_state_dict.copy(): UpperCamelCase_ = modified_state_dict.pop(__lowercase) UpperCamelCase_ = rename_key(__lowercase) UpperCamelCase_ = value UpperCamelCase_ = BlipForQuestionAnswering(__lowercase) hf_vqa_model.load_state_dict(__lowercase) UpperCamelCase_ = ['How many dogs are in this image?'] UpperCamelCase_ = tokenizer(__lowercase , return_tensors='pt').input_ids UpperCamelCase_ = hf_vqa_model.generate(__lowercase , __lowercase) print(tokenizer.decode(answer[0])) assert tokenizer.decode(answer[0]) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa') UpperCamelCase_ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' UpperCamelCase_ = blip_itm(pretrained=__lowercase , image_size=__lowercase , vit='base') itm_model.eval() UpperCamelCase_ = itm_model.state_dict() for key in modified_state_dict.copy(): UpperCamelCase_ = modified_state_dict.pop(__lowercase) UpperCamelCase_ = rename_key(__lowercase) UpperCamelCase_ = value UpperCamelCase_ = BlipForImageTextRetrieval(__lowercase) UpperCamelCase_ = ['A picture of a woman with a dog sitting in a beach'] UpperCamelCase_ = tokenizer( __lowercase , return_tensors='pt' , padding='max_length' , truncation=__lowercase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(__lowercase) hf_itm_model.eval() UpperCamelCase_ = hf_itm_model(__lowercase , __lowercase , use_itm_head=__lowercase) UpperCamelCase_ = hf_itm_model(__lowercase , __lowercase , use_itm_head=__lowercase) assert out[0].item() == 0.2_110_687_494_277_954 assert torch.nn.functional.softmax(out_itm[0] , dim=1)[:, 1].item() == 0.45_698_845_386_505_127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm') if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") snake_case__ : Optional[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
23
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class _a ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCAmelCase ( self ) -> List[str]: return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) class _a ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCAmelCase ( self ) -> Any: return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) def _snake_case (): return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'])] def _snake_case (): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'])] class _a ( UpperCAmelCase__ ): """simple docstring""" @require_beam def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def _UpperCAmelCase ( self ) -> List[str]: import apache_beam as beam UpperCamelCase_ = beam.io.parquetio.WriteToParquet UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: UpperCamelCase_ = partial(_UpperCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def _UpperCAmelCase ( self ) -> Any: with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = NestedBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
23
1
import os from typing import Dict, List, Tuple, TypeVar, Union snake_case__ : int = TypeVar("""T""") snake_case__ : str = Union[List[T], Tuple[T, ...]] snake_case__ : Any = Union[T, List[T], Dict[str, T]] snake_case__ : Tuple = Union[str, bytes, os.PathLike]
23
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): # Initialise PyTorch model UpperCamelCase_ = AlbertConfig.from_json_file(__lowercase) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = AlbertForPreTraining(__lowercase) # Load weights from tf checkpoint load_tf_weights_in_albert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
23
1
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase): UpperCamelCase_ = cva.getAffineTransform(__lowercase , __lowercase) return cva.warpAffine(__lowercase , __lowercase , (rows, cols)) if __name__ == "__main__": # read original image snake_case__ : Optional[int] = cva.imread( str(Path(__file__).resolve().parent.parent / """image_data""" / """lena.jpg""") ) # turn image in gray scale value snake_case__ : Any = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape snake_case__ , snake_case__ : Optional[Any] = gray_img.shape # set different points to rotate image snake_case__ : List[Any] = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) snake_case__ : Union[str, Any] = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) snake_case__ : Optional[int] = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) snake_case__ : int = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list snake_case__ : Optional[Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations snake_case__ : Optional[int] = plt.figure(1) snake_case__ : int = ["""Original""", """Rotation 1""", """Rotation 2""", """Rotation 3"""] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, """gray""") plt.title(titles[i]) plt.axis("""off""") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
23
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _a ( UpperCAmelCase__ ): """simple docstring""" @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) UpperCamelCase_ = BertTokenizer.from_pretrained('bert-base-uncased' ) UpperCamelCase_ = bertabert.config.encoder.vocab_size UpperCamelCase_ = tokenizer.sep_token_id UpperCamelCase_ = tokenizer.cls_token_id UpperCamelCase_ = 128 UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) UpperCamelCase_ = train_dataset.select(range(32 ) ) UpperCamelCase_ = val_dataset.select(range(16 ) ) UpperCamelCase_ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCamelCase_ = tokenizer(batch['article'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=512 ) UpperCamelCase_ = tokenizer(batch['highlights'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=128 ) UpperCamelCase_ = inputs.input_ids UpperCamelCase_ = inputs.attention_mask UpperCamelCase_ = outputs.input_ids UpperCamelCase_ = outputs.input_ids.copy() UpperCamelCase_ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] UpperCamelCase_ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase ): UpperCamelCase_ = pred.label_ids UpperCamelCase_ = pred.predictions # all unnecessary tokens are removed UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset UpperCamelCase_ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset UpperCamelCase_ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy='steps' , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCamelCase_ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
23
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING snake_case__ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class _a ( UpperCAmelCase__ ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Any: super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _UpperCAmelCase ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None ) -> List[str]: UpperCamelCase_ = {} UpperCamelCase_ = {} if prompt is not None: UpperCamelCase_ = prompt if generate_kwargs is not None: UpperCamelCase_ = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: UpperCamelCase_ = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) UpperCamelCase_ = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _UpperCAmelCase , **_UpperCAmelCase ) -> int: return super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None ) -> str: UpperCamelCase_ = load_image(_UpperCAmelCase ) if prompt is not None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError( f"""Received an invalid text input, got - {type(_UpperCAmelCase )} - but expected a single string. """ 'Note also that one single text can be provided for conditional image to text generation.' ) UpperCamelCase_ = self.model.config.model_type if model_type == "git": UpperCamelCase_ = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework ) UpperCamelCase_ = self.tokenizer(text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids UpperCamelCase_ = [self.tokenizer.cls_token_id] + input_ids UpperCamelCase_ = torch.tensor(_UpperCAmelCase ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": UpperCamelCase_ = self.image_processor(images=_UpperCAmelCase , header_text=_UpperCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation UpperCamelCase_ = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework ) UpperCamelCase_ = self.tokenizer(_UpperCAmelCase , return_tensors=self.framework ) model_inputs.update(_UpperCAmelCase ) else: raise ValueError(f"""Model type {model_type} does not support conditional text generation""" ) else: UpperCamelCase_ = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: UpperCamelCase_ = None return model_inputs def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None ) -> Any: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _UpperCAmelCase ) and all(x is None for x in model_inputs['input_ids'] ) ): UpperCamelCase_ = None if generate_kwargs is None: UpperCamelCase_ = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. UpperCamelCase_ = model_inputs.pop(self.model.main_input_name ) UpperCamelCase_ = self.model.generate(_UpperCAmelCase , **_UpperCAmelCase , **_UpperCAmelCase ) return model_outputs def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Any: UpperCamelCase_ = [] for output_ids in model_outputs: UpperCamelCase_ = { 'generated_text': self.tokenizer.decode( _UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , ) } records.append(_UpperCAmelCase ) return records
23
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case__ : Dict = 1_6 snake_case__ : List[str] = 3_2 def _snake_case (__lowercase , __lowercase = 16): UpperCamelCase_ = AutoTokenizer.from_pretrained('bert-base-cased') UpperCamelCase_ = load_dataset('glue' , 'mrpc') def tokenize_function(__lowercase): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__lowercase , max_length=__lowercase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase_ = datasets.map( __lowercase , batched=__lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_ = tokenized_datasets.rename_column('label' , 'labels') def collate_fn(__lowercase): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase_ = 16 elif accelerator.mixed_precision != "no": UpperCamelCase_ = 8 else: UpperCamelCase_ = None return tokenizer.pad( __lowercase , padding='longest' , max_length=__lowercase , pad_to_multiple_of=__lowercase , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase_ = DataLoader( tokenized_datasets['train'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase) UpperCamelCase_ = DataLoader( tokenized_datasets['validation'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case__ : List[str] = mocked_dataloaders # noqa: F811 def _snake_case (__lowercase , __lowercase): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , __lowercase) == "1": UpperCamelCase_ = 2 # New Code # UpperCamelCase_ = int(args.gradient_accumulation_steps) # Initialize accelerator UpperCamelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowercase) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`') # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_ = config['lr'] UpperCamelCase_ = int(config['num_epochs']) UpperCamelCase_ = int(config['seed']) UpperCamelCase_ = int(config['batch_size']) UpperCamelCase_ = evaluate.load('glue' , 'mrpc') set_seed(__lowercase) UpperCamelCase_ , UpperCamelCase_ = get_dataloaders(__lowercase , __lowercase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__lowercase) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase_ = model.to(accelerator.device) # Instantiate optimizer UpperCamelCase_ = AdamW(params=model.parameters() , lr=__lowercase) # Instantiate scheduler UpperCamelCase_ = get_linear_schedule_with_warmup( optimizer=__lowercase , num_warmup_steps=100 , num_training_steps=(len(__lowercase) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) # Now we train the model for epoch in range(__lowercase): model.train() for step, batch in enumerate(__lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowercase): UpperCamelCase_ = model(**__lowercase) UpperCamelCase_ = output.loss accelerator.backward(__lowercase) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): UpperCamelCase_ = model(**__lowercase) UpperCamelCase_ = outputs.logits.argmax(dim=-1) UpperCamelCase_ , UpperCamelCase_ = accelerator.gather_for_metrics((predictions, batch['labels'])) metric.add_batch( predictions=__lowercase , references=__lowercase , ) UpperCamelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowercase) def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser(description='Simple example of training script.') parser.add_argument( '--mixed_precision' , type=__lowercase , default=__lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=__lowercase , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.') UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__lowercase , __lowercase) if __name__ == "__main__": main()
23
1
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _a ( ctypes.Structure ): """simple docstring""" A_ = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def _snake_case (): if os.name == "nt": UpperCamelCase_ = CursorInfo() UpperCamelCase_ = ctypes.windll.kernelaa.GetStdHandle(-11) ctypes.windll.kernelaa.GetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase)) UpperCamelCase_ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase)) elif os.name == "posix": sys.stdout.write('\033[?25l') sys.stdout.flush() def _snake_case (): if os.name == "nt": UpperCamelCase_ = CursorInfo() UpperCamelCase_ = ctypes.windll.kernelaa.GetStdHandle(-11) ctypes.windll.kernelaa.GetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase)) UpperCamelCase_ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase)) elif os.name == "posix": sys.stdout.write('\033[?25h') sys.stdout.flush() @contextmanager def _snake_case (): try: hide_cursor() yield finally: show_cursor()
23
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _a : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=10 , _UpperCAmelCase=3 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=4 , _UpperCAmelCase=64 , ) -> List[Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = is_training UpperCamelCase_ = use_auxiliary_loss UpperCamelCase_ = num_queries UpperCamelCase_ = num_channels UpperCamelCase_ = min_size UpperCamelCase_ = max_size UpperCamelCase_ = num_labels UpperCamelCase_ = hidden_dim UpperCamelCase_ = hidden_dim def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _UpperCAmelCase ) UpperCamelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_UpperCAmelCase ) UpperCamelCase_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_UpperCAmelCase ) > 0.5 ).float() UpperCamelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=_UpperCAmelCase ) > 0.5).long() UpperCamelCase_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) UpperCamelCase_ = self.num_queries UpperCamelCase_ = self.num_labels UpperCamelCase_ = [1, 1, 1, 1] UpperCamelCase_ = self.num_channels UpperCamelCase_ = 64 UpperCamelCase_ = 128 UpperCamelCase_ = self.hidden_dim UpperCamelCase_ = self.hidden_dim UpperCamelCase_ = self.hidden_dim return config def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = output.encoder_hidden_states UpperCamelCase_ = output.pixel_decoder_hidden_states UpperCamelCase_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , config.decoder_layers ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Any: with torch.no_grad(): UpperCamelCase_ = MaskaFormerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCamelCase_ = model(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = MaskaFormerForUniversalSegmentation(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() def comm_check_on_output(_UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCamelCase_ = model(_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) UpperCamelCase_ = model( pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () A_ = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} A_ = False A_ = False A_ = False A_ = False def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = MaskaFormerModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_UpperCAmelCase ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _UpperCAmelCase ( self ) -> int: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> str: pass def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ) UpperCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCamelCase_ = MaskaFormerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = (self.model_tester.min_size,) * 2 UpperCamelCase_ = { 'pixel_values': torch.randn((2, 3, *size) , device=_UpperCAmelCase ), 'mask_labels': torch.randn((2, 10, *size) , device=_UpperCAmelCase ), 'class_labels': torch.zeros(2 , 10 , device=_UpperCAmelCase ).long(), } UpperCamelCase_ = self.model_tester.get_config() UpperCamelCase_ = MaskaFormerForUniversalSegmentation(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase , output_attentions=_UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def _UpperCAmelCase ( self ) -> List[Any]: if not self.model_tester.is_training: return UpperCamelCase_ = self.all_model_classes[1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ).loss loss.backward() def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = self.all_model_classes[1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) model.train() UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) UpperCamelCase_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) snake_case__ : List[Any] = 1E-4 def _snake_case (): UpperCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_vision @slow class _a ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCAmelCase ( self ) -> Optional[int]: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _UpperCAmelCase ( self ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) UpperCamelCase_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) UpperCamelCase_ = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) UpperCamelCase_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) # masks_queries_logits UpperCamelCase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCamelCase_ = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] UpperCamelCase_ = torch.tensor(_UpperCAmelCase ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) # class_queries_logits UpperCamelCase_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) UpperCamelCase_ = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) UpperCamelCase_ = inputs['pixel_values'].to(_UpperCAmelCase ) UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['mask_labels']] UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['class_labels']] with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
23
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : str = logging.get_logger(__name__) snake_case__ : List[str] = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """xlm-roberta""" def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-12 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ) -> List[str]: super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = position_embedding_type UpperCamelCase_ = use_cache UpperCamelCase_ = classifier_dropout class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCamelCase_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
23
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType snake_case__ : List[str] = logging.get_logger(__name__) class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """vision-encoder-decoder""" A_ = True def __init__( self , **_UpperCAmelCase ) -> Dict: super().__init__(**_UpperCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) UpperCamelCase_ = kwargs.pop('encoder' ) UpperCamelCase_ = encoder_config.pop('model_type' ) UpperCamelCase_ = kwargs.pop('decoder' ) UpperCamelCase_ = decoder_config.pop('model_type' ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = True @classmethod def _UpperCAmelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> PretrainedConfig: logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) UpperCamelCase_ = True UpperCamelCase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.encoder.to_dict() UpperCamelCase_ = self.decoder.to_dict() UpperCamelCase_ = self.__class__.model_type return output class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = version.parse("""1.11""" ) @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-4 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase_ = OrderedDict() UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ) -> Mapping[str, Any]: import torch UpperCamelCase_ = OrderedDict() UpperCamelCase_ = super().generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = dummy_input['input_ids'].shape UpperCamelCase_ = (batch, encoder_sequence, self._config.encoder_hidden_size) UpperCamelCase_ = dummy_input.pop('input_ids' ) UpperCamelCase_ = dummy_input.pop('attention_mask' ) UpperCamelCase_ = torch.zeros(_UpperCAmelCase ) return common_inputs class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> None: pass def _UpperCAmelCase ( self , _UpperCAmelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = "default" ) -> OnnxConfig: UpperCamelCase_ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_UpperCAmelCase , _UpperCAmelCase )
23
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available SCREAMING_SNAKE_CASE__ : Dict = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Dict = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys SCREAMING_SNAKE_CASE__ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): # Initialise PyTorch model UpperCamelCase_ = MobileBertConfig.from_json_file(__lowercase) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = MobileBertForPreTraining(__lowercase) # Load weights from tf checkpoint UpperCamelCase_ = load_tf_weights_in_mobilebert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
0
from typing import Any class __lowerCamelCase : def __init__( self: int,A_: Any ): '''simple docstring''' __UpperCamelCase = data __UpperCamelCase = None def __repr__( self: Any ): '''simple docstring''' return F'''Node({self.data})''' class __lowerCamelCase : def __init__( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = None def __iter__( self: int ): '''simple docstring''' __UpperCamelCase = self.head while node: yield node.data __UpperCamelCase = node.next def __len__( self: List[str] ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self: Any ): '''simple docstring''' return "->".join([str(A_ ) for item in self] ) def __getitem__( self: int,A_: int ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self: int,A_: int,A_: Any ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) __UpperCamelCase = self.head for _ in range(A_ ): __UpperCamelCase = current.next __UpperCamelCase = data def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' self.insert_nth(len(self ),A_ ) def snake_case_ ( self: List[Any],A_: Any ): '''simple docstring''' self.insert_nth(0,A_ ) def snake_case_ ( self: Optional[Any],A_: int,A_: Any ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) __UpperCamelCase = Node(A_ ) if self.head is None: __UpperCamelCase = new_node elif index == 0: __UpperCamelCase = self.head # link new_node to head __UpperCamelCase = new_node else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = new_node def snake_case_ ( self: str ): # print every node data '''simple docstring''' print(self ) def snake_case_ ( self: int ): '''simple docstring''' return self.delete_nth(0 ) def snake_case_ ( self: str ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def snake_case_ ( self: Any,A_: int = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) __UpperCamelCase = self.head # default first node if index == 0: __UpperCamelCase = self.head.next else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = temp.next.next return delete_node.data def snake_case_ ( self: Any ): '''simple docstring''' return self.head is None def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = self.head while current: # Store the current node's next node. __UpperCamelCase = current.next # Make the current node's next point backwards __UpperCamelCase = prev # Make the previous node be the current node __UpperCamelCase = current # Make the current node the next node (to progress iteration) __UpperCamelCase = next_node # Return prev in order to put the head at the end __UpperCamelCase = prev def _A ( ) -> None: """simple docstring""" __UpperCamelCase = LinkedList() assert linked_list.is_empty() is True assert str(_lowercase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_lowercase ) == i linked_list.insert_nth(_lowercase , i + 1 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_lowercase ) == 9 assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __UpperCamelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8 , 1 ) ) def _A ( ) -> None: """simple docstring""" __UpperCamelCase = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] __UpperCamelCase = LinkedList() for i in test_input: linked_list.insert_tail(_lowercase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __UpperCamelCase = linked_list.delete_head() assert result == -9 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __UpperCamelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __UpperCamelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_lowercase ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_lowercase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _A ( ) -> List[str]: """simple docstring""" from doctest import testmod testmod() __UpperCamelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_lowercase ) print('\nReading/changing Node data using indexing:' ) print(f'''Element at Position 1: {linked_list[1]}''' ) __UpperCamelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_lowercase ) print(f'''length of linked_list is : {len(_lowercase )}''' ) if __name__ == "__main__": main()
1
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _a ( unittest.TestCase ): """simple docstring""" A_ = MODEL_FOR_MASKED_LM_MAPPING A_ = TF_MODEL_FOR_MASKED_LM_MAPPING def _UpperCAmelCase ( self ) -> List[str]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9e-05, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2e-05, 'token': 2941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() UpperCamelCase_ = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(_UpperCAmelCase ) @slow @require_tf def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is John', 'score': 0.0_0_8, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.0_0_7, 'token': 1573, 'token_str': ' Chris'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.2_5_1, 'token': 2201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.2_1_4, 'token': 12790, 'token_str': ' Lyon', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is Patrick', 'score': 0.0_0_5, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.0_0_0, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.0_0_0, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) @require_tf def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = fill_masker.tokenizer UpperCamelCase_ = fill_masker.model UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , ) with self.assertRaises(_UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_UpperCAmelCase ): fill_masker('This is' ) self.run_test_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_targets(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_top_k_targets(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_multiple_masks(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = sorted(vocab.keys() )[:2] # Pipeline argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , targets=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Call argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Score equivalence UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['token_str'] for top_mask in outputs] UpperCamelCase_ = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ) == set(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[''] ) with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets='' ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , top_k=2 ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) # top_k=2, ntargets=3 UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=_UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCamelCase_ = [el['token_str'] for el in sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ).issubset(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=_UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.get_vocab() # String duplicates + id duplicates UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCamelCase_ = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=_UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_UpperCAmelCase ) , 3 ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , )
23
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class lowerCamelCase__ ( _A): """simple docstring""" a__ : Union[PIL.Image.Image, np.ndarray] class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : int , __lowerCAmelCase : PriorTransformer , __lowerCAmelCase : CLIPVisionModel , __lowerCAmelCase : CLIPImageProcessor , __lowerCAmelCase : HeunDiscreteScheduler , __lowerCAmelCase : ShapERenderer , ) -> List[str]: super().__init__() self.register_modules( prior=__lowerCAmelCase , image_encoder=__lowerCAmelCase , image_processor=__lowerCAmelCase , scheduler=__lowerCAmelCase , renderer=__lowerCAmelCase , ) def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Tuple ) -> int: if latents is None: _A = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=__lowerCAmelCase , dtype=__lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _A = latents.to(__lowerCAmelCase ) _A = latents * scheduler.init_noise_sigma return latents def snake_case_ ( self : str , __lowerCAmelCase : List[Any]=0 ) -> Optional[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _A = torch.device(f'''cuda:{gpu_id}''' ) _A = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase , __lowerCAmelCase ) @property def snake_case_ ( self : int ) -> List[Any]: if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__lowerCAmelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def snake_case_ ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , ) -> Optional[int]: if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(image[0] , torch.Tensor ): _A = torch.cat(__lowerCAmelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(__lowerCAmelCase , axis=0 ) if not isinstance(__lowerCAmelCase , torch.Tensor ): _A = self.image_processor(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) _A = image.to(dtype=self.image_encoder.dtype , device=__lowerCAmelCase ) _A = self.image_encoder(__lowerCAmelCase )['''last_hidden_state'''] _A = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _A = image_embeds.repeat_interleave(__lowerCAmelCase , dim=0 ) if do_classifier_free_guidance: _A = torch.zeros_like(__lowerCAmelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _A = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self : str , __lowerCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , __lowerCAmelCase : int = 1 , __lowerCAmelCase : int = 25 , __lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : float = 4.0 , __lowerCAmelCase : int = 64 , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , ) -> Tuple: if isinstance(__lowerCAmelCase , PIL.Image.Image ): _A = 1 elif isinstance(__lowerCAmelCase , torch.Tensor ): _A = image.shape[0] elif isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _A = len(__lowerCAmelCase ) else: raise ValueError( f'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__lowerCAmelCase )}''' ) _A = self._execution_device _A = batch_size * num_images_per_prompt _A = guidance_scale > 1.0 _A = self._encode_image(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # prior self.scheduler.set_timesteps(__lowerCAmelCase , device=__lowerCAmelCase ) _A = self.scheduler.timesteps _A = self.prior.config.num_embeddings _A = self.prior.config.embedding_dim _A = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _A = latents.reshape(latents.shape[0] , __lowerCAmelCase , __lowerCAmelCase ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A = self.scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) _A = self.prior( __lowerCAmelCase , timestep=__lowerCAmelCase , proj_embedding=__lowerCAmelCase , ).predicted_image_embedding # remove the variance _A , _A = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _A , _A = noise_pred.chunk(2 ) _A = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _A = self.scheduler.step( __lowerCAmelCase , timestep=__lowerCAmelCase , sample=__lowerCAmelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__lowerCAmelCase ) _A = [] for i, latent in enumerate(__lowerCAmelCase ): print() _A = self.renderer.decode( latent[None, :] , __lowerCAmelCase , size=__lowerCAmelCase , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , ) images.append(__lowerCAmelCase ) _A = torch.stack(__lowerCAmelCase ) if output_type not in ["np", "pil"]: raise ValueError(f'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) _A = images.cpu().numpy() if output_type == "pil": _A = [self.numpy_to_pil(__lowerCAmelCase ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__lowerCAmelCase )
2
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionSAGPipeline A_ = TEXT_TO_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_BATCH_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = False def _UpperCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCamelCase_ = CLIPTextModel(_UpperCAmelCase ) UpperCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ) -> List[Any]: if str(_UpperCAmelCase ).startswith('mps' ): UpperCamelCase_ = torch.manual_seed(_UpperCAmelCase ) else: UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCamelCase_ = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def _UpperCAmelCase ( self ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , width=768 , height=512 , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) UpperCamelCase_ = output.images assert image.shape == (1, 512, 768, 3)
23
0
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params lowerCAmelCase : Union[str, Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def A_( A : Dict): for pegasus_name, hf_name in PATTERNS: UpperCamelCase = k.replace(A , A) return k def A_( A : dict , A : dict): UpperCamelCase = DEFAULTS.copy() cfg_kwargs.update(A) UpperCamelCase = PegasusConfig(**A) UpperCamelCase = PegasusForConditionalGeneration(A) UpperCamelCase = torch_model.model.state_dict() UpperCamelCase = {} for k, v in tf_weights.items(): UpperCamelCase = rename_state_dict_key(A) if new_k not in sd: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''') if "dense" in k or "proj" in new_k: UpperCamelCase = v.T UpperCamelCase = torch.tensor(A , dtype=sd[new_k].dtype) assert v.shape == sd[new_k].shape, f'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected UpperCamelCase = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1]) UpperCamelCase = mapping['shared.weight'] UpperCamelCase = mapping['shared.weight'] UpperCamelCase = {k: torch.zeros_like(A) for k, v in sd.items() if k.endswith('bias') and k not in mapping} mapping.update(**A) UpperCamelCase , UpperCamelCase = torch_model.model.load_state_dict(A , strict=A) UpperCamelCase = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def A_( A : Tuple="./ckpt/aeslc/model.ckpt-32000"): UpperCamelCase = tf.train.list_variables(A) UpperCamelCase = {} UpperCamelCase = ['Adafactor', 'global_step'] for name, shape in tqdm(A , desc='converting tf checkpoint to dict'): UpperCamelCase = any(pat in name for pat in ignore_name) if skip_key: continue UpperCamelCase = tf.train.load_variable(A , A) UpperCamelCase = array return tf_weights def A_( A : str , A : str): # save tokenizer first UpperCamelCase = Path(A).parent.name UpperCamelCase = task_specific_params[f'''summarization_{dataset}''']['max_position_embeddings'] UpperCamelCase = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=A) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(A) # convert model UpperCamelCase = get_tf_weights_as_numpy(A) UpperCamelCase = task_specific_params[f'''summarization_{dataset}'''] if dataset == "large": UpperCamelCase = task_specific_params UpperCamelCase = convert_pegasus(A , A) torch_model.save_pretrained(A) UpperCamelCase = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight') sd.pop('model.encoder.embed_positions.weight') torch.save(A , Path(A) / 'pytorch_model.bin') if __name__ == "__main__": lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase : Any = parser.parse_args() if args.save_dir is None: lowerCAmelCase : Optional[int] = Path(args.tf_ckpt_path).parent.name lowerCAmelCase : List[Any] = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
3
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar snake_case__ : List[str] = TypeVar("""T""") def _snake_case (__lowercase): return (position - 1) // 2 def _snake_case (__lowercase): return (2 * position) + 1 def _snake_case (__lowercase): return (2 * position) + 2 class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = [] UpperCamelCase_ = {} UpperCamelCase_ = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def _UpperCAmelCase ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) UpperCamelCase_ = self.elements self.elements += 1 self._bubble_up(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) UpperCamelCase_ , UpperCamelCase_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: UpperCamelCase_ , UpperCamelCase_ = self.heap[0] self._bubble_down(_UpperCAmelCase ) return elem def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Update the weight of the given key UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ = (elem, weight) if position > 0: UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] UpperCamelCase_ = self.position_map[elem] if curr_pos == 0: return None UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_up(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ = get_child_left_position(_UpperCAmelCase ) UpperCamelCase_ = get_child_right_position(_UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) if child_left_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) else: return None if child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Swap the nodes at the given positions UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ , UpperCamelCase_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) UpperCamelCase_ = nodea_pos UpperCamelCase_ = nodea_pos class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = {} UpperCamelCase_ = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: UpperCamelCase_ = {} self.nodes += 1 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an edge between 2 nodes in the graph self.add_node(_UpperCAmelCase ) self.add_node(_UpperCAmelCase ) UpperCamelCase_ = weight UpperCamelCase_ = weight def _snake_case (__lowercase , ): UpperCamelCase_ = {node: maxsize for node in graph.connections} UpperCamelCase_ = {node: None for node in graph.connections} UpperCamelCase_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__lowercase , __lowercase) if priority_queue.is_empty(): return dist, parent # initialization UpperCamelCase_ = priority_queue.extract_min() UpperCamelCase_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node # running prim's algorithm while not priority_queue.is_empty(): UpperCamelCase_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node return dist, parent
23
0
"""simple docstring""" class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = size lowerCAmelCase = [0] * size lowerCAmelCase = [0] * size @staticmethod def UpperCamelCase__ ( _snake_case ): """simple docstring""" return index | (index + 1) @staticmethod def UpperCamelCase__ ( _snake_case ): """simple docstring""" return (index & (index + 1)) - 1 def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = value while index < self.size: lowerCAmelCase = self.get_prev(_snake_case ) + 1 if current_left_border == index: lowerCAmelCase = value else: lowerCAmelCase = max(_snake_case , _snake_case , _snake_case ) lowerCAmelCase = self.get_next(_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" right -= 1 # Because of right is exclusive lowerCAmelCase = 0 while left <= right: lowerCAmelCase = self.get_prev(_snake_case ) if left <= current_left: lowerCAmelCase = max(_snake_case , self.tree[right] ) lowerCAmelCase = current_left else: lowerCAmelCase = max(_snake_case , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
4
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case__ : Dict = TypeVar("""T""") class _a ( Generic[T] ): """simple docstring""" A_ = 42 # Cache store of keys A_ = 42 # References of the keys in cache A_ = 10 # Maximum capacity of cache def __init__( self , _UpperCAmelCase ) -> None: UpperCamelCase_ = deque() UpperCamelCase_ = set() if not n: UpperCamelCase_ = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCamelCase_ = n def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCamelCase_ = self.dq_store.pop() self.key_reference.remove(_UpperCAmelCase ) else: self.dq_store.remove(_UpperCAmelCase ) self.dq_store.appendleft(_UpperCAmelCase ) self.key_reference.add(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> None: for k in self.dq_store: print(_UpperCAmelCase ) def __repr__( self ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : LRUCache[str | int] = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
23
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : torch.FloatTensor _lowercase : torch.FloatTensor _lowercase : Optional[torch.FloatTensor] = None class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[int] = 2 @register_to_config def __init__( self , _lowercase = 0.02 , _lowercase = 100 , _lowercase = 1.007 , _lowercase = 80 , _lowercase = 0.05 , _lowercase = 50 , ): """simple docstring""" _lowerCAmelCase = sigma_max # setable values _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None # sigma(t_i) def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" return sample def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" _lowerCAmelCase = num_inference_steps _lowerCAmelCase = np.arange(0 , self.num_inference_steps )[::-1].copy() _lowerCAmelCase = torch.from_numpy(_lowercase ).to(_lowercase ) _lowerCAmelCase = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] _lowerCAmelCase = torch.tensor(_lowercase , dtype=torch.floataa , device=_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase = None ): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: _lowerCAmelCase = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: _lowerCAmelCase = 0 # sample eps ~ N(0, S_noise^2 * I) _lowerCAmelCase = self.config.s_noise * randn_tensor(sample.shape , generator=_lowercase ).to(sample.device ) _lowerCAmelCase = sigma + gamma * sigma _lowerCAmelCase = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = True , ): """simple docstring""" _lowerCAmelCase = sample_hat + sigma_hat * model_output _lowerCAmelCase = (sample_hat - pred_original_sample) / sigma_hat _lowerCAmelCase = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_lowercase , derivative=_lowercase , pred_original_sample=_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = True , ): """simple docstring""" _lowerCAmelCase = sample_prev + sigma_prev * model_output _lowerCAmelCase = (sample_prev - pred_original_sample) / sigma_prev _lowerCAmelCase = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_lowercase , derivative=_lowercase , pred_original_sample=_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" raise NotImplementedError()
5
import numpy as np def _snake_case (__lowercase): return 1 / (1 + np.exp(-vector)) def _snake_case (__lowercase): return vector * sigmoid(__lowercase) if __name__ == "__main__": import doctest doctest.testmod()
23
0
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[float] , UpperCamelCase__: list[float] ): SCREAMING_SNAKE_CASE__ = sorted(numsa + numsa ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = divmod(len(UpperCamelCase__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase = [float(x) for x in input('Enter the elements of first array: ').split()] _lowerCamelCase = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
6
import math from datetime import datetime, timedelta def _snake_case (__lowercase): UpperCamelCase_ = year % 19 UpperCamelCase_ = year % 4 UpperCamelCase_ = year % 7 UpperCamelCase_ = math.floor(year / 100) UpperCamelCase_ = math.floor((13 + 8 * leap_day_inhibits) / 25) UpperCamelCase_ = leap_day_inhibits / 4 UpperCamelCase_ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 UpperCamelCase_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCamelCase_ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon UpperCamelCase_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 19) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 18) else: return datetime(__lowercase , 3 , 22) + timedelta( days=int(days_to_add + days_from_phm_to_sunday)) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): snake_case__ : Dict = """will be""" if year > datetime.now().year else """was""" print(f'Easter in {year} {tense} {gauss_easter(year)}')
23
0
"""simple docstring""" import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] ) -> str: '''simple docstring''' _A = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' _A = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ).convert('RGB' ) _A = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073) , (0.26862954, 0.26130258, 0.27577711) ), ] ) _A = transform(_snake_case ).unsqueeze(0 ).to(_snake_case ) return image def _snake_case ( _snake_case : List[str] ) -> Dict: '''simple docstring''' if "visual_encoder" in key: _A = re.sub('visual_encoder*' , 'vision_model.encoder' , _snake_case ) if "blocks" in key: _A = re.sub(R'blocks' , 'layers' , _snake_case ) if "attn" in key: _A = re.sub(R'attn' , 'self_attn' , _snake_case ) if "norm1" in key: _A = re.sub(R'norm1' , 'layer_norm1' , _snake_case ) if "norm2" in key: _A = re.sub(R'norm2' , 'layer_norm2' , _snake_case ) if "encoder.norm" in key: _A = re.sub(R'encoder.norm' , 'post_layernorm' , _snake_case ) if "encoder.patch_embed.proj" in key: _A = re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , _snake_case ) if "encoder.pos_embed" in key: _A = re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , _snake_case ) if "encoder.cls_token" in key: _A = re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , _snake_case ) if "self_attn" in key: _A = re.sub(R'self_attn.proj' , 'self_attn.projection' , _snake_case ) return key @torch.no_grad() def _snake_case ( _snake_case : Optional[int] , _snake_case : List[str]=None ) -> Any: '''simple docstring''' if config_path is not None: _A = BlipConfig.from_pretrained(_snake_case ) else: _A = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={} ) _A = BlipForConditionalGeneration(_snake_case ).eval() _A = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' _A = blip_decoder(pretrained=_snake_case , image_size=3_84 , vit='base' ) _A = pt_model.eval() _A = pt_model.state_dict() for key in modified_state_dict.copy(): _A = modified_state_dict.pop(_snake_case ) _A = rename_key(_snake_case ) _A = value hf_model.load_state_dict(_snake_case ) _A = 3_84 _A = load_demo_image(image_size=_snake_case , device='cpu' ) _A = BertTokenizer.from_pretrained('bert-base-uncased' ) _A = tokenizer(['a picture of'] ).input_ids _A = hf_model.generate(_snake_case , _snake_case ) assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] _A = hf_model.generate(_snake_case ) assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(_snake_case ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' _A = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) _A = blip_vqa(pretrained=_snake_case , image_size=_snake_case , vit='base' ) vqa_model.eval() _A = vqa_model.state_dict() for key in modified_state_dict.copy(): _A = modified_state_dict.pop(_snake_case ) _A = rename_key(_snake_case ) _A = value _A = BlipForQuestionAnswering(_snake_case ) hf_vqa_model.load_state_dict(_snake_case ) _A = ['How many dogs are in this image?'] _A = tokenizer(_snake_case , return_tensors='pt' ).input_ids _A = hf_vqa_model.generate(_snake_case , _snake_case ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) _A = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' _A = blip_itm(pretrained=_snake_case , image_size=_snake_case , vit='base' ) itm_model.eval() _A = itm_model.state_dict() for key in modified_state_dict.copy(): _A = modified_state_dict.pop(_snake_case ) _A = rename_key(_snake_case ) _A = value _A = BlipForImageTextRetrieval(_snake_case ) _A = ['A picture of a woman with a dog sitting in a beach'] _A = tokenizer( _snake_case , return_tensors='pt' , padding='max_length' , truncation=_snake_case , max_length=35 , ).input_ids hf_itm_model.load_state_dict(_snake_case ) hf_itm_model.eval() _A = hf_itm_model(_snake_case , _snake_case , use_itm_head=_snake_case ) _A = hf_itm_model(_snake_case , _snake_case , use_itm_head=_snake_case ) assert out[0].item() == 0.2110687494277954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45698845386505127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') a = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
7
import requests def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = {'Content-Type': 'application/json'} UpperCamelCase_ = requests.post(__lowercase , json={'text': message_body} , headers=__lowercase) if response.status_code != 200: UpperCamelCase_ = ( 'Request to slack returned an error ' f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(__lowercase) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
23
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ : str = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : int = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowercase__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _a ( UpperCAmelCase__ ): """simple docstring""" def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) UpperCamelCase_ = input_file.read() UpperCamelCase_ = regexp.search(_UpperCAmelCase ) return match def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) UpperCamelCase_ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase_ = regexp.finditer(_UpperCAmelCase ) UpperCamelCase_ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_UpperCAmelCase ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(_UpperCAmelCase ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
23
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : int , **_snake_case : Dict ): """simple docstring""" super().__init__(**_snake_case ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Dict , _snake_case : Union[str, List[str], "Image", List["Image"]] , **_snake_case : Optional[int] ): """simple docstring""" return super().__call__(_snake_case , **_snake_case ) def _a ( self : Tuple , **_snake_case : Union[str, Any] ): """simple docstring""" A__ = {} if "candidate_labels" in kwargs: A__ = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: A__ = kwargs['hypothesis_template'] return preprocess_params, {}, {} def _a ( self : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : int=None , _snake_case : Optional[Any]="This is a photo of {}." ): """simple docstring""" A__ = load_image(_snake_case ) A__ = self.image_processor(images=[image] , return_tensors=self.framework ) A__ = candidate_labels A__ = [hypothesis_template.format(_snake_case ) for x in candidate_labels] A__ = self.tokenizer(_snake_case , return_tensors=self.framework , padding=_snake_case ) A__ = [text_inputs] return inputs def _a ( self : Optional[int] , _snake_case : int ): """simple docstring""" A__ = model_inputs.pop('candidate_labels' ) A__ = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _snake_case ): A__ = text_inputs[0] else: # Batching case. A__ = text_inputs[0][0] A__ = self.model(**_snake_case , **_snake_case ) A__ = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def _a ( self : List[Any] , _snake_case : List[Any] ): """simple docstring""" A__ = model_outputs.pop('candidate_labels' ) A__ = model_outputs['logits'][0] if self.framework == "pt": A__ = logits.softmax(dim=-1 ).squeeze(-1 ) A__ = probs.tolist() if not isinstance(_snake_case , _snake_case ): A__ = [scores] elif self.framework == "tf": A__ = stable_softmax(_snake_case , axis=-1 ) A__ = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) A__ = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_snake_case , _snake_case ) , key=lambda _snake_case : -x[0] ) ] return result
9
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _snake_case (__lowercase=32 , __lowercase=10 , __lowercase=100 , __lowercase=1026 , __lowercase=True , __lowercase="data/tokenized_stories_train_wikitext103.jbl" , __lowercase="igf_context_pairs.jbl" , ): set_seed(3) # generate train_data and objective_set UpperCamelCase_ , UpperCamelCase_ = generate_datasets( __lowercase , __lowercase , number=__lowercase , min_len=1026 , trim=__lowercase) # keeps model same across runs set_seed(4) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # load pretrained model UpperCamelCase_ = load_gpta('gpt2').to(__lowercase) print('computing perplexity on objective set') UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase).item() print('perplexity on objective set:' , __lowercase) # collect igf pairs and save to file demo.jbl collect_objective_set(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _snake_case (__lowercase , __lowercase=15 , __lowercase=128 , __lowercase=100 , __lowercase="igf_model.pt" , ): set_seed(42) # Load pre-trained model UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2') # Initialize secondary learner to use embedding weights of model UpperCamelCase_ = SecondaryLearner(__lowercase) # Train secondary learner UpperCamelCase_ = train_secondary_learner( __lowercase , __lowercase , max_epochs=__lowercase , batch_size=__lowercase , eval_freq=100 , igf_model_path=__lowercase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=32 , __lowercase=1000 , __lowercase=16 , __lowercase=1.0 , __lowercase=recopy_gpta , __lowercase=None , __lowercase=10 , __lowercase="gpt2_finetuned.pt" , ): UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') UpperCamelCase_ = RandomSampler(__lowercase) UpperCamelCase_ = DataLoader(__lowercase , sampler=__lowercase) UpperCamelCase_ = max_steps // (len(__lowercase)) + 1 UpperCamelCase_ = 0 UpperCamelCase_ = torch.zeros((1, context_len) , dtype=torch.long , device=__lowercase) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = recopy_model(__lowercase , __lowercase , __lowercase) model.train() if secondary_learner is not None: secondary_learner.to(__lowercase) secondary_learner.eval() UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = [] UpperCamelCase_ = [] # Compute the performance of the transformer model at the beginning UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase) test_perps.append(__lowercase) print('Test perplexity, step' , __lowercase , ':' , __lowercase) for epoch in range(int(__lowercase)): for step, example in enumerate(__lowercase): torch.cuda.empty_cache() UpperCamelCase_ = random.randint(0 , example.size(2) - context_len - 1) UpperCamelCase_ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() UpperCamelCase_ = model(__lowercase , labels=__lowercase) UpperCamelCase_ = True if secondary_learner is not None: UpperCamelCase_ = secondary_learner.forward( torch.tensor(__lowercase , dtype=torch.long , device=__lowercase).unsqueeze(0))[0].item() observed_qs.append(float(__lowercase)) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: UpperCamelCase_ = -1 if predicted_q < threshold: UpperCamelCase_ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu())) UpperCamelCase_ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() UpperCamelCase_ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase) test_perps.append(__lowercase) print('Test perplexity, step' , __lowercase , ':' , __lowercase) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , __lowercase) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task') # Required parameters parser.add_argument( '--data_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=__lowercase , type=__lowercase , required=__lowercase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=__lowercase , default=__lowercase , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=__lowercase , default=__lowercase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=__lowercase , type=__lowercase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=__lowercase , default=__lowercase , help='A seed for reproducible training.') parser.add_argument( '--context_len' , default=32 , type=__lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=__lowercase , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=__lowercase , help='secondary model evaluation is triggered at eval_freq') parser.add_argument('--max_steps' , default=1000 , type=__lowercase , help='To calculate training epochs') parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=__lowercase , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=__lowercase , help='batch size of training data of language model(gpt2) ') parser.add_argument( '--eval_interval' , default=10 , type=__lowercase , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=__lowercase , help='The number of examples split to be used as objective_set/test_data') parser.add_argument( '--min_len' , default=1026 , type=__lowercase , help='The minimum length of the article to be used as objective set') parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=__lowercase , help='number of epochs to train secondary learner') parser.add_argument('--trim' , default=__lowercase , type=__lowercase , help='truncate the example if it exceeds context length') parser.add_argument( '--threshold' , default=1.0 , type=__lowercase , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=__lowercase , help='finetuned_model_name') parser.add_argument( '--recopy_model' , default=__lowercase , type=__lowercase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=__lowercase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner UpperCamelCase_ = joblib.load('data/IGF_values.jbl') # Train secondary learner UpperCamelCase_ = training_secondary_learner( __lowercase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2') set_seed(42) # Generate train and test data to train and evaluate gpt2 model UpperCamelCase_ , UpperCamelCase_ = generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=__lowercase) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( __lowercase , __lowercase , __lowercase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=__lowercase , secondary_learner=__lowercase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
23
0
import os def _snake_case ( __snake_case = "matrix.txt" ): with open(os.path.join(os.path.dirname(__snake_case ) , __snake_case ) ) as in_file: _UpperCamelCase = in_file.read() _UpperCamelCase = [[int(__snake_case ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] _UpperCamelCase = [[0 for cell in row] for row in grid] _UpperCamelCase = len(grid[0] ) _UpperCamelCase = [[0 for i in range(__snake_case )] for j in range(__snake_case )] _UpperCamelCase = grid[0][0] for i in range(1 , __snake_case ): _UpperCamelCase = grid[0][i] + dp[0][i - 1] for i in range(1 , __snake_case ): _UpperCamelCase = grid[i][0] + dp[i - 1][0] for i in range(1 , __snake_case ): for j in range(1 , __snake_case ): _UpperCamelCase = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f'{solution() = }')
10
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _a : """simple docstring""" A_ = MBartConfig A_ = {} A_ = """gelu""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ) -> Union[str, Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_ = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = TFMBartModel(config=_UpperCAmelCase ).get_decoder() UpperCamelCase_ = inputs_dict['input_ids'] UpperCamelCase_ = input_ids[:1, :] UpperCamelCase_ = inputs_dict['attention_mask'][:1, :] UpperCamelCase_ = inputs_dict['head_mask'] UpperCamelCase_ = 1 # first forward pass UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple() UpperCamelCase_ = past_key_values[1] def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ): if attention_mask is None: UpperCamelCase_ = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id) , tf.inta) if decoder_attention_mask is None: UpperCamelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () A_ = (TFMBartForConditionalGeneration,) if is_tf_available() else () A_ = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) A_ = True A_ = False A_ = False def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = TFMBartModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class _a ( unittest.TestCase ): """simple docstring""" A_ = [ """ UN Chief Says There Is No Military Solution in Syria""", ] A_ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] A_ = """facebook/mbart-large-en-ro""" @cached_property def _UpperCAmelCase ( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> int: UpperCamelCase_ = self.translate_src_text(**_UpperCAmelCase ) self.assertListEqual(self.expected_text , _UpperCAmelCase ) def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> List[str]: UpperCamelCase_ = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='tf' ) UpperCamelCase_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCamelCase_ = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) return generated_words @slow def _UpperCAmelCase ( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
23
0
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" _a = '''''' for i in table: res += inp[i - 1] return res def lowerCAmelCase (__A): """simple docstring""" return data[1:] + data[0] def lowerCAmelCase (__A , __A): """simple docstring""" _a = '''''' for i in range(len(__A)): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCAmelCase (__A , __A): """simple docstring""" _a = int('''0b''' + data[0] + data[-1] , 2) _a = int('''0b''' + data[1:3] , 2) return bin(s[row][col])[2:] def lowerCAmelCase (__A , __A , __A , __A , __A): """simple docstring""" _a = message[:4] _a = message[4:] _a = apply_table(__A , __A) _a = xor(__A , __A) _a = apply_sbox(__A , temp[:4]) # noqa: E741 _a = apply_sbox(__A , temp[4:]) _a = '''0''' * (2 - len(__A)) + l # noqa: E741 _a = '''0''' * (2 - len(__A)) + r _a = apply_table(l + r , __A) _a = xor(__A , __A) return temp + right if __name__ == "__main__": lowercase_ = input("Enter 10 bit key: ") lowercase_ = input("Enter 8 bit message: ") lowercase_ = [6, 3, 7, 4, 8, 5, 10, 9] lowercase_ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowercase_ = [2, 4, 3, 1] lowercase_ = [2, 6, 3, 1, 4, 8, 5, 7] lowercase_ = [4, 1, 3, 5, 7, 2, 8, 6] lowercase_ = [4, 1, 2, 3, 2, 3, 4, 1] lowercase_ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowercase_ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowercase_ = apply_table(key, paa_table) lowercase_ = temp[:5] lowercase_ = temp[5:] lowercase_ = left_shift(left) lowercase_ = left_shift(right) lowercase_ = apply_table(left + right, pa_table) lowercase_ = left_shift(left) lowercase_ = left_shift(right) lowercase_ = left_shift(left) lowercase_ = left_shift(right) lowercase_ = apply_table(left + right, pa_table) # encryption lowercase_ = apply_table(message, IP) lowercase_ = function(expansion, sa, sa, keya, temp) lowercase_ = temp[4:] + temp[:4] lowercase_ = function(expansion, sa, sa, keya, temp) lowercase_ = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption lowercase_ = apply_table(CT, IP) lowercase_ = function(expansion, sa, sa, keya, temp) lowercase_ = temp[4:] + temp[:4] lowercase_ = function(expansion, sa, sa, keya, temp) lowercase_ = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
11
def _snake_case (__lowercase): UpperCamelCase_ = 1 for i in range(1 , num + 1): fact *= i return fact def _snake_case (__lowercase): UpperCamelCase_ = 0 while number > 0: UpperCamelCase_ = number % 10 sum_of_digits += last_digit UpperCamelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def _snake_case (__lowercase = 100): UpperCamelCase_ = factorial(__lowercase) UpperCamelCase_ = split_and_add(__lowercase) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
23
0
def UpperCamelCase ( lowercase_ ) -> bool: '''simple docstring''' return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def UpperCamelCase ( lowercase_ ) -> bool: '''simple docstring''' lowercase__ : int = credit_card_number lowercase__ : Dict = 0 lowercase__ : Dict = len(lowercase_ ) - 2 for i in range(lowercase_ , -1 , -2 ): # double the value of every second digit lowercase__ : str = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 lowercase__ : Optional[int] = cc_number[:i] + str(lowercase_ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowercase_ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def UpperCamelCase ( lowercase_ ) -> bool: '''simple docstring''' lowercase__ : str = F'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(F'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(lowercase_ ) <= 16: print(F'{error_message} of its length.' ) return False if not validate_initial_digits(lowercase_ ): print(F'{error_message} of its first two digits.' ) return False if not luhn_validation(lowercase_ ): print(F'{error_message} it fails the Luhn check.' ) return False print(F'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
12
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case__ : str = logging.get_logger(__name__) def _snake_case (__lowercase): if isinstance(__lowercase , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(__lowercase , (list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(__lowercase): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""") class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = ["""pixel_values"""] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> None: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = size if size is not None else {'shortest_edge': 224} UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = resample UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCamelCase_ = get_resize_output_image_size(_UpperCAmelCase , size['shortest_edge'] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCamelCase_ = (size['height'], size['width']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: UpperCamelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> int: return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCamelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCamelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCamelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCamelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCamelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCamelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ) -> PIL.Image.Image: UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean UpperCamelCase_ = image_std if image_std is not None else self.image_std UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) UpperCamelCase_ = make_batched(_UpperCAmelCase ) UpperCamelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCamelCase_ = {'pixel_values': videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
23
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Optional[int] = logging.get_logger(__name__) A__ : str = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : str = 'camembert' def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Any: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = vocab_size __lowerCamelCase : Optional[int] = hidden_size __lowerCamelCase : Tuple = num_hidden_layers __lowerCamelCase : Any = num_attention_heads __lowerCamelCase : str = hidden_act __lowerCamelCase : Dict = intermediate_size __lowerCamelCase : str = hidden_dropout_prob __lowerCamelCase : Any = attention_probs_dropout_prob __lowerCamelCase : Tuple = max_position_embeddings __lowerCamelCase : Dict = type_vocab_size __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : Tuple = layer_norm_eps __lowerCamelCase : Optional[int] = position_embedding_type __lowerCamelCase : Optional[Any] = use_cache __lowerCamelCase : int = classifier_dropout class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCamelCase : Dict = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowerCamelCase : str = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
13
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = 42 A_ = 42 class _a ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" A_ = 1 @register_to_config def __init__( self , _UpperCAmelCase = 2000 , _UpperCAmelCase = 0.1_5 , _UpperCAmelCase = 0.0_1 , _UpperCAmelCase = 1_3_4_8.0 , _UpperCAmelCase = 1e-5 , _UpperCAmelCase = 1 , ) -> Tuple: # standard deviation of the initial noise distribution UpperCamelCase_ = sigma_max # setable values UpperCamelCase_ = None self.set_sigmas(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> torch.FloatTensor: return sample def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> str: UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps UpperCamelCase_ = torch.linspace(1 , _UpperCAmelCase , _UpperCAmelCase , device=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> Any: UpperCamelCase_ = sigma_min if sigma_min is not None else self.config.sigma_min UpperCamelCase_ = sigma_max if sigma_max is not None else self.config.sigma_max UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) UpperCamelCase_ = torch.exp(torch.linspace(math.log(_UpperCAmelCase ) , math.log(_UpperCAmelCase ) , _UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) UpperCamelCase_ = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) UpperCamelCase_ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda UpperCamelCase_ = timesteps.to(self.discrete_sigmas.device ) UpperCamelCase_ = self.discrete_sigmas[timesteps].to(sample.device ) UpperCamelCase_ = self.get_adjacent_sigma(_UpperCAmelCase , _UpperCAmelCase ).to(sample.device ) UpperCamelCase_ = torch.zeros_like(_UpperCAmelCase ) UpperCamelCase_ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods UpperCamelCase_ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): UpperCamelCase_ = diffusion.unsqueeze(-1 ) UpperCamelCase_ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of UpperCamelCase_ = randn_tensor( sample.shape , layout=sample.layout , generator=_UpperCAmelCase , device=sample.device , dtype=sample.dtype ) UpperCamelCase_ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? UpperCamelCase_ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_UpperCAmelCase , prev_sample_mean=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction UpperCamelCase_ = randn_tensor(sample.shape , layout=sample.layout , generator=_UpperCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr UpperCamelCase_ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase_ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase_ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 UpperCamelCase_ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term UpperCamelCase_ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): UpperCamelCase_ = step_size.unsqueeze(-1 ) UpperCamelCase_ = sample + step_size * model_output UpperCamelCase_ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCamelCase_ = timesteps.to(original_samples.device ) UpperCamelCase_ = self.discrete_sigmas.to(original_samples.device )[timesteps] UpperCamelCase_ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_UpperCAmelCase ) * sigmas[:, None, None, None] ) UpperCamelCase_ = noise + original_samples return noisy_samples def __len__( self ) -> Optional[int]: return self.config.num_train_timesteps
23
0
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate a__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) a__ = [] a__ = [] a__ = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} a__ = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': f'''🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results''', '''emoji''': True, }, } ] a__ = 0 for log in Path().glob('''*.log'''): a__ = 0 with open(log, '''r''') as f: for line in f: a__ = json.loads(line) if line.get('''nodeid''', '''''') != "": a__ = line['''nodeid'''] if line.get('''duration''', None) is not None: a__ = f'''{line["duration"]:.4f}''' if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) a__ = [] log.unlink() a__ = '''''' a__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" a__ = [] a__ = {} for test in failed_tests: a__ = test[0].split('''::''') a__ = data[0].split('''/''')[-1] if data[0] not in filesafailed: a__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) a__ = [test[0] for test in failed_table] a__ = list(set(files)) # Count number of instances in failed_tests a__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) a__ = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: a__ = '''Too many failed tests, please see the full report in the Action results.''' a__ = len(err) + 10 a__ = message[: 3000 - offset] + f'''\n...\n```\n{err}''' print(f'''### {message}''') else: a__ = '''No failed tests! 🤗''' print(f'''## {message}''') payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient a__ = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": a__ = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) a__ = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': f'''https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } payload.append(action_button) a__ = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': f'''Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}''', } ], } payload.append(date_report) a__ = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) a__ = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name a__ = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: a__ = row[0] else: a__ = '''''' a__ = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': f'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```''', }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
14
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Optional[int] = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys snake_case__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
23
0
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = MgpstrTokenizer A__ = False A__ = {} A__ = False def lowerCamelCase__ (self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" super().setUp() # fmt: off lowercase__ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on lowercase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + """\n""" ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : int ) -> Dict: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Any ) -> str: """simple docstring""" lowercase__ = """tester""" lowercase__ = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowercase__ = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) lowercase__ = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , 1 ) lowercase__ = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase ) lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) lowercase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ) , 0 ) lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _UpperCAmelCase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def lowerCamelCase__ (self : Optional[Any] ) -> str: """simple docstring""" pass
15
import datasets from .evaluate import evaluate snake_case__ : int = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ snake_case__ : Union[str, Any] = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ snake_case__ : Any = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def _UpperCAmelCase ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: UpperCamelCase_ = {prediction['id']: prediction['prediction_text'] for prediction in predictions} UpperCamelCase_ = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] UpperCamelCase_ = evaluate(dataset=_UpperCAmelCase , predictions=_UpperCAmelCase ) return score
23
0
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : Dict = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : Optional[int] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } __A : Any = {'facebook/blenderbot_small-90M': 5_1_2} def __a ( A__ : Dict ): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE = char SCREAMING_SNAKE_CASE = set(A__ ) return pairs class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : str="__start__" , __lowerCamelCase : List[str]="__end__" , __lowerCamelCase : Any="__unk__" , __lowerCamelCase : Optional[Any]="__null__" , **__lowerCamelCase : Any , ): super().__init__(unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , **__lowerCamelCase ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in merges] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = {} @property def _snake_case ( self : Optional[int] ): return len(self.encoder ) def _snake_case ( self : Dict ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : List[Any] , __lowerCamelCase : str ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE = re.sub("([.,!?()])" , r" \1" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = re.sub("(')" , r" \1 " , __lowerCamelCase ) SCREAMING_SNAKE_CASE = re.sub(r"\s{2,}" , " " , __lowerCamelCase ) if "\n" in token: SCREAMING_SNAKE_CASE = token.replace("\n" , " __newln__" ) SCREAMING_SNAKE_CASE = token.split(" " ) SCREAMING_SNAKE_CASE = [] for token in tokens: if not len(__lowerCamelCase ): continue SCREAMING_SNAKE_CASE = token.lower() SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) if not pairs: words.append(__lowerCamelCase ) continue while True: SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase ) new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = "@@ ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = word[:-4] SCREAMING_SNAKE_CASE = word words.append(__lowerCamelCase ) return " ".join(__lowerCamelCase ) def _snake_case ( self : str , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = re.findall(r"\S+\n?" , __lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(__lowerCamelCase ).split(" " ) ) ) return split_tokens def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = token.lower() return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : int ): return self.decoder.get(__lowerCamelCase , self.unk_token ) def _snake_case ( self : int , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ).replace("@@ " , "" ).strip() return out_string def _snake_case ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) SCREAMING_SNAKE_CASE = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file
16
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class _a ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCAmelCase ( self ) -> List[str]: return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) class _a ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCAmelCase ( self ) -> Any: return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) def _snake_case (): return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'])] def _snake_case (): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'])] class _a ( UpperCAmelCase__ ): """simple docstring""" @require_beam def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def _UpperCAmelCase ( self ) -> List[str]: import apache_beam as beam UpperCamelCase_ = beam.io.parquetio.WriteToParquet UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: UpperCamelCase_ = partial(_UpperCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def _UpperCAmelCase ( self ) -> Any: with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = NestedBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
23
0
def __SCREAMING_SNAKE_CASE ( a__ : list ,a__ : list ,a__ : int ,a__ : int ,a__ : int ) -> int: if index == number_of_items: return 0 __A : Optional[int] = 0 __A : List[Any] = 0 __A : int = knapsack(a__ ,a__ ,a__ ,a__ ,index + 1 ) if weights[index] <= max_weight: __A : Union[str, Any] = values[index] + knapsack( a__ ,a__ ,a__ ,max_weight - weights[index] ,index + 1 ) return max(a__ ,a__ ) if __name__ == "__main__": import doctest doctest.testmod()
17
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): # Initialise PyTorch model UpperCamelCase_ = AlbertConfig.from_json_file(__lowercase) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = AlbertForPreTraining(__lowercase) # Load weights from tf checkpoint load_tf_weights_in_albert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
23
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["ViTFeatureExtractor"] _SCREAMING_SNAKE_CASE = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _a ( UpperCAmelCase__ ): """simple docstring""" @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) UpperCamelCase_ = BertTokenizer.from_pretrained('bert-base-uncased' ) UpperCamelCase_ = bertabert.config.encoder.vocab_size UpperCamelCase_ = tokenizer.sep_token_id UpperCamelCase_ = tokenizer.cls_token_id UpperCamelCase_ = 128 UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) UpperCamelCase_ = train_dataset.select(range(32 ) ) UpperCamelCase_ = val_dataset.select(range(16 ) ) UpperCamelCase_ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCamelCase_ = tokenizer(batch['article'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=512 ) UpperCamelCase_ = tokenizer(batch['highlights'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=128 ) UpperCamelCase_ = inputs.input_ids UpperCamelCase_ = inputs.attention_mask UpperCamelCase_ = outputs.input_ids UpperCamelCase_ = outputs.input_ids.copy() UpperCamelCase_ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] UpperCamelCase_ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase ): UpperCamelCase_ = pred.label_ids UpperCamelCase_ = pred.predictions # all unnecessary tokens are removed UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset UpperCamelCase_ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset UpperCamelCase_ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy='steps' , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCamelCase_ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
23
0
"""simple docstring""" import math def lowerCamelCase__ ( __snake_case ) -> bool: """simple docstring""" assert isinstance(__snake_case, __snake_case ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _UpperCamelCase = range(3, int(math.sqrt(__snake_case ) + 1 ), 2 ) return not any(not number % i for i in odd_numbers ) def lowerCamelCase__ ( __snake_case, __snake_case=1, **__snake_case ) -> int: """simple docstring""" _UpperCamelCase = factor * value _UpperCamelCase = value while not is_prime(__snake_case ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1, **__snake_case ) return value
19
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case__ : Dict = 1_6 snake_case__ : List[str] = 3_2 def _snake_case (__lowercase , __lowercase = 16): UpperCamelCase_ = AutoTokenizer.from_pretrained('bert-base-cased') UpperCamelCase_ = load_dataset('glue' , 'mrpc') def tokenize_function(__lowercase): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__lowercase , max_length=__lowercase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase_ = datasets.map( __lowercase , batched=__lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_ = tokenized_datasets.rename_column('label' , 'labels') def collate_fn(__lowercase): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase_ = 16 elif accelerator.mixed_precision != "no": UpperCamelCase_ = 8 else: UpperCamelCase_ = None return tokenizer.pad( __lowercase , padding='longest' , max_length=__lowercase , pad_to_multiple_of=__lowercase , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase_ = DataLoader( tokenized_datasets['train'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase) UpperCamelCase_ = DataLoader( tokenized_datasets['validation'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case__ : List[str] = mocked_dataloaders # noqa: F811 def _snake_case (__lowercase , __lowercase): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , __lowercase) == "1": UpperCamelCase_ = 2 # New Code # UpperCamelCase_ = int(args.gradient_accumulation_steps) # Initialize accelerator UpperCamelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowercase) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`') # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_ = config['lr'] UpperCamelCase_ = int(config['num_epochs']) UpperCamelCase_ = int(config['seed']) UpperCamelCase_ = int(config['batch_size']) UpperCamelCase_ = evaluate.load('glue' , 'mrpc') set_seed(__lowercase) UpperCamelCase_ , UpperCamelCase_ = get_dataloaders(__lowercase , __lowercase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__lowercase) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase_ = model.to(accelerator.device) # Instantiate optimizer UpperCamelCase_ = AdamW(params=model.parameters() , lr=__lowercase) # Instantiate scheduler UpperCamelCase_ = get_linear_schedule_with_warmup( optimizer=__lowercase , num_warmup_steps=100 , num_training_steps=(len(__lowercase) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) # Now we train the model for epoch in range(__lowercase): model.train() for step, batch in enumerate(__lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowercase): UpperCamelCase_ = model(**__lowercase) UpperCamelCase_ = output.loss accelerator.backward(__lowercase) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): UpperCamelCase_ = model(**__lowercase) UpperCamelCase_ = outputs.logits.argmax(dim=-1) UpperCamelCase_ , UpperCamelCase_ = accelerator.gather_for_metrics((predictions, batch['labels'])) metric.add_batch( predictions=__lowercase , references=__lowercase , ) UpperCamelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowercase) def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser(description='Simple example of training script.') parser.add_argument( '--mixed_precision' , type=__lowercase , default=__lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=__lowercase , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.') UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__lowercase , __lowercase) if __name__ == "__main__": main()
23
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase: Optional[int] = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowercase_ (lowercase__ ): snake_case ='beit' def __init__( self , lowercase_=8192 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=224 , lowercase_=16 , lowercase_=3 , lowercase_=False , lowercase_=False , lowercase_=False , lowercase_=False , lowercase_=0.1 , lowercase_=0.1 , lowercase_=True , lowercase_=[3, 5, 7, 11] , lowercase_=[1, 2, 3, 6] , lowercase_=True , lowercase_=0.4 , lowercase_=256 , lowercase_=1 , lowercase_=False , lowercase_=255 , **lowercase_ , ) -> Optional[int]: super().__init__(**lowercase_) a__ =vocab_size a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =initializer_range a__ =layer_norm_eps a__ =image_size a__ =patch_size a__ =num_channels a__ =use_mask_token a__ =use_absolute_position_embeddings a__ =use_relative_position_bias a__ =use_shared_relative_position_bias a__ =layer_scale_init_value a__ =drop_path_rate a__ =use_mean_pooling # decode head attributes (semantic segmentation) a__ =out_indices a__ =pool_scales # auxiliary head attributes (semantic segmentation) a__ =use_auxiliary_head a__ =auxiliary_loss_weight a__ =auxiliary_channels a__ =auxiliary_num_convs a__ =auxiliary_concat_input a__ =semantic_loss_ignore_index class lowercase_ (lowercase__ ): snake_case =version.parse('1.11' ) @property def __UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self) -> float: return 1e-4
20
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _a : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=10 , _UpperCAmelCase=3 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=4 , _UpperCAmelCase=64 , ) -> List[Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = is_training UpperCamelCase_ = use_auxiliary_loss UpperCamelCase_ = num_queries UpperCamelCase_ = num_channels UpperCamelCase_ = min_size UpperCamelCase_ = max_size UpperCamelCase_ = num_labels UpperCamelCase_ = hidden_dim UpperCamelCase_ = hidden_dim def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _UpperCAmelCase ) UpperCamelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_UpperCAmelCase ) UpperCamelCase_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_UpperCAmelCase ) > 0.5 ).float() UpperCamelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=_UpperCAmelCase ) > 0.5).long() UpperCamelCase_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) UpperCamelCase_ = self.num_queries UpperCamelCase_ = self.num_labels UpperCamelCase_ = [1, 1, 1, 1] UpperCamelCase_ = self.num_channels UpperCamelCase_ = 64 UpperCamelCase_ = 128 UpperCamelCase_ = self.hidden_dim UpperCamelCase_ = self.hidden_dim UpperCamelCase_ = self.hidden_dim return config def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = output.encoder_hidden_states UpperCamelCase_ = output.pixel_decoder_hidden_states UpperCamelCase_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , config.decoder_layers ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Any: with torch.no_grad(): UpperCamelCase_ = MaskaFormerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCamelCase_ = model(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = MaskaFormerForUniversalSegmentation(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() def comm_check_on_output(_UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCamelCase_ = model(_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) UpperCamelCase_ = model( pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () A_ = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} A_ = False A_ = False A_ = False A_ = False def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = MaskaFormerModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_UpperCAmelCase ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _UpperCAmelCase ( self ) -> int: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> str: pass def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ) UpperCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCamelCase_ = MaskaFormerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = (self.model_tester.min_size,) * 2 UpperCamelCase_ = { 'pixel_values': torch.randn((2, 3, *size) , device=_UpperCAmelCase ), 'mask_labels': torch.randn((2, 10, *size) , device=_UpperCAmelCase ), 'class_labels': torch.zeros(2 , 10 , device=_UpperCAmelCase ).long(), } UpperCamelCase_ = self.model_tester.get_config() UpperCamelCase_ = MaskaFormerForUniversalSegmentation(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase , output_attentions=_UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def _UpperCAmelCase ( self ) -> List[Any]: if not self.model_tester.is_training: return UpperCamelCase_ = self.all_model_classes[1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ).loss loss.backward() def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = self.all_model_classes[1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) model.train() UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) UpperCamelCase_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) snake_case__ : List[Any] = 1E-4 def _snake_case (): UpperCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_vision @slow class _a ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCAmelCase ( self ) -> Optional[int]: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _UpperCAmelCase ( self ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) UpperCamelCase_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) UpperCamelCase_ = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) UpperCamelCase_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) # masks_queries_logits UpperCamelCase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCamelCase_ = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] UpperCamelCase_ = torch.tensor(_UpperCAmelCase ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) # class_queries_logits UpperCamelCase_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) UpperCamelCase_ = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) UpperCamelCase_ = inputs['pixel_values'].to(_UpperCAmelCase ) UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['mask_labels']] UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['class_labels']] with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
23
0
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def lowerCAmelCase_ ( *lowerCamelCase ): if not isinstance(lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =list(lowerCamelCase ) for i in range(len(lowerCamelCase ) ): __magic_name__ : Dict =None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =[ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowerCamelCase , lowerCamelCase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def lowerCAmelCase_ ( lowerCamelCase = None , lowerCamelCase = 128 ): if function is None: return functools.partial(lowerCamelCase , starting_batch_size=lowerCamelCase ) __magic_name__ : List[Any] =starting_batch_size def decorator(*lowerCamelCase , **lowerCamelCase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __magic_name__ : Optional[Any] =list(inspect.signature(lowerCamelCase ).parameters.keys() ) # Guard against user error if len(lowerCamelCase ) < (len(lowerCamelCase ) + 1): __magic_name__ : Optional[int] =""", """.join([F"{arg}={value}" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F"Batch size was passed into `{function.__name__}` as the first argument when called." F"Remove this as the decorator already does so: `{function.__name__}({arg_str})`" ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) except Exception as e: if should_reduce_batch_size(lowerCamelCase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
21
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType snake_case__ : List[str] = logging.get_logger(__name__) class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """vision-encoder-decoder""" A_ = True def __init__( self , **_UpperCAmelCase ) -> Dict: super().__init__(**_UpperCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) UpperCamelCase_ = kwargs.pop('encoder' ) UpperCamelCase_ = encoder_config.pop('model_type' ) UpperCamelCase_ = kwargs.pop('decoder' ) UpperCamelCase_ = decoder_config.pop('model_type' ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = True @classmethod def _UpperCAmelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> PretrainedConfig: logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) UpperCamelCase_ = True UpperCamelCase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.encoder.to_dict() UpperCamelCase_ = self.decoder.to_dict() UpperCamelCase_ = self.__class__.model_type return output class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = version.parse("""1.11""" ) @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-4 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase_ = OrderedDict() UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ) -> Mapping[str, Any]: import torch UpperCamelCase_ = OrderedDict() UpperCamelCase_ = super().generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = dummy_input['input_ids'].shape UpperCamelCase_ = (batch, encoder_sequence, self._config.encoder_hidden_size) UpperCamelCase_ = dummy_input.pop('input_ids' ) UpperCamelCase_ = dummy_input.pop('attention_mask' ) UpperCamelCase_ = torch.zeros(_UpperCAmelCase ) return common_inputs class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> None: pass def _UpperCAmelCase ( self , _UpperCAmelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = "default" ) -> OnnxConfig: UpperCamelCase_ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_UpperCAmelCase , _UpperCAmelCase )
23
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _snake_case : List[str] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class A : lowercase_ = field( default='cifar10' ,metadata={'help': 'Name of a dataset from the datasets package'} ) lowercase_ = field( default=_a ,metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowercase_ = field( default=_a ,metadata={'help': 'The column name of the images in the files.'} ) lowercase_ = field(default=_a ,metadata={'help': 'A folder containing the training data.'} ) lowercase_ = field(default=_a ,metadata={'help': 'A folder containing the validation data.'} ) lowercase_ = field( default=0.15 ,metadata={'help': 'Percent to split off of train for validation.'} ) lowercase_ = field( default=_a ,metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } ,) lowercase_ = field( default=_a ,metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } ,) def __lowerCAmelCase ( self : int ) -> Any: """simple docstring""" _a = {} if self.train_dir is not None: _a = self.train_dir if self.validation_dir is not None: _a = self.validation_dir _a = data_files if data_files else None @dataclass class A : lowercase_ = field( default=_a ,metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } ,) lowercase_ = field( default=_a ,metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) lowercase_ = field( default=_a ,metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } ,) lowercase_ = field( default=_a ,metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) lowercase_ = field( default='main' ,metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} ,) lowercase_ = field(default=_a ,metadata={'help': 'Name or path of preprocessor config.'} ) lowercase_ = field( default=_a ,metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } ,) lowercase_ = field( default=0.75 ,metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) lowercase_ = field( default=_a ,metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class A ( _a ): lowercase_ = field( default=1e-3 ,metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def snake_case_ (UpperCamelCase : List[str] ): '''simple docstring''' _a = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def snake_case_ (): '''simple docstring''' _a = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _a , _a , _a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _a , _a , _a = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , UpperCamelCase , UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _a = training_args.get_process_log_level() logger.setLevel(UpperCamelCase ) transformers.utils.logging.set_verbosity(UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. _a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. _a = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _a = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCamelCase ) and data_args.train_val_split > 0.0: _a = ds['''train'''].train_test_split(data_args.train_val_split ) _a = split['''train'''] _a = split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _a = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: _a = ViTMAEConfig.from_pretrained(model_args.config_name , **UpperCamelCase ) elif model_args.model_name_or_path: _a = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **UpperCamelCase ) else: _a = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _a = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCamelCase ) elif model_args.model_name_or_path: _a = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCamelCase ) else: _a = ViTImageProcessor() # create model if model_args.model_name_or_path: _a = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) _a = ViTMAEForPreTraining(UpperCamelCase ) if training_args.do_train: _a = ds['''train'''].column_names else: _a = ds['''validation'''].column_names if data_args.image_column_name is not None: _a = data_args.image_column_name elif "image" in column_names: _a = '''image''' elif "img" in column_names: _a = '''img''' else: _a = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _a = image_processor.size['''shortest_edge'''] else: _a = (image_processor.size['''height'''], image_processor.size['''width''']) _a = Compose( [ Lambda(lambda UpperCamelCase : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(UpperCamelCase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(UpperCamelCase : Union[str, Any] ): _a = [transforms(UpperCamelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: _a = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: _a = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCamelCase ) # Compute absolute learning rate _a = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _a = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer _a = Trainer( model=UpperCamelCase , args=UpperCamelCase , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=UpperCamelCase , data_collator=UpperCamelCase , ) # Training if training_args.do_train: _a = None if training_args.resume_from_checkpoint is not None: _a = training_args.resume_from_checkpoint elif last_checkpoint is not None: _a = last_checkpoint _a = trainer.train(resume_from_checkpoint=UpperCamelCase ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _a = trainer.evaluate() trainer.log_metrics('''eval''' , UpperCamelCase ) trainer.save_metrics('''eval''' , UpperCamelCase ) # Write model card and (optionally) push to hub _a = { '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase ) else: trainer.create_model_card(**UpperCamelCase ) def snake_case_ (UpperCamelCase : Optional[int] ): '''simple docstring''' main() if __name__ == "__main__": main()
22
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): # Initialise PyTorch model UpperCamelCase_ = MobileBertConfig.from_json_file(__lowercase) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = MobileBertForPreTraining(__lowercase) # Load weights from tf checkpoint UpperCamelCase_ = load_tf_weights_in_mobilebert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase ( unittest.TestCase): def lowerCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() __snake_case = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) __snake_case = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } __snake_case = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_6000, '''return_attention_mask''': False, '''do_normalize''': True, } __snake_case = tempfile.mkdtemp() __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __snake_case = os.path.join(self.tmpdirname , __SCREAMING_SNAKE_CASE ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) # load decoder from hub __snake_case = '''hf-internal-testing/ngram-beam-search-decoder''' def lowerCAmelCase ( self , **__SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __snake_case = self.add_kwargs_tokens_map.copy() kwargs.update(__SCREAMING_SNAKE_CASE ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self , **__SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self , **__SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> int: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case = self.get_tokenizer() __snake_case = self.get_feature_extractor() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE , decoder=__SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __SCREAMING_SNAKE_CASE ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __SCREAMING_SNAKE_CASE ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , '''include''' ): WavaVecaProcessorWithLM( tokenizer=__SCREAMING_SNAKE_CASE , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE , decoder=__SCREAMING_SNAKE_CASE ) __snake_case = floats_list((3, 1000) ) __snake_case = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) __snake_case = processor(__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE , decoder=__SCREAMING_SNAKE_CASE ) __snake_case = '''This is a test string''' __snake_case = processor(text=__SCREAMING_SNAKE_CASE ) __snake_case = tokenizer(__SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE=(2, 10, 16) , __SCREAMING_SNAKE_CASE=77 ) -> Tuple: '''simple docstring''' np.random.seed(__SCREAMING_SNAKE_CASE ) return np.random.rand(*__SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE , decoder=__SCREAMING_SNAKE_CASE ) __snake_case = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case = processor.decode(__SCREAMING_SNAKE_CASE ) __snake_case = decoder.decode_beams(__SCREAMING_SNAKE_CASE )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE , decoder=__SCREAMING_SNAKE_CASE ) __snake_case = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case = processor.batch_decode(__SCREAMING_SNAKE_CASE ) else: with get_context(__SCREAMING_SNAKE_CASE ).Pool() as pool: __snake_case = processor.batch_decode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case = list(__SCREAMING_SNAKE_CASE ) with get_context('''fork''' ).Pool() as p: __snake_case = decoder.decode_beams_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case , __snake_case , __snake_case = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__SCREAMING_SNAKE_CASE , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(__SCREAMING_SNAKE_CASE , decoded_processor.logit_score ) self.assertListEqual(__SCREAMING_SNAKE_CASE , decoded_processor.lm_score ) def lowerCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE , decoder=__SCREAMING_SNAKE_CASE ) __snake_case = self._get_dummy_logits() __snake_case = 15 __snake_case = -20.0 __snake_case = -4.0 __snake_case = processor.batch_decode( __SCREAMING_SNAKE_CASE , beam_width=__SCREAMING_SNAKE_CASE , beam_prune_logp=__SCREAMING_SNAKE_CASE , token_min_logp=__SCREAMING_SNAKE_CASE , ) __snake_case = decoded_processor_out.text __snake_case = list(__SCREAMING_SNAKE_CASE ) with get_context('''fork''' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , beam_width=__SCREAMING_SNAKE_CASE , beam_prune_logp=__SCREAMING_SNAKE_CASE , token_min_logp=__SCREAMING_SNAKE_CASE , ) __snake_case = [d[0][0] for d in decoded_decoder_out] __snake_case = [d[0][2] for d in decoded_decoder_out] __snake_case = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , __SCREAMING_SNAKE_CASE ) self.assertTrue(np.array_equal(__SCREAMING_SNAKE_CASE , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __SCREAMING_SNAKE_CASE , atol=1E-3 ) ) self.assertTrue(np.array_equal(__SCREAMING_SNAKE_CASE , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474] , __SCREAMING_SNAKE_CASE , atol=1E-3 ) ) def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE , decoder=__SCREAMING_SNAKE_CASE ) __snake_case = self._get_dummy_logits() __snake_case = 2.0 __snake_case = 5.0 __snake_case = -20.0 __snake_case = True __snake_case = processor.batch_decode( __SCREAMING_SNAKE_CASE , alpha=__SCREAMING_SNAKE_CASE , beta=__SCREAMING_SNAKE_CASE , unk_score_offset=__SCREAMING_SNAKE_CASE , lm_score_boundary=__SCREAMING_SNAKE_CASE , ) __snake_case = decoded_processor_out.text __snake_case = list(__SCREAMING_SNAKE_CASE ) decoder.reset_params( alpha=__SCREAMING_SNAKE_CASE , beta=__SCREAMING_SNAKE_CASE , unk_score_offset=__SCREAMING_SNAKE_CASE , lm_score_boundary=__SCREAMING_SNAKE_CASE , ) with get_context('''fork''' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) __snake_case = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , __SCREAMING_SNAKE_CASE ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __snake_case = os.listdir(__SCREAMING_SNAKE_CASE ) __snake_case = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case = snapshot_download('''hf-internal-testing/processor_with_lm''' ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(__SCREAMING_SNAKE_CASE ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __snake_case = os.listdir(__SCREAMING_SNAKE_CASE ) __snake_case = os.listdir(__SCREAMING_SNAKE_CASE ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __snake_case = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __snake_case = floats_list((3, 1000) ) __snake_case = processor_wavaveca(__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) __snake_case = processor_auto(__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __snake_case = self._get_dummy_logits() __snake_case = processor_wavaveca.batch_decode(__SCREAMING_SNAKE_CASE ) __snake_case = processor_auto.batch_decode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE , decoder=__SCREAMING_SNAKE_CASE ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __snake_case = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __snake_case = self._get_dummy_logits()[0] __snake_case = processor.decode(__SCREAMING_SNAKE_CASE , output_word_offsets=__SCREAMING_SNAKE_CASE ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def lowerCAmelCase ( self ) -> str: '''simple docstring''' __snake_case = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __snake_case = self._get_dummy_logits() __snake_case = processor.batch_decode(__SCREAMING_SNAKE_CASE , output_word_offsets=__SCREAMING_SNAKE_CASE ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(__SCREAMING_SNAKE_CASE , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' import torch __snake_case = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=__SCREAMING_SNAKE_CASE ) __snake_case = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_6000 ) ) __snake_case = iter(__SCREAMING_SNAKE_CASE ) __snake_case = next(__SCREAMING_SNAKE_CASE ) __snake_case = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) __snake_case = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): __snake_case = model(__SCREAMING_SNAKE_CASE ).logits.cpu().numpy() __snake_case = processor.decode(logits[0] , output_word_offsets=__SCREAMING_SNAKE_CASE ) __snake_case = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] __snake_case = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(__SCREAMING_SNAKE_CASE , '''word''' ) ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(''' '''.join(self.get_from_offsets(__SCREAMING_SNAKE_CASE , '''word''' ) ) , output.text ) # output times __snake_case = torch.tensor(self.get_from_offsets(__SCREAMING_SNAKE_CASE , '''start_time''' ) ) __snake_case = torch.tensor(self.get_from_offsets(__SCREAMING_SNAKE_CASE , '''end_time''' ) ) # fmt: off __snake_case = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] ) __snake_case = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=0.01 ) ) self.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=0.01 ) )
24
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _a ( unittest.TestCase ): """simple docstring""" A_ = MODEL_FOR_MASKED_LM_MAPPING A_ = TF_MODEL_FOR_MASKED_LM_MAPPING def _UpperCAmelCase ( self ) -> List[str]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9e-05, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2e-05, 'token': 2941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() UpperCamelCase_ = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(_UpperCAmelCase ) @slow @require_tf def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is John', 'score': 0.0_0_8, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.0_0_7, 'token': 1573, 'token_str': ' Chris'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.2_5_1, 'token': 2201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.2_1_4, 'token': 12790, 'token_str': ' Lyon', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is Patrick', 'score': 0.0_0_5, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.0_0_0, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.0_0_0, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) @require_tf def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = fill_masker.tokenizer UpperCamelCase_ = fill_masker.model UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , ) with self.assertRaises(_UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_UpperCAmelCase ): fill_masker('This is' ) self.run_test_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_targets(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_top_k_targets(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_multiple_masks(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = sorted(vocab.keys() )[:2] # Pipeline argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , targets=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Call argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Score equivalence UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['token_str'] for top_mask in outputs] UpperCamelCase_ = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ) == set(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[''] ) with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets='' ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , top_k=2 ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) # top_k=2, ntargets=3 UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=_UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCamelCase_ = [el['token_str'] for el in sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ).issubset(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=_UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.get_vocab() # String duplicates + id duplicates UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCamelCase_ = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=_UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_UpperCAmelCase ) , 3 ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , )
23
0
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowerCamelCase__ ( _a , _a , _a = None): if version.parse(hfh.__version__).release < version.parse("0.11.0").release: # old versions of hfh don't url-encode the file path SCREAMING_SNAKE_CASE : Dict = quote(_a) return hfh.hf_hub_url(_a , _a , repo_type="dataset" , revision=_a)
25
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionSAGPipeline A_ = TEXT_TO_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_BATCH_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = False def _UpperCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCamelCase_ = CLIPTextModel(_UpperCAmelCase ) UpperCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ) -> List[Any]: if str(_UpperCAmelCase ).startswith('mps' ): UpperCamelCase_ = torch.manual_seed(_UpperCAmelCase ) else: UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCamelCase_ = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def _UpperCAmelCase ( self ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , width=768 , height=512 , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) UpperCamelCase_ = output.images assert image.shape == (1, 512, 768, 3)
23
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar snake_case__ : List[str] = TypeVar("""T""") def _snake_case (__lowercase): return (position - 1) // 2 def _snake_case (__lowercase): return (2 * position) + 1 def _snake_case (__lowercase): return (2 * position) + 2 class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = [] UpperCamelCase_ = {} UpperCamelCase_ = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def _UpperCAmelCase ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) UpperCamelCase_ = self.elements self.elements += 1 self._bubble_up(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) UpperCamelCase_ , UpperCamelCase_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: UpperCamelCase_ , UpperCamelCase_ = self.heap[0] self._bubble_down(_UpperCAmelCase ) return elem def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Update the weight of the given key UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ = (elem, weight) if position > 0: UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] UpperCamelCase_ = self.position_map[elem] if curr_pos == 0: return None UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_up(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ = get_child_left_position(_UpperCAmelCase ) UpperCamelCase_ = get_child_right_position(_UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) if child_left_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) else: return None if child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Swap the nodes at the given positions UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ , UpperCamelCase_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) UpperCamelCase_ = nodea_pos UpperCamelCase_ = nodea_pos class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = {} UpperCamelCase_ = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: UpperCamelCase_ = {} self.nodes += 1 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an edge between 2 nodes in the graph self.add_node(_UpperCAmelCase ) self.add_node(_UpperCAmelCase ) UpperCamelCase_ = weight UpperCamelCase_ = weight def _snake_case (__lowercase , ): UpperCamelCase_ = {node: maxsize for node in graph.connections} UpperCamelCase_ = {node: None for node in graph.connections} UpperCamelCase_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__lowercase , __lowercase) if priority_queue.is_empty(): return dist, parent # initialization UpperCamelCase_ = priority_queue.extract_min() UpperCamelCase_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node # running prim's algorithm while not priority_queue.is_empty(): UpperCamelCase_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node return dist, parent
23
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __A : Optional[int] = logging.get_logger(__name__) __A : Any = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = 'imagegpt' __magic_name__ = ['past_key_values'] __magic_name__ = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , snake_case_=512 + 1 , snake_case_=32 * 32 , snake_case_=512 , snake_case_=24 , snake_case_=8 , snake_case_=None , snake_case_="quick_gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1E-5 , snake_case_=0.02 , snake_case_=True , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , **snake_case_ , ): _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = n_inner _A = activation_function _A = resid_pdrop _A = embd_pdrop _A = attn_pdrop _A = layer_norm_epsilon _A = initializer_range _A = scale_attn_weights _A = use_cache _A = scale_attn_by_inverse_layer_idx _A = reorder_and_upcast_attn _A = tie_word_embeddings super().__init__(tie_word_embeddings=snake_case_ , **snake_case_ ) class lowerCamelCase( __snake_case ): '''simple docstring''' @property def lowerCAmelCase__ ( self ): return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ] ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = 1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , snake_case_ = 3 , snake_case_ = 32 , snake_case_ = 32 , ): _A = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _A = dict(preprocessor(images=snake_case_ , return_tensors=snake_case_ ) ) return inputs
27
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case__ : Dict = TypeVar("""T""") class _a ( Generic[T] ): """simple docstring""" A_ = 42 # Cache store of keys A_ = 42 # References of the keys in cache A_ = 10 # Maximum capacity of cache def __init__( self , _UpperCAmelCase ) -> None: UpperCamelCase_ = deque() UpperCamelCase_ = set() if not n: UpperCamelCase_ = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCamelCase_ = n def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCamelCase_ = self.dq_store.pop() self.key_reference.remove(_UpperCAmelCase ) else: self.dq_store.remove(_UpperCAmelCase ) self.dq_store.appendleft(_UpperCAmelCase ) self.key_reference.add(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> None: for k in self.dq_store: print(_UpperCAmelCase ) def __repr__( self ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : LRUCache[str | int] = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
23
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ): '''simple docstring''' self.test() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[int] = False while not completed: if counter == 1: self.reset() SCREAMING_SNAKE_CASE : str = self.advance() if not self.does_advance(A ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.update(A ) counter += 1 if counter > 10_000: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def UpperCamelCase_ ( self ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self, A ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self, A ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self, A=False ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super(A, self ).__init__() if not isinstance(A, A ) or len(A ) == 0: raise ValueError(F"`token_ids` has to be a non-empty list, but is {token_ids}." ) if any((not isinstance(A, A ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." ) SCREAMING_SNAKE_CASE : Tuple = token_ids SCREAMING_SNAKE_CASE : Tuple = len(self.token_ids ) SCREAMING_SNAKE_CASE : Optional[int] = -1 # the index of the currently fulfilled step SCREAMING_SNAKE_CASE : Any = False def UpperCamelCase_ ( self ): '''simple docstring''' if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase_ ( self, A ): '''simple docstring''' if not isinstance(A, A ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(A )}" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase_ ( self, A ): '''simple docstring''' if not isinstance(A, A ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(A )}" ) SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : int = False if self.does_advance(A ): self.fulfilled_idx += 1 SCREAMING_SNAKE_CASE : int = True if self.fulfilled_idx == (self.seqlen - 1): SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : Union[str, Any] = completed else: # failed to make progress. SCREAMING_SNAKE_CASE : int = True self.reset() return stepped, completed, reset def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Dict = 0 def UpperCamelCase_ ( self ): '''simple docstring''' return self.seqlen - (self.fulfilled_idx + 1) def UpperCamelCase_ ( self, A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = PhrasalConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : str = self.seqlen SCREAMING_SNAKE_CASE : List[Any] = self.fulfilled_idx SCREAMING_SNAKE_CASE : List[Any] = self.completed return new_constraint class _a : '''simple docstring''' def __init__( self, A, A=True ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = max([len(A ) for one in nested_token_ids] ) SCREAMING_SNAKE_CASE : Optional[int] = {} for token_ids in nested_token_ids: SCREAMING_SNAKE_CASE : Dict = root for tidx, token_id in enumerate(A ): if token_id not in level: SCREAMING_SNAKE_CASE : Dict = {} SCREAMING_SNAKE_CASE : Optional[Any] = level[token_id] if no_subsets and self.has_subsets(A, A ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F" {nested_token_ids}." ) SCREAMING_SNAKE_CASE : Any = root def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.trie for current_token in current_seq: SCREAMING_SNAKE_CASE : Optional[Any] = start[current_token] SCREAMING_SNAKE_CASE : Optional[Any] = list(start.keys() ) return next_tokens def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.next_tokens(A ) return len(A ) == 0 def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = list(root.values() ) if len(A ) == 0: return 1 else: return sum([self.count_leaves(A ) for nn in next_nodes] ) def UpperCamelCase_ ( self, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.count_leaves(A ) return len(A ) != leaf_count class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super(A, self ).__init__() if not isinstance(A, A ) or len(A ) == 0: raise ValueError(F"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." ) if any(not isinstance(A, A ) for token_ids in nested_token_ids ): raise ValueError(F"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." ) if any( any((not isinstance(A, A ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) SCREAMING_SNAKE_CASE : Dict = DisjunctiveTrie(A ) SCREAMING_SNAKE_CASE : int = nested_token_ids SCREAMING_SNAKE_CASE : int = self.trie.max_height SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : List[str] = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.trie.next_tokens(self.current_seq ) if len(A ) == 0: return None else: return token_list def UpperCamelCase_ ( self, A ): '''simple docstring''' if not isinstance(A, A ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(A )}" ) SCREAMING_SNAKE_CASE : List[str] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def UpperCamelCase_ ( self, A ): '''simple docstring''' if not isinstance(A, A ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(A )}" ) SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Optional[Any] = False if self.does_advance(A ): self.current_seq.append(A ) SCREAMING_SNAKE_CASE : Tuple = True else: SCREAMING_SNAKE_CASE : Dict = True self.reset() SCREAMING_SNAKE_CASE : int = self.trie.reached_leaf(self.current_seq ) SCREAMING_SNAKE_CASE : List[str] = completed return stepped, completed, reset def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : Optional[int] = [] def UpperCamelCase_ ( self ): '''simple docstring''' if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def UpperCamelCase_ ( self, A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = DisjunctiveConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : Tuple = self.seqlen SCREAMING_SNAKE_CASE : Dict = self.current_seq SCREAMING_SNAKE_CASE : str = self.completed return new_constraint class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = constraints # max # of steps required to fulfill a given constraint SCREAMING_SNAKE_CASE : List[str] = max([c.seqlen for c in constraints] ) SCREAMING_SNAKE_CASE : str = len(A ) SCREAMING_SNAKE_CASE : Any = False self.init_state() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : str = [constraint.copy(stateful=A ) for constraint in self.constraints] def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" SCREAMING_SNAKE_CASE : List[str] = constraint.advance() if isinstance(A, A ): token_list.append(A ) elif isinstance(A, A ): token_list.extend(A ) else: SCREAMING_SNAKE_CASE : List[Any] = self.inprogress_constraint.advance() if isinstance(A, A ): token_list.append(A ) elif isinstance(A, A ): token_list.extend(A ) if len(A ) == 0: return None else: return token_list def UpperCamelCase_ ( self, A ): '''simple docstring''' self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.add(A ) # the entire list of constraints are fulfilled if self.completed: break def UpperCamelCase_ ( self, A ): '''simple docstring''' if not isinstance(A, A ): raise ValueError(F"`token_id` should be an `int`, but is `{token_id}`." ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = False, False if self.completed: SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Dict = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.inprogress_constraint.update(A ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=A ) ) SCREAMING_SNAKE_CASE : Dict = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) SCREAMING_SNAKE_CASE : Any = None if len(self.pending_constraints ) == 0: # we're done! SCREAMING_SNAKE_CASE : Optional[int] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(A ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = pending_constraint.update(A ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(A ) SCREAMING_SNAKE_CASE : Optional[Any] = None if not complete and stepped: SCREAMING_SNAKE_CASE : Union[str, Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". SCREAMING_SNAKE_CASE : Any = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. SCREAMING_SNAKE_CASE : Dict = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def UpperCamelCase_ ( self, A=True ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: SCREAMING_SNAKE_CASE : int = [ constraint.copy(stateful=A ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: SCREAMING_SNAKE_CASE : List[str] = self.inprogress_constraint.copy(stateful=A ) SCREAMING_SNAKE_CASE : Optional[Any] = [constraint.copy() for constraint in self.pending_constraints] return new_state
28
import numpy as np def _snake_case (__lowercase): return 1 / (1 + np.exp(-vector)) def _snake_case (__lowercase): return vector * sigmoid(__lowercase) if __name__ == "__main__": import doctest doctest.testmod()
23
0
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests A_ = open # noqa: we just need to have a builtin inside this module to test it properly
29
import math from datetime import datetime, timedelta def _snake_case (__lowercase): UpperCamelCase_ = year % 19 UpperCamelCase_ = year % 4 UpperCamelCase_ = year % 7 UpperCamelCase_ = math.floor(year / 100) UpperCamelCase_ = math.floor((13 + 8 * leap_day_inhibits) / 25) UpperCamelCase_ = leap_day_inhibits / 4 UpperCamelCase_ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 UpperCamelCase_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCamelCase_ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon UpperCamelCase_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 19) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 18) else: return datetime(__lowercase , 3 , 22) + timedelta( days=int(days_to_add + days_from_phm_to_sunday)) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): snake_case__ : Dict = """will be""" if year > datetime.now().year else """was""" print(f'Easter in {year} {tense} {gauss_easter(year)}')
23
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __a( _a ): """simple docstring""" @slow @require_torch def a__ ( self ) -> Tuple: UpperCAmelCase_ : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' ,'''prajjwal1/bert-tiny''' ) UpperCAmelCase_ : Union[str, Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) UpperCAmelCase_ : Optional[int] = bertabert.config.encoder.vocab_size UpperCAmelCase_ : Any = tokenizer.sep_token_id UpperCAmelCase_ : Optional[int] = tokenizer.cls_token_id UpperCAmelCase_ : List[Any] = 128 UpperCAmelCase_ : int = datasets.load_dataset('''cnn_dailymail''' ,'''3.0.0''' ,split='''train[:1%]''' ) UpperCAmelCase_ : str = datasets.load_dataset('''cnn_dailymail''' ,'''3.0.0''' ,split='''validation[:1%]''' ) UpperCAmelCase_ : str = train_dataset.select(range(32 ) ) UpperCAmelCase_ : int = val_dataset.select(range(16 ) ) UpperCAmelCase_ : Optional[Any] = 4 def _map_to_encoder_decoder_inputs(_SCREAMING_SNAKE_CASE ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCAmelCase_ : List[str] = tokenizer(batch['''article'''] ,padding='''max_length''' ,truncation=_SCREAMING_SNAKE_CASE ,max_length=512 ) UpperCAmelCase_ : str = tokenizer(batch['''highlights'''] ,padding='''max_length''' ,truncation=_SCREAMING_SNAKE_CASE ,max_length=128 ) UpperCAmelCase_ : List[str] = inputs.input_ids UpperCAmelCase_ : Optional[Any] = inputs.attention_mask UpperCAmelCase_ : Optional[Any] = outputs.input_ids UpperCAmelCase_ : Optional[int] = outputs.input_ids.copy() UpperCAmelCase_ : Any = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] UpperCAmelCase_ : Dict = outputs.attention_mask assert all(len(_SCREAMING_SNAKE_CASE ) == 512 for x in inputs.input_ids ) assert all(len(_SCREAMING_SNAKE_CASE ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : List[str] = pred.label_ids UpperCAmelCase_ : Dict = pred.predictions # all unnecessary tokens are removed UpperCAmelCase_ : List[str] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ,skip_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ,skip_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_SCREAMING_SNAKE_CASE ) )] ) / len(_SCREAMING_SNAKE_CASE ) return {"accuracy": accuracy} # map train dataset UpperCAmelCase_ : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=_SCREAMING_SNAKE_CASE ,batch_size=_SCREAMING_SNAKE_CASE ,remove_columns=['''article''', '''highlights'''] ,) train_dataset.set_format( type='''torch''' ,columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] ,) # same for validation dataset UpperCAmelCase_ : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=_SCREAMING_SNAKE_CASE ,batch_size=_SCREAMING_SNAKE_CASE ,remove_columns=['''article''', '''highlights'''] ,) val_dataset.set_format( type='''torch''' ,columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] ,) UpperCAmelCase_ : Optional[int] = self.get_auto_remove_tmp_dir() UpperCAmelCase_ : List[Any] = SeqaSeqTrainingArguments( output_dir=_SCREAMING_SNAKE_CASE ,per_device_train_batch_size=_SCREAMING_SNAKE_CASE ,per_device_eval_batch_size=_SCREAMING_SNAKE_CASE ,predict_with_generate=_SCREAMING_SNAKE_CASE ,evaluation_strategy='''steps''' ,do_train=_SCREAMING_SNAKE_CASE ,do_eval=_SCREAMING_SNAKE_CASE ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer UpperCAmelCase_ : int = SeqaSeqTrainer( model=_SCREAMING_SNAKE_CASE ,args=_SCREAMING_SNAKE_CASE ,compute_metrics=_compute_metrics ,train_dataset=_SCREAMING_SNAKE_CASE ,eval_dataset=_SCREAMING_SNAKE_CASE ,tokenizer=_SCREAMING_SNAKE_CASE ,) # start training trainer.train()
30
import requests def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = {'Content-Type': 'application/json'} UpperCamelCase_ = requests.post(__lowercase , json={'text': message_body} , headers=__lowercase) if response.status_code != 200: UpperCamelCase_ = ( 'Request to slack returned an error ' f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(__lowercase) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
23
0
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> Union[str, Any]: # ===== initialization ===== SCREAMING_SNAKE_CASE_ = Mock() SCREAMING_SNAKE_CASE_ = conn, Mock() SCREAMING_SNAKE_CASE_ = iter([1, None] ) SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase : next(__UpperCAmelCase ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=__UpperCAmelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
31
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _a ( UpperCAmelCase__ ): """simple docstring""" def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) UpperCamelCase_ = input_file.read() UpperCamelCase_ = regexp.search(_UpperCAmelCase ) return match def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) UpperCamelCase_ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase_ = regexp.finditer(_UpperCAmelCase ) UpperCamelCase_ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_UpperCAmelCase ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(_UpperCAmelCase ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
23
0
UpperCAmelCase_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> bytes: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = F'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = ''''''.join(bin(SCREAMING_SNAKE_CASE_ )[2:].zfill(8 ) for byte in data ) _UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) % 6 != 0 if padding_needed: # The padding that will be added later _UpperCAmelCase = B'''=''' * ((6 - len(SCREAMING_SNAKE_CASE_ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(SCREAMING_SNAKE_CASE_ ) % 6) else: _UpperCAmelCase = B'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 6 ) ).encode() + padding ) def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = ( '''argument should be a bytes-like object or ASCII string, ''' F'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(SCREAMING_SNAKE_CASE_ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): try: _UpperCAmelCase = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) _UpperCAmelCase = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(SCREAMING_SNAKE_CASE_ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _UpperCAmelCase = encoded_data[:-padding] _UpperCAmelCase = ''''''.join( bin(B64_CHARSET.index(SCREAMING_SNAKE_CASE_ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _UpperCAmelCase = ''''''.join( bin(B64_CHARSET.index(SCREAMING_SNAKE_CASE_ ) )[2:].zfill(6 ) for char in encoded_data ) _UpperCAmelCase = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 8 ) ] return bytes(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
32
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _snake_case (__lowercase=32 , __lowercase=10 , __lowercase=100 , __lowercase=1026 , __lowercase=True , __lowercase="data/tokenized_stories_train_wikitext103.jbl" , __lowercase="igf_context_pairs.jbl" , ): set_seed(3) # generate train_data and objective_set UpperCamelCase_ , UpperCamelCase_ = generate_datasets( __lowercase , __lowercase , number=__lowercase , min_len=1026 , trim=__lowercase) # keeps model same across runs set_seed(4) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # load pretrained model UpperCamelCase_ = load_gpta('gpt2').to(__lowercase) print('computing perplexity on objective set') UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase).item() print('perplexity on objective set:' , __lowercase) # collect igf pairs and save to file demo.jbl collect_objective_set(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _snake_case (__lowercase , __lowercase=15 , __lowercase=128 , __lowercase=100 , __lowercase="igf_model.pt" , ): set_seed(42) # Load pre-trained model UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2') # Initialize secondary learner to use embedding weights of model UpperCamelCase_ = SecondaryLearner(__lowercase) # Train secondary learner UpperCamelCase_ = train_secondary_learner( __lowercase , __lowercase , max_epochs=__lowercase , batch_size=__lowercase , eval_freq=100 , igf_model_path=__lowercase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=32 , __lowercase=1000 , __lowercase=16 , __lowercase=1.0 , __lowercase=recopy_gpta , __lowercase=None , __lowercase=10 , __lowercase="gpt2_finetuned.pt" , ): UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') UpperCamelCase_ = RandomSampler(__lowercase) UpperCamelCase_ = DataLoader(__lowercase , sampler=__lowercase) UpperCamelCase_ = max_steps // (len(__lowercase)) + 1 UpperCamelCase_ = 0 UpperCamelCase_ = torch.zeros((1, context_len) , dtype=torch.long , device=__lowercase) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = recopy_model(__lowercase , __lowercase , __lowercase) model.train() if secondary_learner is not None: secondary_learner.to(__lowercase) secondary_learner.eval() UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = [] UpperCamelCase_ = [] # Compute the performance of the transformer model at the beginning UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase) test_perps.append(__lowercase) print('Test perplexity, step' , __lowercase , ':' , __lowercase) for epoch in range(int(__lowercase)): for step, example in enumerate(__lowercase): torch.cuda.empty_cache() UpperCamelCase_ = random.randint(0 , example.size(2) - context_len - 1) UpperCamelCase_ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() UpperCamelCase_ = model(__lowercase , labels=__lowercase) UpperCamelCase_ = True if secondary_learner is not None: UpperCamelCase_ = secondary_learner.forward( torch.tensor(__lowercase , dtype=torch.long , device=__lowercase).unsqueeze(0))[0].item() observed_qs.append(float(__lowercase)) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: UpperCamelCase_ = -1 if predicted_q < threshold: UpperCamelCase_ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu())) UpperCamelCase_ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() UpperCamelCase_ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase) test_perps.append(__lowercase) print('Test perplexity, step' , __lowercase , ':' , __lowercase) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , __lowercase) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task') # Required parameters parser.add_argument( '--data_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=__lowercase , type=__lowercase , required=__lowercase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=__lowercase , default=__lowercase , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=__lowercase , default=__lowercase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=__lowercase , type=__lowercase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=__lowercase , default=__lowercase , help='A seed for reproducible training.') parser.add_argument( '--context_len' , default=32 , type=__lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=__lowercase , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=__lowercase , help='secondary model evaluation is triggered at eval_freq') parser.add_argument('--max_steps' , default=1000 , type=__lowercase , help='To calculate training epochs') parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=__lowercase , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=__lowercase , help='batch size of training data of language model(gpt2) ') parser.add_argument( '--eval_interval' , default=10 , type=__lowercase , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=__lowercase , help='The number of examples split to be used as objective_set/test_data') parser.add_argument( '--min_len' , default=1026 , type=__lowercase , help='The minimum length of the article to be used as objective set') parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=__lowercase , help='number of epochs to train secondary learner') parser.add_argument('--trim' , default=__lowercase , type=__lowercase , help='truncate the example if it exceeds context length') parser.add_argument( '--threshold' , default=1.0 , type=__lowercase , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=__lowercase , help='finetuned_model_name') parser.add_argument( '--recopy_model' , default=__lowercase , type=__lowercase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=__lowercase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner UpperCamelCase_ = joblib.load('data/IGF_values.jbl') # Train secondary learner UpperCamelCase_ = training_secondary_learner( __lowercase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2') set_seed(42) # Generate train and test data to train and evaluate gpt2 model UpperCamelCase_ , UpperCamelCase_ = generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=__lowercase) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( __lowercase , __lowercase , __lowercase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=__lowercase , secondary_learner=__lowercase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
23
0
from collections import deque def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Union[str, Any]: snake_case__ = len(__lowerCAmelCase ) snake_case__ = deque() snake_case__ = [False for _ in range(__lowerCAmelCase )] snake_case__ = [-1 for _ in range(__lowerCAmelCase )] snake_case__ = index_of[:] def strong_connect(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): snake_case__ = index # the number when this node is seen snake_case__ = index # lowest rank node reachable from here index += 1 stack.append(__lowerCAmelCase ) snake_case__ = True for w in g[v]: if index_of[w] == -1: snake_case__ = strong_connect(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) snake_case__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: snake_case__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: snake_case__ = [] snake_case__ = stack.pop() snake_case__ = False component.append(__lowerCAmelCase ) while w != v: snake_case__ = stack.pop() snake_case__ = False component.append(__lowerCAmelCase ) components.append(__lowerCAmelCase ) return index snake_case__ = [] for v in range(__lowerCAmelCase ): if index_of[v] == -1: strong_connect(__lowerCAmelCase , 0 , __lowerCAmelCase ) return components def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = [[] for _ in range(__lowerCAmelCase )] for u, v in edges: g[u].append(__lowerCAmelCase ) return g if __name__ == "__main__": # Test lowerCamelCase__ : Tuple = 7 lowerCamelCase__ : Optional[Any] = [0, 0, 1, 2, 3, 3, 4, 4, 6] lowerCamelCase__ : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5] lowerCamelCase__ : int = [(u, v) for u, v in zip(source, target)] lowerCamelCase__ : List[str] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
33
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _a : """simple docstring""" A_ = MBartConfig A_ = {} A_ = """gelu""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ) -> Union[str, Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_ = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = TFMBartModel(config=_UpperCAmelCase ).get_decoder() UpperCamelCase_ = inputs_dict['input_ids'] UpperCamelCase_ = input_ids[:1, :] UpperCamelCase_ = inputs_dict['attention_mask'][:1, :] UpperCamelCase_ = inputs_dict['head_mask'] UpperCamelCase_ = 1 # first forward pass UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple() UpperCamelCase_ = past_key_values[1] def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ): if attention_mask is None: UpperCamelCase_ = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id) , tf.inta) if decoder_attention_mask is None: UpperCamelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () A_ = (TFMBartForConditionalGeneration,) if is_tf_available() else () A_ = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) A_ = True A_ = False A_ = False def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = TFMBartModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class _a ( unittest.TestCase ): """simple docstring""" A_ = [ """ UN Chief Says There Is No Military Solution in Syria""", ] A_ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] A_ = """facebook/mbart-large-en-ro""" @cached_property def _UpperCAmelCase ( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> int: UpperCamelCase_ = self.translate_src_text(**_UpperCAmelCase ) self.assertListEqual(self.expected_text , _UpperCAmelCase ) def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> List[str]: UpperCamelCase_ = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='tf' ) UpperCamelCase_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCamelCase_ = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) return generated_words @slow def _UpperCAmelCase ( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
23
0
"""simple docstring""" import re import string import numpy as np import datasets SCREAMING_SNAKE_CASE_ = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' SCREAMING_SNAKE_CASE_ = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , reference_urls=[] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=False , ) -> Any: if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCamelCase = np.array([re.sub(lowerCamelCase_ , '''''' , lowerCamelCase_) for x in predictions]) UpperCamelCase = np.array([re.sub(lowerCamelCase_ , '''''' , lowerCamelCase_) for x in references]) else: UpperCamelCase = np.asarray(lowerCamelCase_) UpperCamelCase = np.asarray(lowerCamelCase_) if ignore_case: UpperCamelCase = np.char.lower(lowerCamelCase_) UpperCamelCase = np.char.lower(lowerCamelCase_) if ignore_punctuation: UpperCamelCase = string.punctuation.maketrans('''''' , '''''' , string.punctuation) UpperCamelCase = np.char.translate(lowerCamelCase_ , table=lowerCamelCase_) UpperCamelCase = np.char.translate(lowerCamelCase_ , table=lowerCamelCase_) if ignore_numbers: UpperCamelCase = string.digits.maketrans('''''' , '''''' , string.digits) UpperCamelCase = np.char.translate(lowerCamelCase_ , table=lowerCamelCase_) UpperCamelCase = np.char.translate(lowerCamelCase_ , table=lowerCamelCase_) UpperCamelCase = predictions == references return {"exact_match": np.mean(lowerCamelCase_) * 1_0_0}
34
def _snake_case (__lowercase): UpperCamelCase_ = 1 for i in range(1 , num + 1): fact *= i return fact def _snake_case (__lowercase): UpperCamelCase_ = 0 while number > 0: UpperCamelCase_ = number % 10 sum_of_digits += last_digit UpperCamelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def _snake_case (__lowercase = 100): UpperCamelCase_ = factorial(__lowercase) UpperCamelCase_ = split_and_add(__lowercase) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
23
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
35
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case__ : str = logging.get_logger(__name__) def _snake_case (__lowercase): if isinstance(__lowercase , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(__lowercase , (list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(__lowercase): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""") class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = ["""pixel_values"""] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> None: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = size if size is not None else {'shortest_edge': 224} UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = resample UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCamelCase_ = get_resize_output_image_size(_UpperCAmelCase , size['shortest_edge'] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCamelCase_ = (size['height'], size['width']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: UpperCamelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> int: return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCamelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCamelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCamelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCamelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCamelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCamelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ) -> PIL.Image.Image: UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean UpperCamelCase_ = image_std if image_std is not None else self.image_std UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) UpperCamelCase_ = make_batched(_UpperCAmelCase ) UpperCamelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCamelCase_ = {'pixel_values': videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
23
0
import numpy as np def lowercase ( __A : np.array ) -> np.array: '''simple docstring''' return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
36
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = 42 A_ = 42 class _a ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" A_ = 1 @register_to_config def __init__( self , _UpperCAmelCase = 2000 , _UpperCAmelCase = 0.1_5 , _UpperCAmelCase = 0.0_1 , _UpperCAmelCase = 1_3_4_8.0 , _UpperCAmelCase = 1e-5 , _UpperCAmelCase = 1 , ) -> Tuple: # standard deviation of the initial noise distribution UpperCamelCase_ = sigma_max # setable values UpperCamelCase_ = None self.set_sigmas(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> torch.FloatTensor: return sample def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> str: UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps UpperCamelCase_ = torch.linspace(1 , _UpperCAmelCase , _UpperCAmelCase , device=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> Any: UpperCamelCase_ = sigma_min if sigma_min is not None else self.config.sigma_min UpperCamelCase_ = sigma_max if sigma_max is not None else self.config.sigma_max UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) UpperCamelCase_ = torch.exp(torch.linspace(math.log(_UpperCAmelCase ) , math.log(_UpperCAmelCase ) , _UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) UpperCamelCase_ = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) UpperCamelCase_ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda UpperCamelCase_ = timesteps.to(self.discrete_sigmas.device ) UpperCamelCase_ = self.discrete_sigmas[timesteps].to(sample.device ) UpperCamelCase_ = self.get_adjacent_sigma(_UpperCAmelCase , _UpperCAmelCase ).to(sample.device ) UpperCamelCase_ = torch.zeros_like(_UpperCAmelCase ) UpperCamelCase_ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods UpperCamelCase_ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): UpperCamelCase_ = diffusion.unsqueeze(-1 ) UpperCamelCase_ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of UpperCamelCase_ = randn_tensor( sample.shape , layout=sample.layout , generator=_UpperCAmelCase , device=sample.device , dtype=sample.dtype ) UpperCamelCase_ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? UpperCamelCase_ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_UpperCAmelCase , prev_sample_mean=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction UpperCamelCase_ = randn_tensor(sample.shape , layout=sample.layout , generator=_UpperCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr UpperCamelCase_ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase_ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase_ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 UpperCamelCase_ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term UpperCamelCase_ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): UpperCamelCase_ = step_size.unsqueeze(-1 ) UpperCamelCase_ = sample + step_size * model_output UpperCamelCase_ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCamelCase_ = timesteps.to(original_samples.device ) UpperCamelCase_ = self.discrete_sigmas.to(original_samples.device )[timesteps] UpperCamelCase_ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_UpperCAmelCase ) * sigmas[:, None, None, None] ) UpperCamelCase_ = noise + original_samples return noisy_samples def __len__( self ) -> Optional[int]: return self.config.num_train_timesteps
23
0
from collections import defaultdict from math import gcd def UpperCamelCase_ ( __a = 1_500_000 ) -> int: a__ : defaultdict = defaultdict(__a ) a__ : Optional[int] = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __a , 2 ): if gcd(__a , __a ) > 1: continue a__ : Any = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__a , limit + 1 , __a ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f"""{solution() = }""")
37
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Optional[int] = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys snake_case__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
23
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Dict = logging.get_logger(__name__) A_ : Optional[Any] = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''xlm''' lowerCamelCase__ = { '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self , __SCREAMING_SNAKE_CASE=3_0_1_4_5 , __SCREAMING_SNAKE_CASE=2_0_4_8 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=2_0_4_8**-0.5 , __SCREAMING_SNAKE_CASE=1e-1_2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="first" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE , ): snake_case__ : Tuple = vocab_size snake_case__ : Any = emb_dim snake_case__ : str = n_layers snake_case__ : Dict = n_heads snake_case__ : Union[str, Any] = dropout snake_case__ : Union[str, Any] = attention_dropout snake_case__ : str = gelu_activation snake_case__ : List[str] = sinusoidal_embeddings snake_case__ : Optional[Any] = causal snake_case__ : int = asm snake_case__ : List[str] = n_langs snake_case__ : Any = use_lang_emb snake_case__ : List[str] = layer_norm_eps snake_case__ : Optional[Any] = bos_index snake_case__ : Optional[int] = eos_index snake_case__ : str = pad_index snake_case__ : Optional[Any] = unk_index snake_case__ : Tuple = mask_index snake_case__ : Tuple = is_encoder snake_case__ : Any = max_position_embeddings snake_case__ : Tuple = embed_init_std snake_case__ : int = init_std snake_case__ : List[str] = summary_type snake_case__ : List[str] = summary_use_proj snake_case__ : int = summary_activation snake_case__ : Union[str, Any] = summary_proj_to_labels snake_case__ : Tuple = summary_first_dropout snake_case__ : List[Any] = start_n_top snake_case__ : Tuple = end_n_top snake_case__ : Union[str, Any] = mask_token_id snake_case__ : Dict = lang_id if "n_words" in kwargs: snake_case__ : str = kwargs["""n_words"""] super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCamelCase ( self ): if self.task == "multiple-choice": snake_case__ : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case__ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
38
import datasets from .evaluate import evaluate snake_case__ : int = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ snake_case__ : Union[str, Any] = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ snake_case__ : Any = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def _UpperCAmelCase ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: UpperCamelCase_ = {prediction['id']: prediction['prediction_text'] for prediction in predictions} UpperCamelCase_ = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] UpperCamelCase_ = evaluate(dataset=_UpperCAmelCase , predictions=_UpperCAmelCase ) return score
23
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SEWForCTC''', '''SEWForSequenceClassification''', '''SEWModel''', '''SEWPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class _a ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCAmelCase ( self ) -> List[str]: return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) class _a ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCAmelCase ( self ) -> Any: return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) def _snake_case (): return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'])] def _snake_case (): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'])] class _a ( UpperCAmelCase__ ): """simple docstring""" @require_beam def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def _UpperCAmelCase ( self ) -> List[str]: import apache_beam as beam UpperCamelCase_ = beam.io.parquetio.WriteToParquet UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: UpperCamelCase_ = partial(_UpperCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def _UpperCAmelCase ( self ) -> Any: with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = NestedBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
23
0
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __UpperCAmelCase = random.Random() def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : str=1.0 , snake_case__ : int=None , snake_case__ : Union[str, Any]=None ) -> Any: if rng is None: UpperCamelCase : int = global_rng UpperCamelCase : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=2000, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1_6000, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, ) -> List[str]: UpperCamelCase : Dict = parent UpperCamelCase : Dict = batch_size UpperCamelCase : Any = min_seq_length UpperCamelCase : Optional[int] = max_seq_length UpperCamelCase : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase : Tuple = feature_size UpperCamelCase : Any = padding_value UpperCamelCase : Tuple = sampling_rate UpperCamelCase : Optional[Any] = return_attention_mask UpperCamelCase : Optional[Any] = do_normalize def snake_case_ ( self ) -> Union[str, Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case_ ( self, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False ) -> Union[str, Any]: def _flatten(SCREAMING_SNAKE_CASE_ ): return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) ) if equal_length: UpperCamelCase : List[str] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCamelCase : Union[str, Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase : str = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] return speech_inputs class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Any = WavaVecaFeatureExtractor def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Tuple = WavaVecaFeatureExtractionTester(self ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE_, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE_, axis=0 ) - 1 ) < 1e-3 ) ) def snake_case_ ( self ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase : Any = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Dict = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase : List[Any] = feat_extract(speech_inputs[0], return_tensors='np' ).input_values UpperCamelCase : Union[str, Any] = feat_extract(np_speech_inputs[0], return_tensors='np' ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # Test batched UpperCamelCase : List[Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values UpperCamelCase : int = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase : Optional[int] = np.asarray(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values UpperCamelCase : Dict = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) def snake_case_ ( self ) -> int: UpperCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Dict = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : str = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase : Any = [None, 1600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = feat_extract(SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, return_tensors='np' ) UpperCamelCase : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Tuple = range(800, 1400, 200 ) UpperCamelCase : str = [floats_list((1, x) )[0] for x in lengths] UpperCamelCase : int = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase : List[str] = [None, 1600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Tuple = feat_extract(SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : int = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='max_length', return_tensors='np' ) UpperCamelCase : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Any = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='longest', return_tensors='np' ) UpperCamelCase : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) UpperCamelCase : str = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Any = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=2000, padding='longest', return_tensors='np' ) UpperCamelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def snake_case_ ( self ) -> str: import torch UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Dict = np.random.rand(100 ).astype(np.floataa ) UpperCamelCase : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase : Union[str, Any] = feature_extractor.pad([{'input_values': inputs}], return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCamelCase : Any = feature_extractor.pad([{'input_values': inputs}], return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def snake_case_ ( self ) -> Tuple: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: UpperCamelCase : int = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask, config.feat_extract_norm == 'layer' )
40
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): # Initialise PyTorch model UpperCamelCase_ = AlbertConfig.from_json_file(__lowercase) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = AlbertForPreTraining(__lowercase) # Load weights from tf checkpoint load_tf_weights_in_albert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
23
0
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def _A ( A__ ): """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) return quad(A__ , 0 , A__ , args=(A__) )[0] def _A ( A__ , A__ ): """simple docstring""" return math.pow(A__ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
41
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _a ( UpperCAmelCase__ ): """simple docstring""" @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) UpperCamelCase_ = BertTokenizer.from_pretrained('bert-base-uncased' ) UpperCamelCase_ = bertabert.config.encoder.vocab_size UpperCamelCase_ = tokenizer.sep_token_id UpperCamelCase_ = tokenizer.cls_token_id UpperCamelCase_ = 128 UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) UpperCamelCase_ = train_dataset.select(range(32 ) ) UpperCamelCase_ = val_dataset.select(range(16 ) ) UpperCamelCase_ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCamelCase_ = tokenizer(batch['article'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=512 ) UpperCamelCase_ = tokenizer(batch['highlights'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=128 ) UpperCamelCase_ = inputs.input_ids UpperCamelCase_ = inputs.attention_mask UpperCamelCase_ = outputs.input_ids UpperCamelCase_ = outputs.input_ids.copy() UpperCamelCase_ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] UpperCamelCase_ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase ): UpperCamelCase_ = pred.label_ids UpperCamelCase_ = pred.predictions # all unnecessary tokens are removed UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset UpperCamelCase_ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset UpperCamelCase_ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy='steps' , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCamelCase_ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
23
0
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
42
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case__ : Dict = 1_6 snake_case__ : List[str] = 3_2 def _snake_case (__lowercase , __lowercase = 16): UpperCamelCase_ = AutoTokenizer.from_pretrained('bert-base-cased') UpperCamelCase_ = load_dataset('glue' , 'mrpc') def tokenize_function(__lowercase): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__lowercase , max_length=__lowercase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase_ = datasets.map( __lowercase , batched=__lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_ = tokenized_datasets.rename_column('label' , 'labels') def collate_fn(__lowercase): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase_ = 16 elif accelerator.mixed_precision != "no": UpperCamelCase_ = 8 else: UpperCamelCase_ = None return tokenizer.pad( __lowercase , padding='longest' , max_length=__lowercase , pad_to_multiple_of=__lowercase , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase_ = DataLoader( tokenized_datasets['train'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase) UpperCamelCase_ = DataLoader( tokenized_datasets['validation'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case__ : List[str] = mocked_dataloaders # noqa: F811 def _snake_case (__lowercase , __lowercase): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , __lowercase) == "1": UpperCamelCase_ = 2 # New Code # UpperCamelCase_ = int(args.gradient_accumulation_steps) # Initialize accelerator UpperCamelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowercase) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`') # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_ = config['lr'] UpperCamelCase_ = int(config['num_epochs']) UpperCamelCase_ = int(config['seed']) UpperCamelCase_ = int(config['batch_size']) UpperCamelCase_ = evaluate.load('glue' , 'mrpc') set_seed(__lowercase) UpperCamelCase_ , UpperCamelCase_ = get_dataloaders(__lowercase , __lowercase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__lowercase) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase_ = model.to(accelerator.device) # Instantiate optimizer UpperCamelCase_ = AdamW(params=model.parameters() , lr=__lowercase) # Instantiate scheduler UpperCamelCase_ = get_linear_schedule_with_warmup( optimizer=__lowercase , num_warmup_steps=100 , num_training_steps=(len(__lowercase) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) # Now we train the model for epoch in range(__lowercase): model.train() for step, batch in enumerate(__lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowercase): UpperCamelCase_ = model(**__lowercase) UpperCamelCase_ = output.loss accelerator.backward(__lowercase) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): UpperCamelCase_ = model(**__lowercase) UpperCamelCase_ = outputs.logits.argmax(dim=-1) UpperCamelCase_ , UpperCamelCase_ = accelerator.gather_for_metrics((predictions, batch['labels'])) metric.add_batch( predictions=__lowercase , references=__lowercase , ) UpperCamelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowercase) def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser(description='Simple example of training script.') parser.add_argument( '--mixed_precision' , type=__lowercase , default=__lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=__lowercase , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.') UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__lowercase , __lowercase) if __name__ == "__main__": main()
23
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _a : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=10 , _UpperCAmelCase=3 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=4 , _UpperCAmelCase=64 , ) -> List[Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = is_training UpperCamelCase_ = use_auxiliary_loss UpperCamelCase_ = num_queries UpperCamelCase_ = num_channels UpperCamelCase_ = min_size UpperCamelCase_ = max_size UpperCamelCase_ = num_labels UpperCamelCase_ = hidden_dim UpperCamelCase_ = hidden_dim def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _UpperCAmelCase ) UpperCamelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_UpperCAmelCase ) UpperCamelCase_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_UpperCAmelCase ) > 0.5 ).float() UpperCamelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=_UpperCAmelCase ) > 0.5).long() UpperCamelCase_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) UpperCamelCase_ = self.num_queries UpperCamelCase_ = self.num_labels UpperCamelCase_ = [1, 1, 1, 1] UpperCamelCase_ = self.num_channels UpperCamelCase_ = 64 UpperCamelCase_ = 128 UpperCamelCase_ = self.hidden_dim UpperCamelCase_ = self.hidden_dim UpperCamelCase_ = self.hidden_dim return config def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = output.encoder_hidden_states UpperCamelCase_ = output.pixel_decoder_hidden_states UpperCamelCase_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , config.decoder_layers ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Any: with torch.no_grad(): UpperCamelCase_ = MaskaFormerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCamelCase_ = model(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = MaskaFormerForUniversalSegmentation(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() def comm_check_on_output(_UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCamelCase_ = model(_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) UpperCamelCase_ = model( pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () A_ = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} A_ = False A_ = False A_ = False A_ = False def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = MaskaFormerModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_UpperCAmelCase ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _UpperCAmelCase ( self ) -> int: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> str: pass def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ) UpperCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCamelCase_ = MaskaFormerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = (self.model_tester.min_size,) * 2 UpperCamelCase_ = { 'pixel_values': torch.randn((2, 3, *size) , device=_UpperCAmelCase ), 'mask_labels': torch.randn((2, 10, *size) , device=_UpperCAmelCase ), 'class_labels': torch.zeros(2 , 10 , device=_UpperCAmelCase ).long(), } UpperCamelCase_ = self.model_tester.get_config() UpperCamelCase_ = MaskaFormerForUniversalSegmentation(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase , output_attentions=_UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def _UpperCAmelCase ( self ) -> List[Any]: if not self.model_tester.is_training: return UpperCamelCase_ = self.all_model_classes[1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ).loss loss.backward() def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = self.all_model_classes[1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) model.train() UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) UpperCamelCase_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) snake_case__ : List[Any] = 1E-4 def _snake_case (): UpperCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_vision @slow class _a ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCAmelCase ( self ) -> Optional[int]: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _UpperCAmelCase ( self ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) UpperCamelCase_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) UpperCamelCase_ = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) UpperCamelCase_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) # masks_queries_logits UpperCamelCase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCamelCase_ = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] UpperCamelCase_ = torch.tensor(_UpperCAmelCase ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) # class_queries_logits UpperCamelCase_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) UpperCamelCase_ = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) UpperCamelCase_ = inputs['pixel_values'].to(_UpperCAmelCase ) UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['mask_labels']] UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['class_labels']] with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
23
0
'''simple docstring''' import math import sys def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = "" try: with open(_lowerCAmelCase , "rb" ) as binary_file: _lowerCamelCase : List[Any] = binary_file.read() for dat in data: _lowerCamelCase : Optional[Any] = F'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Optional[int] = {"0": "0", "1": "1"} _lowerCamelCase , _lowerCamelCase : List[str] = "", "" _lowerCamelCase : List[Any] = len(_lowerCAmelCase ) for i in range(len(_lowerCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _lowerCamelCase : Optional[Any] = lexicon[curr_string] result += last_match_id _lowerCamelCase : List[str] = last_match_id + "0" if math.loga(_lowerCAmelCase ).is_integer(): _lowerCamelCase : Dict = {} for curr_key in list(_lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = lexicon.pop(_lowerCAmelCase ) _lowerCamelCase : List[str] = new_lex _lowerCamelCase : Union[str, Any] = last_match_id + "1" index += 1 _lowerCamelCase : Union[str, Any] = "" return result def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : str = 8 try: with open(_lowerCAmelCase , "wb" ) as opened_file: _lowerCamelCase : int = [ to_write[i : i + byte_length] for i in range(0 , len(_lowerCAmelCase ) , _lowerCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_lowerCAmelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Optional[Any] = 0 for letter in data_bits: if letter == "1": break counter += 1 _lowerCamelCase : Tuple = data_bits[counter:] _lowerCamelCase : int = data_bits[counter + 1 :] return data_bits def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = read_file_binary(_lowerCAmelCase ) _lowerCamelCase : List[str] = remove_prefix(_lowerCAmelCase ) _lowerCamelCase : List[Any] = decompress_data(_lowerCAmelCase ) write_file_binary(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
44
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType snake_case__ : List[str] = logging.get_logger(__name__) class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """vision-encoder-decoder""" A_ = True def __init__( self , **_UpperCAmelCase ) -> Dict: super().__init__(**_UpperCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) UpperCamelCase_ = kwargs.pop('encoder' ) UpperCamelCase_ = encoder_config.pop('model_type' ) UpperCamelCase_ = kwargs.pop('decoder' ) UpperCamelCase_ = decoder_config.pop('model_type' ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = True @classmethod def _UpperCAmelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> PretrainedConfig: logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) UpperCamelCase_ = True UpperCamelCase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.encoder.to_dict() UpperCamelCase_ = self.decoder.to_dict() UpperCamelCase_ = self.__class__.model_type return output class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = version.parse("""1.11""" ) @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-4 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase_ = OrderedDict() UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ) -> Mapping[str, Any]: import torch UpperCamelCase_ = OrderedDict() UpperCamelCase_ = super().generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = dummy_input['input_ids'].shape UpperCamelCase_ = (batch, encoder_sequence, self._config.encoder_hidden_size) UpperCamelCase_ = dummy_input.pop('input_ids' ) UpperCamelCase_ = dummy_input.pop('attention_mask' ) UpperCamelCase_ = torch.zeros(_UpperCAmelCase ) return common_inputs class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> None: pass def _UpperCAmelCase ( self , _UpperCAmelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = "default" ) -> OnnxConfig: UpperCamelCase_ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_UpperCAmelCase , _UpperCAmelCase )
23
0
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase = get_tests_dir("fixtures/test_sentencepiece.model") UpperCamelCase = get_tests_dir("fixtures/test_sentencepiece_bpe.model") UpperCamelCase = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = CamembertTokenizer _snake_case : Optional[int] = CamembertTokenizerFast _snake_case : Tuple = True _snake_case : Dict = True def __a ( self :Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase__ :Union[str, Any] = CamembertTokenizer(lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self :List[str] ): UpperCamelCase__ :List[str] = """<pad>""" UpperCamelCase__ :Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(lowerCamelCase__ ) , 10_04 ) def __a ( self :Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def __a ( self :Dict ): UpperCamelCase__ :List[str] = CamembertTokenizer(lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) UpperCamelCase__ :Union[str, Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) UpperCamelCase__ :Any = """I was born in 92000, and this is falsé.""" UpperCamelCase__ :List[Any] = tokenizer.encode(lowerCamelCase__ ) UpperCamelCase__ :Dict = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :str = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) UpperCamelCase__ :Any = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) UpperCamelCase__ :str = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): if not self.test_rust_tokenizer: return UpperCamelCase__ :Dict = self.get_tokenizer() UpperCamelCase__ :str = self.get_rust_tokenizer() UpperCamelCase__ :str = """I was born in 92000, and this is falsé.""" UpperCamelCase__ :Optional[Any] = tokenizer.tokenize(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :str = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Tuple = self.get_rust_tokenizer() UpperCamelCase__ :Union[str, Any] = tokenizer.encode(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def __a ( self :List[str] ): # fmt: off UpperCamelCase__ :Any = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. UpperCamelCase__ :Tuple = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=lowerCamelCase__ , )
45
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): # Initialise PyTorch model UpperCamelCase_ = MobileBertConfig.from_json_file(__lowercase) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = MobileBertForPreTraining(__lowercase) # Load weights from tf checkpoint UpperCamelCase_ = load_tf_weights_in_mobilebert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
0
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _lowerCAmelCase : List[str] = get_tests_dir('''fixtures/dummy-config.json''') class A_ ( unittest.TestCase ): def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[Any] = 0 def _lowercase ( self: Dict ): '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoConfig.for_model("roberta" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,"fake-roberta" ) os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase ,"config.json" ) ,"w" ) as f: f.write(json.dumps({} ) ) _lowerCamelCase : List[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertEqual(type(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' try: AutoConfig.register("custom" ,__lowerCAmelCase ) # Wrong model type will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("model" ,__lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("bert" ,__lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCamelCase : Any = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"bert-base is not a local folder and is not a valid model identifier" ): _lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base" ) def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,revision="aaaaaa" ) def _lowercase ( self: Tuple ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." ,): _lowerCamelCase : List[str] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _lowercase ( self: List[Any] ): '''simple docstring''' with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(reloaded_config.__class__.__name__ ,"NewModelConfig" ) def _lowercase ( self: Dict ): '''simple docstring''' class A_ ( _a ): lowerCAmelCase__ = 'new-model' try: AutoConfig.register("new-model" ,__lowerCAmelCase ) # If remote code is not set, the default is to use local _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote code is disabled, we load the local one. _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote is enabled, we load from the Hub _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
46
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _a ( unittest.TestCase ): """simple docstring""" A_ = MODEL_FOR_MASKED_LM_MAPPING A_ = TF_MODEL_FOR_MASKED_LM_MAPPING def _UpperCAmelCase ( self ) -> List[str]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9e-05, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2e-05, 'token': 2941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() UpperCamelCase_ = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(_UpperCAmelCase ) @slow @require_tf def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is John', 'score': 0.0_0_8, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.0_0_7, 'token': 1573, 'token_str': ' Chris'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.2_5_1, 'token': 2201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.2_1_4, 'token': 12790, 'token_str': ' Lyon', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is Patrick', 'score': 0.0_0_5, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.0_0_0, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.0_0_0, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) @require_tf def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = fill_masker.tokenizer UpperCamelCase_ = fill_masker.model UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , ) with self.assertRaises(_UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_UpperCAmelCase ): fill_masker('This is' ) self.run_test_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_targets(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_top_k_targets(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_multiple_masks(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = sorted(vocab.keys() )[:2] # Pipeline argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , targets=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Call argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Score equivalence UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['token_str'] for top_mask in outputs] UpperCamelCase_ = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ) == set(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[''] ) with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets='' ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , top_k=2 ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) # top_k=2, ntargets=3 UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=_UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCamelCase_ = [el['token_str'] for el in sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ).issubset(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=_UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.get_vocab() # String duplicates + id duplicates UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCamelCase_ = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=_UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_UpperCAmelCase ) , 3 ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , )
23
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 32 def UpperCAmelCase__ ( lowerCamelCase_ : Accelerator , lowerCamelCase_ : int = 1_6 ): __a : List[Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) __a : int = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCamelCase_ : int ): # max_length=None => use the model max length (it's actually the default) __a : Dict = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __a : str = datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a : Union[str, Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCamelCase_ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. __a : Tuple = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __a : Any = 1_6 elif accelerator.mixed_precision != "no": __a : Optional[Any] = 8 else: __a : str = None return tokenizer.pad( lowerCamelCase_ , padding='longest' , max_length=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_tensors='pt' , ) # Instantiate dataloaders. __a : Union[str, Any] = DataLoader( tokenized_datasets['train'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) __a : Dict = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders SCREAMING_SNAKE_CASE__ = mocked_dataloaders # noqa: F811 def UpperCAmelCase__ ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , lowerCamelCase_ ) == "1": __a : List[str] = 2 # New Code # __a : Dict = int(args.gradient_accumulation_steps ) # Initialize accelerator __a : Optional[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowerCamelCase_ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a : Union[str, Any] = config['lr'] __a : List[Any] = int(config['num_epochs'] ) __a : Optional[int] = int(config['seed'] ) __a : Dict = int(config['batch_size'] ) __a : Optional[int] = evaluate.load('glue' , 'mrpc' ) set_seed(lowerCamelCase_ ) __a , __a : List[Any] = get_dataloaders(lowerCamelCase_ , lowerCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a : int = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __a : Any = model.to(accelerator.device ) # Instantiate optimizer __a : Dict = AdamW(params=model.parameters() , lr=lowerCamelCase_ ) # Instantiate scheduler __a : List[str] = get_linear_schedule_with_warmup( optimizer=lowerCamelCase_ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowerCamelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a : Dict = accelerator.prepare( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Now we train the model for epoch in range(lowerCamelCase_ ): model.train() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowerCamelCase_ ): __a : Any = model(**lowerCamelCase_ ) __a : Dict = output.loss accelerator.backward(lowerCamelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a : Any = model(**lowerCamelCase_ ) __a : Optional[Any] = outputs.logits.argmax(dim=-1 ) __a , __a : Dict = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCamelCase_ , references=lowerCamelCase_ , ) __a : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowerCamelCase_ ) def UpperCAmelCase__ ( ): __a : Union[str, Any] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowerCamelCase_ , default=lowerCamelCase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=lowerCamelCase_ , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) __a : Any = parser.parse_args() __a : Optional[Any] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
47
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionSAGPipeline A_ = TEXT_TO_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_BATCH_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = False def _UpperCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCamelCase_ = CLIPTextModel(_UpperCAmelCase ) UpperCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ) -> List[Any]: if str(_UpperCAmelCase ).startswith('mps' ): UpperCamelCase_ = torch.manual_seed(_UpperCAmelCase ) else: UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCamelCase_ = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def _UpperCAmelCase ( self ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , width=768 , height=512 , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) UpperCamelCase_ = output.images assert image.shape == (1, 512, 768, 3)
23
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Tuple = ['image_processor', 'tokenizer'] snake_case__ :List[Any] = 'ChineseCLIPImageProcessor' snake_case__ :Optional[int] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : Dict , __magic_name__ : List[str]=None , __magic_name__ : List[Any]=None , **__magic_name__ : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __magic_name__ , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = self.image_processor def __call__( self : List[Any] , __magic_name__ : Tuple=None , __magic_name__ : Any=None , __magic_name__ : str=None , **__magic_name__ : List[str] ): """simple docstring""" if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: lowerCAmelCase__ = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if images is not None: lowerCAmelCase__ = self.image_processor(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if text is not None and images is not None: lowerCAmelCase__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple , *__magic_name__ : Union[str, Any] , **__magic_name__ : List[str] ): """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Any , *__magic_name__ : str , **__magic_name__ : Union[str, Any] ): """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = self.tokenizer.model_input_names lowerCAmelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __magic_name__ , ) return self.image_processor_class
48
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar snake_case__ : List[str] = TypeVar("""T""") def _snake_case (__lowercase): return (position - 1) // 2 def _snake_case (__lowercase): return (2 * position) + 1 def _snake_case (__lowercase): return (2 * position) + 2 class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = [] UpperCamelCase_ = {} UpperCamelCase_ = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def _UpperCAmelCase ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) UpperCamelCase_ = self.elements self.elements += 1 self._bubble_up(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) UpperCamelCase_ , UpperCamelCase_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: UpperCamelCase_ , UpperCamelCase_ = self.heap[0] self._bubble_down(_UpperCAmelCase ) return elem def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Update the weight of the given key UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ = (elem, weight) if position > 0: UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] UpperCamelCase_ = self.position_map[elem] if curr_pos == 0: return None UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_up(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ = get_child_left_position(_UpperCAmelCase ) UpperCamelCase_ = get_child_right_position(_UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) if child_left_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) else: return None if child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Swap the nodes at the given positions UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ , UpperCamelCase_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) UpperCamelCase_ = nodea_pos UpperCamelCase_ = nodea_pos class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = {} UpperCamelCase_ = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: UpperCamelCase_ = {} self.nodes += 1 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an edge between 2 nodes in the graph self.add_node(_UpperCAmelCase ) self.add_node(_UpperCAmelCase ) UpperCamelCase_ = weight UpperCamelCase_ = weight def _snake_case (__lowercase , ): UpperCamelCase_ = {node: maxsize for node in graph.connections} UpperCamelCase_ = {node: None for node in graph.connections} UpperCamelCase_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__lowercase , __lowercase) if priority_queue.is_empty(): return dist, parent # initialization UpperCamelCase_ = priority_queue.extract_min() UpperCamelCase_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node # running prim's algorithm while not priority_queue.is_empty(): UpperCamelCase_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node return dist, parent
23
0
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCAmelCase : @staticmethod def a ( *_lowercase : Optional[int] , **_lowercase : List[str] ): pass @is_pipeline_test @require_vision class _UpperCAmelCase ( unittest.TestCase ): @require_torch def a ( self : Dict ): __UpperCAmelCase = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __UpperCAmelCase = image_classifier(_lowercase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(_lowercase ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) __UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {'''score''': 0.333, '''label''': ANY(_lowercase )}, {'''score''': 0.333, '''label''': ANY(_lowercase )}, {'''score''': 0.333, '''label''': ANY(_lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(_lowercase )}, {'''score''': 0.333, '''label''': ANY(_lowercase )}, {'''score''': 0.333, '''label''': ANY(_lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(_lowercase )}, {'''score''': 0.333, '''label''': ANY(_lowercase )}, {'''score''': 0.333, '''label''': ANY(_lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(_lowercase )}, {'''score''': 0.333, '''label''': ANY(_lowercase )}, {'''score''': 0.333, '''label''': ANY(_lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(_lowercase )}, {'''score''': 0.333, '''label''': ANY(_lowercase )}, {'''score''': 0.333, '''label''': ANY(_lowercase )}, ], ] , ) @require_tf def a ( self : Optional[Any] ): __UpperCAmelCase = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __UpperCAmelCase = image_classifier(_lowercase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(_lowercase ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) __UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {'''score''': 0.333, '''label''': ANY(_lowercase )}, {'''score''': 0.333, '''label''': ANY(_lowercase )}, {'''score''': 0.333, '''label''': ANY(_lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(_lowercase )}, {'''score''': 0.333, '''label''': ANY(_lowercase )}, {'''score''': 0.333, '''label''': ANY(_lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(_lowercase )}, {'''score''': 0.333, '''label''': ANY(_lowercase )}, {'''score''': 0.333, '''label''': ANY(_lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(_lowercase )}, {'''score''': 0.333, '''label''': ANY(_lowercase )}, {'''score''': 0.333, '''label''': ANY(_lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(_lowercase )}, {'''score''': 0.333, '''label''': ANY(_lowercase )}, {'''score''': 0.333, '''label''': ANY(_lowercase )}, ], ] , ) @slow @require_torch def a ( self : List[str] ): __UpperCAmelCase = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __UpperCAmelCase = image_classifier(_lowercase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(_lowercase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) __UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def a ( self : Dict ): __UpperCAmelCase = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __UpperCAmelCase = image_classifier(_lowercase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(_lowercase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) __UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
49
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case__ : Dict = TypeVar("""T""") class _a ( Generic[T] ): """simple docstring""" A_ = 42 # Cache store of keys A_ = 42 # References of the keys in cache A_ = 10 # Maximum capacity of cache def __init__( self , _UpperCAmelCase ) -> None: UpperCamelCase_ = deque() UpperCamelCase_ = set() if not n: UpperCamelCase_ = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCamelCase_ = n def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCamelCase_ = self.dq_store.pop() self.key_reference.remove(_UpperCAmelCase ) else: self.dq_store.remove(_UpperCAmelCase ) self.dq_store.appendleft(_UpperCAmelCase ) self.key_reference.add(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> None: for k in self.dq_store: print(_UpperCAmelCase ) def __repr__( self ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : LRUCache[str | int] = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
23
0
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCamelCase : Dict = logging.get_logger(__name__) enable_full_determinism() class UpperCamelCase__ (a ,a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = UNetaDModel _UpperCamelCase = 'sample' @property def UpperCamelCase_ ( self ): lowerCamelCase__ = 4 lowerCamelCase__ = 3 lowerCamelCase__ = (32, 32) lowerCamelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase ) lowerCamelCase__ = torch.tensor([10] ).to(_lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase_ ( self ): return (3, 32, 32) @property def UpperCamelCase_ ( self ): return (3, 32, 32) def UpperCamelCase_ ( self ): lowerCamelCase__ = { """block_out_channels""": (32, 64), """down_block_types""": ("""DownBlock2D""", """AttnDownBlock2D"""), """up_block_types""": ("""AttnUpBlock2D""", """UpBlock2D"""), """attention_head_dim""": 3, """out_channels""": 3, """in_channels""": 3, """layers_per_block""": 2, """sample_size""": 32, } lowerCamelCase__ = self.dummy_input return init_dict, inputs_dict class UpperCamelCase__ (a ,a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = UNetaDModel _UpperCamelCase = 'sample' @property def UpperCamelCase_ ( self ): lowerCamelCase__ = 4 lowerCamelCase__ = 4 lowerCamelCase__ = (32, 32) lowerCamelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase ) lowerCamelCase__ = torch.tensor([10] ).to(_lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase_ ( self ): return (4, 32, 32) @property def UpperCamelCase_ ( self ): return (4, 32, 32) def UpperCamelCase_ ( self ): lowerCamelCase__ = { """sample_size""": 32, """in_channels""": 4, """out_channels""": 4, """layers_per_block""": 2, """block_out_channels""": (32, 64), """attention_head_dim""": 32, """down_block_types""": ("""DownBlock2D""", """DownBlock2D"""), """up_block_types""": ("""UpBlock2D""", """UpBlock2D"""), } lowerCamelCase__ = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ,output_loading_info=_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) ,0 ) model.to(_lowerCAmelCase ) lowerCamelCase__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" ,"""This test is supposed to run on GPU""" ) def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ,output_loading_info=_lowerCAmelCase ) model.to(_lowerCAmelCase ) lowerCamelCase__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" ,"""This test is supposed to run on GPU""" ) def UpperCamelCase_ ( self ): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` lowerCamelCase__ , lowerCamelCase__ = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ,output_loading_info=_lowerCAmelCase ) model_accelerate.to(_lowerCAmelCase ) model_accelerate.eval() lowerCamelCase__ = torch.randn( 1 ,model_accelerate.config.in_channels ,model_accelerate.config.sample_size ,model_accelerate.config.sample_size ,generator=torch.manual_seed(0 ) ,) lowerCamelCase__ = noise.to(_lowerCAmelCase ) lowerCamelCase__ = torch.tensor([10] * noise.shape[0] ).to(_lowerCAmelCase ) lowerCamelCase__ = model_accelerate(_lowerCAmelCase ,_lowerCAmelCase )["""sample"""] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowerCamelCase__ , lowerCamelCase__ = UNetaDModel.from_pretrained( """fusing/unet-ldm-dummy-update""" ,output_loading_info=_lowerCAmelCase ,low_cpu_mem_usage=_lowerCAmelCase ) model_normal_load.to(_lowerCAmelCase ) model_normal_load.eval() lowerCamelCase__ = model_normal_load(_lowerCAmelCase ,_lowerCAmelCase )["""sample"""] assert torch_all_close(_lowerCAmelCase ,_lowerCAmelCase ,rtol=1E-3 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ) model.eval() model.to(_lowerCAmelCase ) lowerCamelCase__ = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) lowerCamelCase__ = noise.to(_lowerCAmelCase ) lowerCamelCase__ = torch.tensor([10] * noise.shape[0] ).to(_lowerCAmelCase ) with torch.no_grad(): lowerCamelCase__ = model(_lowerCAmelCase ,_lowerCAmelCase ).sample lowerCamelCase__ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase__ = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(_lowerCAmelCase ,_lowerCAmelCase ,rtol=1E-3 ) ) class UpperCamelCase__ (a ,a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = UNetaDModel _UpperCamelCase = 'sample' @property def UpperCamelCase_ ( self ,_lowerCAmelCase=(32, 32) ): lowerCamelCase__ = 4 lowerCamelCase__ = 3 lowerCamelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase ) lowerCamelCase__ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa ,device=_lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase_ ( self ): return (3, 32, 32) @property def UpperCamelCase_ ( self ): return (3, 32, 32) def UpperCamelCase_ ( self ): lowerCamelCase__ = { """block_out_channels""": [32, 64, 64, 64], """in_channels""": 3, """layers_per_block""": 1, """out_channels""": 3, """time_embedding_type""": """fourier""", """norm_eps""": 1E-6, """mid_block_scale_factor""": math.sqrt(2.0 ), """norm_num_groups""": None, """down_block_types""": [ """SkipDownBlock2D""", """AttnSkipDownBlock2D""", """SkipDownBlock2D""", """SkipDownBlock2D""", ], """up_block_types""": [ """SkipUpBlock2D""", """SkipUpBlock2D""", """AttnSkipUpBlock2D""", """SkipUpBlock2D""", ], } lowerCamelCase__ = self.dummy_input return init_dict, inputs_dict @slow def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" ,output_loading_info=_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) ,0 ) model.to(_lowerCAmelCase ) lowerCamelCase__ = self.dummy_input lowerCamelCase__ = floats_tensor((4, 3) + (2_56, 2_56) ).to(_lowerCAmelCase ) lowerCamelCase__ = noise lowerCamelCase__ = model(**_lowerCAmelCase ) assert image is not None, "Make sure output is not None" @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" ) model.to(_lowerCAmelCase ) lowerCamelCase__ = 4 lowerCamelCase__ = 3 lowerCamelCase__ = (2_56, 2_56) lowerCamelCase__ = torch.ones((batch_size, num_channels) + sizes ).to(_lowerCAmelCase ) lowerCamelCase__ = torch.tensor(batch_size * [1E-4] ).to(_lowerCAmelCase ) with torch.no_grad(): lowerCamelCase__ = model(_lowerCAmelCase ,_lowerCAmelCase ).sample lowerCamelCase__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCamelCase__ = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(_lowerCAmelCase ,_lowerCAmelCase ,rtol=1E-2 ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = UNetaDModel.from_pretrained("""fusing/ncsnpp-ffhq-ve-dummy-update""" ) model.to(_lowerCAmelCase ) lowerCamelCase__ = 4 lowerCamelCase__ = 3 lowerCamelCase__ = (32, 32) lowerCamelCase__ = torch.ones((batch_size, num_channels) + sizes ).to(_lowerCAmelCase ) lowerCamelCase__ = torch.tensor(batch_size * [1E-4] ).to(_lowerCAmelCase ) with torch.no_grad(): lowerCamelCase__ = model(_lowerCAmelCase ,_lowerCAmelCase ).sample lowerCamelCase__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCamelCase__ = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(_lowerCAmelCase ,_lowerCAmelCase ,rtol=1E-2 ) ) def UpperCamelCase_ ( self ): # not required for this model pass
50
import numpy as np def _snake_case (__lowercase): return 1 / (1 + np.exp(-vector)) def _snake_case (__lowercase): return vector * sigmoid(__lowercase) if __name__ == "__main__": import doctest doctest.testmod()
23
0
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) a__ : Optional[int] = logging.get_logger(__name__) a__ : Optional[Any] = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) a__ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: UpperCAmelCase = model_type_to_module_name(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = importlib.import_module(f".{module_name}" , '''transformers.models''' ) try: return getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(SCREAMING_SNAKE_CASE_ , '''__name__''' , SCREAMING_SNAKE_CASE_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. UpperCAmelCase = importlib.import_module('''transformers''' ) if hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return None def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, str]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[bool, str]] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : bool = False , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ) -> List[str]: """simple docstring""" UpperCAmelCase = get_file_from_repo( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , force_download=SCREAMING_SNAKE_CASE_ , resume_download=SCREAMING_SNAKE_CASE_ , proxies=SCREAMING_SNAKE_CASE_ , use_auth_token=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , local_files_only=SCREAMING_SNAKE_CASE_ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as reader: return json.load(SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self : List[str] ): raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(a__ ) def __snake_case ( cls : int , a__ : Union[str, Any] , **a__ : List[str] ): UpperCAmelCase = kwargs.pop('''config''' , a__ ) UpperCAmelCase = kwargs.pop('''trust_remote_code''' , a__ ) UpperCAmelCase = True UpperCAmelCase, UpperCAmelCase = ImageProcessingMixin.get_image_processor_dict(a__ , **a__ ) UpperCAmelCase = config_dict.get('''image_processor_type''' , a__ ) UpperCAmelCase = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): UpperCAmelCase = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: UpperCAmelCase = config_dict.pop('''feature_extractor_type''' , a__ ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) UpperCAmelCase = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): UpperCAmelCase = config_dict['''auto_map''']['''AutoFeatureExtractor'''] UpperCAmelCase = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(a__ , a__ ): UpperCAmelCase = AutoConfig.from_pretrained(a__ , **a__ ) # It could be in `config.image_processor_type`` UpperCAmelCase = getattr(a__ , '''image_processor_type''' , a__ ) if hasattr(a__ , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: UpperCAmelCase = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: UpperCAmelCase = image_processor_class_from_name(a__ ) UpperCAmelCase = image_processor_auto_map is not None UpperCAmelCase = image_processor_class is not None or type(a__ ) in IMAGE_PROCESSOR_MAPPING UpperCAmelCase = resolve_trust_remote_code( a__ , a__ , a__ , a__ ) if has_remote_code and trust_remote_code: UpperCAmelCase = get_class_from_dynamic_module( a__ , a__ , **a__ ) UpperCAmelCase = kwargs.pop('''code_revision''' , a__ ) if os.path.isdir(a__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(a__ , **a__ ) elif image_processor_class is not None: return image_processor_class.from_dict(a__ , **a__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(a__ ) in IMAGE_PROCESSOR_MAPPING: UpperCAmelCase = IMAGE_PROCESSOR_MAPPING[type(a__ )] return image_processor_class.from_dict(a__ , **a__ ) raise ValueError( f"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " f"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}" ) @staticmethod def __snake_case ( a__ : Union[str, Any] , a__ : Tuple ): IMAGE_PROCESSOR_MAPPING.register(a__ , a__ )
51
import math from datetime import datetime, timedelta def _snake_case (__lowercase): UpperCamelCase_ = year % 19 UpperCamelCase_ = year % 4 UpperCamelCase_ = year % 7 UpperCamelCase_ = math.floor(year / 100) UpperCamelCase_ = math.floor((13 + 8 * leap_day_inhibits) / 25) UpperCamelCase_ = leap_day_inhibits / 4 UpperCamelCase_ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 UpperCamelCase_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCamelCase_ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon UpperCamelCase_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 19) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 18) else: return datetime(__lowercase , 3 , 22) + timedelta( days=int(days_to_add + days_from_phm_to_sunday)) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): snake_case__ : Dict = """will be""" if year > datetime.now().year else """was""" print(f'Easter in {year} {tense} {gauss_easter(year)}')
23
0
"""simple docstring""" from math import factorial A = {str(digit): factorial(digit) for digit in range(10)} def __A ( a_ :int) -> int: if not isinstance(a_ , a_): raise TypeError('''Parameter number must be int''') if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''') # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(a_)) def __A ( a_ :int = 60 , a_ :int = 1_00_00_00) -> int: if not isinstance(a_ , a_) or not isinstance(a_ , a_): raise TypeError('''Parameters chain_length and number_limit must be int''') if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''') # the counter for the chains with the exact desired length __a : int = 0 # the cached sizes of the previous chains __a : dict[int, int] = {} for start_chain_element in range(1 , a_): # The temporary set will contain the elements of the chain __a : Tuple = set() __a : Union[str, Any] = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. __a : str = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(a_) chain_set_length += 1 __a : Optional[int] = digit_factorial_sum(a_) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] __a : Optional[int] = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution()}')
52
import requests def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = {'Content-Type': 'application/json'} UpperCamelCase_ = requests.post(__lowercase , json={'text': message_body} , headers=__lowercase) if response.status_code != 200: UpperCamelCase_ = ( 'Request to slack returned an error ' f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(__lowercase) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
23
0
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _snake_case : Dict = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=7 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Optional[Any]=1_8 , lowerCAmelCase_ : Optional[Any]=3_0 , lowerCAmelCase_ : str=4_0_0 , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : str=None , ) -> Tuple: __lowerCAmelCase = size if size is not None else {'height': 2_0, 'width': 2_0} __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = image_size __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = size __lowerCAmelCase = do_normalize __lowerCAmelCase = do_convert_rgb __lowerCAmelCase = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] __lowerCAmelCase = patch_size if patch_size is not None else {'height': 1_6, 'width': 1_6} def lowercase ( self : List[Any] ) -> Tuple: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCAmelCase = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = PixaStructImageProcessor if is_vision_available() else None def lowercase ( self : List[Any] ) -> Dict: __lowerCAmelCase = PixaStructImageProcessingTester(self ) @property def lowercase ( self : List[str] ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'do_convert_rgb' ) ) def lowercase ( self : str ) -> Dict: __lowerCAmelCase = self.image_processor_tester.prepare_dummy_image() __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) __lowerCAmelCase = 2_0_4_8 __lowerCAmelCase = image_processor(lowerCAmelCase_ , return_tensors='pt' , max_patches=lowerCAmelCase_ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06 ) , atol=1e-3 , rtol=1e-3 ) ) def lowercase ( self : Any ) -> Dict: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input __lowerCAmelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCAmelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowerCAmelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCAmelCase = image_processor( lowerCAmelCase_ , return_tensors='pt' , max_patches=lowerCAmelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowercase ( self : List[str] ) -> Union[str, Any]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input __lowerCAmelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 __lowerCAmelCase = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase_ ): __lowerCAmelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowerCAmelCase_ ).flattened_patches __lowerCAmelCase = 'Hello' __lowerCAmelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowerCAmelCase_ , header_text=lowerCAmelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCAmelCase = image_processor( lowerCAmelCase_ , return_tensors='pt' , max_patches=lowerCAmelCase_ , header_text=lowerCAmelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowercase ( self : Any ) -> Tuple: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) __lowerCAmelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCAmelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowerCAmelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCAmelCase = image_processor( lowerCAmelCase_ , return_tensors='pt' , max_patches=lowerCAmelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowercase ( self : Optional[Any] ) -> List[Any]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCAmelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowerCAmelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCAmelCase = image_processor( lowerCAmelCase_ , return_tensors='pt' , max_patches=lowerCAmelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = PixaStructImageProcessor if is_vision_available() else None def lowercase ( self : Any ) -> int: __lowerCAmelCase = PixaStructImageProcessingTester(self , num_channels=4 ) __lowerCAmelCase = 3 @property def lowercase ( self : Any ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self : Dict ) -> Tuple: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'do_convert_rgb' ) ) def lowercase ( self : List[Any] ) -> Any: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input __lowerCAmelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCAmelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowerCAmelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCAmelCase = image_processor( lowerCAmelCase_ , return_tensors='pt' , max_patches=lowerCAmelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
53
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _a ( UpperCAmelCase__ ): """simple docstring""" def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) UpperCamelCase_ = input_file.read() UpperCamelCase_ = regexp.search(_UpperCAmelCase ) return match def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) UpperCamelCase_ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase_ = regexp.finditer(_UpperCAmelCase ) UpperCamelCase_ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_UpperCAmelCase ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(_UpperCAmelCase ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
23
0
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class A : def __init__( self: Any , _lowerCAmelCase: Tuple , _lowerCAmelCase: List[Any]=100 , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: str=30 , _lowerCAmelCase: str=2 , _lowerCAmelCase: str=3 , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: Union[str, Any]=True , _lowerCAmelCase: List[str]=32 , _lowerCAmelCase: str=4 , _lowerCAmelCase: List[str]=4 , _lowerCAmelCase: str=37 , _lowerCAmelCase: str="gelu" , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: Optional[Any]=0.1 , _lowerCAmelCase: str=10 , _lowerCAmelCase: Optional[int]=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Dict=None , _lowerCAmelCase: Any=[0, 1, 2, 3] , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =100 UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =scope UpperCAmelCase_ =out_indices UpperCAmelCase_ =num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ =(image_size // patch_size) ** 2 UpperCAmelCase_ =num_patches + 1 def lowerCAmelCase__ ( self: Optional[int] ) -> Any: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase__ ( self: Optional[Any] ) -> List[Any]: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: Tuple , _lowerCAmelCase: int , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ =BeitModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =BeitForMaskedImageModeling(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.type_sequence_label_size UpperCAmelCase_ =BeitForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ =1 UpperCAmelCase_ =BeitForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: str , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.num_labels UpperCAmelCase_ =BeitForSemanticSegmentation(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def lowerCAmelCase__ ( self: Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) _snake_case =( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: Union[str, Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =BeitModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: List[Any] ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def lowerCAmelCase__ ( self: List[Any] ) -> Any: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: str ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[int] ) -> Union[str, Any]: '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_lowerCAmelCase ), BeitForMaskedImageModeling]: continue UpperCAmelCase_ =model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() UpperCAmelCase_ =self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) UpperCAmelCase_ =model(**_lowerCAmelCase ).loss loss.backward() def lowerCAmelCase__ ( self: List[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase_ =False UpperCAmelCase_ =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_lowerCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase_ =model_class(_lowerCAmelCase ) model.gradient_checkpointing_enable() model.to(_lowerCAmelCase ) model.train() UpperCAmelCase_ =self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) UpperCAmelCase_ =model(**_lowerCAmelCase ).loss loss.backward() def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ =_config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> List[Any]: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ =BeitModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> List[Any]: '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ =BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(_lowerCAmelCase ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="pt" ).pixel_values.to(_lowerCAmelCase ) # prepare bool_masked_pos UpperCAmelCase_ =torch.ones((1, 196) , dtype=torch.bool ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ =model(pixel_values=_lowerCAmelCase , bool_masked_pos=_lowerCAmelCase ) UpperCAmelCase_ =outputs.logits # verify the logits UpperCAmelCase_ =torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =torch.tensor( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _lowerCAmelCase , atol=1e-2 ) ) @slow def lowerCAmelCase__ ( self: Optional[int] ) -> Any: '''simple docstring''' UpperCAmelCase_ =BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(_lowerCAmelCase ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ =model(**_lowerCAmelCase ) UpperCAmelCase_ =outputs.logits # verify the logits UpperCAmelCase_ =torch.Size((1, 1000) ) self.assertEqual(logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =torch.tensor([-1.23_85, -1.09_87, -1.01_08] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) UpperCAmelCase_ =281 self.assertEqual(logits.argmax(-1 ).item() , _lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: str ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( _lowerCAmelCase ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ =model(**_lowerCAmelCase ) UpperCAmelCase_ =outputs.logits # verify the logits UpperCAmelCase_ =torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =torch.tensor([1.68_81, -0.27_87, 0.59_01] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) UpperCAmelCase_ =2396 self.assertEqual(logits.argmax(-1 ).item() , _lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' UpperCAmelCase_ =BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase_ =model.to(_lowerCAmelCase ) UpperCAmelCase_ =BeitImageProcessor(do_resize=_lowerCAmelCase , size=640 , do_center_crop=_lowerCAmelCase ) UpperCAmelCase_ =load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase_ =Image.open(ds[0]["file"] ) UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ =model(**_lowerCAmelCase ) UpperCAmelCase_ =outputs.logits # verify the logits UpperCAmelCase_ =torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: UpperCAmelCase_ =torch.tensor( [ [[-4.92_25, -2.39_54, -3.05_22], [-2.88_22, -1.00_46, -1.75_61], [-2.95_49, -1.32_28, -2.13_47]], [[-5.81_68, -3.41_29, -4.07_78], [-3.86_51, -2.22_14, -3.02_77], [-3.83_56, -2.46_43, -3.35_35]], [[-0.00_78, 3.99_52, 4.07_54], [2.98_56, 4.69_44, 5.00_35], [3.24_13, 4.78_13, 4.99_69]], ] , device=_lowerCAmelCase , ) else: UpperCAmelCase_ =torch.tensor( [ [[-4.89_60, -2.36_88, -3.03_55], [-2.84_78, -0.98_36, -1.74_18], [-2.94_49, -1.33_32, -2.14_56]], [[-5.80_81, -3.41_24, -4.10_06], [-3.85_61, -2.20_81, -3.03_23], [-3.83_65, -2.46_01, -3.36_69]], [[-0.03_09, 3.98_68, 4.05_40], [2.96_40, 4.68_77, 4.99_76], [3.20_81, 4.76_90, 4.99_42]], ] , device=_lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def lowerCAmelCase__ ( self: int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase_ =model.to(_lowerCAmelCase ) UpperCAmelCase_ =BeitImageProcessor(do_resize=_lowerCAmelCase , size=640 , do_center_crop=_lowerCAmelCase ) UpperCAmelCase_ =load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase_ =Image.open(ds[0]["file"] ) UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ =model(**_lowerCAmelCase ) UpperCAmelCase_ =outputs.logits.detach().cpu() UpperCAmelCase_ =image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase , target_sizes=[(500, 300)] ) UpperCAmelCase_ =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _lowerCAmelCase ) UpperCAmelCase_ =image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase ) UpperCAmelCase_ =torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , _lowerCAmelCase )
54
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _snake_case (__lowercase=32 , __lowercase=10 , __lowercase=100 , __lowercase=1026 , __lowercase=True , __lowercase="data/tokenized_stories_train_wikitext103.jbl" , __lowercase="igf_context_pairs.jbl" , ): set_seed(3) # generate train_data and objective_set UpperCamelCase_ , UpperCamelCase_ = generate_datasets( __lowercase , __lowercase , number=__lowercase , min_len=1026 , trim=__lowercase) # keeps model same across runs set_seed(4) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # load pretrained model UpperCamelCase_ = load_gpta('gpt2').to(__lowercase) print('computing perplexity on objective set') UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase).item() print('perplexity on objective set:' , __lowercase) # collect igf pairs and save to file demo.jbl collect_objective_set(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _snake_case (__lowercase , __lowercase=15 , __lowercase=128 , __lowercase=100 , __lowercase="igf_model.pt" , ): set_seed(42) # Load pre-trained model UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2') # Initialize secondary learner to use embedding weights of model UpperCamelCase_ = SecondaryLearner(__lowercase) # Train secondary learner UpperCamelCase_ = train_secondary_learner( __lowercase , __lowercase , max_epochs=__lowercase , batch_size=__lowercase , eval_freq=100 , igf_model_path=__lowercase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=32 , __lowercase=1000 , __lowercase=16 , __lowercase=1.0 , __lowercase=recopy_gpta , __lowercase=None , __lowercase=10 , __lowercase="gpt2_finetuned.pt" , ): UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') UpperCamelCase_ = RandomSampler(__lowercase) UpperCamelCase_ = DataLoader(__lowercase , sampler=__lowercase) UpperCamelCase_ = max_steps // (len(__lowercase)) + 1 UpperCamelCase_ = 0 UpperCamelCase_ = torch.zeros((1, context_len) , dtype=torch.long , device=__lowercase) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = recopy_model(__lowercase , __lowercase , __lowercase) model.train() if secondary_learner is not None: secondary_learner.to(__lowercase) secondary_learner.eval() UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = [] UpperCamelCase_ = [] # Compute the performance of the transformer model at the beginning UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase) test_perps.append(__lowercase) print('Test perplexity, step' , __lowercase , ':' , __lowercase) for epoch in range(int(__lowercase)): for step, example in enumerate(__lowercase): torch.cuda.empty_cache() UpperCamelCase_ = random.randint(0 , example.size(2) - context_len - 1) UpperCamelCase_ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() UpperCamelCase_ = model(__lowercase , labels=__lowercase) UpperCamelCase_ = True if secondary_learner is not None: UpperCamelCase_ = secondary_learner.forward( torch.tensor(__lowercase , dtype=torch.long , device=__lowercase).unsqueeze(0))[0].item() observed_qs.append(float(__lowercase)) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: UpperCamelCase_ = -1 if predicted_q < threshold: UpperCamelCase_ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu())) UpperCamelCase_ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() UpperCamelCase_ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase) test_perps.append(__lowercase) print('Test perplexity, step' , __lowercase , ':' , __lowercase) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , __lowercase) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task') # Required parameters parser.add_argument( '--data_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=__lowercase , type=__lowercase , required=__lowercase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=__lowercase , default=__lowercase , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=__lowercase , default=__lowercase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=__lowercase , type=__lowercase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=__lowercase , default=__lowercase , help='A seed for reproducible training.') parser.add_argument( '--context_len' , default=32 , type=__lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=__lowercase , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=__lowercase , help='secondary model evaluation is triggered at eval_freq') parser.add_argument('--max_steps' , default=1000 , type=__lowercase , help='To calculate training epochs') parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=__lowercase , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=__lowercase , help='batch size of training data of language model(gpt2) ') parser.add_argument( '--eval_interval' , default=10 , type=__lowercase , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=__lowercase , help='The number of examples split to be used as objective_set/test_data') parser.add_argument( '--min_len' , default=1026 , type=__lowercase , help='The minimum length of the article to be used as objective set') parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=__lowercase , help='number of epochs to train secondary learner') parser.add_argument('--trim' , default=__lowercase , type=__lowercase , help='truncate the example if it exceeds context length') parser.add_argument( '--threshold' , default=1.0 , type=__lowercase , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=__lowercase , help='finetuned_model_name') parser.add_argument( '--recopy_model' , default=__lowercase , type=__lowercase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=__lowercase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner UpperCamelCase_ = joblib.load('data/IGF_values.jbl') # Train secondary learner UpperCamelCase_ = training_secondary_learner( __lowercase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2') set_seed(42) # Generate train and test data to train and evaluate gpt2 model UpperCamelCase_ , UpperCamelCase_ = generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=__lowercase) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( __lowercase , __lowercase , __lowercase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=__lowercase , secondary_learner=__lowercase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
23
0
def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) __A = str(bin(a_ ) )[2:] # remove the leading "0b" __A = str(bin(a_ ) )[2:] # remove the leading "0b" __A = max(len(a_ ) , len(a_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(a_ ) , b_binary.zfill(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
55
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _a : """simple docstring""" A_ = MBartConfig A_ = {} A_ = """gelu""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ) -> Union[str, Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_ = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = TFMBartModel(config=_UpperCAmelCase ).get_decoder() UpperCamelCase_ = inputs_dict['input_ids'] UpperCamelCase_ = input_ids[:1, :] UpperCamelCase_ = inputs_dict['attention_mask'][:1, :] UpperCamelCase_ = inputs_dict['head_mask'] UpperCamelCase_ = 1 # first forward pass UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple() UpperCamelCase_ = past_key_values[1] def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ): if attention_mask is None: UpperCamelCase_ = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id) , tf.inta) if decoder_attention_mask is None: UpperCamelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () A_ = (TFMBartForConditionalGeneration,) if is_tf_available() else () A_ = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) A_ = True A_ = False A_ = False def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = TFMBartModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class _a ( unittest.TestCase ): """simple docstring""" A_ = [ """ UN Chief Says There Is No Military Solution in Syria""", ] A_ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] A_ = """facebook/mbart-large-en-ro""" @cached_property def _UpperCAmelCase ( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> int: UpperCamelCase_ = self.translate_src_text(**_UpperCAmelCase ) self.assertListEqual(self.expected_text , _UpperCAmelCase ) def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> List[str]: UpperCamelCase_ = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='tf' ) UpperCamelCase_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCamelCase_ = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) return generated_words @slow def _UpperCAmelCase ( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
23
0
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example _a : Union[str, Any] = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example _a : int = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _a (lowercase__ : list[list[int]] ) -> list[list[int]]: """simple docstring""" __snake_case = [] for i in range(len(lowercase__ ) ): __snake_case = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __snake_case = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowercase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowercase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowercase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __snake_case = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowercase__ ) return next_generation def _a (lowercase__ : list[list[int]] , lowercase__ : int ) -> list[Image.Image]: """simple docstring""" __snake_case = [] for _ in range(lowercase__ ): # Create output image __snake_case = Image.new('RGB' , (len(cells[0] ), len(lowercase__ )) ) __snake_case = img.load() # Save cells to image for x in range(len(lowercase__ ) ): for y in range(len(cells[0] ) ): __snake_case = 2_5_5 - cells[y][x] * 2_5_5 __snake_case = (colour, colour, colour) # Save image images.append(lowercase__ ) __snake_case = new_generation(lowercase__ ) return images if __name__ == "__main__": _a : Union[str, Any] = generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
56
def _snake_case (__lowercase): UpperCamelCase_ = 1 for i in range(1 , num + 1): fact *= i return fact def _snake_case (__lowercase): UpperCamelCase_ = 0 while number > 0: UpperCamelCase_ = number % 10 sum_of_digits += last_digit UpperCamelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def _snake_case (__lowercase = 100): UpperCamelCase_ = factorial(__lowercase) UpperCamelCase_ = split_and_add(__lowercase) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
23
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Union[str, Any] = 'ylacombe/bark-small' UpperCamelCase_: Optional[int] = tempfile.mkdtemp() UpperCamelCase_: Dict = 'en_speaker_1' UpperCamelCase_: List[Any] = 'This is a test string' UpperCamelCase_: Tuple = 'speaker_embeddings_path.json' UpperCamelCase_: Tuple = 'speaker_embeddings' def _a ( self , **_lowerCamelCase ): return AutoTokenizer.from_pretrained(self.checkpoint , **_lowerCamelCase ) def _a ( self ): shutil.rmtree(self.tmpdirname ) def _a ( self ): UpperCamelCase_: int = self.get_tokenizer() UpperCamelCase_: Dict = BarkProcessor(tokenizer=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def _a ( self ): UpperCamelCase_: Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCamelCase_: Optional[int] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def _a ( self ): UpperCamelCase_: Union[str, Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCamelCase_: int = 3_5 UpperCamelCase_: Optional[int] = 2 UpperCamelCase_: int = 8 UpperCamelCase_: Union[str, Any] = { 'semantic_prompt': np.ones(_lowerCamelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCamelCase_: Dict = processor(text=self.input_string , voice_preset=_lowerCamelCase ) UpperCamelCase_: str = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_lowerCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCamelCase_: Tuple = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_: List[Any] = processor(text=self.input_string , voice_preset=_lowerCamelCase ) UpperCamelCase_: Tuple = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_lowerCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCamelCase_: int = processor(text=self.input_string , voice_preset=self.voice_preset ) def _a ( self ): UpperCamelCase_: Tuple = self.get_tokenizer() UpperCamelCase_: str = BarkProcessor(tokenizer=_lowerCamelCase ) UpperCamelCase_: List[str] = processor(text=self.input_string ) UpperCamelCase_: List[Any] = tokenizer( self.input_string , padding='max_length' , max_length=2_5_6 , add_special_tokens=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
57
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case__ : str = logging.get_logger(__name__) def _snake_case (__lowercase): if isinstance(__lowercase , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(__lowercase , (list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(__lowercase): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""") class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = ["""pixel_values"""] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> None: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = size if size is not None else {'shortest_edge': 224} UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = resample UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCamelCase_ = get_resize_output_image_size(_UpperCAmelCase , size['shortest_edge'] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCamelCase_ = (size['height'], size['width']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: UpperCamelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> int: return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCamelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCamelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCamelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCamelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCamelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCamelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ) -> PIL.Image.Image: UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean UpperCamelCase_ = image_std if image_std is not None else self.image_std UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) UpperCamelCase_ = make_batched(_UpperCAmelCase ) UpperCamelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCamelCase_ = {'pixel_values': videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
23
0
"""simple docstring""" from __future__ import annotations __lowerCAmelCase : List[Any] = 10 def __lowerCAmelCase ( __UpperCamelCase : list[int] ): '''simple docstring''' snake_case_ : Optional[Any] = 1 snake_case_ : Any = max(__UpperCamelCase ) while placement <= max_digit: # declare and initialize empty buckets snake_case_ : list[list] = [[] for _ in range(__UpperCamelCase )] # split list_of_ints between the buckets for i in list_of_ints: snake_case_ : str = int((i / placement) % RADIX ) buckets[tmp].append(__UpperCamelCase ) # put each buckets' contents into list_of_ints snake_case_ : Optional[int] = 0 for b in range(__UpperCamelCase ): for i in buckets[b]: snake_case_ : str = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
58
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = 42 A_ = 42 class _a ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" A_ = 1 @register_to_config def __init__( self , _UpperCAmelCase = 2000 , _UpperCAmelCase = 0.1_5 , _UpperCAmelCase = 0.0_1 , _UpperCAmelCase = 1_3_4_8.0 , _UpperCAmelCase = 1e-5 , _UpperCAmelCase = 1 , ) -> Tuple: # standard deviation of the initial noise distribution UpperCamelCase_ = sigma_max # setable values UpperCamelCase_ = None self.set_sigmas(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> torch.FloatTensor: return sample def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> str: UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps UpperCamelCase_ = torch.linspace(1 , _UpperCAmelCase , _UpperCAmelCase , device=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> Any: UpperCamelCase_ = sigma_min if sigma_min is not None else self.config.sigma_min UpperCamelCase_ = sigma_max if sigma_max is not None else self.config.sigma_max UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) UpperCamelCase_ = torch.exp(torch.linspace(math.log(_UpperCAmelCase ) , math.log(_UpperCAmelCase ) , _UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) UpperCamelCase_ = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) UpperCamelCase_ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda UpperCamelCase_ = timesteps.to(self.discrete_sigmas.device ) UpperCamelCase_ = self.discrete_sigmas[timesteps].to(sample.device ) UpperCamelCase_ = self.get_adjacent_sigma(_UpperCAmelCase , _UpperCAmelCase ).to(sample.device ) UpperCamelCase_ = torch.zeros_like(_UpperCAmelCase ) UpperCamelCase_ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods UpperCamelCase_ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): UpperCamelCase_ = diffusion.unsqueeze(-1 ) UpperCamelCase_ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of UpperCamelCase_ = randn_tensor( sample.shape , layout=sample.layout , generator=_UpperCAmelCase , device=sample.device , dtype=sample.dtype ) UpperCamelCase_ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? UpperCamelCase_ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_UpperCAmelCase , prev_sample_mean=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction UpperCamelCase_ = randn_tensor(sample.shape , layout=sample.layout , generator=_UpperCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr UpperCamelCase_ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase_ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase_ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 UpperCamelCase_ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term UpperCamelCase_ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): UpperCamelCase_ = step_size.unsqueeze(-1 ) UpperCamelCase_ = sample + step_size * model_output UpperCamelCase_ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCamelCase_ = timesteps.to(original_samples.device ) UpperCamelCase_ = self.discrete_sigmas.to(original_samples.device )[timesteps] UpperCamelCase_ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_UpperCAmelCase ) * sigmas[:, None, None, None] ) UpperCamelCase_ = noise + original_samples return noisy_samples def __len__( self ) -> Optional[int]: return self.config.num_train_timesteps
23
0
from __future__ import annotations def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" lowerCamelCase__: Union[str, Any] =len(__a ) # We need to create solution object to save path. lowerCamelCase__: Optional[Any] =[[0 for _ in range(__a )] for _ in range(__a )] lowerCamelCase__: int =run_maze(__a , 0 , 0 , __a ) if solved: print("\n".join(str(__a ) for row in solutions ) ) else: print("No solution exists!" ) return solved def lowerCAmelCase_ ( __a , __a , __a , __a ) -> bool: """simple docstring""" lowerCamelCase__: List[str] =len(__a ) # Final check point. if i == j == (size - 1): lowerCamelCase__: List[str] =1 return True lowerCamelCase__: Optional[int] =(not i < 0) and (not j < 0) # Check lower bounds lowerCamelCase__: Dict =(i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. lowerCamelCase__: Optional[Any] =(not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited lowerCamelCase__: Optional[Any] =1 # check for directions if ( run_maze(__a , i + 1 , __a , __a ) or run_maze(__a , __a , j + 1 , __a ) or run_maze(__a , i - 1 , __a , __a ) or run_maze(__a , __a , j - 1 , __a ) ): return True lowerCamelCase__: List[Any] =0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
59
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Optional[int] = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys snake_case__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
23
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) lowerCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowerCamelCase_ ( _UpperCamelCase ) -> Any: """simple docstring""" for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: snake_case_ : Union[str, Any] = model_type_to_module_name(_UpperCamelCase ) snake_case_ : Dict = importlib.import_module(f'''.{module_name}''' , '''transformers.models''' ) try: return getattr(_UpperCamelCase , _UpperCamelCase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_UpperCamelCase , '''__name__''' , _UpperCamelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. snake_case_ : Union[str, Any] = importlib.import_module('''transformers''' ) if hasattr(_UpperCamelCase , _UpperCamelCase ): return getattr(_UpperCamelCase , _UpperCamelCase ) return None def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , **_UpperCamelCase , ) -> Optional[Any]: """simple docstring""" snake_case_ : Optional[Any] = get_file_from_repo( _UpperCamelCase , _UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , resume_download=_UpperCamelCase , proxies=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , local_files_only=_UpperCamelCase , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(_UpperCamelCase , encoding='''utf-8''' ) as reader: return json.load(_UpperCamelCase ) class __lowerCAmelCase : def __init__(self ) -> Optional[Any]: '''simple docstring''' raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__magic_name__ ) def lowerCamelCase (cls , __magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = kwargs.pop('''config''' , __magic_name__ ) snake_case_ : Union[str, Any] = kwargs.pop('''trust_remote_code''' , __magic_name__ ) snake_case_ : Tuple = True snake_case_ , snake_case_ : Tuple = FeatureExtractionMixin.get_feature_extractor_dict(__magic_name__ , **__magic_name__ ) snake_case_ : int = config_dict.get('''feature_extractor_type''' , __magic_name__ ) snake_case_ : str = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): snake_case_ : Any = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__magic_name__ , __magic_name__ ): snake_case_ : Any = AutoConfig.from_pretrained(__magic_name__ , **__magic_name__ ) # It could be in `config.feature_extractor_type`` snake_case_ : List[Any] = getattr(__magic_name__ , '''feature_extractor_type''' , __magic_name__ ) if hasattr(__magic_name__ , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: snake_case_ : List[str] = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: snake_case_ : List[Any] = feature_extractor_class_from_name(__magic_name__ ) snake_case_ : Optional[int] = feature_extractor_auto_map is not None snake_case_ : Tuple = feature_extractor_class is not None or type(__magic_name__ ) in FEATURE_EXTRACTOR_MAPPING snake_case_ : Optional[int] = resolve_trust_remote_code( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if has_remote_code and trust_remote_code: snake_case_ : int = get_class_from_dynamic_module( __magic_name__ , __magic_name__ , **__magic_name__ ) snake_case_ : int = kwargs.pop('''code_revision''' , __magic_name__ ) if os.path.isdir(__magic_name__ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__magic_name__ , **__magic_name__ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__magic_name__ , **__magic_name__ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__magic_name__ ) in FEATURE_EXTRACTOR_MAPPING: snake_case_ : Optional[Any] = FEATURE_EXTRACTOR_MAPPING[type(__magic_name__ )] return feature_extractor_class.from_dict(__magic_name__ , **__magic_name__ ) raise ValueError( F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def lowerCamelCase (__magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' FEATURE_EXTRACTOR_MAPPING.register(__magic_name__ , __magic_name__ )
60
import datasets from .evaluate import evaluate snake_case__ : int = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ snake_case__ : Union[str, Any] = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ snake_case__ : Any = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def _UpperCAmelCase ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: UpperCamelCase_ = {prediction['id']: prediction['prediction_text'] for prediction in predictions} UpperCamelCase_ = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] UpperCamelCase_ = evaluate(dataset=_UpperCAmelCase , predictions=_UpperCAmelCase ) return score
23
0